
Principia Mathematica endeavors to demonstrate that the convenient quantification theory of its 

section *10 can be recovered in the system of *9 which works by employing universal and existential 

generalizations on tautologies, switching quantifiers and then pushing them into subordinate occurrences 

by the definitions of *9 see, Principia Mathematica, p. 129). A rigorous demonstration of this, however, 

requires induction in the meta-language on the length of a wff (Landini 2007). Whitehead and Russell 

knew this, but preferred not to engage in proofs by induction until section *90 which introduced and 

defined the ancestral relation (see Principia Mathematica, p. 129). Logical notions, including the use of 

numerical notions and other mathematical notions, must be used to set out any formal system for logic. 

There is nothing circular about that so long as one does not confuse logic and its applications with a 

formal axiomatic system. Hence, there is nothing circular in using proof by induction to set out and 

legitimate the formal system of quantification theory. 

In the early 21st century, the quantification schemas of Principia Mathematica’s section *10 are 

more familiar to logicians. We find the following:  

*10.1  (𝑥𝑡)𝑥𝑡 𝑦𝑡 

        

where 𝑦𝑡 is free for 𝑥𝑡 in the wff . 

 

*10.12 (𝑥𝑡)( p  𝑥𝑡) . . p  (𝑥𝑡)𝑥𝑡 

 

where 𝑥𝑡  does not occur free in p and p may contain quantifiers. The wonderful intuition behind 

Principia’s system *9 is that for any given instance of *10.1 or *10.2, we can imagine finding a proof of 

it in the system of *9 by working first in reverse order. First move all its quantifiers to initial placement 

by means of the definitions of *9 and then, by creativity, find some tautology to generalize. The success 

of section *9 does not assure decidability of quantification theory and of course, in 1936 Church proved 

that it is not decidable. But it was an enthusiasm over viability of system *9 that Wittgenstein and 

Ramsey concluded that quantification theory of any simple type consists in generalized tautologies and is 

decidable (see, Wittgenstein, 1914, p. 126). Wittgenstein, made a leap of faith, making the decidability of 

quantification theory a characteristic feature of the conception of logic advanced in his Tractatus. Ramsey 

was more measured and, unlike Wittgenstein, did not mean to connote decidability in saying that 

quantification theory consists of generalized tautologies (see, Ramsey, 1931, p. 5). Russell was wholly 

silent on the matter.  

Interestingly, in Principia Mathematica’s second edition, Russell offers Appendix A which 

sketches, together with the new introduction, a system of deduction for a new Section *8. This system is 

intended to replace Section *9 of the first edition. The purpose of Section *8 is to offer a remarkable new 

system of deduction without free variables. Unfortunately, Russell sets out section *8 using typical 

ambiguity and he also couches it in a system that adopts Nicod’s axioms for a language whose sole 



proposition sign is the Sheffer stroke. This adds yet another layer of complexity that tends to hide the 

remarkable new result of quantification theory without free variables that is quite independent of the use 

of Nicod’s work and would have been better stated separately. In any case, let us set it out with type 

indices restored. With the Sheffer stroke, no special definitions are needed for the negation of a quantifier. 

Where  and  are any wffs, quantifier-free or otherwise, the stroke Sheffer definitions are these:  

  =df  

     =df    

  •  =df (   ) 

     =df     

The new system of *8, suggests that perhaps Russell came to realize that he needed a correction of the 

system of *9 because of its absence of *9.0x and *9.0y. With the Sheffer stroke as the only primitive 

propositional sign, and where p is quantifier-free, Russell offers the following definitions for the *8 

quantification theory without free variables: 

 

*8.01   (𝑥𝑡)𝑥𝑡  p  =df (𝑥𝑡)(𝑥𝑡  p) 

 *8.011   (𝑥𝑡)𝑥𝑡  p  =df (𝑥𝑡)(𝑥𝑡  p) 

*8.012  p  (𝑥𝑡)𝑥𝑡 =df (𝑥𝑡)( p 𝑥𝑡) 

 *8.013  p  (𝑥𝑡)𝑥𝑡 =df (𝑥𝑡)( p  𝑥𝑡) 

 

For cases where p is not a quantifier-free wff, Russell adopts the plan of defining so that the quantifier on 

the left of the stroke is moved to the front, and then the one on the right is moved to the front (1925PM, p. 

