
Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com

www.bitcoin.org

Abstract.  A purely  peer-to-peer  version  of  electronic  cash  would  allow online 
payments to be sent directly from one party to another without going through a 
financial institution.  Digital signatures provide part of the solution, but the main 
benefits are lost if a trusted third party is still required to prevent double-spending. 
We propose a solution to the double-spending problem using a peer-to-peer network. 
The network timestamps transactions by hashing them into an ongoing chain of 
hash-based proof-of-work, forming a record that cannot be changed without redoing 
the proof-of-work.  The longest chain not only serves as proof of the sequence of 
events witnessed, but proof that it came from the largest pool of CPU power.  As 
long as a majority of CPU power is controlled by nodes that are not cooperating to 
attack the network, they'll generate the longest chain and outpace attackers.  The 
network itself requires minimal structure.  Messages are broadcast on a best effort 
basis,  and nodes can leave and rejoin the network at  will,  accepting the longest 
proof-of-work chain as proof of what happened while they were gone.

1. Introduction
Commerce on the Internet has come to rely almost exclusively on financial institutions serving as 
trusted third parties to process electronic payments.  While the system works well enough for 
most  transactions,  it  still  suffers  from  the  inherent  weaknesses  of  the  trust  based  model. 
Completely non-reversible transactions are not really possible, since financial institutions cannot 
avoid  mediating  disputes.   The  cost  of  mediation  increases  transaction  costs,  limiting  the 
minimum practical transaction size and cutting off the possibility for small casual transactions, 
and  there  is  a  broader  cost  in  the  loss  of  ability  to  make  non-reversible  payments  for  non-
reversible services.  With the possibility of reversal, the need for trust spreads.  Merchants must 
be wary of their customers, hassling them for more information than they would otherwise need. 
A certain percentage of fraud is accepted as unavoidable.  These costs and payment uncertainties 
can be avoided in person by using physical currency, but no mechanism exists to make payments 
over a communications channel without a trusted party.

What is needed is an electronic payment system based on cryptographic proof instead of trust, 
allowing any two willing parties to transact directly with each other without the need for a trusted 
third party.  Transactions that are computationally impractical to reverse would protect sellers 
from fraud, and routine escrow mechanisms could easily be implemented to protect buyers.  In 
this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed 
timestamp server to generate computational proof of the chronological order of transactions.  The 
system  is  secure  as  long  as  honest  nodes  collectively  control  more  CPU  power  than  any 
cooperating group of attacker nodes.

1



2. Transactions
We define an electronic coin as a chain of digital signatures.  Each owner transfers the coin to the 
next by digitally signing a hash of the previous transaction and the public key of the next owner 
and adding these to the end of the coin.  A payee can verify the signatures to verify the chain of 
ownership.

The problem of course is the payee can't verify that one of the owners did not double-spend 
the coin.  A common solution is to introduce a trusted central authority, or mint, that checks every 
transaction for double spending.  After each transaction, the coin must be returned to the mint to 
issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent. 
The  problem with  this  solution  is  that  the  fate  of  the  entire  money  system depends  on  the 
company running the mint, with every transaction having to go through them, just like a bank.

We need a way for the payee to  know that the  previous owners did not  sign any earlier 
transactions.  For our purposes, the earliest transaction is the one that counts, so we don't care 
about later attempts to double-spend.  The only way to confirm the absence of a transaction is to 
be aware of all transactions.  In the mint based model, the mint was aware of all transactions and 
decided which arrived first.   To accomplish this without a trusted party, transactions must be 
publicly announced [1], and we need a system for participants to agree on a single history of the 
order in which they were received.  The payee needs proof that at the time of each transaction, the 
majority of nodes agreed it was the first received. 

3. Timestamp Server
The solution we propose begins with a timestamp server.  A timestamp server works by taking a 
hash  of  a  block  of  items  to  be  timestamped  and  widely  publishing  the  hash,  such  as  in  a 
newspaper or Usenet post [2-5].  The timestamp proves that the data must have existed at the 
time, obviously, in order to get into the hash.  Each timestamp includes the previous timestamp in 
its hash, forming a chain, with each additional timestamp reinforcing the ones before it.

2

Block

Item Item ...

Hash

Block

Item Item ...

Hash

Transaction

Owner 1's
Public Key

Owner 0's
Signature

Hash

Transaction

Owner 2's
Public Key

Owner 1's
Signature

Hash

 Verify

Transaction

Owner 3's
Public Key

Owner 2's
Signature

Hash

 Verify

Owner 2's
Private Key

Owner 1's
Private Key

Sign  
Sign  

Owner 3's
Private Key



4. Proof-of-Work
To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof-
of-work system similar to Adam Back's Hashcash [6], rather than newspaper or Usenet posts. 
The proof-of-work involves scanning for a value that when hashed, such as with SHA-256, the 
hash begins with a number of zero bits.  The average work required is exponential in the number 
of zero bits required and can be verified by executing a single hash.

For our timestamp network, we implement the proof-of-work by incrementing a nonce in the 
block until a value is found that gives the block's hash the required zero bits.  Once the CPU 
effort  has been expended to make it  satisfy the proof-of-work, the  block cannot  be  changed 
without redoing the work.  As later blocks are chained after it, the work to change the block 
would include redoing all the blocks after it.

The proof-of-work also solves the problem of determining representation in majority decision 
making.  If the majority were based on one-IP-address-one-vote, it could be subverted by anyone 
able  to  allocate  many  IPs.   Proof-of-work  is  essentially  one-CPU-one-vote.   The  majority 
decision is represented by the longest chain, which has the greatest proof-of-work effort invested 
in it.  If a majority of CPU power is controlled by honest nodes, the honest chain will grow the 
fastest and outpace any competing chains.  To modify a past block, an attacker would have to 
redo the proof-of-work of the block and all blocks after it and then catch up with and surpass the 
work of the honest nodes.  We will show later that the probability of a slower attacker catching up 
diminishes exponentially as subsequent blocks are added.

To compensate for increasing hardware speed and varying interest in running nodes over time, 
the proof-of-work difficulty is determined by a moving average targeting an average number of 
blocks per hour.  If they're generated too fast, the difficulty increases.

5. Network
The steps to run the network are as follows:

1) New transactions are broadcast to all nodes.
2) Each node collects new transactions into a block.  
3) Each node works on finding a difficult proof-of-work for its block.
4) When a node finds a proof-of-work, it broadcasts the block to all nodes.
5) Nodes accept the block only if all transactions in it are valid and not already spent.
6) Nodes express their acceptance of the block by working on creating the next block in the 

chain, using the hash of the accepted block as the previous hash.

Nodes always consider the longest chain to be the correct one and will keep working on 
extending it.  If two nodes broadcast different versions of the next block simultaneously, some 
nodes may receive one or the other first.  In that case, they work on the first one they received, 
but save the other branch in case it becomes longer.  The tie will be broken when the next proof-
of-work is found and one branch becomes longer;  the nodes that were working on the other 
branch will then switch to the longer one.

3

Block

Prev Hash Nonce

Tx Tx ...

Block

Prev Hash Nonce

Tx Tx ...



New transaction broadcasts do not necessarily need to reach all nodes.  As long as they reach 
many nodes, they will get into a block before long.  Block broadcasts are also tolerant of dropped 
messages.  If a node does not receive a block, it will request it when it receives the next block and 
realizes it missed one.

6. Incentive
By convention, the first transaction in a block is a special transaction that starts a new coin owned 
by the creator of the block.  This adds an incentive for nodes to support the network, and provides 
a way to initially distribute coins into circulation, since there is no central authority to issue them. 
The steady addition of a constant of amount of new coins is analogous to gold miners expending 
resources to add gold to circulation.  In our case, it is CPU time and electricity that is expended.

The incentive can also be funded with transaction fees.  If the output value of a transaction is 
less than its input value, the difference is a transaction fee that is added to the incentive value of 
the  block  containing  the  transaction.   Once  a  predetermined  number  of  coins  have  entered 
circulation, the incentive can transition entirely to transaction fees and be completely inflation 
free.

The incentive  may help  encourage nodes to  stay  honest.   If  a  greedy attacker  is  able  to 
assemble more CPU power than all the honest nodes, he would have to choose between using it 
to defraud people by stealing back his payments, or using it to generate new coins.  He ought to 
find it more profitable to play by the rules, such rules that favour him with more new coins than 
everyone else combined, than to undermine the system and the validity of his own wealth.

7. Reclaiming Disk Space
Once the latest transaction in a coin is buried under enough blocks, the spent transactions before 
it  can be discarded to  save disk  space.   To facilitate  this  without  breaking the  block's  hash, 
transactions are hashed in a Merkle Tree [7][2][5], with only the root included in the block's hash. 
Old blocks can then be compacted by stubbing off branches of the tree.  The interior hashes do 
not need to be stored.

A block header with no transactions would be about 80 bytes.   If we suppose blocks are 
generated every 10 minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year.  With computer systems 
typically selling with 2GB of RAM as of 2008, and Moore's Law predicting current growth of 
1.2GB per year,  storage should not be a problem even if  the block headers must  be kept in 
memory.

4

BlockBlock
Block Header (Block Hash)

Prev Hash Nonce

Hash01

Hash0 Hash1 Hash2 Hash3

Hash23

Root Hash

Hash01

Hash2

Tx3

Hash23

Block Header (Block Hash)

Root Hash

Transactions Hashed in a Merkle Tree After Pruning Tx0-2 from the Block

Prev Hash Nonce

Hash3

Tx0 Tx1 Tx2 Tx3



8. Simplified Payment Verification
It is possible to verify payments without running a full network node.  A user only needs to keep 
a copy of the block headers of the longest proof-of-work chain, which he can get by querying 
network  nodes  until  he's  convinced  he  has  the  longest  chain,  and  obtain  the  Merkle  branch 
linking  the  transaction  to  the  block  it's  timestamped  in.   He  can't  check  the  transaction  for 
himself, but by linking it to a place in the chain, he can see that a network node has accepted it, 
and blocks added after it further confirm the network has accepted it.

As such, the verification is reliable as long as honest nodes control the network, but is more 
vulnerable  if  the  network  is  overpowered  by  an  attacker.   While  network  nodes  can  verify 
transactions  for  themselves,  the  simplified  method  can  be  fooled  by an  attacker's  fabricated 
transactions for as long as the attacker can continue to overpower the network.  One strategy to 
protect against this would be to accept alerts from network nodes when they detect an invalid 
block,  prompting  the  user's  software  to  download  the  full  block  and  alerted  transactions  to 
confirm the inconsistency.  Businesses that receive frequent payments will probably still want to 
run their own nodes for more independent security and quicker verification.

9. Combining and Splitting Value
Although it  would be possible to handle coins individually, it  would be unwieldy to make a 
separate  transaction  for  every cent  in  a  transfer.   To  allow value  to  be  split  and  combined, 
transactions contain multiple inputs and outputs.  Normally there will be either a single input 
from a larger previous transaction or multiple inputs combining smaller amounts, and at most two 
outputs: one for the payment, and one returning the change, if any, back to the sender.  

It should be noted that fan-out, where a transaction depends on several transactions, and those 
transactions depend on many more, is not a problem here.  There is never the need to extract a 
complete standalone copy of a transaction's history.

5

Transaction

In

...

In Out

...

Hash01

Hash2 Hash3

Hash23

Block Header

Merkle Root

Prev Hash Nonce

Block Header

Merkle Root

Prev Hash Nonce

Block Header

Merkle Root

Prev Hash Nonce

Merkle Branch for Tx3

Longest Proof-of-Work Chain

Tx3



10. Privacy
The traditional banking model achieves a level of privacy by limiting access to information to the 
parties involved and the trusted third party.  The necessity to announce all transactions publicly 
precludes this method, but privacy can still be maintained by breaking the flow of information in 
another place: by keeping public keys anonymous.  The public can see that someone is sending 
an amount to someone else, but without information linking the transaction to anyone.  This is 
similar  to  the  level  of  information released by stock exchanges,  where  the  time and size  of 
individual trades, the "tape", is made public, but without telling who the parties were.

As an additional firewall, a new key pair should be used for each transaction to keep them 
from being  linked  to  a  common owner.   Some  linking  is  still  unavoidable  with  multi-input 
transactions, which necessarily reveal that their inputs were owned by the same owner.  The risk 
is that if the owner of a key is revealed, linking could reveal other transactions that belonged to 
the same owner.

11. Calculations
We consider the scenario of an attacker trying to generate an alternate chain faster than the honest 
chain.  Even if this is accomplished, it does not throw the system open to arbitrary changes, such 
as creating value out of thin air or taking money that never belonged to the attacker.  Nodes are 
not going to accept an invalid transaction as payment, and honest nodes will never accept a block 
containing them.  An attacker can only try to change one of his own transactions to take back 
money he recently spent.

The race between the honest chain and an attacker chain can be characterized as a Binomial 
Random Walk.  The success event is the honest chain being extended by one block, increasing its 
lead by +1, and the failure event is the attacker's chain being extended by one block, reducing the 
gap by -1.

The probability of an attacker catching up from a given deficit is analogous to a Gambler's 
Ruin problem.  Suppose a gambler with unlimited credit starts at a deficit and plays potentially an 
infinite number of trials to try to reach breakeven.  We can calculate the probability he ever 
reaches breakeven, or that an attacker ever catches up with the honest chain, as follows [8]:

p = probability an honest node finds the next block
q = probability the attacker finds the next block
qz = probability the attacker will ever catch up from z blocks behind

q z={ 1 if p≤q
q / pz if pq}

6

Identities Transactions Trusted
Third Party Counterparty Public

Identities Transactions Public

New Privacy Model

Traditional Privacy Model



Given our assumption that p > q, the probability drops exponentially as the number of blocks the 
attacker has to catch up with increases.  With the odds against him, if he doesn't make a lucky 
lunge forward early on, his chances become vanishingly small as he falls further behind.

We now consider how long the recipient of a new transaction needs to wait  before being 
sufficiently certain the sender can't change the transaction.  We assume the sender is an attacker 
who wants to make the recipient believe he paid him for a while, then switch it to pay back to 
himself after some time has passed.  The receiver will be alerted when that happens, but the 
sender hopes it will be too late.

The receiver generates a new key pair and gives the public key to the sender shortly before 
signing.  This prevents the sender from preparing a chain of blocks ahead of time by working on 
it continuously until he is lucky enough to get far enough ahead, then executing the transaction at 
that moment.  Once the transaction is sent, the dishonest sender starts working in secret on a 
parallel chain containing an alternate version of his transaction.

The recipient waits until the transaction has been added to a block and  z blocks have been 
linked  after  it.   He  doesn't  know the  exact  amount  of  progress  the  attacker  has  made,  but 
assuming the honest blocks took the average expected time per block, the attacker's potential 
progress will be a Poisson distribution with expected value:

=z q
p

To get the probability the attacker could still catch up now, we multiply the Poisson density for 
each amount of progress he could have made by the probability he could catch up from that point:

∑
k=0

∞ k e−

k !
⋅{q / p z−k  if k≤ z

1 if k z}
Rearranging to avoid summing the infinite tail of the distribution...

1−∑
k=0

z k e−

k !
1−q / p z−k 

Converting to C code...

#include <math.h>
double AttackerSuccessProbability(double q, int z)
{
    double p = 1.0 - q;
    double lambda = z * (q / p);
    double sum = 1.0;
    int i, k;
    for (k = 0; k <= z; k++)
    {
        double poisson = exp(-lambda);
        for (i = 1; i <= k; i++)
            poisson *= lambda / i;
        sum -= poisson * (1 - pow(q / p, z - k));
    }
    return sum;
}

7



Running some results, we can see the probability drop off exponentially with z.

q=0.1
z=0    P=1.0000000
z=1    P=0.2045873
z=2    P=0.0509779
z=3    P=0.0131722
z=4    P=0.0034552
z=5    P=0.0009137
z=6    P=0.0002428
z=7    P=0.0000647
z=8    P=0.0000173
z=9    P=0.0000046
z=10   P=0.0000012

q=0.3
z=0    P=1.0000000
z=5    P=0.1773523
z=10   P=0.0416605
z=15   P=0.0101008
z=20   P=0.0024804
z=25   P=0.0006132
z=30   P=0.0001522
z=35   P=0.0000379
z=40   P=0.0000095
z=45   P=0.0000024
z=50   P=0.0000006

Solving for P less than 0.1%...

P < 0.001
q=0.10   z=5
q=0.15   z=8
q=0.20   z=11
q=0.25   z=15
q=0.30   z=24
q=0.35   z=41
q=0.40   z=89
q=0.45   z=340

12. Conclusion
We have proposed a system for electronic transactions without relying on trust.  We started with 
the usual framework of coins made from digital  signatures,  which provides strong control of 
ownership,  but  is  incomplete  without  a  way  to  prevent  double-spending.   To  solve  this,  we 
proposed a peer-to-peer network using proof-of-work to record a public history of transactions 
that  quickly  becomes  computationally  impractical  for  an  attacker  to  change  if  honest  nodes 
control a majority of CPU power.  The network is robust in its unstructured simplicity.  Nodes 
work all at once with little coordination.  They do not need to be identified, since messages are 
not routed to any particular place and only need to be delivered on a best effort basis.  Nodes can 
leave  and  rejoin  the  network  at  will,  accepting  the  proof-of-work  chain  as  proof  of  what 
happened while they were gone.  They vote with their CPU power, expressing their acceptance of 
valid blocks by working on extending them and rejecting invalid blocks by refusing to work on 
them.  Any needed rules and incentives can be enforced with this consensus mechanism.

8



References
[1] W. Dai, "b-money," http://www.weidai.com/bmoney.txt, 1998.

[2] H. Massias, X.S. Avila, and J.-J. Quisquater, "Design of a secure timestamping service with minimal 
trust requirements," In 20th Symposium on Information Theory in the Benelux, May 1999.

[3] S. Haber, W.S. Stornetta, "How to time-stamp a digital document," In Journal of Cryptology, vol 3, no 
2, pages 99-111, 1991.

[4] D. Bayer, S. Haber, W.S. Stornetta, "Improving the efficiency and reliability of digital time-stamping," 
In Sequences II: Methods in Communication, Security and Computer Science, pages 329-334, 1993.

[5] S. Haber, W.S. Stornetta, "Secure names for bit-strings," In Proceedings of the 4th ACM Conference 
on Computer and Communications Security, pages 28-35, April 1997.

[6] A. Back, "Hashcash - a denial of service counter-measure," 
http://www.hashcash.org/papers/hashcash.pdf, 2002.

[7] R.C. Merkle, "Protocols for public key cryptosystems," In Proc. 1980 Symposium on Security and 
Privacy, IEEE Computer Society, pages 122-133, April 1980.

[8] W. Feller, "An introduction to probability theory and its applications," 1957.

9



I am fascinated by Tim May's crypto-anarchy. Unlike the communities

traditionally associated with the word "anarchy", in a crypto-anarchy the

government is not temporarily destroyed but permanently forbidden and

permanently unnecessary. It's a community where the threat of violence is

impotent because violence is impossible, and violence is impossible

because its participants cannot be linked to their true names or physical

locations.


Until now it's not clear, even theoretically, how such a community could

operate. A community is defined by the cooperation of its participants,

and efficient cooperation requires a medium of exchange (money) and a way

to enforce contracts. Traditionally these services have been provided by

the government or government sponsored institutions and only to legal

entities. In this article I describe a protocol by which these services

can be provided to and by untraceable entities.


I will actually describe two protocols. The first one is impractical,

because it makes heavy use of a synchronous and unjammable anonymous

broadcast channel. However it will motivate the second, more practical

protocol. In both cases I will assume the existence of an untraceable

network, where senders and receivers are identified only by digital

pseudonyms (i.e. public keys) and every messages is signed by its sender

and encrypted to its receiver.


In the first protocol, every participant maintains a (seperate) database

of how much money belongs to each pseudonym. These accounts collectively

define the ownership of money, and how these accounts are updated is the

subject of this protocol.


1. The creation of money. Anyone can create money by broadcasting the

solution to a previously unsolved computational problem. The only

conditions are that it must be easy to determine how much computing effort

it took to solve the problem and the solution must otherwise have no

value, either practical or intellectual. The number of monetary units

created is equal to the cost of the computing effort in terms of a

standard basket of commodities. For example if a problem takes 100 hours

to solve on the computer that solves it most economically, and it takes 3

standard baskets to purchase 100 hours of computing time on that computer

on the open market, then upon the broadcast of the solution to that

problem everyone credits the broadcaster's account by 3 units.


2. The transfer of money. If Alice (owner of pseudonym K_A) wishes to

transfer X units of money to Bob (owner of pseudonym K_B), she broadcasts

the message "I give X units of money to K_B" signed by K_A. Upon the

broadcast of this message, everyone debits K_A's account by X units and

credits K_B's account by X units, unless this would create a negative

balance in K_A's account in which case the message is ignored.


3. The effecting of contracts. A valid contract must include a maximum

reparation in case of default for each participant party to it. It should

also include a party who will perform arbitration should there be a

dispute. All parties to a contract including the arbitrator must broadcast

their signatures of it before it becomes effective. Upon the broadcast of

the contract and all signatures, every participant debits the account of

each party by the amount of his maximum reparation and credits a special

account identified by a secure hash of the contract by the sum the maximum




reparations. The contract becomes effective if the debits succeed for

every party without producing a negative balance, otherwise the contract

is ignored and the accounts are rolled back. A sample contract might look

like this:


K_A agrees to send K_B the solution to problem P before 0:0:0 1/1/2000.

K_B agrees to pay K_A 100 MU (monetary units) before 0:0:0 1/1/2000. K_C

agrees to perform arbitration in case of dispute. K_A agrees to pay a

maximum of 1000 MU in case of default. K_B agrees to pay a maximum of 200

MU in case of default. K_C agrees to pay a maximum of 500 MU in case of

default.


4. The conclusion of contracts. If a contract concludes without dispute,

each party broadcasts a signed message "The contract with SHA-1 hash H

concludes without reparations." or possibly "The contract with SHA-1 hash

H concludes with the following reparations: ..." Upon the broadcast of all

signatures, every participant credits the account of each party by the

amount of his maximum reparation, removes the contract account, then

credits or debits the account of each party according to the reparation

schedule if there is one.


5. The enforcement of contracts. If the parties to a contract cannot agree

on an appropriate conclusion even with the help of the arbitrator, each

party broadcasts a suggested reparation/fine schedule and any arguments or

evidence in his favor. Each participant makes a determination as to the

actual reparations and/or fines, and modifies his accounts accordingly.


In the second protocol, the accounts of who has how much money are kept by

a subset of the participants (called servers from now on) instead of

everyone. These servers are linked by a Usenet-style broadcast channel.

The format of transaction messages broadcasted on this channel remain the

same as in the first protocol, but the affected participants of each

transaction should verify that the message has been received and

successfully processed by a randomly selected subset of the servers.


Since the servers must be trusted to a degree, some mechanism is needed to

keep them honest. Each server is required to deposit a certain amount of

money in a special account to be used as potential fines or rewards for

proof of misconduct. Also, each server must periodically publish and

commit to its current money creation and money ownership databases. Each

participant should verify that his own account balances are correct and

that the sum of the account balances is not greater than the total amount

of money created. This prevents the servers, even in total collusion, from

permanently and costlessly expanding the money supply. New servers can

also use the published databases to synchronize with existing servers.


The protocol proposed in this article allows untraceable pseudonymous

entities to cooperate with each other more efficiently, by providing them

with a medium of exchange and a method of enforcing contracts. The

protocol can probably be made more efficient and secure, but I hope this

is a step toward making crypto-anarchy a practical as well as theoretical

possibility.


-------


Appendix A: alternative b-money creation




One of the more problematic parts in the b-money protocol is money

creation. This part of the protocol requires that all of the account

keepers decide and agree on the cost of particular computations.

Unfortunately because computing technology tends to advance rapidly and

not always publicly, this information may be unavailable, inaccurate, or

outdated, all of which would cause serious problems for the protocol.


So I propose an alternative money creation subprotocol, in which account

keepers (everyone in the first protocol, or the servers in the second

protocol) instead decide and agree on the amount of b-money to be created

each period, with the cost of creating that money determined by an

auction. Each money creation period is divided up into four phases, as

follows:


1. Planning. The account keepers compute and negotiate with each other to

determine an optimal increase in the money supply for the next period. 

Whether or not the account keepers can reach a consensus, they each

broadcast their money creation quota and any macroeconomic calculations

done to support the figures. 


2. Bidding. Anyone who wants to create b-money broadcasts a bid in the

form of <x, y> where x is the amount of b-money he wants to create, and y

is an unsolved problem from a predetermined problem class. Each problem in

this class should have a nominal cost (in MIPS-years say) which is

publicly agreed on.


3. Computation. After seeing the bids, the ones who placed bids in the

bidding phase may now solve the problems in their bids and broadcast the

solutions.


4. Money creation. Each account keeper accepts the highest bids (among

those who actually broadcasted solutions) in terms of nominal cost per

unit of b-money created and credits the bidders' accounts accordingly.




See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2570020

Design Of A Secure Timestamping Service With Minimal Trust Requirement

Article · July 2002

Source: CiteSeer

CITATIONS

87
READS

2,759

3 authors, including:

Some of the authors of this publication are also working on these related projects:

secure blockchain in the long-term: SBILL View project

Jean-Jacques Quisquater

Université Catholique de Louvain - UCLouvain

409 PUBLICATIONS   14,376 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jean-Jacques Quisquater on 21 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2570020_Design_Of_A_Secure_Timestamping_Service_With_Minimal_Trust_Requirement?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2570020_Design_Of_A_Secure_Timestamping_Service_With_Minimal_Trust_Requirement?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/secure-blockchain-in-the-long-term-SBILL?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Quisquater?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Quisquater?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-Catholique-de-Louvain-UCLouvain?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Quisquater?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Quisquater?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_10&_esc=publicationCoverPdf


DESIGN OF A SECURE TIMESTAMPING SERVICEWITH MINIMAL TRUST REQUIREMENTH. Massias, X. Serret Avila, J.-J. QuisquaterUCL Crypto groupPla
e du Levant, 3 , B-1348 Louvain-la-Neuve, Belgiummassias, serret, jjq�di
e.u
l.a
.beThis paper presents our design of a timestamping system for the Belgianproje
t TIMESEC. We �rst introdu
e the timestamping method used and wejustify our 
hoi
e for it. Then we present the design of our implementationas well as some of the important issues we found and the solutions we gaveto them.INTRODUCTIONThe 
reation date of digital do
uments and the times expressed in them arebe
oming in
reasingly important as digital do
uments are being introdu
ed intothe legal domain.We de�ne �digital timestamp� as a digital 
erti�
ate intended to assure theexisten
e of a generi
 digital do
ument at a 
ertain time.In order to produ
e fully trusted timestamps, very spe
i�
 designs have beenintrodu
ed. We give an overview of the most relevant methods and we introdu
ethe one we used for the implementation of the Belgian proje
t TIMESEC (see[PRQ+98℄), justifying our 
hoi
e for it. Then we present the design of the times-tamping system we made for this proje
t. We separate the di�erent pro
esses thatare: do
ument timestamping, timestamp veri�
ation, auditing, system start-upand system shutdown.INTRODUCTION OF THE TIMESTAMPING TECHNIQUESThere are two families of timestamping te
hniques: those that work with atrusted third party and those that are based on the 
on
ept of distributed trust.Te
hniques based on a trusted third party rely on the impartiality of the entitythat is in 
harge of issuing the timestamps. Te
hniques based on the distributedtrust 
onsist on making do
uments dated and signed by a large set of peoplein order to 
onvin
e the veri�ers that we 
ould not have 
orrupted all of them.The trusted third party te
hniques 
an also be 
lassi�ed into two di�erent kinds:those where the third party is 
ompletely trusted and those where it is partially



trusted. A detailed study of timestamping te
hniques 
an be found in [MQ97℄.We believe that te
hniques based on distributed trust are not really workable in aprofessional environment, that is why we 
on
entrate on the trusted third partyapproa
h. Nevertheless, we imposed to ourselves the requirement to lower thene
essary trust on the third party to the maximum extend.The �easy� solution, whi
h 
onsists on 
on
atenating the do
ument with the
urrent time and sign the result, has been dis
arded be
ause it has two maindrawba
ks:1. We must 
ompletely trust the third party, 
alled Se
ure Timestamp Autho-rity (STA), whi
h 
an issue undete
table ba
k-dated timestamps.2. The limited lifetime of 
ryptographi
 signatures, whi
h 
an be shorter thanthe do
ument time-to-life.The timestamping method that we have 
hosen uses a binary tree stru
ture andhas been des
ribed in [HS91℄ and [HS97℄. This method works by rounds. For ea
hround a binary tree is 
onstru
ted with the requests �lled during it. The roundshave a �xed duration, whi
h is the result of a trade-o� between the timestampsa

ura
y and the number of requests submitted. In Figure 1 we 
an see a graphi
alrepresentation of a round 
onstru
ted using this method.

y2 y3 y4 y5 y6 y7 y8y1

H12 H34 H56

H58H14

H18

H78

RH(i-1) RH(i)

Figure 1: The binary tree stru
tureEa
h of the timestamp requests 
onsists on a hash value of a given do
ument.The leafs of the tree are ea
h of those hash values. The leaf values are then




on
atenated by two and hashed again to obtain the parent value (Ex: H34 =H(y3 j y4) ). The pro
ess is repeated for ea
h level until a single value is obtained.Finally, the top value of the round tree (H18), 
alled the �Round Root Value�, isthen 
on
atenated with the value obtained for the pre
eding round (RHi�1) andthen hashed again to obtain the a
tual �Round Value� (RHi).The timestamp of the do
ument 
ontains all the values ne
essary to rebuiltthe 
orresponding bran
h of the tree. For example, the timestamp for y4 
ontainsf(y3; L); (H12; L); (H58; R); (RHi�1; L)g. The veri�
ation pro
ess 
onsists of re-building the tree's bran
h and the linking 
hain of �Round Values� until a trusted(from the veri�er point of view) �Round Value� is re
omputed. This veri�
ationmethod is explained in detail in [HS91℄ and [MQ97℄.Periodi
ally, one of the �Round Values� is published on an unmodi�able,widely witnessed media (Ex: newspaper...). These spe
ial �Round Values�, whi
hwe will 
all �Big Round Values�, are the base of the trust for all the timestampsissued. All veri�ers must trust these �Big Round Values� as well as the timeasso
iated with them. This is a reasonable requirement be
ause those values arewidely witnessed. The absolute time trusted by all the potential veri�ers is thetime indi
ated by the unmodi�able media. We suppose that this time is the samethan the time indi
ated by the STA for the �Big Round�. For
ing the 
lients to
he
k the timestamps as soon as they get them is another requirement. In thatway the pro
ess is 
ontinuously audited and the STA will not have any marginto maneuver in an untrusted way.A very useful method for extending the lifetime of timestamps is des
ribedin [BHS92℄. It basi
ally 
onsists on re-timestamping the hash of the do
umentas well as the original timestamp before the hash fun
tion is broken.We build two trees in parallel for ea
h round using two di�erent hash fun
tions(SHA-1 and RIPEMD-160). In that way, the system remains se
ure in the 
aseof an unexpe
ted break of one of the hash fun
tions used.DESCRIPTION AND ANALYSIS OF THE TIMESEC TIMESTAMPING IM-PLEMENTATIONWe will now introdu
e the basi
 design of the system we have developed,whi
h is based on the te
hnique introdu
ed above.Initially, the user designates a do
ument to be timestamped. Two hashesof it are 
reated using the SHA-1 and RIPEMD-160 algorithms. The request




ontaining the two hashes is then sent by the 
lient to the STA . Upon requestre
eipt, the STA 
reates the 
orresponding timestamp using the following pro
ess.Main des
ription of the timestamping pro
essThe system design follows a highly de
oupled multi-threaded approa
h. Ea
hstep is assigned to a spe
i�
 
omponent, whi
h has its own di�erent thread. Inthe Figure 2 we present a s
hemati
 outline of the pro
ess. The multi-threadapproa
h is justi�ed by the requirement to obtain a highly responsive and loadindependent implementation. By isolating the pro
ess 
harges into independentsteps we try to de
ouple the load between them. Ea
h step has also a workingqueue. Those queues are in 
harge of softening the speed di�eren
es between thedi�erent pro
ess steps.
Request TimerNetwork Listener

Network AnswerLogger

Round Queue Coordinator

Round Queue Coordinator

Timestamp Generator

i-1

i

Figure 2: Intera
tions between the 
omponentsThe �Network Listener� is in 
harge of 
ontinuously listen to the 
lients'timestamp requests. The �Request Timer� re
eives the 
onstru
ted requests fromthe �Network Listener�. Then, it times and forwards them to the a
tual �RoundQueue Coordinator�. Ea
h round has its own �Round Queue Coordinator�, whi
his in 
harge of 
ompiling and pro
essing into a tree all the requests belongingto the round. When the round tree has been 
omputed it is forwarded to the�Timestamp Generator�, whi
h generates the 
orresponding timestamps. On
e atimestamp is generated, the �Timestamp Generator� forwards it to the �NetworkAnswer�, whi
h in turn forwards it to the 
lient.The Network ListenerThe �Network Listener� responsibility is to listen the network 
ontinuously fortimestamping requests. When it re
eives a data stream, the �Network Listener�
he
ks it in order to determine if it is a valid request. In the 
ase it is, it sendsan a�rmative 
onta
t response to the 
lient, it 
reates a �Timestamp Request�obje
t and adds it to the �Request Timer� queue. Then it goes ba
k to listen



to the network. In the 
ase the request message is not 
orre
t, it sends an errormessage to the 
lient.We tried to give as few tasks as possible to the �Network Listener� to let itlisten the network, whi
h is its primary task. In order to improve the overallperforman
e, and to avoid the fa
t that a slow 
lient 
onne
tion 
ould a�e
t theother ones, several 
opies of the �Network Listener� 
an be a
tive at the sametime.The Request TimerThere is only an instan
e of �The Request Timer� in the system. The �RequestTimer� is in 
harge of ordering the requests re
eived from the several �NetworkListeners� and timing them a

ordingly. All delays introdu
ed by the systembefore that point (namely, those introdu
ed by the �Network Listener�) are in-distinguishable from network delays, and thus not taken into a

ount. On
e arequest has been timed, the �Request Timer� tries to add it to the 
urrent roundqueue. As the rounds are 
losed asyn
hronously by the 
orresponding �RoundQueue Coordinator� this operation is not always su

essful, in that 
ase, the �Re-quest Timer� re-times the request and retries to queue it until it �nds an openround. In that pro
ess the request sequen
e is preserved in order to provide a
onsistent behavior.Round Queue Coordinator 
reation: �Round Queue Coordinator� instan
esare 
reated by the �Request Timer� upon pro
essing a request 
orresponding to anon-existing round. The 
reation of the rounds that have no requests is delayeduntil a request is re
eived. On
e 
reated, those empty rounds are immediatelypro
essed, introdu
ing no signi�
ant delay into the pro
ess.Round number determination: Round numbers form a non-interrupted in-
reasing integer sequen
e. Rounds are always in syn
hronization with the roundduration intervals. In other words, if the round duration is one minute, all roundswill start in an absolute minute boundary, independently from when the systemhas been started. �Big Rounds� are determined by the �Request Timer� using asimilar approa
h to the one followed to determine the round boundaries. We donot restri
t the duration of the round to a �xed value for the lifetime of the STA.To a
hieve this, the information about round and �Big Round� duration is intro-du
ed into the system at the start-up phase. If we wish to modify it, we must



�rst shutdown the system, 
hange the values and then restart the system, whi
his the only safe pro
edure we had foreseen.The Round Queue CoordinatorThe �rst thing a �Round Queue Coordinator� does is to determine the o�setbetween the a
tual time and the round due time. Requests will be a

eptedonly if the round is still valid (round is open). When requested by the �RequestTimer�, the �Round Queue Coordinator� adds the request to the queue and logsit. This logged request will be latter used for pro
ess auditing purposes.When the round time is over, it obtains the �Round Values� from the pre
ed-ing round and it 
omputes the round binary trees (one for ea
h hash algorithm)to obtain the 
orresponding �Round Values�. Then it gives the 
omputed trees tothe �Timestamp Generator� and �nally adds to the log the �Round Values� andthe �Round Root Values�. Those logged values will be latter used for timestampveri�
ation and pro
ess auditing purposes. If the a
tual round is a �Big Round�those values are forwarded to a �xed media as well.As you may have noti
ed in the se
tion �Introdu
tion of the timestampingte
hniques�, the binary tree is de�ned for a number of leafs (requests) that is apower of 2. In general, this is not the 
ase. We 
ould 
reate fake requests to �nishthe tree, but this will add a lot of requests (if we have 2n+1 requests, then we willneed to add 2n � 1 fake requests). A smarter solution is to add a random valueonly when we need it. Then, we add at most n values (one for ea
h level of thetree). We 
all these nodes �Spe
ial Node�, whi
h will be logged as well. Insteadof random values we 
ould 
hoose to use 0 or another �xed value, this would beas se
ure as our 
hoi
e if the hash fun
tions were �perfe
t�. As hash fun
tions areonly �presumably perfe
t�, we though that we 
ould made our design more se
urewith really few additional 
omputations.In our implementation, the STA queues the requests and 
omputes the tree atthe end of the round. At �rst sight, it 
ould seem a more natural solution to buildthe tree as soon as the requests arrive. At the end of the round, the 
omputationof the tree would then be ended by getting the last �Round Value� and 
omputingthe a
tual �Round Value�. In fa
t, this solution is harder to implement, and hasno e�e
t on the se
urity a
hieved as no one 
an 
he
k that the STA does notperform any reordering of the requests before it publishes the �Round Value�.



The Timestamp GeneratorThe �Timestamp Generator� pro
esses the round trees by pairs (one for ea
h hashalgorithm) in order to generate the timestamps for ea
h of the requests 
ontainedin the trees. In order to maximize the system responsiveness, on
e a timestamphas been generated it is immediately forwarded to the �Network Answer�. Finally,when all the timestamps 
ontained in a round tree have been pro
essed the treeis destroyed.The Network AnswerThe �Network Answer� is in 
harge of forwarding the pro
essed timestamps tothe 
lients. It has been spe
i�ed in su
h a way that it 
an run several threads,in that way the rest of the timestamping pro
ess 
an be isolated from possiblenetwork delay problemati
.The timestamp veri�
ation pro
essFirst, the veri�er designates a do
ument and its 
orresponding timestamp forveri�
ation. Then, the veri�er's system (his personal 
omputer or a remote 
om-puter independent from the STA) generates the two do
ument hashes and 
he
ksif they mat
h with those 
ontained in the timestamp. Afterwards, the �RoundValue� is re
onstru
ted using the data provided in the timestamp. If the 
om-puted �Round Value� is 
onsistent with the one 
ontained in the timestamp thenthe next step in the veri�
ation pro
ess is to 
ompare this �Round Value� to the�Round Value� obtained from the STA repository. Finally, the veri�er provides hissystem with the two �Big Round Values� that he founds in the �unmodi�able me-dia�; the veri�er's system gets all the ne
essary �Round Values� and �Root RoundValues� from the STA and it 
he
ks the 
oheren
y of the two linking 
hains (onefor ea
h hash fun
tion).The audit pro
essThe auditor designates two �Big Rounds�, whi
h he fet
hes from a �xed media.The system behavior will be 
he
ked between these two �Big Round Values�. Forea
h round, the auditor's system gets all the hash values (leafs of the tree and�Spe
ial Nodes�) and the �Round Value� from the STA. Then, it 
onstru
ts thetwo trees and 
he
ks that the �Round Value� is 
onsistent. These two steps are



repeated until all the 
onsidered rounds are 
he
ked or until an error has beenfound. In that way, all theoreti
ally veri�able system behavior 
an be veri�ed aposteriori.The system start-up pro
essHere the most sensible issue is to be able to 
orre
tly start-up the system whenan unexpe
ted shutdown has o

urred. If that is the 
ase, the log will show anun�nished round; then the system marks all entries after the last 
omplete roundas invalid and publishes that round as a �Big Round�. If the log was 
onsistent,it a

esses the last valid �Round Value� in the log and publishes it as a �BigRound�. This pro
ess insures a fully veri�able behavior; we are able to dete
tnon fully-pro
essed requests.The system shutdown pro
essThe administrator signals the system to shutdown. No more timestamping re-quests are a

epted. The system waits until the 
urrent round is �nished andthis �Round Value� is published as �Big Round�.REFERENCES[BHS92℄ D. Bayer, S. Haber, and W.-S. Stornetta. Improving the e�
ien
yand reliability of digital timestamping. In Springer Verlag, editor,Sequen
es'91: Methods in Communi
ation, Se
urity, and ComputerS
ien
e, pages 329�334, 1992.[HS91℄ S. Haber and W.-S. Stornetta. How to timestamp a digital do
ument.Journal of Cryptology, 3(2):99�112, 1991.[HS97℄ S. Haber and W.S. Stornetta. Se
ure names for bit-strings. In Pro-
eedings of the 4th ACM Conferen
e on Computer and Communi
ationSe
urity, pages 28�35. ACM Press, April 1997.[MQ97℄ H. Massias and J.-J. Quisquater. Time and 
ryptography. Te
hni
alreport, TIMESEC Proje
t (Federal Governement Proje
t, Belgium),1997. Available at http://www.di
e.u
l.a
.be/
rypto/TIMESEC.html.[PRQ+98℄ B. Preneel, B. Van Rompay, J.-J. Quiquater, H. Massias, and X. SerretAvila. Design of a timestamping system. Te
hni
al report, TIMESECProje
t (Federal Governement Proje
t, Belgium), 1998. To be avail-able at http://www.di
e.u
l.a
.be/
rypto/TIMESEC.html.
View publication statsView publication stats

https://www.researchgate.net/publication/2570020


J. Cryptology (1991) 3:99-111 Journal of Cryptology 
�9 1991 International Association for 
Cryptologic Research 

How To Time-Stamp a Digital Document I 

Stuart Haber and W. Scott Stornetta 
Bellcore, 445 South Street, 

Morristown, NJ 07960-1910, U.S.A. 
stuart@beUcore.com stornetta@bellcore.com 

Abstract. The prospect of a world in which all text, audio, picture, and video 
documents are in digital form on easily modifiable media raises the issue of how 
to certify when a document was created or last changed. The problem is to 
time-stamp the data, not the medium. We propose computationally practical 
procedures for digital time-stamping of such documents so that it is infeasible for 
a user either to back-date or to forward-date his document, even with the collusion 
of a time-stamping service. Our procedures maintain complete privacy of the 
documents themselves, and require no record-keeping by the time-stamping 
service. 