635). As axioms, Russell has the following which parallel *9.1 and *9.11: 

 *8.1 (𝑥𝑡)(𝑦𝑡)( 𝑧𝑡  (𝑥𝑡  𝑦𝑡)) 

 *8.11 (𝑥𝑡) ( 𝑥𝑡  (𝑦𝑡  𝑧𝑡)) 

The system of *8 explicitly adopts the inference rule Switch (that is, *8.13). We have borrowed it on 

behalf of Principia Mathematica’s system *9 since it is clearly intended there. Since the system of *8 is 

to work without free variables, Russell also adopts the following inference rule 

*8.12 From (𝑥𝑡)𝑥𝑡 and (𝑥𝑡)( 𝑥𝑡  𝑥𝑡), infer (𝑥𝑡)𝑥𝑡. 

This rule needs a slight modification because the formal system of *8 does not allow vacuous quantifiers. 

But, this is a small omission that is easily corrected (see, Landini, 2005).  

The system of *8 is the only innovation properly endorsed in the second edition of Principia 

Mathematica. It is important to understand that *8 was not intended merely as a replacement that does 

exactly what is done by *9 using the Sheffer stroke. It is designed, quite unlike *9, to perform 

quantification theory without free variables. The system of *9 could easily have used the Sheffer stroke as 

its primitives instead of having the primitive signs ‘’ and ‘’. The Sheffer stroke is completely irrelevant 



to conducting quantification theory without free variables. In any case, the new system of *8 preceded 

Quine’s Mathematical Logic (1940) by fifteen years, which sets forth a theory of deduction without free 

variables. 

 In order to advance a quantification theory without free variables, Russell requires a definition of 

the universal closure of a wff, since there are several ways to universally close a wff. Unfortunately, 

Russell does not choose one, but we can easily supply one so that for any wff (𝑥1
𝑡1 , … , 𝑥𝑛

𝑡𝑛) the intended 

universal closure is to be this: 

(𝑥𝑛
𝑡𝑛),… , (𝑥1

𝑡1) f(𝑥1
𝑡1 , … , 𝑥𝑛

𝑡𝑛)  

In the system of *8, the closure of a wff such as f{!x} is ()(x)f{!x}. We must respect the fact that f and 

 are schematic for wffs and that the bindable object-language predicate variables ‘!’ are always 

decorated with the exclamation ‘!’. Russell intends his discussion of *8 to be applied to the original 

system of Principia Mathematica’s first edition and thus it is not intended to upturn anything of 

significance in the original system. Letters  are not predicate variables, but are rather used schematically 

in x for wffs of the object-language. For example, since  is schematic for a wff the closure of (x)x  

y is not 

 ()(y)( (x)!x  !y) 

but rather 

 (
1
),…, (

𝑛
)(𝑧1),…,(𝑧𝑚)(y)( (x)x  y) 

where 
1
! ,…, 

𝑛
! and 𝑧1, …, 𝑧𝑚 are all the free variables besides x occurring free in the wff . 

Unfortunately, Russell writes in the introduction to the second edition (1925, xiv) that instead of ‘├. (p). 

fp’ we are to write ‘├. (, x). f(x)’. This is quite infelicitous. Obviously, there are no propositions and 

thus no legitimate propositional variables are syntactically well-formed. And as we have just noted, bound 

predicate variables in the syntax of Principia Mathematica’s first edition must come with the 

exclamation. Thus ‘├. (, x). f(!x)’ would be the proper universal closure. The best explanation of this 

faux pas is that Russell intended to use the new system of *8 with the experiment he conducted in its new 

Introduction and Appendix B—an experiment which explores the benefits and weaknesses of altering 

Principia Mathematica’s grammar and adopting a Wittgenstein suggestion of accepting a sweeping axiom 

schema of extensionality. This must all be kept completely separate.  