Key words. Time-stamp, Hash. 

Time's glory is to calm contending kings, 
To unmask falsehood, and bring truth to light, 
To stamp the seal of time in aged things, 
To wake the morn, and sentinel the night, 
To wrong the wronger till he render right. 

The Rape of Lucrece, !. 941 

1. Introduction 

In many situations there is a need to certify the date a document was created or last 
modified. For example, in intellectual property matters, it is sometimes crucial to 
verify the date an inventor first put in writing a patentable idea, in order to establish 
its precedence over competing claims. 

One accepted procedure for time-stamping a scientific idea involves daily 
notations of one's work in a lab notebook. The dated entries are entered one after 
another in the notebook, with no pages left blank. The sequentially numbered, 
sewn-in pages of the notebook make it difficult to tamper with the record without 
leaving telltale signs. If the notebook is then stamped on a regular basis by a notary 
public or reviewed and signed by a company manager, the validity of the claim is 
further enhanced. If the precedence of the inventor's ideas is later challenged, both 

1 Date received: August 19, 1990. Date revised: October 26, 1990. 

99 



100 s. Haber and W. S. Stornetta 

the physical evidence of the notebook and the established procedure serve to 
substantiate the inventor's claims of having had the ideas on or before a given date. 

There are other methods of time-stamping. For example, one can mail a letter to 
oneself and leave it unopened. This ensures that the enclosed letter was created 
before the time postmarked on the envelope. Businesses incorporate more elaborate 
procedures into their regular order of business to enhance the credibility of their 
internal documents, should they be challenged at a later date. For example, these 
methods may ensure that the records are handled by more than one person, so that 
any tampering with a document by one person will be detected by another. But all 
these methods rest on two assumptions. First, the records can be examined for 
telltale signs of tampering. Second, there is another party that views the document 
whose integrity or impartiality is seen as vouchsafing the claim. 

We believe these assumptions are called into serious question for the case of 
documents created and preserved exclusively in digital form. This is because elec- 
tronic digital documents are so easy to tamper with, and the change need not 
leave any telltale sign on the physical medium. What is needed is a method of 
time-stamping digital documents with the following two properties. First, we must 
find a way to time-stamp the data itself, without any reliance on the characteristics 
of the medium on which the data appears, so that it is impossible to change even 
one bit of the document without the change being apparent. Second, it should be 
impossible to stamp a document with a time and data different from the actual one. 

The purpose of this paper is to introduce a mathematically sound and computa- 
tionally practical solution to the time-stamping problem. In the sections that follow, 
we first consider a naive solution to the problem, the digital safety-deposit box. This 
serves the pedagogical purpose of highlighting additional difficulties associated 
with digital time-stamping beyond those found in conventional methods of time- 
stamping. Successive improvements to this naive solution finally lead to practical 
ways to implement digital time-stamping. 

2. The Setting 

The setting for our problem is a distributed network of users, perhaps representing 
individuals, different companies, or divisions within a company; we refer to the users 
as clients. Each client has a unique identification number. 

A solution to the time-stamping problem may have several parts. There is a 
procedure that is performed immediately when a client desires to have a document 
time-stamped. There should be a method for the client to verify that this procedure 
has been correctly performed. There should also be a procedure for meeting a third 
party's challenge to the validity of a document's time-stamp. 

As with any cryptographic problem, it is a delicate matter to characterize precisely 
the security achieved by a time-stamping scheme. A good solution to the time- 
stamping problem is one for which, under reasonable assumptions about the 
computational abilities of the users of the scheme and about the complexity of a 
computational problem, and possibly about the trustworthiness of the users, it is 
difficult or impossible to produce false time-stamps. Naturally, the weaker the 
assumptions needed, the better. 



How To Time-Stamp a Digital Document 101 

3. A Naive Solution 

A naive solution, a "digital safety-deposit box," could work as follows. Whenever 
a client has a document to be time-stamped, he or she transmits the document to 
a time-stamping service (TSS). The service records the date and time the document 
was received and retains a copy of the document for safe-keeping. If the integrity 
of the client's document is ever challenged, it can be compared with the copy stored 
by the TSS. If they are identical, this is evidence that the document has no t  been 
tampered with after the date contained in the TSS records. This procedure does in 
fact meet the central requirement for the time-stamping of a digital document. 2 
However, this approach raises several concerns: 

Privacy. This method compromises the privacy of the document in two ways: a 
third party could eavesdrop while the document is being transmitted, and after 
transmission it is available indefinitely to the TSS itself. Thus the client has to 
worry not only about the security of documents it keeps under its direct control, 
but also about the security of its documents at the TSS. 

Bandwidth and storage. Both the amount of time required to ~end a document for 
time-stamping and the amount of storage required at the TSS depend on the 
length of the document to be time-stamped. Thus the time and expense required 
to time-stamp a large document might be prohibitive. 

Incompetence. The TSS copy of the document could be corrupted in transmission 
to the TSS, it could be incorrectly time-stamped when it arrives at the TSS, or 
it could become corrupted or lost altogether at any time while it is stored at 
the TSS. Any of these occurrences would invalidate the client's time-stamping 
claim. 

Trust. The fundamental problem remains: nothing in this scheme prevents the 
TSS from colluding with a client in order to claim to have time-stamped a 
document for a date and time different from the actual one. 

In the next section we describe a solution that addresses the first three concerns 
listed above. The final issue, trust, is handled separately and at greater length in the 
following section. 

4. A Trusted Time-Stamping Service 

In this section we assume that the TSS is trusted, and describe two improvements 
on the naive solution above. 

4.1. Hash 

Our first simplification is to make use of a family of cryptographically secure 
collision-free hash functions. This is a family of functions h: {0, 1}*~ {0, 1} t 
compressing bit-strings of arbitrary length to bit-strings of a fixed length l, with the 
following properties: 

2 The authors recently learned of a similar proposal sketched by Kanare 114]. 



102 s. Haber and W. S. Stornetta 

1. The functions h are easy to compute, and it is easy to pick a member of the 
family at random. 

2. It is computationally infeasible, given one of these functions h, to find a pair 
of distinct strings x, x' satisfying h(x) = h(x') .  (Such a pair is called a collision 
for h.) 

The practical importance of such functions has been known for some time, and 
researchers have used them in a number of schemes; see, for example, [7], [15], and 
[16]. Damg~rd gave the first formal definition, and a constructive proof of their 
existence, on the assumption that there exist one-way "claw-free" permutations [4]. 
For this, any "one-way group action" is sufficient [3]. 

Naor and Yung defined the similar notion of"universal one-way hash functions," 
which satisfy, in place of the second condition above, the slightly weaker require- 
ment that it be computationally infeasible, given a string x, to compute another 
string x' r x satisfying h(x) = h(x ' )  for a randomly chosen h. They were able to 
construct such functions on the assumption that there exist one-to-one one-way 
functions [17]. Rompel has recently shown that such functions exist if there exist 
one-way functions at all [20]. See Section 6.3 below for a discussion of the differences 
between these two sorts of cryptographic hash functions. 

There are practical implementations of hash functions, for example, that of Rivest 
[19], which seem to be reasonably secure. 

We use the hash functions as follows. Instead of transmitting his document x to 
the TSS, a client will send its hash value h(x) = y instead. For the purposes of 
authentication, time-stamping y is equivalent to time-stamping x. This greatly 
reduces the bandwidth problem and the storage requirements, and solves the 
privacy issue as well. Depending on the design goals for an implementation of 
time-stamping, there may be a single hash function used by everybody, or different 
hash functions for different users. 

For the rest of this paper, we speak of time-stamping hash values y--random- 
appearing bit-strings of a fixed length. Part of the procedure for validating a 
time-stamp will be to produce the preimage document x that satisfies h(x) = y; 
inability to produce such an x invalidates the putative time-stamp. 

4.2. Signature 

The second improvement makes use of digital signatures. Informally, a signature 
scheme is an algorithm for a party, the signer, to tag messages in a way that uniquely 
identifies the signer. Digital signatures were proposed by Rabin [18] and by Diffie 
and Hellman [7]. After a long sequence of papers by many authors, Rompel [20] 
showed that the existence of one-way functions can be used in order to design a 
signature scheme satisfying the very strong notion of security that was first defined 
by Goldwasser et al. [10]. 

With a secure signature scheme available, when the TSS receives the hash value, 
it appends the date and time, then signs this compound document and sends it to 
the client. By checking the signature, the client is assured that the TSS actually did 
process the request, that the hash was correctly received, and that the correct time 
is included. This takes care of the problem of present and future incompetence on 
the part of the TSS, and reduces the need for the TSS to store records. 



How To Time-Stamp a Digital Document 103 

5. Two Time-Stamping Schemes 

Sed quis custodiet ipsos Custodes ? 

Juvenal, c. I00 A.D. 

But who will guard the guards themselves? 

What we have described so far is, we believe, a practical method for time-stamping 
digital documents of arbitrary length. However, neither the signature nor the use 
of hash functions in any way prevents a time-stamping service from issuing a false 
time-stamp. Ideally, we would like a mechanism which guarantees that no matter 
how unscrupulous the TSS is, the times it certifies will always be the correct ones, 
and that it will be unable to issue incorrect time-stamps even if it tries to. 

It may seem difficult to specify a time-stamping procedure so as to make it 
impossible to produce fake time-stamps. After all, if the output of an algorithm 
A, given as input a document x and some timing information T, is a bit-string 
c = A(x,  ~) that stands as a legitimate time-stamp for x, what is to prevent a 
forger some time later from computing the same timing information z and then 
running A to produce the same certificate c?. The question is relevant even if A is a 
probabilistic algorithm. 

Our task may be seen as the problem of simulating the action of a trusted TSS, 
in the absence of generally trusted parties. There are two rather different approaches 
we might take, and each one leads to a solution. The first approach is to constrain 
a centralized but possibly untrustworthy TSS to produce genuine time-stamps in 
such a way that fake ones are difficult to produce. The second approach is somehow 
to distribute the required trust among the users of the service. It is not clear that 
either of these can be done at all. 

5.1. Linking 

Our first solution begins by observing that the sequence of clients requesting 
time-stamps and the hashes they submit cannot be known in advance. So if we 
include bits from the previous sequence of client requests in the signed certificate, 
then we know that the time-stamp occurred after these requests. But the requirement 
of including bits from previous documents in the certificate can also be used to solve 
the problem of constraining the time in the other direction, because the time- 
stamping company cannot issue later certificates unless it has the current request 
in hand. 

We describe two variants of this linking scheme; the first one, slightly simpler, 
highlights our main idea, while the second one may be preferable in practice. In 
both variants, the TSS makes use of a collision-free hash function, denoted H. This 
is in addition to clients' use of hash functions in order to produce the hash value of 
any documents that they wish to have time-stamped. 

To be specific, a time-stamping request consists of an/-bit  string y (presumably 
the hash value of the document) and a client identification number ID. We use tr(.) 
to denote the signing procedure used by the TSS. The TSS issues signed, sequentially 
numbered time-stamp certificates. In response to the request (Yn, IDn) from our 
client, the nth request in sequence, the TSS does two things: 



104 S. Haber and W. S. Stornetta 

1. The TSS sends our client the signed certificate s = a(C.), where the certificate 

C. = (n, t., ID., y.; Ln) 

consists of the sequence number n, the time t., the client number ID. and the 
hash value y. from the request, and certain linking information, which comes 
from the previously issued certificate: L. = (t._t, ID._ 1, Y.-I, H(L._I)). 

2. When the next request has been processed, the TSS sends our client the 
identification number ID.+I for that next request. 

Having received s and ID.+ 1 from the TSS, she checks that s is a valid signature of 
a good certificate, i.e., one that is of the correct form (n, t, IDa, y.; Ln), containing 
the correct time t. 

If her time-stamped document x is later challenged, the challenger first checks 
that the time-stamp (s, ID.+I) is of the correct form (with s being a signature of a 
certificate that indeed contains a hash of x). In order to make sure that our client 
has not colluded with the TSS, the challenger can call client ID.§ and ask him to 
produce his time-stamp (s', ID.+2). This includes a signature 

s' = a(n + 1, t.+ 1, ID.+ 1, Y,+I; L.+I) 

of a certificate that contains in its linking information L,+~ a copy of her hash value 
y.. This linking information is further authenticated by the inclusion of the image 
H(L.)  of her linking information L~. An especially suspicious challenger now can 
call up client ID.+2 and verify the next time-stamp in the sequence; this can continue 
for as long as the challenger wishes. Similarly, the challenger can also follow the 
chain of time-stamps backward, beginning with client IDn_ ~ . 

Why does this constrain the TSS from producing bad time-stamps? First, observe 
that the use of the signature has the effect that the only way to fake a time-stamp is 
with the collaboration of the TSS. But the TSS cannot forward-date a document, 
because the certificate must contain bits from requests that immediately preceded 
the desired time, yet the TSS has not received them. The TSS cannot feasibly 
back-date a document by preparing a fake time-stamp for an earlier time, because 
bits from the document in question must be embedded in certificates immediately 
following that earlier time, yet these certificates have already been issued. Fur- 
thermore, correctly embedding a new document into the already-existing stream 
of time-stamp certificates requires the computation of a collision for the hash 
function H. 

Thus the only possible spoof is to prepare a fake chain of time-stamps, long 
enough to exhaust the most suspicious challenger that one anticipates. 

In the scheme just outlined, clients must keep all their certificates. In order to 
relax this requirement, in the second variant of this scheme we link each request 
not just to the next request but to the next k requests. The TSS responds to the nth 
request as follows: 

1. As above, the certificate C. is of the form C. = (n, t., IDa, yn; L.), where now 
the linking information L. is of the form 

Ln = [(tn-k, IDn-k, Yn-k, H(Ln-k)) . . . . .  (tn-1, ID,-1, Yn-1, H(L.-1))]. 



How To Time-Stamp a Digital Document 105 

2. After the next k requests have been processed, the TSS sends our client the list 
(ID,+I, . . . ,  IDn+k). 

After checking that this client's time-stamp is of the correct form, a suspicious 
challenger can ask any one of the next k clients ID.+~ to produce his time-stamp. 
As above, his time-stamp includes a signature of a certificate that contains in its 
linking information L,+~ a copy of the relevant part of the challenged time-stamp 
certificate C., authenticated by the inclusion of the hash by H of the challenged 
client's linking information L,. His time-stamp also includes client numbers 
(ID,+~+~ . . . . .  ID,+i+k), of which the last i are new ones; the challenger can ask these 
clients for their time-stamps, and this can continue for as long as the challenger 
wishes. 

In addition to easing the requirement that clients save all their certificates, this 
second variant also has the property that correctly embedding a new document into 
the already-existing stream of time-stamp certificates requires the computation of 
a simultaneously k-wise collision for the hash function H, instead of just a pairwise 
collision. 

5.2. Distributed Trust 

For this scheme we assume that there is a secure signature scheme so that each user 
can sign messages, and that a standard secure pseudorandom generator G is 
available to all users. A pseudorandom generator is an algorithm that stretches short 
input seeds to output sequences that are indistinguishable by any feasible algorithm 
from random sequences; in particular, they are unpredictable. Such generators were 
first studied by Blum and Micali [2] and by Yao [22]; Impagliazzo et al. have shown 
that they exist if there exist one-way functions [12]. 

Once again, we consider a hash value y that our client would like to time-stamp. 
She uses y as a seed for the pseudorandom generator, whose output can be inter- 
preted in a standard way as a k-tuple of client identification numbers: 

G(y) = (ID1, ID2, . . . ,  IDk). 

Our client sends her request (y, ID) to each of these clients. She receives in return 
from client IDj a signed message sj = ~j(t, ID, y) that includes the time t. Her 
time-stamp consists of [(y, ID), (sl . . . . .  sk)]. The k signatures s t can easily be 
checked by our client or by a would-be challenger. No further communication is 
required in order to meet a later challenge. 

Why should such a list of signatures constitute a believable time-stamp? The 
reason is that in these circumstances, the only way to produce a time-stamped 
document with an incorrect time is to use a hash value y so that G(y) names k clients 
that are willing to cooperate in faking the time-stamp. If at any time there is at most 
a constant fraction ~ of possibly dishonest clients, the expected number of seeds y 
that have to be tried before finding a k-tuple G(y) containing only collaborators 
from among this fraction is e -k. Furthermore, since we have assumed that G is a 
secure pseudorandom generator, there is no faster way of finding such a convenient 
seed y than by choosing it at random. This ignores the adversary's further problem, 



106 s. Haber and W. S. Stornetta 

in most real-world scenarios, of finding a plausible document that hashes to a 
convenient value y. 

The parameter k should be chosen when designing the system so that this is an 
infeasible computation. Observe that even a highly pessimistic estimate of the 
percentage of the client population that is corruptible--E could be 9 0 ~ - - d o e s  not 
entail a prohibitively large choice of k. In addition, the list of corruptible clients 
need not be fixed, as long as their fraction of the population never exceeds e. 

This scheme need not use a centralized TSS at all. The only requirements are that 
it be possible to call up other clients at will and receive from them the required 
signatures, and that there be a public directory of clients so that it is possible to 
interpret the output of G(y) in a standard way as a k-tuple of clients. A practical 
implementation of this method would require provisions in the protocol for clients 
that cannot be contacted at the time of the time-stamping request. For example, for 
suitable k' < k, the system might accept signed responses from any k' of the k clients 
named by G(y) as a valid time-stamp for y (in which case a greater value for the 
parameter k would be needed in order to achieve the same low probability of finding 
a set of collaborators at random). 

6. Remarks 

6.1. Tradeoffs 

There are a number of tradeoffs between the two schemes. The distributed-trust 
scheme has the advantage that all processing takes place when the request is made. 
In the linking scheme, on the other hand, the client has a short delay while she waits 
for the second part of her certificate; and meeting a later challenge may require 
further communication. 

A related disadvantage of the linking scheme is that it depends on at least some 
parties (clients or, perhaps, the TSS) storing their certificates. 

The distributed-trust scheme makes a greater technological demand on the 
system: the ability to call up and demand a quick signed response at will. 

The linking scheme only locates the time of a document between the times of the 
previous and the next requests, so it is best suited to a setting in which relatively 
many documents are submitted for time-stamping, compared with the scale at which 
the timing matters. 

It is worth remarking that the time-constraining properties of the linking scheme 
do not depend on the use of digital signatures. 

6.2. Time Constraints 

We would like to point out that our schemes constrain the event of time-stamping 
both forward and backward in time. However, if any amount of time may pass 
between the creation of a document and when it is time-stamped, then no method 
can do more than forward-constrain the time at which the document itself was 
created. Thus, in general, time-stamping should only be considered as evidence that 
a document has not been back-dated. 



How To Time-Stamp a Digital Document 107 

On the other hand, if the time-stamping event can be made part of the document 
creation event, then the constraint holds in both directions. For example, consider 
the sequence of phone conversations that pass through a given switch. In order to 
process the next call on this switch, we could require that linking information be 
provided from the previous call. Similarly, at the end of the call, linking information 
would be passed onto the next call. In this way, the document creation event (the 
phone call) includes a time-stamping event, and so the time of the phone call can 
be fixed in both directions. The same idea could apply to sequential financial 
transactions, such as stock trades or currency exchanges, or any sequence of 
electronic interactions that take place over a given physical connection. 

6.3. Theoretical Considerations 

Although we do not do it here, we suggest that a precise complexity-theoretic 
definition of the strongest possible level of time-stamping security could be given 
along the lines of the definitions given by Goldwasser and Micali I-9], Goldwasser 
et al. [10], and Galil et al. [8] for various cryptographic tasks. The time-stamping 
and the verification procedures would all depend on a security parameter p. A 
time-stamp scheme would be polynomially secure if the success probability of a 
polynomially bounded adversary who tries to manufacture a bogus time-stamp is 
smaller than any given polynomial in l ip for sufficiently large p. 