 The system of *8 is interestingly different from that of Quine, which uses vacuous quantifiers to 

arrive at a system of deduction without free variables. Quine regards 

(x)(p & p)  

to be true when x is not free in p. Russell’s systems *8 and *9 render it ill-formed. The difference is 

unimportant until one endeavors to extend the systems to develop quantification theory without free 



variables and without any existential theorems for individuals (of lowest type). In Principia Mathematica, 

Russell tagged *9.1 (*10.1) and the existence of free variables as the source of its commitment to the 

existence of at least one individual of lowest type (pp. 20, 226). In his Introduction to Mathematical 

Philosophy (1919), Russell regards this as a “defect of logical purity” (p. 203). Originally he hoped that 

his system *8 might achieve such purity. Unfortunately, it does not. But it is a first step. The system of *8 

can be extended to reach this result (see, Landini, 2005). Quine also extended his system of deduction 

without free variables to reach such purity. But Quine’s system regards, 

 p .. () (x) !x  p  

as logically true (in fact, a tautology). In the Russellian system this is certainly not a tautology since it is, 

by the definitions of *8, an existential theorem—namely:  

 () (x)( p .. !x  p ). 

The extension of *8 to avoid existential theorems (concerning individuals of lowest type) embraces 

different theorems than does Quine’s extension (using his vacuous quantifiers) of his system. That is a 

remarkable distinction between the two systems and shows that achieving logical purity is not the trivial 

matter that Quine thinks it to be. 

 Scope is very important in Principia Mathematica. It has often been charged that the order of 

application of its many definitions is not determinate (see, Gödel, 1944, p. 126). This charge is mistaken. 

We have only to take Whitehead and Russell at their word when they say that definite descriptions and 

class expressions are not genuine terms of the theory. The main definitions for the theory of definite 

descriptions are these: 

*14.01 [xx][ (xx)] =df (x)( z ≡𝑧 z = x .&. x) 

*14.02 E!(xx) =df (x)( z ≡𝑧 z = x). 

It is natural as well to add: 

*14.01a  [xx][ x] =df (x)( z ≡𝑧 z = x .&. x), 

But *14.01, rather than *14.01a, is needed to facilitate Principia Mathematica’s convention that one may 

drop the scope marker when smallest scope is intended. When we encounter an expression such as  

 (xx)  

with a schematic letter  for a wff and without a scope marker, we are not in a position to assign any 

scope. We simply know that Principia Mathematica tells us that the smallest possible scope is intended. 

Thus we are not in a position to restore the scope marker until a wff is assigned to the schema that makes 

smallest scope clear. Consider, for example, a case such as this: 

f!(xx)  !(xx). 



The scope is clear because f! and ! are both object-language bindable predicate variables. The intended 

restoration is this: 

[xx][f!(xx)]  [xx][!(xx)]. 

These are the smallest scopes. 

 When multiple definite description expressions occur, Principia Mathematica adopts the 

convention that the left most is to be eliminated first. It should be noted that in a case such as  

 !(xx, xx) 

Principia Mathematica intends  

 [xx][!xx] 

that is, (x)( z ≡𝑧 z = x .&. !(x, x) ).  

Though no provision is made, it is easy to amend the convention so that in a case such as, 

! (xx, yy) 

the intended scope is this: 

[xx][yy][!xy] 

that is, (x)( z ≡𝑧 z = x .&. (y)( z ≡𝑧 z = y .&. !(x, y) ).  

In all this, it is very important to remind ourselves that definite descriptions are not terms of the object 

language. It follows that any definition formed with individual variables cannot be applied to definite 

description expressions and class expressions. For example, consider: 

x = y =df *13.02 ()(!x  !y).  

Now consider the expression, 

 xx = y. 

There is no problem of scope. Definition *13.01 cannot apply since xx is not a term of the language of 

Principia Mathematica. Thus, we have 

 [xx][xx = y]. 

This is the smallest scope possible. We can next apply *14.01, and we arrive at this:  

 (x)( z ≡𝑧 z = x .&. x = y ).  

Only now can definition *13.01 be applied. We arrive at: 

(x)( z ≡𝑧 z = x .&. ()(!x ≡ !y) ).  

In a case such as,  

xx = xx, 

the scope is again quite clear. We have 

(x)( z ≡𝑧 z = x .&. x = x ). 

A similar point holds for the following definition 



x ≠ y =df *13.02 (x = y).  

Consider the expression xx ≠ y. Since definition *13.02 cannot apply, the smallest scope possible is the 

following: 

 [xx][xx ≠ y]. 