Under the assumption that there exist one-way claw-free permutations, we can 
prove our linking scheme to be polynomially secure. If we assume that there is 
always at most a constant fraction of corruptible clients, and assuming as well 
the existence of one-way functions (and therefore the existence of pseudorandom 
generators and of a secure signature scheme), we can prove our distributed-trust 
scheme to be polynomially secure. 

In Section 4.1 above we mentioned the difference between "collision-free" and 
"universal one-way" hash functions. The existence of one-way functions is sufficient 
to give us universal one-way hash functions. However, in order to prove the 
security of our time-stamping schemes, we apparently need the stronger guarantee 
of the difficulty of producing hash collisions that is provided by the definition of 
collision-free hash functions. As far as is currently known, a stronger complexity 
assumption--namely, the existence of claw-free pairs of permutations--is needed 
in order to prove the existence of these functions. (See also [5] and [6] for further 
discussion of the theoretical properties of cryptographic hash functions.) 

Universal one-way hash functions were the tool used in order to construct a 
secure signature scheme. Our apparent need for a stronger assumption suggests a 
difference, perhaps an essential one, between signatures and time-stamps. It is in 
the signer's own interest to act correctly in following the instructions of a secure 
signature scheme (for example, in choosing a hash function at random from a certain 
set). For time-stamping, on the other hand, a dishonest user or a colluding TSS may 
find it convenient not to follow the standard instructions (for example, by choosing 
a hash function so that collisions are easy to find); the time-stamping scheme must 
be devised so that there is nothing to be gained from such misbehavior. 

If it is possible, we would like to reduce the assumptions we require for secure 



108 S. Haber and W. S. Stornetta 

time-stamping to the simple assumption that one-way functions exist. This is the 
minimum reasonable assumption for us, since all of complexity-based cryptography 
requires the existence of one-way functions [121 [13]. 

6.4. Practical Considerations 

As we move from the realm of complexity theory to that of practical cryptosystems, 
new questions arise. In one sense, time-stamping places a heavier demand on 
presumably one-way functions than would some other applications. For example, 
if an electronic funds transfer system relies on a one-way function for authentication, 
and that function is broken, then all of the transfers carried out before it was broken 
are still valid. For time-stamps, however, if the hash function is broken, then all of 
the time-stamps issued prior to that time are called into question. 

A partial answer to this problem is provided by the observation that time-stamps 
can be renewed. Suppose we have two time-stamping implementations, and that 
there is reason to believe that the first implementation will soon be broken. 
Then certificates issued using the old implementation can be renewed using the new 
implementation. Consider a time-stamp certificate created using the old 
implementation that is time-stamped with the new implementation before the old 
one is broken. Prior to the old implementation's breaking, the only way to create 
a certificate was by legitimate means. Thus, by time-stamping the certificate itself 
with the new implementation, we have evidence not only that the document existed 
prior to the time of the new time-stamp, but that it existed at the time stated in the 
original certificate. 

Another issue to consider is that producing hash collisions alone is not sufficient 
to break the time-stamping scheme. Rather, meaningful documents must be found 
which lead to collisions. Thus, by specifying the format of a document class, we can 
complicate the task of finding meaningful collisions. For example, the density of 
ASCII-only texts among all possible bit-strings of length N bytes is (27/2s) N, or 1/2 N, 
simply because the high-order bit of each byte is always 0. Even worse, the density 
of acceptable English text can be bounded above by an estimate of the entropy of 
English as judged by native speakers [21]. This value is approximately 1 bit per 
ASCII character, giving a density of (21/28) N, or 1/128 N. 

We leave it to future work to determine whether we can formalize the increased 
difficulty of computing collisions if valid documents are sparsely and perhaps 
randomly distributed in the input space. Similarly, the fact that a k-way linking 
scheme requires the would-be adversary to compute k-way collisions rather than 
collision pairs may be parlayed into relaxing the requirements for the hash function. 
It may also be worthwhile to explore when there exist hash functions for which there 
are no k-way collisions among strings in a suitably restricted subset of the input 
space; the security of such a system would no longer depend on a complexity 
assumption. 

7. Applications 

Using the theoretically best (cryptographically secure) hash functions, signature 
schemes, and pseudorandom generators, we have designed time-stamping schemes 



How To Time-Stamp a Digital Document 109 

that possess theoretically desirable properties. However, we would like to emphasize 
the practical nature of our suggestion: because there are practical implementations 
of these cryptographic tools, both of our time-stamp schemes can be inexpensively 
implemented as described. Practical hash functions like Rivest's are quite fast, even 
running on low-end PCs [19]. 

What kinds of documents would benefit from secure digital time-stamping? For 
documents that establish the precedence of an invention or idea, time-stamping has 
a clear value. A particularly desirable feature of digital time-stamping is that it 
makes it possible to establish precedence of intellectual property without disclosing 
its contents. This could have a significant effect on copyright and patent law, and 
could be applied to everything from software to the secret formula for Coca-Cola. 

But what about documents where the date is not as significant as simply whether 
or not the document has been tampered with? These documents can benefit from 
time-stamping, too, under the following circumstances. Suppose we can establish 
that either the necessary knowledge or the motivation to tamper with a document 
did not exist until long after the document's creation. For example, we can imagine 
a company that deals with large numbers of documents each day, some few of which 
are later found to be incriminating. If all the company's documents were routinely 
time-stamped at the time of their creation, then by the time it became apparent 
which documents were incriminating and how they needed to be modified, it would 
be too late to tamper with them. We call such documents tamper-unpredictable. It 
seems clear that many business documents are tamper-unpredictable. Thus, if 
time-stamping were to be incorporated into the established order of business, the 
credibility of many documents could be enhanced. 

A variation that may be particularly useful for business documents is to time- 
stamp a log of documents rather than each document individually. For example, 
each corporate document created in a day could be hashed, and the hash value 
added to the company's daily log of documents. Then, at the end of the business 
day, the log alone could be submitted for time-stamping. This would eliminate the 
expense of time-stamping each document individually, while still making it possible 
to detect tampering with each document; we could also determine whether any 
documents had been destroyed altogether. 

Of course, digital time-stamping is not limited to text documents. Any string of 
bits can be time-stamped, including digital audio recordings, photographs, and 
full-motion videos. Most of these documents are tamper-unpredictable. Therefore, 
time-stamping can help to distinguish an original photograph from a retouched 
one, a problem that has received considerable attention of late in the popular press 
[1], [11]. It is in fact difficult to think of any other algorithmic "fix" that could add 
more credibility to photographs, videos, or audio recordings than time-stamping. 

8. Summary 

In this paper we have shown that the growing use of text, audio, and video 
documents in digital form and the ease with which such documents can be modified 
creates a new problem: how can we certify when a document was created or last 
modified? Methods of certification, or time-stamping, must satisfy two criteria. 



110 S. Haber and W. S. Stornetta 

First, they must time-stamp the actual bits of the document, making no assumptions 
about the physical medium on which the document is recorded. Second, the date 
and time of the time-stamp must not be forgeable. 

We have proposed two solutions to this problem. Both involve the use of one-way 
hash functions, whose outputs are processed in lieu of the actual documents, and 
of digital signatures. The solutions differ only in the way that the date and time are 
made unforgeable. In the first, the hashes of documents submitted to a TSS are 
linked together, and certificates recording the linking of a given document are 
distributed to other clients both upstream and downstream from that document. 
In the second solution, several members of the client pool must time-stamp the hash. 
The members are chosen by means of a pseudorandom generator that uses the hash 
of the document itself as seed. This makes it infeasible to choose deliberately which 
clients should and should not time-stamp a given hash. The second method could 
be implemented without the need for a centralized TSS at all. 

Finally, we have considered whether time-stamping could be extended to enhance 
the authenticity of documents for which the time of creation itself is not the critical 
issue. This is the case for a large class of documents which we call "tamper- 
unpredictable." We further conjecture that no purely algorithmic scheme can add 
any more credibility to a document than time-stamping provides. 

Acknowledgments 

We gratefully acknowledge helpful discussions with Donald Beaver, Shimon Even, 
George Furnas, Burt Kaliski, Ralph Merkle, Jeff Shrager, Peter Winkler, Yacov 
Yacobi, and Moti Yung. 

References 

[1] J. Alter. When photographs lie. Newsweek, pp. 44-45, July 30, 1990. 
[21 M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random 

bits. SIAM d. Comput., 13(4): 850-864, Nov. 1984. 
[3] G. Brassard and M. Yung. One-way gr•up acti•ns. •n Advances in Crypt•l•gy_Crypt• •9•. Le•ture 

Notes in Computer Science, Springer-Verlag, Berlin, to appear. 
[4] I. Damghrd. Collision-free hash functions and public-key signature schemes. In Advances in 

Cryptology--Eurocrypt '87, pp. 203-217. Lecture Notes in Computer Science, vol. 304, Springer- 
Verlag, Berlin, 1988. 

[5] I. Damghrd. A design principle for hash functions. In Advances in Cryptology--Crypto '89 
(ed. G. Brassard), pp. 416-427. Lecture Notes in Computer Science, vol. 435, Springer-Verlag, 
Berlin, 1990. 

1-6] A. DeSantis and M. Yung. On the design of provably secure cryptographic hash functions. In 
Advances in Cryptology--Eurocrypt '90. Lecture Notes in Computer Science, Springer-Verlag, 
Berlin, to appear. 

1-7] W. Ditlie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory, 
22: 644-654, Nov. 1976. 

1-8] Z. Galil, S. Haber, and M. Yung. Interactive public-key cryptosystems. Submitted for publication, 
1990. 

[9] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. System Sci., 28: 270-299, April 
1984. 



How To Time-Stamp a Digital Document 111 

[lo] S. Goldwasser, S. Micali, and R. Rivest. A secure digital signature scheme. SIAM J. Comput., 
17(2): 281-308, 1988. 

[l l] A. Grundberg. Ask it no questions: The camera can lie. The New York Times, Section 2, pp. 1,29, 
August 12,199O. 

[12] R. Impagliazzo, L. Levin, and M. Luby. Pseudorandom generation from one-way functions. In 
Proc. 21st STOC, pp. 12-24. ACM, New York, 1989. 

[13] R. Impagliazzo and M. Luby. One-way functions are essential for complexity-based cryptography. 
In Proc. 30th FOCS, pp. 230-235. IEEE, New York, 1989. 

[14] H. M. Kanare. Writing the Laboratory Notebook, p. 117. American Chemical Society, Washington, 
D.C., 1985. 

[lS] R. C. Merkle. Secrecy, authentication, and public-key systems. Ph.D. thesis, Stanford University, 
1979. 

[16] R. C. Merkle. One-way hash functions and DES. In Advances in Cryptology-Crypt0 ‘89 
(ed. G. Brassard), pp. 428-446. Lecture Notes in Computer Science, vol. 435, Springer-Verlag, 
Berlin, 1990. 

[17] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. 
In Proc. 21st STOC, pp. 33-43. ACM, New York, 1989. 

Cl83 M. 0. Rabin. Digitalized signatures. In Foundations of Secure Computation (ed. R. A. DeMillo 
et al.), pp. 155-168. Academic Press, New York, 1978. 

[19] R. Rivest. The MD4 message digest algorithm. In Aduances in Cryptology-Crypt0 ‘90. Lecture 
Notes in Computer Science, Springer-Verlag, Berlin, to appear. 

[20] J. Rompel. One-way functions are necessary and sutlicient for secure signatures. In Proc. 22nd 
STOC, pp. 387-394. ACM, New York, 1990. 

[21] C. Shannon. Prediction and entropy of printed English. Bell System Tech. J., 30: 50-64, 1951. 
[22] A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd FOCS, pp. 80-91. IEEE, 

New York, 1982. 



Improving the Efficiency and Reliability of Digital
Time-Stamping

Dave Bayer∗

Barnard College
Columbia University

New York, N.Y. 10027 U.S.A.
dab@math.columbia.edu

Stuart Haber
Bellcore

445 South Street
Morristown, N.J. 07960 U.S.A.

stuart@bellcore.com

W. Scott Stornetta
Bellcore

445 South Street
Morristown, N.J. 07960 U.S.A.
stornetta@bellcore.com

March 1992

Abstract

To establish that a document was created after a given moment in time, it
is necessary to report events that could not have been predicted before they
happened. To establish that a document was created before a given moment
in time, it is necessary to cause an event based on the document, which can be
observed by others. Cryptographic hash functions can be used both to report
events succinctly, and to cause events based on documents without revealing
their contents. Haber and Stornetta have proposed two schemes for digital
time-stamping which rely on these principles [HaSt 91].

We reexamine one of those protocols, addressing the resource constraint
required for storage and verification of time-stamp certificates. By using trees,
we show how to achieve an exponential increase in the publicity obtained for
each time-stamping event, while reducing the storage and the computation
required in order to validate a given certificate.

We show how time-stamping can be used in certain circumstances to extend
the useful lifetime of different kinds of cryptographic certifications of authen-
ticity, in the event that the certifying protocol is compromised. This can be
applied to digital signatures, or to time-stamping itself, making the digital
time-stamping process renewable.

∗Partially supported by NSF grant DMS-90-06116.

1



1 Introduction

Causality fixes events in time. If an event was determined by certain earlier events,
and determines certain subsequent events, then the event is sandwiched securely
into its place in history. Fundamentally, this is why paper documents have forensic
qualities allowing them to be accurately dated and examined for signs of after-the-fact
tampering. However, documents kept in digital form need not be closely tied to any
physical medium, and tampering may not leave any tell-tale signs in the medium.

Could an analogous notion of causality be applied to digital documents to correctly
date them, and to make undetected tampering infeasible? Any solution would have
to time-stamp the data itself, without any reliance on the properties of a physical
medium, and would be especially useful and trustworthy if the date and time of the
time-stamp could not be forged.

In [HaSt 91], Haber and Stornetta posed this problem, and proposed two solutions.
Both involve the use of cryptographic hash functions (discussed in §2 below), whose
outputs are processed in lieu of the actual documents. In the linking solution, the
hash values of documents submitted to a time-stamping service are chained together
in a linear list into which nothing can feasibly be inserted or substituted and from
which nothing can feasibly be deleted. This latter property is insured by a further
use of cryptographic hashing. In the random-witness solution, several members of
the client pool must date and sign the hash value; their signatures form a composite
certification that the time-stamp request was witnessed. These members are chosen
by means of a pseudorandom generator that uses the hash of the document itself as a
seed. This makes it infeasible to deliberately choose which clients should and should
not act as witnesses.

In both of these solutions, the record-keeping requirements per time-stamping
request are proportional to the number of (implicit) observers of the event. In §3 below
we address the following problem: What if an immense flood of banal transactions
want their time-stamps to become part of the historical record, but history just isn’t
interested? We propose to merge many unnoteworthy time-stamping events into one
noteworthy event, using a tournament run by its participants. The winner can be
easily and widely publicized. Each player, by remembering a short list of opponents,
can establish participation in the tournament. We do this by building trees in place
of the linked list of the linking solution, thus achieving an exponential increase in the
number of observers. Such hash trees were previously used by Merkle [Merk 80] for
a different purpose, to produce authentication certificates for a directory of public
enciphering keys.

There are several ways in which a cryptographic system can be compromised. For
example, users’ private keys may be revealed; imprudent choice of key-lengths may be
overtaken by an increase in computing power; and improved algorithmic techniques
may render feasible the heretofore intractable computational problem on which the
system is based. In §4 below we show how time-stamping can be used in certain
circumstances to extend the useful lifetime of digital signatures. Applying the same
technique to time-stamping itself, we demonstrate that digital time-stamps can be

2



renewed.

Finally, in §5 we discuss the relationships between the different methods of digital
time-stamping that have been proposed.

2 Hash functions

The principal tool we use in specifying digital time-stamping schemes, here as in
[HaSt 91], is the idea of a cryptographic hash function. This is a function compressing
digital documents of arbitrary length to bit-strings of a fixed length, for which it is
computationally infeasible to find two different documents that are mapped by the
function to the same hash value. (Such a pair is called a collision for the hash
function.) Hence it is infeasible to fabricate a document with a given hash value. In
particular, a fragment of a document cannot be extended to a complete document
with a given hash value, unless the fragment was known before the hash value was
created. In brief, a hash value must follow its associated document in time.

There are practical implementations of hash functions, for example those of Rivest
[Riv 90] and of Brachtl, et al. [BC+ 88], which seem to be reasonably secure.

In a more theoretical vein, Damgard defined a family of collision-free hash func-
tions to be a family of functions h : {0, 1}∗ → {0, 1}l compressing bit-strings of
arbitrary length to bit-strings of a fixed length l, with the following properties:

1. The functions h are easy to compute, and it is easy to pick a member of the
family at random.

2. It is computationally infeasible, given a random choice of one of these functions
h, to find a pair of distinct strings x, x′ satisfying h(x) = h(x′).

He gave a constructive proof of their existence, on the assumption that there ex-
ist one-way “claw-free” permutations [Dam 87]. For further discussion of theoretical
questions relating to the existence of families of cryptographic hash functions (vari-
ously defined) see [HaSt 91] and the references contained therein.

In the rest of this paper, we will assume that a cryptographic hash function h is
given: either a particular practical implementation, or one that has been chosen at
random from a collision-free family.

3 Trees

In the linking scheme, the challenger of a time-stamp is satisfied by following the
linked chain from the document in question to a time-stamp certificate that the
challenger considers trustworthy. If a trustworthy certificate occurs about every N
documents, say, then the verification process may require as many as N steps. We
may reduce this cost from N to log N , as follows.

Suppose we combine the hash values of two users’ documents into one new hash
value, and publicize only the combined hash value. (We will consider a “publicized”

3



value to be trustworthy.) Either participant, by saving his or her own document
as well as the other contributing hash value, can later establish that the document
existed before the time when the combined hash value was publicized.

More generally, suppose that N hash values are combined into one via a binary
tree, and the resulting single hash value is widely publicized. To later establish
priority, a participant need only record his own document, as well as the �log2 N�
hash values that were directly combined with the document’s hash value along the
path to the root of the tree. In addition, along with each combining hash value, the
user needs to record its “handedness,” indicating whether the newly computed value
was placed before or after the combining hash value. Verification consists simply of
recomputing the root of the tree from this data.

Once hashing functions are chosen, such a scheme could be carried out like a world
championship tournament: Heterogeneous local networks could govern local subtrees
under the scrutiny of local participants, and regional “winners” could be combined
into global winners under the scrutiny of all interested parties. Global communication
facilities are required, and a broadcast protocol must be agreed upon, but no central-
ized service bureau need administer or profit from this system. For example, given
any protocol acceptable separately to the western and eastern hemispheres for estab-
lishing winners for a given one-hour time period, the winners can be broadcast by
various members of the respective hemispheres, and anyone who wants to can carry
out the computations to determine the unique global winner for that time period.
Winners for shorter time periods can similarly be combined into unique winners for
longer time periods, by any interested party.

At a minimum, daily global winners could be recorded in newspaper advertise-
ments, to end up indefinitely on library microfilm. The newspaper functions as a
widely available public record whose long-term preservation at many locations makes
tampering very difficult. An individual who retains the set of values tracing the path
between his document and the hash value appearing in the newspaper could establish
the time of his document, without any reliance on other records. Anyone who wishes
to be able to resolve time-stamps to greater accuracy needs only to record time-stamp
broadcasts to greater accuracy.

4 Using time-stamping to extend the lifetime of a

threatened cryptographic operation

The valid lifetime of a digitally signed document can be extended with digital time-
stamping, in the following way. Imagine an implementation of a particular digital
signature scheme, with a particular choice of key lengths, and consider a plaintext
document D and its digital signature σ by a particular user. Now let the pair (D, σ)
be time-stamped. Some time later the signature may become invalid, for any of a
variety of reasons, including the compromise of the user’s private key, an increase
in available computing power making signatures with keys of that length unsafe, or
the discovery of a basic flaw in the signature scheme. At that point, the document-

4



signature pair becomes questionable, because it may be possible for someone other
than the original signer to create valid signatures.

However, if the pair (D, σ) was time-stamped at a time before the signature was
compromised, then the pair still constitutes a valid signature. This is because it is
known to have been created at a time when only legitimate users could have pro-
duced it. Its validity is not in question even though new signatures generated by the
compromised method might no longer be trustworthy.

The same technique applies to other instances of cryptographic protocols. In
particular, the technique can be used to renew the time-stamping process itself. Once
again, imagine an implementation of a particular time-stamping scheme, and consider
the pair (D, C), where C is a valid time-stamp certificate (in this implementation) for
the document D. If (D, C) is time-stamped by an improved time-stamping method
before the original method is compromised, then one has evidence not only that
the document existed prior to the time of the new time-stamp, but that it existed
at the time stated in the original certificate. Prior to the compromise of the old
implementation, the only way to create a certificate was by legitimate means. (The
ability to renew time-stamps was mentioned in [HaSt 91] but an incorrect method
was given. The mistake of the previous work was in assuming that it is sufficient
to renew the certificate alone, and not the document-certificate pair. This fails, of
course, if the compromise in question is a method of computing hash collisions for
the hash function used in submitting time-stamp requests.)