Next, by applying *14. 01, we get: 

 (x)( z ≡𝑧 z = x .&. x ≠ y ).  

Only now can we apply *13.02. It should be noted that not all contexts formed from the formal language 

of Principia Mathematica are extensional. That is because the formal language has the identity sign and 

admits wffs such as ! = !, that is, 𝑥(𝑡) = 𝑦(𝑡). There are no other primitive non-extensional contexts. 

The general schema for the equivalence of primary and secondary scope of definite descriptions of 

individuals (of any type) is this: 

E!(xx) .. f{[xx][(xx)]} ≡ [xx][f{( xx)}], 

where  is truth-functional. Matters are more complicated for expression of definite descriptions of 

classes as we shall see.  

Issues pertaining to scope also arise in connection definitions emulating class expressions in 

Principia Mathematica. The definitions for expressions of classes of individuals (of any type) are as 

follows: 

*20.01 [ 𝑧̂z][ f{𝑧̂z}] =df ()( x  x x) .&. f {!})  

*20.02   x  ! =df !x  

Theses apply only for expressions of classes of individuals (of any type). Classes are not individuals of 

any type. Hence, for expressions for classes of classes of individuals (of any type), we find the following 

new definitions: 

*20.07   ()f  =df () f{𝑧̂!z}  

*20.071  () f =df () f{𝑧̂!z}  

*20.08   [ ̂ ][ f{̂ }] =df ()( ! ≡ ) .&. f {! ̂}) 

*20.081   ! =df ! 

The essential scope markers are restored to *20.01 and *20.08. It is no less essential to the definitions that 

scope markers be absent in *20.07 and *20.071, for here Principia Mathematica intends that we are to 

take the smallest scope possible. The definitions *20.01 and *20.02 emulate classes of individuals of any 

type. They do not emulate classes of classes. For that, the other definitions introducing lower-case Greek 

letters are needed.  

 Definitions involving individual variables, though they are typically ambiguous, cannot be 

applied to expressions involving class expressions such as 𝑥𝑥. We must apply definitions such as *20.01 



first. This at once dispenses with Gödel’s concern that the order of elimination of the class expression 

𝑥! 𝑥 in 

 !𝑥 =  𝑥! 𝑥  

is not determinate. But, we now see that since definition *13.01 cannot apply to class expressions the 

order is determinate just as it was in the case of definite descriptions.  

It is important to observe, however, that definitions in Principia Mathematica made with lower-

case Greek cannot be applied to definite descriptions, not even definite descriptions of the form f for 

classes. Consider, for example the following definition:  

 *24.03 ! =df (x)(x ) 

Here the free lower-case Greek  stands in for a class expression of the form 𝑧̂z. Thus, we have: 

!𝑥𝑥 =df (x)(x 𝑧̂z).  

All the same, we have: 

!f =df [f][ (x)(x f )]. 

We are not permitted to apply *24.03. We must first apply *14.01 to arrive at 

 ()(f ≡  =  .&. !). 

Only then are we permitted to apply *24.03 to arrive at 

()(f ≡  =  .&. (x)(x )). 

The following theorem, which shows an equivalence, is thus rather important  

 f = 𝑧̂z  !f ≡ !𝑥𝑥. 

Unfortunately, Principia Mathematica never stops to prove this.  

This sometimes generates curious situations in Principia Mathematica. Observe that the 

following is quite readily proved:  

*24.54  !𝑥𝑥 ≡  𝑥𝑥 ≠ . 

The analog for definite descriptions is also provable: 

!f ≡  f ≠ . 

Now we have 

()(𝑅⃗ y) = 𝑧̂(zRy). 

Observe as well that the following are not contradictories in Principia: 

𝑧̂(zRy)  =  

𝑧̂(𝑧𝑅𝑦)  ≠ . 

Expanding the class symbols they are, respectively, 

𝑧̂(zRy) =  =df  ()(!z ≡𝑧 zRy .&. ()(!z ≡𝑧 z ≠ z .&. !𝑧̂ = !𝑧̂)) 

𝑧̂(𝑧𝑅𝑦) ≠  =df  ()(z ≡𝑧 zRy .&. ()(z ≡𝑧 z ≠ z .&. !𝑧̂ ≠ !𝑧̂ )). 