5 Different methods of time-stamping

To date, three different digital time-stamping techniques have been proposed: linear
linking, random witness and linking into trees. What is the relationship between
them? Does one supersede the others? Initially, one might think that trees satisfy
time-stamping requirements better than the two previously proposed methods, be-
cause the tree protocol seems to reduce storage requirements while increasing the
number of interested parties who serve as witnesses. But there are other tradeoffs to
consider.

First we consider the linking protocol. In certain applications, such as a laboratory
notebook, it is crucial not only to have a trustworthy date for each entry but also to
establish in a trustworthy manner the exact sequence in which all entries were made.
Linear linking of one entry to the next provides the most straightforward means of
achieving this.

Next we consider the difference between the random-witness method and the tree
method. While trees increase the number of witnesses to a given time-stamping event
in proportion to the number of documents time-stamped, they do not guarantee a
minimum number of witnesses. Neither do they guarantee that witnesses will retain
their records. In contrast, in random witness the effective number of witnesses is the
entire population, though only a small fraction are actually involved in any given
time-stamping event. Furthermore, the set of signatures computed by the random-
witness protocol explicitly creates a certificate which is evidence that a time-stamping

5



event was widely witnessed. Thus, the protocol does not depend for its final valid-
ity on witnesses keeping records. Random witness is somewhat analogous to placing
an advertisement in the newspaper, as discussed earlier, but with an additional re-
finement. Like the newspaper ad, it is effectively a widely witnessed event, but in
addition it creates a record of the witnessing.

Given these tradeoffs, we imagine that the three methods may be used in a com-
plementary fashion, as the following example illustrates. An individual or company
might use linear linking to time-stamp its own accounting records, sending the final
summary value for a given time period to a service maintained by a group of indi-
viduals or parties. This service constructs linked trees at regular intervals. The root
of each tree is then certified as a widely viewed event by using the random-witness
protocol among the participants. In this way, individual and group storage needs can
be minimized, and the number of events which require an official record of witnessing
can be greatly reduced.

References

[BC+ 88] B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas, Jr.,
C. H. W. Meyer, J. Oseas, Sh. Pilpel, and M. Shilling. Data authen-
tication using modification detection codes based on a public one way
encryption function. U.S. Patent No. 4,908,861, issued March 13, 1990.
(Cf. C. H. Meyer and M. Shilling, Secure program load with modification
detection code. In Securicom 88: 6ème Congrès mondial de la protection
et de la sécurité informatique et des communications, pp. 111–130 (Paris,
1988).)

[Dam 87] I. Damg̊ard. Collision-free hash functions and public-key signature
schemes. In Advances in Cryptology—Eurocrypt ’87, Lecture Notes in
Computer Science, Vol. 304, pp. 203–217, Springer-Verlag (Berlin, 1988).

[HaSt 91] S. Haber, W. S. Stornetta, How to time-stamp a digital document, Jour-
nal of Cryptography, Vol. 3, No. 2, pp. 99–111 (1991). (Presented at
Crypto ’90.)

[Merk 80] R. C. Merkle, Protocols for public key cryptosystems. In Proc. 1980 Symp.
on Security and Privacy, IEEE Computer Society, pp. 122–133 (Apr.
1980).

[Riv 90] R. L. Rivest. The MD4 message digest algorithm. In Advances in
Cryptology—Crypto ’90, Lecture Notes in Computer Science, Vol. 537
(ed. A. J. Menezes, S. A. Vanstone), pp. 303–311, Springer-Verlag (Berlin,
1991).

6



Hashcash- A Denial of ServiceCounter-Measure

AdamBack
e-mail: adam@cypherspace.org

1stAugust2002

Abstract

Hashcashwasoriginally proposedasa mechanismto throttlesystematicabuseof un-meteredinternetresources
suchasemail,andanonymousremailersin May 1997. Five yearson, this papercapturesin oneplacethe various
applications,improvementssuggestedand relatedsubsequent publications, and describesinitial experience from
experimentsusinghashcash.

ThehashcashCPUcost-functioncomputesa token which canbeusedasa proof-of-work. Interactive andnon-
interactive variantsof cost-functionscanbe constructedwhich canbe usedin situationswherethe server canissue
a challenge(connectionorientedinteractive protocol),andwhereit cannot (wherethecommunicationis store–and–
forward,or packet oriented)respectively.

KeyWords: hashcash, cost-functions

1 Intr oduction

Hashcash[1] wasoriginally proposedasa mechanism to throttlesystematicabuseof un-meteredinternetresources
suchasemail, andanonymous remailersin May 1997. Five yearson, this papercaptures in oneplacethe various
applications, improvementssuggestedandrelatedsubsequentpublications,anddescribes initial experiencefrom ex-
periments usinghashcash.

ThehashcashCPU cost-function computesa tokenwhich canbeusedasa proof-of-work. Interactive andnon-
interactive variants of cost-functionscanbe constructedwhich canbe usedin situationswherethe server canissue
a challenge (connectionoriented interactive protocol), andwhereit cannot (where thecommunicationis store–and–
forward, or packetoriented) respectively.

At the time of publicationof [1] the authorwas not awareof the prior work by Dwork andNaor in [2] who
proposeda CPU pricing function for the applicationof combatting junk email. Subsequently applications for cost-
functionshave beenfurther discussedby JuelsandBrainardin [3]. JakobssonandJuelsproposea dualpurposefor
thework spentin a cost-function: to in additionperform anotherwiseusefulcomputationin [4].

2 Cost-Functions

A cost-function shouldbe efficiently verifiable,but parameterisablyexpensive to compute. We usethe following
notationto definea cost-function.

In thecontext of cost-functionswe useclient to refer to theuserwho mustcompute a token (denoted
�

) usinga
cost-function MINT() which is usedto createtokensto participatein a protocol with a server. We usethetermmint
for thecost-functionbecauseof theanalogybetweencreatingcosttokensandmintingphysicalmoney.

The server will checkthe valueof the token usingan evaluation function VALUE(), andonly proceedwith the
protocol if thetokenhastherequiredvalue.

Thefunctionsareparameterisedby theamount of work � that theuserwill have to expend on averageto mint a
token.

With interactive cost-functions, theserver issuesachallenge � to theclient– theserverusestheCHAL ��� function
to compute thechallenge. (Thechallengefunction is alsoparameterisedby thework factor.)

1



�� � �
	 CHAL ����
���� serverchallenge function� 	 MINT ����� mint tokenbasedonchallenge� 	 VALUE � � � tokenevaluation function

With non-interactivecost-functionstheclientchosesit’s own challenge or random startvaluein theMINT() func-
tion, andthereis noCHAL() function.� � 	 MINT ����
���� mint token� 	 VALUE � � � tokenevaluationfunction

Clearlyanon-interactivecost-function canbeusedin aninteractive setting,whereas theconverseis notpossible.

2.1 Publicly Auditable, Probabilistic Cost� A publicly auditable cost-functioncanbeefficiently verifiedby any third partywithout accessto any trapdoor
or secretinformation. (Whenwe saypublicly auditable we meanimplicitly that thecost-function is efficiently
publicly auditablecomparedto thecostof minting thetoken,ratherthanauditablein theweaker sensethatthe
auditor could repeat thework doneby theclient.)� A fixedcostcost-function takesa fixedamount of resourcesto compute. Thefastestalgorithm to mint a fixed
costtokenis adeterministic algorithm.� A probabilistic costcost-function is onewherethecostto theclientof mintingatokenhasapredictableexpected
time,butarandomactualtimeastheclientcanmostefficientlycomputethecost-functionbystartingatarandom
startvalue.Sometimestheclientwill getlucky andstartcloseto thesolution.

There aretwo typesof probabilistic costboundedprobabilisticcostandunboundedprobabilistic cost.

– An unboundedprobabilistic costcost-function,canin theorytake forever to compute, though theproba-
blity of takingsignificantlylongerthanexpecteddecreasesrapidly towardszero. (An example would be
thecost-functionof beingrequired to throw a headwith a fair coin; in theorytheusercouldbeunlucky
andendup throwing many tails, but in practicetheprobability of not throwing a headfor � throws tends
towards� rapidlyas ������� �"!#�%$& � �(' � .)

– With a boundedprobabilistic costcost-function thereis a limit to how unlucky the client canbe in it’s
searchfor the solution; for example wherethe client is expectedto searchsomekey spacefor a known
solution;thesizeof thekey spaceimposesanupperbound onthecostof findingthesolution.

2.2 Trapdoor-free

A disadvantageof known solutioncost-functionsis that thechallenger cancheaplycreatetokens of arbitrary value.
This precludespublic auditwheretheservermayhave a conflict of interests,for example in webhit metering, where
theservermayhaveaninterestto inflatethenumberof hitson it’s pagewhereit is beingpaidperhit by anadvertiser.� A trapdoor-free cost-functionis onewheretheserverhasnoadvantage in minting tokens.

An exampleof a trapdoor-freecost-function is theHashcash[1] cost-function. JuelsandBrainard’s client-puzzle
cost-function is anexample of a known-solutioncost-function wheretheserver hasanadvantagein minting tokens.
Client-puzzlesasspecifiedin thepaper arein addition notpublicly auditable, though this is dueto astorageoptimiza-
tion andnot inherent to theirdesign.

2



3 The Hashcashcost-function

Hashcashis a non-interactive,publicly auditable,trapdoor-freecostfunctionwith unboundedprobabilistic cost.
First we introducesomenotation: considerbitstring � '*) �+
-,/.10 , we define 2 � 354 to means thebit at offseti, where2 � 3 $ is theleft-most bit, and 2 � 376 896 is theright-mostbit. 2 �-3�4;:<:<: = meansthebit-wisesubstringbetweenandincludingbits>

and? , 2 �-3 45:<:<: = ' 2 �-3 4A@�BCB�BD@ 2 �-3 = . So � ' 2 �-3 $ :<:<: 6 896 .
Wedefineabinary infix comparisonoperator E FHGJI'LK whereb is thelengthof thecommon left-substring from thetwo

bit-strings. M
E FHGNI'PORQ 2

M
3 $TS' 2 Q 3 $M

E FHGNI' K Q U 4CV $ :<:<: K 2
M
3�4 ' 2 Q 3�4

Hashcashis computedrelative to a service-name� , to prevent tokensmintedfor oneserverbeingusedonanother
(servers only accepttokens mintedusing their own service-name). The service-namecanbe any bit-string which
uniquely identifiestheservice(eg. hostname,emailaddress,etc).

Thehashcashfunction is definedas(notethis is animprovedsimplifedvariantsinceinitial publicationseenotein
section5: �WWWWWWW� WWWWWWW�

PUBLIC: hashfunction XP��Y � with output size � bits� 	 MINT ����
��Z� find

M
[]\ ) �+
-,/.^0 st X_��� @
M
� E FHGNI'_` � �

return ����

M
�� 	 VALUE � � � X_��� @

M
�aE FHGNI'_b � �

return c
Thehashcashcost-function is basedon findingpartial hashcollisionson theall 0 bits � -bit string � � . Thefastest

algorithm for computing partial collisionsis bruteforce. Thereis no challenge asthe client cansafelychoosehis
own random challenge, andso the hashcashcost-function is a trapdoor-freeandnon-interactivecost-function. In
additiontheHashcashcost-function is publicly auditable, becauseanyonecanefficiently verify any publishedtokens.
(In practice d

M
d shouldbechosento belarge enough to make theprobability thatclientsreusea previously usedstart

valuenegligible; d
M
d ' ,%e/f bitsshouldbeenoughevenfor abusyserver.)

Theserver needsto keepa double spendingdatabaseof spenttokens,to detectandrejectattemptsto spendthe
sametokenagain.To preventthedatabasegrowing indefinitely, theservicestringcaninclude thetimeat whichit was
minted. This allows the server to discardentriesfrom thespentdatabaseafter they have expired. Somereasonable
expiry period should bechosento take account of clock inaccuracy, computationtime,andtransmissiondelays.

Hashcashwas originally proposedas a counter-measureagainst email spam,and against systematicabuseof
anonymous remailers.It is necessaryto usenon-interactivecost-functionsfor thesescenarios asthereis no channel
for the server to senda challenge over. However oneadvantageof interactivecost-functions is that it is possible
to prevent pre-computationattacks.For example, if thereis a costassociatedwith sendingeachemail this may be
sufficient to limit the scaleof email abuseperpetratedby spammers; however for a pure DoS-motivatedattacka
determinedadversary mayspenda yearpre-computing tokens to all bevalid on thesameday, andon thatdaybeable
to temporarily overloadthesystem.

It would be possibleto reduce the scopefor suchpre-computation attacksby usinga slowly changing beacon
(unpredictablebroadcastauthenticatedvalue changing over time) suchassaythis weekswinning lotterynumbers. In
this eventthecurrentbeaconvalueis included in thestartstring,limiting pre-computationattacksto beingconducted
within thetime period betweenbeacon valuechanges.

4 Interacti veHashcash

With the interactive form of hashcash,for usein interactive settingssuchasTCP, TLS, SSH,IPSECetcconnection
establishmenta challenge is chosenby theserver. Theaim of interactive hashcashis to defend server resourcesfrom
prematuredepletion, andprovidegraceful degradationof servicewith fair allocationacrossusersin thefaceof aDoS
attackwhereoneuserattemptsto deny serviceto theotherusersby consuming asmany serverresourcesashecan.In

3



thecaseof securityprotocolssuchasTLS,SSHandIPSECwith computationallyexpensiveconnectionestablishment
phasesinvolving publickey cryptotheserver resourcebeingdefendedis theserversavailableCPUtime.

Theinteractivehashcashcost-functionis definedasfollows:�WWWWWWW� WWWWWWW�
�g	 CHAL ����
���� chooseh

[i\ ) �+
-,j. �
return ����
��"
7h-�� 	 MINT ��k(� find

M
[]\ ) �+
-,j.%0 st XP��� @ h @
M
�lE FHGNI'_` � �

return ����

M
�� 	 VALUE �;m�� XP��� @ h @

M
�aE FHGJI' b � �

return c
4.1 Dynamic thr ottling

With interactive hashcashit becomespossibleto dynamicallyadjustthework factorrequired for theclient basedon
server CPU load. Theapproachalsoadmitsthe possibility that interactive hashcashchallenge-responsewould only
be usedduring periods of high load. This makes it possibleto phase-inDoS resistentprotocols without breaking
backwards compatibility with old client software. Underperiods of high loadnon-hashcashawareclientswould be
unable to connect,orwouldbeplacedin alimitedconnectionpoolsubjecttoolderlesseffectiveDoScounter-measures
suchasrandomconnectiondropping.

4.2 hashcash-cookies

With connection-slotdepletion attackssuchasthesyn-flood attack,andstraight-forwardTCPconnection-slot deple-
tion theserver resourcethatis beingconsumedis spaceavailableto theTCPstackto storeper-connectionstate.

In this scenarioit maybe desirable to avoid keeping perconnectionstate,until theclient hascomputed a token
with theinteractive hashcashcost-function. This defenseis similar to thesyn-cookie defenseto thesyn-floodattack,
but hereweproposeto additionally imposea CPUcostontheconnectingmachine to reservea TCPconnection-slot.

To avoid storingthe challenge in the connectionstate(which itself consumes space)the server may chooseto
computea keyed MAC of theinformationit wouldotherwisestoreandsentit to theclient aspartof thechallenge so
it canverify the authenticity of the challenge andtokenwhenthe client returns them. (This general technique – of
sendinga record you would otherwisestoretogether with a MAC to theentity the informationis about – is referred
to asa symmetrickey certificate.) This approachis analogousto the technique usedin syn-cookies,andJuelsand
Brainardproposeda relatedapproachbut at theapplication protocol level in their client-puzzlespaper.

For example with MAC function n keyedby serverkey o thechallenge MAC couldbecomputedas:�WWWW� WWWW�
PUBLIC: MAC function np��YC
^Y �
�g	 CHAL �;�Z� chooseh

[ \ ) �q
-,/. �
compute rs	 np�5o#
�t @ � @vul@ � @ h-�
return �;t9
w�/
 u 
��"
�hx
�rg�

The client mustsendthe MAC r , andthe challenge h andchallenge parametersu with the responsetoken so
that theserver canverify thechallenge andtheresponse.Theserver shouldalsoinclude in theMAC theconnection
parameters,at minimum enough to identify theconnection-slotandsometime measurementor increasing counter t
sothatold challenge responsescannotbecollectedandre-usedaftertheconnection-slotsarefree.Thechallengeand
MAC would besentin theTCPSYN-ACK responsemessage,andtheclient would includethe interactive hashcash
token (challenge-response)in theTCP ACK message.As with syn-cookies,theserver would not needto keepany
stateperconnectionprior to receiving theTCPACK.

For backwardscompatibility with syn-cookie awareTCPstacks,a hashcash-cookie awareTCPstackwould only
turnonhashcash-cookieswhenit detectedthatit wassubjectto aTCPconnection-depletionattack.Similararguments
asgiven by DanBernsteinin [5] canbeusedto show thatbackwardscompatibility is retained, namelyundersyn-flood
attacksBernstein’s argumentsshow how to provide backwardscompatibility with nonsyn-cookie awareimplementa-
tions;similarly underconnection-depletionattackhashcash-cookiesareonly turnedonatapoint whereservicewould
anywayotherwisebeunavailableto anon-hashcash-cookieawareTCPstack.

4



As thefloodincreasesin severity thehashcash-cookie algorithm wouldincreasethecollisionsizerequiredto bein
theTCPACK message.Thehashcash-cookieawareclientcanstill connect(albeitincreasinlyslowly) with amorefair
chanceagainst theDoSattacker presuming theDoSerhaslimited CPUresources.TheDoSattacker will effectively
bepitting his CPUagainstall theother(hashcash-cookieaware)clientsalsotrying to connect.Without thehashcash-
cookie defensetheDoSercanflood theserver with connectionestablishmentsandcanmoreeasilytie up all it’s slots
by completing n connectionsper idle connection time-out wheren is thesizeof theconnection table,or pinging the
connectionsonceperidle connectiontime-out to convincetheserver they arealive.

Connectionswill behanded out to userscollectively in roughproportion to theirCPUresources,andsofairnessis
CPUresourcebased(presumingeachuseris trying to open asmany connectionsashecan)sotheresultwill bebiased
in favor of clientswith fastprocessorsasthey cancompute moreinteractive-hashcashchallenge-responsetokensper
second.

5 Hashcashimpr ovements

In theinitially publishedhashcashscheme,thetarget stringto find a hashcollision on waschosenfairly by usingthe
hashof theservice-name(andrespectively theservice-nameandchallengein the interactive setting). A subsequent
improvement suggestedindependentlyby Hal Finney [6] andThomasBoschloo[7] for hashcashis to find a collision
against afixedoutput string.Theirobservationis thata fixedcollision targetis alsofair, simplerandreduces verifica-
tion costby a factorof 2. A fixedtargetstringwhichis convenientto compare trial collisionsagainst is thek-bit string� � where � is thehashoutput size.

6 Low Variance

Ideallycost-functiontokensshouldtakeapredictableamount of computing resourcestocompute. JuelsandBrainard’s
client-puzzleconstructionprovidesaprobabilistic bounded-costby issuingchallengeswith known-solutions, however
while thislimits thetheoretical worstcaserunning time,it makeslimitedpracticaldifferenceto thevarianceandtypical
experiencedrunning time. Thetechniqueof usingknown solutionsis alsonotapplicable to thenon-interactivesetting.
It is anopenquestionasto whetherthereexist probabilisticbounded-cost,or fixed-costnon-interactivecost-functions
with thesameorder of magnitudeof verification costashashcash.

Theothermoresignificantincremental improvementdueto JuelsandBrainardis thesuggestionto usemultiple
sub-puzzleswith thesameexpectedcost,but lower variancein cost.This technique shouldbeapplicable to boththe
non-interactiveandinteractive variantsof hashcash.

6.1 Non-Parallelizability and Distrib uted DoS

Roger Dingledine, Michael Freedmanand David Molnar put forward the argument that non-parallelizablecost-
functionsarelessvulnerableto DistributedDoS(DDoS)in chapter16of [8]. Theirargumentis thatnon-parallelizable
cost-functionsfrustrateDDoSbecausetheattacker is thenunable sub-divide andfarmout thework of computing an
individual token.

Theauthordescribed a fixed-costcost-function in [9] usingRivest,ShamirandWagner’s time-lock puzzle[10]
which alsohappens to benon-parallelizable.Thetime-lockpuzzlecost-functioncanbeusedin eitheran interactive
or non-interactive settingas it is safefor the userto chosetheir own challenge. The applicability of Rivestet al’s
time-lockpuzzleasa cost-functionwasalsosubsequently observedby Dingledineet al in [8].

For completenesswe presentthetime-lockpuzzlebasedfixed-costandnon-parallelizable cost-function from [9]
here:

5



�WWWWWWWWWWWWWWWWWW� WWWWWWWWWWWWWWWWWW�

PUBLIC: y ' u{z
PRIVATE: primesu and z 
A|l�5y�� ' � u~} ,�� � z�} ,%�
�g	 CHAL ����
���� chooseh

[ \
2 �q
�y��

return ����
�hx
����� 	 MINT ����� compute

M
	�XP��� @ h-�

compute Q 	
M{�%�

�;���1��y��
return ����
�hx
��"
 Q �� 	 VALUE � � � compute

M
	�XP��� @ h-�

compute �T	
M ` ���1��|l�;y��

if

M{� '�Q �5������y�� return �
elsereturn �

The client doesnot know |a�5y�� , andso the mostefficient methodfor the client to calculateMINT() is repeated
exponentiation, which requires � exponentiations. Thechallenger knows |l�5y�� whichallows a moreefficientcompu-
tationby reducing theexponent ���1�{|l�5y�� , so thechallengercanexecute VALUE() with 2 modular exponentiations.
Thechallenger asa side-effect hasa trapdoor in computing the cost-functionashecancompute MINT() efficiently
usingthesamealgorithm.

We argue however that the added DDoS protectionprovided by non-parallelizablecost-functions is marginal:
unlesstheserverrestrictsthenumberof challenges it handsout to a recognizablyuniqueclient theDDoSattackercan
farmoutmultiple challengesaseasilyasfarmoutasub-dividedsinglechallenge,andconsumeresourcesontheserver
at thesamerateasbefore. Furtherit is not thathardfor a singleclient to masquerade asmultiple clientsto a server.

Consideralso:theDDoSattackerhasgenerally dueto thenatureof hismethodof commandeeringnodesanequal
number of network connectednodes at his disposalasprocessors.He can therefore in any casehave eachattack
nodedirectly participatein thenormal protocol indistinguisablyfrom any legitimate user. This attackstrategy is also
otherwiseoptimal anyway astheattacknodeswill present a variedsetof sourceaddresseswhich will foil attempts
at per-connectionfairnessthrottling strategiesandrouterbasedDDoS counter-measuresbasedon volume of traffic
acrossIP addressranges.Thereforefor thenatural attacknodemarshalling patterns non-parallelizablecost-functions
offer limited addedresistance.

As well as the argumentsagainst the practicalefficacy and value of non-parallelizable cost-functions, to date
non-parallelizable costfunctionshave hadordersof magnitudeslower verificationfunctions thannon-parallelizable
cost-functions.Thisis becausethenon-parallelizablecost-functionssofardiscussedin theliteraturearerelatedto trap-
doorpublic key cryptography constructswhichareinherently lessefficient. It is anopenquestionasto whetherthere
exist non-parallelizablecost-functionsbasedon symmetric-key (or public-key) constructs with verification functions
of thesameorderof magnitudeasthoseof symmetric-cryptobasedcost-functions.

While for theapplication of time-lockpuzzlesto cost-functions,a reducedpublickey sizecould beusedto speed
up the verificationfunction, this approachintroducesrisk that the modulus will be factoredwith the result that the
attackergains a big advantagein minting tokens.(Note: factoring is itself a largely parallelizable computation.)

To combatthis theserver shouldchange thepublic parameters periodically. However in theparticular caseof the
public parametersusedby time-lockpuzzles (which arethesameastheRSA modulus usedin RSA encryption), this
operation is itself moderatelyexpensive, sothis operation would not beperformedtoo frequently. It would probably
notbewiseto deploy softwarebasedonkey sizesbelow 768bits for thisaplication, in addition it wouldhelpto change
keys periodically, sayevery hour or so. (RSA modulii of 512bits have recentlybeenfactoredby a closedgroup as
discussedin [11] andmorerecentlyhave beendemonstratedby Nicko van Somerenet al to be factorizableusing
standardequipmentin anofficeasreportedin [12]; DDoSattackersareknown beableto mustersignificantresources,
probablyeasilyexceeding thoseusedin thisdemonstration.)

The time-lockpuzzle cost-functionalsois necessarilytrap-door astheserver needsa private verification-key to
allow it to efficiently verify tokens. The existance of a verification-key presentsthe addedrisk of key compromise
allowing theattacker to by-passthecost-functionprotection. (Theinteractive hashcashcost-functionby comparison
is trap-door-free,so thereis no key which would allow an attacker a short-cut in computing tokens). In fact if the
verification-key werecompromised,it couldbereplaced,but this needaddscomplexity andadministrative overhead
asthis event needsto bedetectedandmanualintervention or someautomateddetectiontriggeringkey-replacement
implemented.

6



The time-lock puzzlecost-function also will tend to have larger messagesas thereis a needto communicate
plannedandemergency re-keyedpublic parameters.For someapplications, for example thesyn-cookie andhashcash-
cookie protocols, spaceis at a premium dueto backwards compatibility andpacket sizeconstraints imposedby the
network infrastructure.

So in summary we argue that non-parallelizablecost-functionsareof questionable practical valuein protecting
against DDoSattacks,have moreexpensive verificationfunctions, incur therisk of verification key compromiseand
attendant key managementcomplexities,have larger messages,andaresignificantlymorecomplex to implement. We
therefore recommendinsteadthesimplerhashcashprotocol (or if thepublic-auditabilityandnon-interactive options
arenot requiredJuelsandBrainard’s client-puzzlesareroughly equivalent).

7 Applications

Apart from theinitially proposedapplications for hashcashof throttling DoSagainstremailernetworks anddetering
emailspam,sincepublicationthefollowingapplicationshavebeendiscussed,exploredandin somecasesimplemented
anddeployed:� hashcash-cookies,apotentialextensionof thesyn-cookie asdiscussedin section4.2for allowing moregraceful

servicedegradationin thefaceof connection-depletionattacks.� interactive-hashcashasdiscussedin section4 for DoS throttling andgraceful servicedegradationunderCPU
overloadattackson securityprotocolswith computationally expensive connection establishment phases.No
deploymentbut theanalogousclient-puzzlesystemwasimplementedwith TLS in [13]� hashcashthrottling of DoSpublication floodsin anonymouspublication systemssuchasFreenet[14], Publius
[15], Tangler[16],� hashcashthrottlingof servicerequestsin thecryptographic Self-certifying File System[17]� hashcashthrottlingof USENETflooding via mail2news networks [18]� hashcashasa minting mechanismfor Wei Dai’s b-money electroniccashproposal,anelectroniccashscheme
without a banking interface[19]

8 Cost-function classificationscheme

Welist hereaclassificationof characteristicsof cost-functions.Weusethefollowing notationto denote theproperties
of a cost-function: ��2 � '�) ,/
 $& 
��1.^3�
%2 � '�) �q
 $& 
-,/.-3H
^2 ) > 
v��H.^3�
%2 )�� 
 �� .-3H
^2 ) t9
 �t7.^3�
%2 ) u 
��u .^3��

Where� is theefficiency: value � ' , meansefficiently-verifiable–verifiablewith costcomparabletoor lowerthan
thecostof verifying symmetric key constructssuchashashcashwhichconsumejustasinglecompressionroundof an
iterative compressionfunctionbasedhashfunction suchasSHA1 or MD5. Value � ' $& meanspractically-verifiable
we meanlessefficiently thanefficienty-verifiable, but still efficient enough to bepracticalfor someapplications, for
example theauthorconsiders the time-lock puzzlebasedcost-functionwith it’s two modular exponentiationsto fall
into thiscategory. Value � ' � meansverifiablebut impractical, thatthecost-functionis verifiablebut theverification
function is impracticallyslow suchthat the existanceof the cost-function servesonly asa proof of concept to be
improveduponfor practicaluse.

And � is a characterization of the standard-deviation, value � ' � means fixed-cost, � ' $& meansbounded
probabilistic cost and � ' , meansunboundedprobabilistic cost. Note by boundedprobabilistic-cost we mean
usefully bounded– a bound in the work factor in excessof a work-factor that an otherwise functionally similar
unbounded cost-functionwouldonly reachwith negligible probability wouldnotbeuseful.

And
>

denotesthatthecost-function is interactive, and � � thatthecost-function is non-interactive.
And � denotesthatthecost-functionis publiclyauditable, �� denotesthatthecost-functionis notpubliclyauditable,

whichmeansin practicethatit is onlyverifiableby theserviceusingaprivatekey material.Notebypublic-auditability

7



we meanefficiently publicly-auditable, andwould not considerrepeating the work of the token minter asadequate
efficiency to classify.

And t denotesthat theserver hasa trapdoor in computing thecost-function, conversely �t denotesthatserver has
no trapdoor in computing thecost-function.

And u denotesthatthecost-functionis parallelizable, �u deontesthatthecost-functionis non-parallelizable.

trapdoor-free trapdoor
interactive hashcash client-puzzles�5� ' ,/
7� ' ,/
 > 
 � 
 �tw
 u � �5� ' ,�
�� ' $& 
 > 
 � 
�t9
 u �

time-lock�5� ' $& 
�� ' �q
 > 
-�� 
�t9
/�u �
non-interactive hashcash�5� ' ,�
�� ' ,�
v��v
 � 
 �t9
 u �

time-lock��� ' $& 
7� ' �q
���v
-�� 
�t9
��u �
8.1 Open Problems� existance of efficiently-verifiable non-interactivefixed-cost cost-functions �5� ' ,�
�� ' �+
v��H� (andthe related

weakerproblem: existanceof samewith probabilistic bounded-cost �5� ' ,/
7� ' $& 
����� )� existance of efficiently-verifiable non-interactivenon-parallelizablecost-functions �5� ' ,/
v���
��u � (andtherelated
weakerproblem: existanceof samein interactive setting �5� ' ,/
 > 
��u � )� existance of publicly-auditable non-interactivefixed-costcost-functions �5� ' �+
v��v
 � � (andthe relatedweaker
problem:existanceof samewith boundedprobabilistic-cost ��� ' $& 
v��v
 � � )

8



References

[1] AdamBack. Hashcash,May 1997. Publishedat http://w ww.cyphersp ace.org/has hcash/ .

[2] CynthiaDwork andMoni Naor. Pricing via processingor combatting junk mail. In Proceedings of Crypto,
1992. Also availableashttp://ww w.wisdom.w eizmann.ac. il:81/Diens t/UI/2.0/D escribe/
ncstrl.w eizmann_il /CS95- 20 .

[3] Ari Juelsand JohnBrainard. Client puzzles: A cryptographiccountermeasureagainst connection depletion
attacks. In Networkand Distributed SystemSecuritySymposium, 1999. Also available as http://ww w.
rsasecur ity.com/rs alabs/staff /bios/ajuel s/publicat ions/client - puzzles/ .

[4] Markus JakobssonandAri Juels.Proofsof work andbreadpudding protocols. In Proceedings of theIFIP TC6
andTC11Joint WorkingConferenceonCommunicationsandMultimediaSecurity(CMS’99), Leuven,Belgium,
September 1999. Also availableashttp:/ /citeseer.n j.nec.com/2 38810.html .

[5] DanBernstein.Syncookies. Publishedat http://c r.yp.to/syn cookies.htm l .

[6] Hal Finney. Personalcommunication, Mar 2002.

[7] ThomasBoschloo.Personalcommunication,Mar 2002.

[8] Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly
and Associates, 2001. Chapter 16 also available as http://fr eehaven.net /doc/oreill y/
accounta bility- ch16 .html .

[9] AdamBack. Hashcash- amortizable publicly auditable costfunctions. Earlydraftof paper, 2000.

[10] RonaldL Rivest, Adi Shamir, and David A Wagner. Time-lock puzzlesand timed-releasecrypto. Tech-
nical Report MIT/LCS/TR-684, 1996. Also available as http://the ory.lcs.mit .edu/˜rives t/
publicat ions.html .

[11] Hermante Riele. Securityof e-commercethreatened by 512-bit number factorization. Publishedat http:
//www.cw i.nl/˜kik/ persb- UK.htm l , Aug 1999.

[12] DennisFisher. Experts debaterisks to crypto, Mar 2002. Also availableas http://w ww.eweek.co m/
article/ 0, 3658, s=720 &a=24663, 00.asp .

[13] Drew DeanandAdam Stubblefield. Using cleint puzzlesto protecttls. In Proceedings of the 10th USENIX
SecuritySymposium, Aug 2001. Also availableashttp://www. cs.rice.edu /˜astubble /papers.
html .

[14] IanClarke,OskarSandberg,Brandon Wiley, andTheodoreHong. Freenet:A distributedanonymousinformation
storageandretrieval system.In HannesFederrath, editor, Proceedingsof theInternational WorkshoponDesign
Issuesin Anonymityand Unobservability. Springer, 2001. Also availableashttp://fr eenetprojec t.
org/cgi- bin/twiki/v iew/Main/Pa pers .

[15] Marc Waldman,Aviel D Rubin, and Lorrie Faith Cranor. Publius: A robust, tamper-evident, censorship-
resistantweb publishing system. In Proceedings of the 9th USENIX Security Symposium, Aug 2000.
Also availableashttp:// www.usenix. org/publica tions/libr ary/proceed ings/sec200 0/
waldman/ waldman_ht ml/v2.html .

[16] Marc WaldmanandDavid Mazieres. Tangler: A censorship resistantpublishing systembasedon document
entanglement. In Proceedings of the 8th ACM Conferenceon Computerand Communication Security, Nov
2001. Also availableashttp:// www.cs.nyu. edu/˜waldma n/ .

[17] David Mazieres.Self-certifyingFile System. PhDthesis,MassachusettsInstituteof Technology, May 2000. Also
availableashttp://scs. cs.nyu.edu/ ˜dm/ .

9



[18] Alex deJoode.Hashcashsupport at dizummail2news gateway. Publishedat https://s sl.dizum.co m/
hashcash / , 2002.

[19] Wei Dai. b-money. Publishedat http://w ww.eskimo.c om/˜weidai /bmoney.txt , Nov 1998.

10



Secure Names for Bit-Strings 

Stuart Haber* 
stua.rt@surety.com 

W. Scott Stornetta* 
scotts@surety.com 

I 

, 
i 

/ 

1 

Abstract names. 

The increasing use of digital documents, and the need to 
refer to them conveniently and unambiguously, raise an im- 
portant question: can one “name” a digital document in a 
way that conveniently enables users to find it, and at the 
same time enables a user in possession of a document to 
be sure that it is indeed the one that is referred to by the 
name? One crucial piece of a complete solution to this prob- 
lem would be a method that provides a cryptographically 
verifiable label for any bit-string (for example, the content, 
in a particular format, of the document). This problem has 
become even more acute with the emergence of the World- 
Wide Web, where a document (whose only existence may 
be on-line) is now typically named by giving its URL, which 
is merely a pointer to its virtual location at a particular 
moment in time. 

In the traditional world of paper documents, there arc 
usually reasonable guarantees of this connection. In the cast 
of printed books and magazines, large print runs that arc 
the result of single typesetting efforts make it easier to be 
confident that all copies of a printed document are the same, 
with a definite name printed in a conventional place in the 
document. Making a change to a paper document of any 
sort, even a small change, typically leaves forensic cvidcncc. 

Using a one-way hash function to call files by their hash 
values is cryptographically verifiable, but the resulting names 
are unwieldy, because of their length and randomness, and 
are not permanent, since as time goes on the hash function 
may become vulnerable to attack. We introduce procedures 
to create names that are short and meaningful, while at the 
same time they can persist indefinitely, independent of the 
longevity of any given hash function. This is done by naming 
a bit-string according to its position in a growing, directed 
acyclic graph of one-way hash values. We prove the security 
of our naming procedures under a reasonable complexity- 
theoretic cryptographic assumption, and then describe prac- 
tical uses for these names. An implementation of our naming 
scheme has been in use since January 1995. 

A characteristic feature of digital documents, by con- 
trast, is that they are easy to copy and to alter. The naming 
problem is especially troubling if the document exists only 
on-line and never in conventional paper-based form. For on- 
line documents, a useful naming scheme would allow users 
to employ the name to find documents, as well as to check 
the integrity of the documents that they find. A number of 
proposals have been made for such naming systems (see e.g. 
[SM 94, KW 95, BDf 951). These proposals address in dif- 
ferent ways the problem of how to “resolve” the name into 
a location where the document might be found. 

It is the integrity-checking problem that we address in 
thii work: how to make sure that the bit-string content 
of a given digital document is indeed the same u the bit- 
string that was intended. Heretofore, two different sorts of 
mechanisms have been proposed, digital signatures and one- 
way hash values. 

Having the author or publisher of a document compute a 
digital signature for its bit-string content is a reasonable use 
of cryptographic tools for this purpose. (See, for example, 
[R 95, M 941.) However, the abiity to validate many digital 
signatures requires the presence of a public-key infrastruc- 
ture, and the trustworthiness of the validation procedure 
relies on the assurance that the signer’s private signing key 
is indeed secure. For some on-line documents, the infras- 
tructure and these assurances may not be available. For 
long-lived documents, the security of the binding between 
a public key and the person or role of the putative signer 
becomes even more problematic. (A general solution to the 
latter problem is briefly described in $5.) 

1 Introduction 

Users of documents need to refer to those documents in or- 
der to keep records and in order to communicate with other 
users of the documents. In practice, users name their doc- 
uments in various ways. A name must be unambiguous, at 
least in the context of its use; this requires some connec- 
tion between the name and the integrity of the document it 

*Surety Technologies, 1 Main Street, Chatham, N.J. 07928, U.S.A. 

Pernkion to make digitnlkud copies ofnll or part ofthis material for 
personnl or classroom use is granted without fee provided lhnt lhe copies 
nre not made or distributed for profit or commercial advantage, the copy- 
right notice, ihe title of the publicntion and its date appear, and notice is 
given that copyright is hy permission ofthe ACM, Inc. To copy otherwise, 
to republish, to post on servers or to redistribute to lists. requires specific 
permission n&or fee 
CCS 97. Zurich, Switzerlnnd 
Copyright 1997 ACM O-89791-912-2/97/04 ..S3.50 

Thus it would be useful to have an integrity mechanism, 
depending on the exact contents of the bit-string in question, 
that does not depend on the secrecy of a cryptographic key. 
A natural choice for such a mechanism is the use of a one- 
way hash function, naming any bit-string by its hash valnc. 
(See, for example, [BD+ 951.) However, while this method 
is intrinsically verifiable, there are several inconvenient lea- 
tures: 

l A desirable feature for the names given to a collection 

28 

I 

, 

I - 
-- -. --._--- 

-._ ; 
~---Y-i‘-- -- _. 

. ,; _’ ,.’ ,; 
-- _ 



of objects is that they be long-lasting, if not perma- 
nent.. (This is one of the functional requirements for 
URNS [SM 941.) But as technology advances, any par- 
ticular choice of a presumably one-way function for a 
naming scheme becomes less secure, so that it must be 
replaced (see [Dob 96a, Dob 96b]).r The unpleasant 
result is that the name of a long-lived document will 
need to change over time. 

l Hash values are too long for a human user to remember 
or even to communicate easily to another human being. 
(For esample, it is currently recommended that one- 
way hash functions compute outputs that are at the 
very least 128 bits long; this is the output length of 
MD5 [Riv 921. In a 6 bit/character encoding, this is 
22 alphanumeric characters long.) 

l The author of a bit-string document has no control 
over the form of its name. A one-way hash function 
produces a random-appearing bit-string of the appro- 
priate length as the hash value of a document. Thus, 
inconvenient as it may be for the author, there mill be 
no connection between the names of documents that 
are related to each other, either in form or in sub- 
stance. 

This paper presents a method for naming bit-strings that 
retains the verifiable security of hash-based names, while 
avoiding the constraints listed above, as well as avoiding the 
use of secret, cryptographic keys. The method is a variation 
on the digital time-stamping schemes of [HS 91, BHS 931. 
In summary, the essence of the new scheme is to keep a 
repository of hash values that depend on many bit-string 
inputs, and to name each bit-string by a concise description 
of a location in the repository to which it can be securely 
“linked” by a one-way hashing computation. 

An implementation of our naming scheme has been run- 
ning continuously since January 1995 [Sur 951. 

The rest of this paper is organized as follows. After tech- 
nical preliminaries in $2, including both a brief discussion 
of the wider problem of naming digital documents as well 
as a formal description of our sub-problem, we present our 
scheme and prove its security in $3. Motivated by the explo- 
sive growth of the Internet, we mention a number of possible 
applications of our scheme in $4. In $5, we describe a method 
for extending the lifetime of our digital names beyond the 
cryptographically secure lifetime of the hash functions used 
to compute them. Finally, we discuss several different sorts 
of practical implementation in $6. 

2 Preliminaries 

2.1 Naming digital documents 

A naming system for digital documents should perform (at 
least) two functions. It should help the user (1) to find the 
document named; and (2) to reassure himself or herself that 
a given document is indeed the correct one, i.e. that it is 
indeed a perfect copy of the document that was intended. 