Nonetheless, the following are contradictories: 

!()( 𝑅⃗  𝑦)  

!()( 𝑅⃗  𝑦) . 

Whitehead and Russell’s comments after *32.121 suggest otherwise, but they seem just mistaken.  

It is worth noting that while definite descriptions must be eliminated before applying definitions, 

in situations of class expressions it is the definitions made with lower-case Greek that are to apply first. 

Consider, for example: 

 *22.03    =df 𝑥( 𝑥   𝑣 𝑥  ). 

It is not permitted to apply *20.01 to 

 𝑥𝑥    

for it is impossible to apply *22.03 to the clause !𝑧̂   in 

()(!z ≡𝑧 z .&. !𝑧̂   ). 

The order of definitions in Principia Mathematica is clear enough. 

Non-extensionality cannot come into play with definite descriptions of individuals of any type. 

But it can come into play with definite descriptions of classes. For definite descriptions of the form f, 

the conditions under which primary and secondary scopes are equivalent is this: 

*14.3 E!() .. f{[][()  ≡ [)][f{( ))}], 

where f is truth-functional and  is extensional. This parallels the situation of class expressions: 

*14.3 E!(𝑧̂z) .. f{[𝑧̂z][( 𝑧̂z)]} ≡ [𝑧̂z][f{( 𝑧̂z)}], 

where f is truth-functional and  is extensional. Of course in each of these cases, *12.n assures E!() 

and E!(). 

 There is a bit of a surprise here that differs from the case of definite descriptions of individuals. 

Even with *12.n, primary scopes of class expression do not always entail secondary scopes. Consider the 

following:  

[𝑦̂!y]  [𝑦̂!y = !𝑧̂ ]  [𝑦̂y][𝑦̂y = !𝑧̂ ]. 

By definition *20.01 we have: 

()(!z z z .&. (!𝑧̂ = !𝑧̂))  ()(z z z .&. !𝑧̂ = !𝑧̂ ). 

We can have a situation where 

()(!z z z .&. (!𝑧̂ = !𝑧̂))  

is true. But ()(z z z .&. !𝑧̂ = !𝑧̂ ) is false since clearly there is some !𝑧̂, namely !𝑧̂ itself 

which is such that !𝑧̂ = !𝑧̂. This completes the proof.  



A very important feature is the absence of the scope markers in *20.07 and *20.071. This is to 

assure that smallest scopes are taken. This feature is central to the viability of the theory of classes of 

classes. Definition *20.07 must not be taken as  

()f  =df ()[𝑧̂! 𝑧][𝑓{ 𝑧̂!z}]. 

Were it to be taken this way, the theory of classes would collapse. To see this, we have only to examine 

what happens in the proof of  

 𝑧̂!z  ̂ .≡. (𝑧̂!z). 

By applying definitions *20.08 and *20.081 to the left-hand side we get: 

()(! ≡  .&. !(𝑧̂!z) ). 

Since ! is a genuine predicate variable we know the scope is 

()(! ≡  .&. [𝑧̂!z][!(𝑧̂!z)] ). 

Ok, now focus on 

 ! ≡ . 

The question is how to apply *20.07 to this so as to prove  (𝑧̂!z). It is important that *20.07 is not 

interpreted to demand the following primary scope: 

()(  [𝑧̂!z][ !(𝑧̂!z) ≡ (𝑧̂!z) ]) 

If it demanded such a scope, the proof stalls. But when properly understood, *20.07 tells us that we do not 

know the scope 𝑧̂!z has in ()f(𝑧̂!z) until after f (…) is assigned; and it tells us that when it is assigned, 

we are to take the smallest scope possible. Thus *20.07 yields  

()(  !(𝑧̂!z) ≡ (𝑧̂!z)). 

Now since ! is a genuine predicate variable, we know that the smallest scope of 𝑧̂!z in !(𝑧̂!z) is 

primary. Hence, we get: 

()( [𝑧̂!z][!(𝑧̂!z)] ≡ (𝑧̂!z)). 

So, by universal instantiation  

 [𝑧̂!z][!(𝑧̂!z)] ≡ (𝑧̂!z)). 

Hence, since we have [𝑧̂!z][!(𝑧̂!z)] we readily arrive at what we want, namely, (𝑧̂!z). 