To enable both these functions, the “name” could include 
both identification information as well as location informa- 
tion. System design may include procedures for registration 
of new documents, for finding a document given its name, 

‘For example, because of recent attacks on MDS, RSA Laborato- 
ries recommends that “in the future MD5 should no longer be imple- 
mented in signature schemes, where a collision-resistant hash function 
IS required” [Dob 96c]. 

29 

for updating a document’s location information, and for val- 
idating the integrity of a document. Typically, there is a 
server that “resolves” or translates a name into location in- 
formation, for example into a URL or a list of URLs. The 
name may include other information about the document, 
including such data as title, author, format, price, and ac- 
cess privileges. 

A large body of work has been devoted to the difficult 
problem of designing and building a naming system of this 
sort so that it is usable, useful, and reliable. In [SM 941 
a set of functional requirements is described for Uniform 
Resource Names (URNS), the names to be assigned by a 
naming system for resources on the Internet. A number 
of researchers have built naming systems, including, among 
others, [KW 95, BD+ 951. (This is by no means an exhaus- 
tive list.) 

In this work we propose a new method for the integrity- 
checking piece of naming systems for digital documents. All 
previously proposed systems that included mechanisms for 
checking the integrity of the bit-string or bit-strings that 
make up a digital document have used either digital signa- 
tures or one-way hash functions for this purpose. For certain 
applications, these methods have the problems described in 
$1 above. 

2.2 Hash functions 

The principal technical tool we use in this paper is that 
of a one-way hash function. This is a function compressing 
digital documents of arbitrary length to bit-strings of a fixed 
length, for which it is computationally infeasible to find two 
different documents that are mapped by the function to the 
same hash value. (Such a pair is called a collision for the 
hash function.) 

Practical proposals for one-way hash functions include 
those of MD5 [Riv 921, SHA-1 [NIST 941, and RIPEMD- 
160 [DBP 961. Though the actual security of these functions 
(i.e., the precise difficulty of computing collisions for them) 
is not known, they are now in more or less widespread use. 

Definition In a more theoretical vein, Damgird defined 
a family of collision-free hash functions to be a family { Hk}k 
of sets of functions (indexed by a security parameter k) with 
the following properties: 

1. Each Hk is a set of functions h : (0, l}* --, (0, l}” that 
are computable in polynomial time. 

2. Given Ic, it is easy to choose h E Hk at random. 

3. It is computationally infeasible, given a random choice 
of one of these functions, to find a collision for the 
function. More precisely, for any polynomial algorithm 
A, for any positive constant c, 

Pr[h + Hk; (2, z’) * A(h) : x # z’, h(z) = h(d)] < k-” 

for sufficiently large k. 

Damgard gave a constructive proof of their existence, on 
the assumption that there exist families of one-way “claw- 
free” permutations [Dam 871. More generally, any “one-way 
group action” is sufficient [BY 901. Concretely, the construc- 
tion can be based on the difficulty either of factoring or of the 
discrete logarithm function. (As usual, the collision adver- 
sary A in condition (3) above can be uniform or non-uniform, 
depending on the precise form of the hypothesis made on the 
computational complexity of the underlying problem.) For 

-- I_ ---.-- 



a variety of reasons, none of the known theoretical construc- 
tions of collision-free hash functions are practical. 

In practice, the infeasibiity of computing collisions for a 
particular hash function depends on the current state of the 
art, both the current state of algorithmic knowledge about 
attacking the function in question, as well as the compu- 
tational speed and memory available in the best current 
computers. As the state of the art advances, it is likely 
that a function that was once securely one-way will even- 
tually cease to be so. For example, Dobbertin’s recently 
announced attacks on MD4 and MD5 have considerably re- 
duced the community’s confidence in the strength of these 
two functions [Dob 96a, Dob 96b, Dob 96c]. In $5 below we 
offer a solution to the problem this poses for certain practi- 
cal systems whose real-world security depends on the actual 
infeasibility of specific computational tasks. 

We refer the reader to [Pre 931 for a thorough discussion 
of one-way hash functions. 

2.3 Theoretical model 

We emphasize that thii is a theoretical description of the 
problem of verifiably “naming” bit-strings, which is only a 
piece of the larger problem of naming digital documents. 

The setting for our problem is a distributed network of 
parties. The network may include a server S as well as a 
repository R; parties may query the repository, asking for a 
copy of a particular item it contains. 

Definition A naming scheme for this setting consists of: 

a security parameter k; 

a polynomial-time naming protocol N, possibly requir- 
ing interaction with the server S, taking as input a 
bit-string x, and producing as output a name n for x, 
a certificate c, and the addition of items to the repos- 
itory R; and 

a polynomial-time validation protocol V, that takes as 
input a triple (x, n, c) and the result of a query to R, 
and either accepts or rejects its inputs. 

If (n, c) is the output of an invocation of N on input z, then 
V accepts the input (2, n, c) when it is accompanied by a 
correct response to a query to R. 

It is possible, of course, to specify a naming scheme that 
does not require a server or a repository. In that case, the 
naming protocol and the validation protocol may simply be 
algorithms that any party in the network may invoke with- 
out interacting with outside parties. 

Definition A counterfeiting adversary to anaming scheme 
[N, V, s] is a (possibly probabilistic) algorithm A that per- 
forms as follows. Given I; as input, A produces (polyno- 
mially many) naming requests x1, x2,. . .; for each 2; A is 
given the output of N(z;). The request zi+r may be com- 
puted after A has received the response to its ith request. 
In addition, A may make (polynomially many) queries to 
R. Finally (after q naming requests, say), A’s output is of 
the form (z, n, c). This output is a successful counterfeit if 
x # xt (for i = 1. . . q) and V accepts (x, n, c) (after a correct 
response to any queries to R). 

Definition A naming scheme is secure if for any poly- 
nomially bounded counterfeiting adversary A and for any 
positive constant c, A’s success probability on input k is 
less than k-’ for sufficiently large I;. 

30 

To illustrate our definitions, here is a simple example of 
a naming scheme, where the only role of the server is to 
announce its random choice of a hash function lr E 11~~. The 
naming procedure is just N(x) = h(x) with no certificates, 
and V accepts (x, n) if n = h(x). It is clear that this dclines 
a secure naming scheme as long as Hk is the kth set in a 
family of collision-free hash functions. 

We remark that the roles of S as trusted server and R 
as trustworthy repository in these definitions are just an 
artifact of how we have chosen to present and to analyze 
our naming schemes, allowing a clean separation between 
issues of the security of the scheme itself and issues of how 
it might be implemented in practice. I 

2.4 Digital time-stamping 

Our solution to the naming problem builds on the work of 
[HS 911 and [BHS 931, w h ose authors describe several pro- 
cedures with which users can certijy (the bit-string contents 
of) their digital documents, computing for any particular 
document a time-stamp certificate. Later, any user of the 
system can validate a document-certificate pair; that is, he 
or she can use the certificate to verify that the document 
existed, in exactly its current form, at the time asserted in 
the certificate. It is infeasible to compute an illegitimate 
document-certificate pair that will pass the validation pro- 
cedure. 

Because we use it directly in our naming scheme, we 
summarize here one digital time-stamping scheme. A ccn- 
tral “coordinating server” receives certification requcsts- 
essentially, hash values of files-from users. At regular in- 
tervals, the server builds a binary tree out of all the requests 
received during the interval, following Merkle’s tree authcn- 
tication technique; the leaves are the requests, and each 
internal node is the hash of the concatenation of its two 
children [Merk SO]. The root of this tree is hashed together 
with the previous “interval hash” to produce the current in- 
terval hash, which is placed in a widely available repository, 
The server then returns to each requester a time-stamp ccr- 
tificate consisting of the time at which the interval ended, 
along with the list of sibling hash values along the path lcad- 
ing from the requester’s leaf up to the interval hash, each 
one accompanied by a bit indicating whether it is the right 
or the left sibling. The scheme also includes a validation 
procedure, allowing a user to test whether a document has 
been certified in exactly its current form, by querying the 
repository for the appropriate interval hash, and comparing 
it against a hash value appropriately recomputed from the 
document and its certificate. 

It is noteworthy that the trustworthiness of the c&ill- 
cates computed in this scheme depends only on the integrity 
of the repository, and not (for example) on trusting that a 
particular private key has not been compromised or that 
a particular party’s computation has been performed cor- 
rectly. 

3 A naming scheme for bit-strings 

Next we describe a naming scheme for a network that in- 
cludes a server S and a repository R. Many executions of 
N and of V may be performed concurrently in the network. 
We assume that there exists a family { Hk},: of collision-frco 
hash functions. Given an initial choice of security param- 
eter I;, S announces to all parties its random choice of a 
one-way hash function h c Hk. Our scheme is a variation 
on the time-stamping scheme described in $2.4 above, with 

I_---- - --.1_ ------ - ,,---- ,. ---- 

1 _ -~ .,I”,, 
‘C i 



S playing the role of the coordinating server that computes 
certificates in response to requests and makes additions to 
the repository R. 

We abbreviate a bit-string’s certificate by omitting the 
list of hash values, leaving only a pointer to the relevant 
interval hash (for example, the time at which it was com- 
puted), and an encoding of the position of the request in 
t.he tree for that interval (for example, the sequence of left 
or right bits). It is thii abbreviation that we propose to use 
as the name of the bit-string. 

More explicitly, an invocation of N on input 2: begins 
with the comput.ation of y = h(z), and the submission of y 
to S, which includes y as one of the leaves of the tree being 
built in bhe current time interval. At the end of the interval, 
having built a tree of height 1 (that includes the previous 
interval hash), S places the root of the tree in R as the 
current. interval hash with label t, say. S responds to the re- 
quest. by returning the certificate c = [t; (21, bl), . . . , (21, bl)], 
where each b, = L or R. Finally, the name returned by N 
for argument x is It = [t; bl, . . . , bl]. 

One uses the entire certificate in order to validate that 
a particular string correctly names a particular bit-string 
document, first by checking that the putative name was cor- 
rectly extracted from the certificate, and then by following 
the usual validation procedure for the document-certificate 
pair (recomputing the path from the leaf to the root of the 
tree). 

To be precise, V operates as follows, given as inputs a 
document x, a name n = [t; bl , . . . , bl], and a certificate c = 
[t’; (a I a;), -. - I (zl, bi)]: First, V checks that t = t’ and that 
each b, = ai. Next, V computes yl + h(x) and then (for 
i-1 . . . I) if bi = L then yi.+l + h(zi * yi) else if b, = R 
then ya+l - h(yi . G). Finally, V queries R for the hash 
value stored at location t, and checks that it is identical to 
yl+l. V accepts if all these checks are satisfied and rejects 
otherwise. 

Figure 1 below illustrates the tree built by S for a time 
interval during which it received eight requests, containing 
the eight hash values a, b, c, d, e, f, g, and h. In this diagram, 
ab is the hash of the concatenation of a and b, etc., and IHt 
and IHI- are the respective interval hashes for the current 
and the previous intervals. The certificate computed by S 
for the third request (the one containing hash value c), for 
example, is t.he following: 

[t; (4 R), (4 L), (eh, R), (IL-l, L)]. 

3.1 Security 

The security of thii naming scheme follows directly from the 
infeasibility of computing hash collisions for functions from 
{HJ:}~, since the only possible counterfeit names include 
hash collisions. In essence, if x is a bit-string on which 
N was never invoked during a run, any triple (x, n, c) that 
V will accept, (after the correct response to a query to R) 
will include a hash collision for the function h announced by 
S at the beginning of the run: either x itself or one of the 
hash values zt in c (when combined on the left or the right 
with y,) collides with another argument to h whose hash 
value was computed during the run. Therefore we have the 
following theorem. 

Theorem 1 If { Hk}k is a family of collision-free hash func- 
tions, then the naming scheme [N, V, S] described aboue is 
secure. 

Because the reduction in the proof is so direct, it is easy 
to give an “exact security” analysis (cf. [Lev 85, BKR 941) of 

the strength of this scheme, whether the hash functions used 
are from the collision-free family provided by a theoretical 
cryptographic assumption or rather practical hash functions, 
as in the implementations described in $6 below. 

3.2 Variations on the scheme 

Of course, the secure verifiability of the names assigned by 
the scheme described above does not depend on the partic- 
ular combination of binary trees and linked lists used. By 
systematically invoking the hash function on pairs or or- 
dered lists of hash values, new hash values can be computed 
from old ones so as to form a directed acyclic graph (by di- 
recting an edge from each of the inputs to the hash value 
output). Design considerations (including those discussed 
in $6.1 below) may dictate several different combinatorial 
structures for this directed graph. 

Whatever the structure of the growing graph of hash 
values, it is secured by making portions of the graph widely 
witnessed and widely available. To insure the verifiability 
of the names, it suffices that every document in the naming 
structure be linked by a directed path to a widely witnessed 
hash value; a standard ordering of the incoming edges at 
each node can be used to encode the path. Then the name 
of a document is given by this encoding of its location in the 
graph, together with a pointer to the hash value at the end 
of the path, and the argument of Theorem 1 applies. 

For example, in one variation of the scheme described 
above, a list of documents may be used to build a local tree 
(following Merkle, again), whose root is sent off in turn as a 
request to the coordinating server. The location information 
for a document in this “tree-of-trees” scheme can be written 
as a position in the server’s tree followed by a position in 
the local tree. 

In another variation, the widely witnessed hash values 
in the repository could consist simply of a linked list (as 
in the simple linking scheme of [HS 911). In this case the 
location information for a document is a simple pointer into 
the repository. 

4 Applications 

The problem of naming digital documents might have seemed 
like a curiosity only a few years ago. However, with the 
growth in use of the Internet, more and more people need to 
be able to refer confidently to meaningful bit-sequences. The 
problem is now a matter of immediate practical concern. 

The problem has become especially acute with the emer- 
gence of the World-Wide Web. Jumping from one URL 
(Uniform Resource Locator) to the next in a sequence of 
WWW documents may seem at first to be exactly analo- 
gous to following a bibliographic reference in a traditional 
scholarly paper. In fact it is something quite different: a 
URL is only a pointer to a location, with no guarantee that 
what a user finds there today is the same reference that 
the author originally intended. If on-line citations include 
secure names for the bit-string contents of the documents 
cited, then it is possible to traverse a path of citations with 
confidence that one is indeed following the authors’ inten- 
tions. This abiity would be especially useful for the many 
documents on the World-Wide Web that exist only on-line. 

In most electronic commerce systems, transaction records 
of all sorts are kept on-line, and it would be useful to have a 
cryptographically secure means of assigning serial numbers 
or tracking numbers to these records. 

31 

-.-~____-. -. - 



I 

IH 
t 

ah 

ad 

P 

/ 

eh 

ab cd 

A A A A 
a b c d e f 9 h 

Figure 1: 8-leaf tree for the example of $3. 

32 



Software code is another class of digital document for 
which it would be useful to have an easy way for a short 
name to carry a guarantee of integrity. A user who down- 
loads software (along with its naming certificate) from a site 
on the Net can be sure of its integrity if he or she is able to 
check that the code is correctly named by a short string of 
letters and numbers. Here, of course, bit-string equality is 
eractly t.he point. The great strength of using secure names 
in thii application is that the short name of a program is 
considerably easier to distribute widely and robustly than 
t,he program itself. (It is also easier to distribute reliably 
than the sort of public-key infrastructure information that 
is required in order to use digital signatures in order to val- 
idate the integrity of code.) 

For another example of a type of large digital document 
whose integrity matters a great deal, consider the case of ge- 
netic data. Scientists now routinely download others’ data 
sets for use in their own research. The use of our naming 
scheme would allow the user to be sure of the data’s in- 
tegrity, as well as providing a convenient and verifiable way 
to cite the data in published descriptions of the work that 
was done with it. 

5 Long-lived names 

The technique described in [BHS 931 for renewing crypto- 
graphic certifications of authenticity applies directly to the 
certificates of the present naming scheme. 

The renewing process works as follows. Let us suppose 
that an implementation of a particular time-stamping sys- 
tem is in place, and consider the pair (z,C), where C is a 
valid time-stamp certificate (in thii implementation) for the 
bit,-string X. Now suppose that an improved time-stamping 
system is implemented and put into practice-by replacing 
the hash function used in the original system with a new 
hash function, or even perhaps after the invention of a com- 
pletely new algorithm. Further suppose that the pair (2, C) 
is time-stamped by the new system, resulting in a new cer- 
tificate C’, and that. some time later, i.e. at a definite later 
date, the original method is compromised. C’ provides evi- 
dence nob only that the document contents x existed prior 
to the time of the new time-stamp, but that it existed at the 
time stated in the original certificate, C; prior to the com- 
promise of the old implementation, the only way to create a 
certificate was by legitimate means. (It is similarly recom- 
mended that if a digitally signed document is likely to be 
important for a long time-perhaps longer than the signer’s 
key will be valid-then the document-signature pair should 
be time-stamped [BHS 93, Odl 95, HKS 951.) 

In our naming schemes, the verifiable name for the bit- 
string x is a standard abbreviation a for its original certifi- 
cate C. In order that a continue to be verifiable as a name for 
t, t,he certificate C should be renewed (as above) from time 
to time as new time-stamping systems are put in place. As 
long as this is done, a is still a verifiable name for x. There 
is now an addit,ional step to the procedure for validating the 
name: after checking that a is correctly extracted from C, 
one must follow the usual time-stamp validation procedure 
for the certificate, which now includes both the original- 
system validation of (x,C) and the new-system validation 
of [(x, C), C’]. We note that in practice thii additional vali- 
dation step would be automated, and would not at all affect 
the convenient use of a to name x. 

33 

6 Practical implementations 

A practical implementation of a naming scheme cannot use 
the known theoretical constructions of collision-free hash 
functions. If the decision is made to use practical one-may 
hash functions such as MD5, then users of the system do 
not need to trust the server’s random choice of a function 
h E Hk. (However, they do have to hope that the hash 
function chosen is one-way in practice; see section $5 for one 
way to allay users’ concerns on this score.) 

The naming scheme described in 53 above, based on the 
digital time-stamping scheme described in $2.4, was imple- 
mented by Surety Technologies, and has been in continuous 
commercial use since January 1995. The implementation 
uses practical hash functions; SpecificaIly, the current im- 
plementation uses h(x) = (MD5(x),SHA(x)) as the hash 
value for any argument x. A number of supplemental mech- 
anisms are employed in order to maintain the integrity and 
wide distribution of the repository [Sur 951. 

The names assigned by our scheme are indeed concise, 
growing essentially as slowly as possible while still providing 
unique names. If the repository contains n interval hashes, 
and no more than m naming requests are received during 
each interval, the names can be written with at most lg, nm 
bits. Just to give a numerical example, a repository repre- 
senting a thousand requests per minute for the length of a 
century requires 36-bit names; in the MIME encoding (six 
bits per alphanumeric character) such a name can be jotted 
down with six characters, while hash-value names of this 
length are completely insecure. 

6.1 Meaningful names 

There are several variations of our naming scheme that allow 
an author a fair measure of control over the names of his or 
her documents, so that the author can choose a verifiable 
name that is meaningful in one or another useful way. 

First, and most obviously, observe that in the scheme 
described in detail in $3 a convenient way to encode the 
location in the repository to which a document’s contents 
are linked is by the date and time at which the interval 
hash at that location was computed. Instead of (e.g.) a 
MIME encoding of the number of seconds since a moment 
in early 1970 (Unix standard time), it would often be useful 
to express at least a part of this date and time in human- 
readable form. 

In a slight variation, we can allow “personalized” naming 
requests, as follows. Suppose that the repository items are 
formatted in a standard way every day, and let F(e) denote 
any standard mapping from ASCII-encoded strings to the 
list of daily repository locations. When the server receives a 
personalized naming request that includes the ASCII string 
s, the request is held until the appropriate moment in the 
day and then linked to the widely witnessed hash value 
stored at location F(s); in this way, s is made to be part of 
the name of the documents included in those special nam- 
ing requests. Thus, for example, the author of The History 
of Computers in Zurich can arrange for the verifiable name 
of its bit-string contents to have the form [“The History of 
Computers in Zurich” date suffix], where suffix includes 
a few bits of disambiguating information that distinguishes 
this request from all others that mere linked to the same 
repository location. 

In another example, consider the tree-of-trees variation 
briefly mentioned in $3.2. An author can name a multi-part 
document by placing the contents of each successive part at 



k i 

1 

( 

> j 

consecutive leaf nodes of a local tree. The resulting request 
to the server gives the consecutive parts of the document 
consecutive local positions and therefore consecutive names. 
Furthermore, the other portions of these consecutive names 
are identical, explicitly encoding the fact that they are parts 
of the same document. And local trees can have sub-trees, so 
that our historian can arrange to name the ith section of the 
jth chapter of his masterpiece [“The History of Computers 
in Zurich” infix if, for all appropriate pairs (i,j). 

More complicated ways of structuring the parts of a doc- 
ument can similarly be encoded in the verifiable names as- 
signed by our naming scheme. Note that conventional nam- 
ing schemes do allow for encoding document structure into 
names, but not in a verifiable manner. 

In another variation, a table of contents for a long or 
complicated multi-part document can be included in a stan- 
dard place in the request-for example, as its last piece. The 
table of contents may contain more or less detailed descrip- 
tions of the parts of the document. At a later time, together 
with a list of documents to be authenticated and their cer- 
tificates, such an authenticated table of contents can be used 
to verify (1) that each document in the list is an exact copy 
of one that was registered with the table of contents, and 
(2) that none of the documents in the list are missing. 

Acknowledgements 

We would like to thank Ralph Merkle, R. Venkatesan, Matt 
Franklin, Avi Rubin, Bill Arms, and Dave Richards for help- 
ful discussions about this work. We would also like to thank 
the anonymous referees for their very useful suggestions. 

References 

[BHS 931 

[BKR 941 

[BY 901 

[BD+ 951 

[Dam 871 

D. Bayer, S. Haber, and W.S. Stornetta. Im- 
proving the efficiency and reliability of digi- 
tal time-stamping. In Sequences II: Method3 in 
Communication, Security, and Computer Sci- 
ence, ed. R.M. Capocelli, A. De San&, U. Vac- 
care, pp. 329-334, Springer-Verlag, New York 
(1993). 

M. Bellare, J. Kilian, and P. Rogaway. The 
security of cipher block chaining. In Advances 
in Cryptology-Crypt0 ‘94, Lecture Notes in 
Computer Science, Vol. 839, ed. Y. Desmedt, 
pp. 94-107, Springer-Verlag (1994). 

G. Brassard and M. Yung. One-way group ac- 
tions. In Advances in Cryptology-Crypt0 ‘90, 
Lecture Notes in Computer Science, Vol. 537, 
pp. 94-107, Springer-Verlag (1991). 

S. Browne, J. Dongarra, S. Green, K. Moore, 
T. Pepin, T. Rowan, and R. Wade. Location- 
independent naming for virtual distributed 
software repositories. Univeristy of Tennessee 
Computer Science TR 95-278 (1995). (Avail- 
able at http: //www . cs .utk. edu/Nlibrary/ 
TechFLeports/l995/). 

I. Damgird. Collision-free hash functions and 
public-key signature schemes. In Advances in 
Cryptology-Eurocrypt ‘87, Lecture Notes in 
Computer Science, Vol. 304, pp. 203-217, 
Springer-Verlag (Berlin, 1988). 

I 

I 34 

[Dob 96a] 

[Dob 96b] 

[Dob 96c] 

[DBP 961 

[HKS 951 

[HS 911 

[KW 951 

[Lev 851 

[Merk 801 

[M 941 

[NIST 941 

[Odl 951 

[Pre 931 

[Riv 921 

H. Dobbertin. Cryptanalysis of MD4. In Fast 
Software Encryption, Lecture Notes in Com- 
puter Science, Vol. 1039, ed. D. Gollman, 
pp. 53-69, Springer-Verlag (Berlin, 1996). 

H. Dobbertin. Cryptanalysis of MD5 com- 
press. Private communication (May 1996). 
Described by B. Preneel, Rump Session, Eu- 
rocrypt ‘96 (May 1996). 

H. Dobbertin. The status of MD5 after a re- 
cent attack. CrytoBytea, Vol. 2, No. 2 (Summer 
1996). 

H. Dobbertin, A. Bosselaers, and B. Prc- 
neel. RIPEMD-160: A strengthened version of 
RIPEMD. In Fast Software Encryption, Lcc- 
ture Notes in Computer Science, Vol. 1039, 
ed. D. Gollman, pp. 71-82, Springer-Vcrlag 
(Berlin, 1996). 

S. Haber, B. Kaliski, and W.S. Stornetta. How 
do digital time-stamps support digital signa- 
tures? CryptoBytea, Vol. 1, No. 3 (Autumn 
1995). (Available at http://www.rsa.com/ 
rsalabs/pubs/cryptobytes.html.) 

S. Haber and W.S. Stornetta. How to time- 
stamp a digital document. Journal of Cryptol- 
ogy, Vol. 3, No. 2, pp. 99-111 (1991). 

R. Kahn and R. Wilensky. A framework for 
distributed digital object services. Corporation 
for National Research Initiatives technical rc- 
port cnri.dlib/tn95-01 (May 1995). (Available 
athttp://www.cnri.reston.va.us/.) 

L.A. Levin. One-way functions and pseudo- 
random generators. In Proceedings of the 17th 
Annual Symposium on Theory of Computing, 
pp. 363-365, ACM (1987). 

R.C. Merkle. Protocols for public key cryp 
tosystems. In Proc. 19SO Symposium on Sc- 
curity and Privacy, IEEE Computer Society, 
pp. 122-133 (April 1980). 

J.W. Moore. The use of encryption to en- 
sure the integrity of reusable software com- 
ponents. In Proc. 3rd International Conf. on 
Software Reusability, IEEE Computer Society 
Press (November 1994). 

National Institute of Standards and Tcch- 
nology. Secure Hash Standard. NIST Federal 
Information Processing Standard Publication 
180-l (May 1994). 

A. Odlyzko. The future of integer factorixa- 
tion. CrytoBytea, Vol. I, No. 2 (1995). 

B. Preneel. Analysis and Design of Cryp- 
tographic Hash Functions. Ph.D. disserta- 
tion, Katholieke Universiteit Leuven (January 
1993). 

R. Rivest. The MD5 Message-Digest Algo- 
rithm. Internet Network Working Group Rc- 
quest for Comments 1321 (April 1992). 



P 951 A. Rubin. Trusted distribution of software over 
the Internet. In Internet Society 1995 Sympo- 
sium on Network and Distributed System Se- 
curity (1995). 

[SM 941 K. SoIIins and L. Masinter. Functional require- 
ments for Uniform Resource Names. Internet 
Network Working Group Request for Com- 
ments 1737 (December 1994). 

[Sur 951 Surety Technologies, Inc. Answers to Fre- 
quently Asked Questions about the Digital 
Not,aryTh’ System. http://uuu.surety.com 
(since January 1995). 

35 

- - - ~_-.. --- ___- 



PROTOCOLS FOR PUBUC KEY CRYPTOSYSTEMS 

Ralph C. Merkle 

ELXSi International 

Sunnyvale, Ca. ...... 

Abstract 

New cryptographic protocols which 

take full advantage of the unique pro­

perties of public key cryptosystems are 

now evolving. Several protocols for 

public key distribution and for dig~tal 

signatures are briefly compared with 

each other and with the conventional al-

ternative. 

1. Introduction 

The special strengths of public key 
. 

systems are briefly considered by exa-

mining cryptographic protocols for key 

distribution and digital signatures us-

This work was partially supported under 

NSF Grant ENG 10173, and much of the 

work was done at Stanford University 

ISL. The author would also like to ack­

nowledge the support of BNR Inc, where 

much of the work reported here was done. 

An extended version has been submitted 

to CACM. 

122 

ing both public key and conventional 

systems. 

The reader is assumed to be fami-

liar with the general ideas behind pub­

lic key cryptosystems, as described in 

[1,10]. 

For many of the following examples 

we assume there are two communicants, 

called A and B, and an opponent E. A 

and B will attempt to send secret mes­

sages and sign contracts, while E will 

attempt to discover the keys, learn the 

secrets, and forge contracts. Some-

times, A will attempt to evade a con-

tract he signed with B, or B will at­

tempt to forge A~s signature to a new 

contract. 

A and B will need to apply one way 

functions to various arguments of vari-

ous sizes, so we assume we have a one 

way function F which can be applied to 

arguments of any size and produce a 

fixed size output. For a more complete 

discussion of one way functions, see 

[2,9,13,19]. 

t, 

i 

• 



p 

t 
1 

t , 
! , 

I 
I 

2. Centralized Key Distribution 

Centralized key distribution using 

conventional encryption functions was 

the only reasonable method of handling 

key distribution in a mUlti-user network 

environment before the discovery of pub­

lic key distribution methods. Only con­

ventional encryption functions need be 

used, which presently offers a perfor­

mance advantage. (Presently known pub­

lic key systems are less efficient than 

conventional cryptographic systems. 

Whether or not this will continue is not 
I 

now known. Discovery of new public key 

systems seems almost inevitable, and 

discovery of more efficient ones prob­

able.) 

In centralized key distribution, A, 

B, and all other system users somehow 

deposit a conventional cryptographic key 

with a central key distribution center. 

If A wishes to communicate with B, the 

key distribution center will send a com­

mon (session) key to A and B using the 

previously agreed on central keys. A 

and B can then communicate with no 

further assistance from the key distri­

bution center. 

This protocol is simple and re-

quires only conventional encryption 

functions. Its use has been defended in 

the literature [17,18,20]. 

123 

The major drawback of this protocol 

is its vulnerability to both centralized 

loss of security and centralized loss of 

function. Theft of the central keys, or 

bribery of personnel at the central site 

will compromise all users of the system. 

Similarly, .destruction of the central 

keys destroys the key distribution 

mechanism for all users. 

The security and reliability of 

centralized key distribution can be in-

creased by using two or more centers, 

each with its own keys [1]. Destruction 

or compromise of a single center will 

not affect the other centers. 

security can also be improved if 

all the user keys are encrypted with a 

master key by the center. The master 

key must still be stored securely (and 

suitable provision made for its backup), 

but the (encrypted) user keys can be 

stored anywhere. This approach is used 

by IBM (23). 

This protocol does not fully solve 

the key distribution problem: some sort 

of key distribution method must be used 

between each user and the center to es-

tablish the original keys. This problem 

is nontrivial because no electronic com-

munications can be used and inexpensive 

physical methods, e.g., registered mail, 

offer only moderate security. The use 

of couriers is reasonably secure, 

although more expensive. 



3. Simple Public Key Distribution 

This is the most basic application 

of public key systems [1,5,6,7,8]. Its 

purpose is to allow A and B to agree on 

a common key k without any prior secret 

arrangements, even though E overhears 

all messages. A randomly computes enci­

phering and deciphering keys EA and DA, 

and sends EA to B (and E). B picks the 

random key, k, and transmits EA(k) to A 

(and E). A computes DA(EA(k» = k. A 

then discards both EA and DA, and B dis­

cards EA. The key in future communica­

tions is k. It is used to encrypt all 

further messages using a conventional 

encryption function. Once A and B have 

finished talking, they both discard k. 

If they later resume the conversation 

the process is repeated to agree o~ a 

new key k~. 

This protocol is very simple, and 

has a great deal to recommend it. 

First, no keys and no secret materials 

exist before A and B start communicat-

ing, and nothing is retained after they 

have finished. It is impossible for E 

to compromise any keys either before the 

conversation takes place, or after it is 

over, for the keys exist only during the 

conversation. 

124 

The disadvantage of this protocol 

is that E might actively interfere with 

the exchange of keys. Worse yet, E can 

force a known k on both A and B. 

4. Authenticated Public Key Distribution 

The now classic protocol [1] for 

secure and authenticated communications 

between A and B is: A and B generate EA 

and EB and make them public, while keep­

ing DA and DB secret. The public enci­

phering keys of all users are entered in 

a public file, allowing easy and authen-

ticated access to EX for any user, x. 
If A and B wish to agree on a com-

mon key k, then each sends a (session) 

key to the other by enqrypting it with 

the others public key. The two keys 

thus agreed on are combined and used to 

encrypt further messages. 

At the end of this protocol, A and 

B have agreed on a common key, k, which 

is both secret and authenticated. 

This protocol suffers from two 

weaknesses. First, entries in the pub-

lic file might be altered. This can be 

dealt with both by good physical securi-

ty, or by using new protocols (see sec-

tions 5 and 6) for authenticating the 

entries in the public file. 



p 

I 
\ 
t 

..... 

.. 

Second, secret deciphering keys can 

be lost. This problem must ultimately 

be solved by good physical security. 

5. Public Key Distribution with Certifi-

Kohnfelder [3] first suggested that 

entries in the public file be authenti-

cated by having a Central Authority (CA) 

sign them with DCA. He called such 

signed entries certificates. 

The protocol with certificates is 

the same as the authenticated protocol, 

except that A and B can now check the 

entries in the public file by checking 

each other~s certificates. This proto­

col assures A and B that each has the 

other~s public enciphering key, and not 

the public enciphering key of some im-

poster. 

The security of this protocol rests 

on the assumptions that the secret deci­

phering keys of A, B, and CA have not 

been compromised~ that A and B have 

correct copies of ECA (to check the 

signed certificates); and that CA has 

not issued a bad certificate, either 

deliberately because it was un-

trustworthy, or accidentally because it 

was tricked. 

125 

ECA can be published in newspapers 

and magazines, and sent over all avail-

able communication channels: blocking 

its correct reception would be yery dif­

ficult. 

If DCA is compromised, then it is 

no longer. possible to authenticate the 

users of the system and their public en-

ciphering keys. The certificates are 

now worthless because the (unauthorized) 

person who has learned DCA can produce 

false certificates at will. 

6. Public Key Distribution with ~ Au­

thentication 

Key distribution with certificates 

was vulnerable to the criticism that DCA 

can be compromised, resulting in system 

wide loss of authentication. This prob­

lem can be solved by using tree authen-

tication [13]. 

Again, this protocol attempts to 

authenticate entries in the public file. 

However, instead of signing each entry 

in the public file, this protocol ap­

plies a one way hash function, H, to the 

entire public file. Even though H is 

applied to the entire public file, the 

output of H is only 100 or 200 bits 

long. The (small) output of H will be 

called the root, R, of the public file. 



If all users .of the syst~m know R, then 

all users can authenticate the correct-

ness of the (whole) public file by com­

puting R = H(public file). Any attempt 

to introduce changes into the public 

file will imply R ; H(altered public 

file), an easily detected fact. 

This method effectively eliminates 

the possibility of compromising DCA be­

cause no secret deciphering key exists. 

Because the public file wi.ll be sub­

jected to the harsh glare of public 

scrutiny, and because making alterations 

in the public file is effectively impos­

sible after it has been published, a 
.. ' 

high degree of assurance that it is 

correct can be attained. 

This method is impractical as stat­

ed. Fortunately, it is possible to 

selectively authenticate individual en­

tries in the public file without having 

to know the whole publi~ file by using 

Merkle#s -tree authentication,- [13]. 

The essence of tree authentication 

is to authenticate the entire public 

file by Rdivide and conquer.- If we de­

fine Y = public file = Yl , Y2, Yn' 

(so the ith entry in the public file is 

denoted Yi' and B#s entry is YB); we can 

define H(public file) = H(!) as: 

H(!) = F( H(first half of !), 

H(second half of !) ) 

126 

Where F is a one way function. 

If A wishes to confirm B#s public 

enciphering key, then A need only know 

the first half of the public file, 

(which is where YB appears) and H(second 

half of public file) which is only 100 

bits long. A can compute H(public file) 

knowing only this information, and yet A 

only knew half the entries in the public 

file. 

In a similar fashion, A does not 

really need to know all of the first 

half of the public file, for 

H(first half of public file) = 
F( H(first quarter of public file), 

H(second quarter of public file) 

All A needs to know is the first quarter 

of the public file (which has YB), and 

H(second quarter of public file). 

By applying this concept recursive­

ly, A can confirm YB in the public file 

knowing only R, 1092 n intermediate 

values, and YB itself. The information 

needed to authenticate YB, given :hat R 

has already been authenticated, lies 

along the path from R to YB and will be 

called the authentication path. 

These definitions are illustrated 

in figure 1, which shows the authentica-

tion path for Ys . 

.. 



-----------------------------
For a more detailed discussion the 

reader is referred to [13]. 

Using tree authentication, user A 

has an authentication path which can be 

used to authenticate user A's public en­

ciphering key, provided only that R has 

already been authenticated. An "authen­

tication path" is a new form of certifi-

cate, with ECA replaced by R. 

This protocol can only be comprom-

ised if: DA or Os is compromised, or if 

R is not correctly known by A or S, or 

if there is a false and misleading entry 

in the public file. 

The latter two are easily detect­

able. If either A or S has the wrong R, 

they will be unable to complete the pro­

tocol with any other legitimate user who 

has the correct R, a fact that will be 

quickly detected. 

Secause the public file is both 

open to public scrutiny and unalterable, 

false or misleading entries can be ra-

pidly detected. In practice, a few 

users concerned with correctness can 

verify that the public file satisfies 

some simple global properties, i.e., 

each user name appears once and once 

only in the entire public file; indivi­

dual users can then verify that their 

own entry is correct, and need not both­

er examining the rest of the public 

file. 

127 

The only practical method of 

compromising this protocol is to 

compromise DA or OS. A user's security 

is thus dependent on himself and no one 

else. 

7. Digital Signatures 

The use of public key cryptosystems 

to provide digital signatures was sug-

gested by Diffie and Hellman [1] • 

Rivest, Shamir and Adleman [8) have sug-

gested an attractive implementation. 

Signature tech' b nlques ased on methods 

other than public key t cryp osystems have 

been suggested by Lamport and Diffie 

[l,24}, Rabin [15}, and Merkle (13). 

Digital signatures, whether based 

on conventional encryption functions, on 

public key cryptosystems, on probabilis­

tic computations, or on other techniques 

share several important properties in 

common. These common properties are 

best illustrated by the f ollowing now 

classic example. 

A wishes to place a purchase order 

with his stock broker S. A, on the 

Riviera, cannot send a written order to 

S in New York in time. All that A can 

quickly send to S is information, . l.e., 

a sequence of bits, but S is concerned 

that A may later disclaim the order. A 



m 

must somehow generate a sequence of bits 

(a digital signature) whlch will con­

vince B (and if need be a judge) that A 

authorized the order. It must be easy 

for B to validate the digital signature, 

but impossible for him (or anyone other 

than A) to generate it (to prevent 

charges that B was dabbling in the mark­

et illegally with A~s money). 

There are digital signature schemes 

which do not involve public key cryp­

tosystems but it will be convenient no­

tationally to let A sign message m by 

computing the signature, DA(m). Check-

ing a signature will then be done by 

produces an illegible message (random 

bits) then the signature is rejected as 

invalid. This notation is somewhat 

misleading because the actual method of 

generating and validating signatures can 

be very different from this model; it is 

retained because it is widely known"and 

because we will not discuss the differ-

ences among different digital signature 

methods, only their common properties. 

Digital signature protocols are na­

turally divided into three parts: a 

method of signing messages used by A, a 

method for authenticating °a signature 

used by B, and a method for resolving 

disputes, used by the judge. It is im­

portant to note that two protocols that 

differ only in the method of resolving 

128 

disputes ~ different. Failure to 

understand this point has led to confu­

sion in the literature [17,20]. 

We now turn to specific digital 

signature protocols. 

8. ~ Conventional Signature Protocol 

A conventional ftsignature W protocol 

relies on the observation that if A and 

B trust some central authority CA, and 

if A and B have a secure method of com-

municating with CA, then A can "sign n a 

message simply by sending it to CA and 

relying on CA to adjudicate disputes. 

This approach is defended by some [17]. 

This protocol is subject to the 

weaknesses of centralized key distribu­

tion (described earlier). 

9. The Basic Digital Signature Protocol 

The first public key based digital 

signature protocol [1], proceeded by 

having A sign message m by computing 

DA(m) and giving it to B as the signed 

1 ° 



pi 

i 
t 
I 

I 
1 

message. B (or a judge) can compute 

m, thus confirming the 

correctness of the signed message. A is 

held responsible for a signed message if 

and only if it can be verified by apply­

ing A's public enciphering key to it. 

This protocol can be criticized 

[16,17,20] on two grounds: First, the 

public file might have been tampered 

with. Methods of authenticating the 

public file, discussed previously under 

key distribution protocols, solve this 

problem. 

A second criticism is that A has no 

recourse should his secret deciphering 

key be compromised and made public. 

Anyone can sign any message they desire 

with A's compromised DA, and A will be 

held responsible. 

It seems clear that A will only 

agree to this digital signature protocol 

if he can provide very good physical 

security for DA• The loss to A if DA is 

compromised can be substantial. 

A different method of solving this 

problem is to alter the dispute resolu­

tion protocol so that A is not held 

responsible for his signature if his 

secret deciphering key is compromised 

and made public. 

The fact that altering the di&pute 

resolution procedure creates a different 

protocol has not been fully appreciated, 

and the preceding two protocols have 

129 

been confused with each other for this 

reason. Some criticism of "the" public 

key digital signature protocol has actu­

ally been of this second protocol, and 

failed to consider the first protocol at 

all. 

If we.assume that A knows DA, then 

under the second protocol A can make DA 

public and effectively disavow the 

signed message. For this reason, some 

critics have argued that this protocol 

is inadequate. 

If we assume that A does not know 

DA, then he is unable to disavow his 

signature under this protocol. It is 

easy to design a system in which this is 

the case. 

The major difference between the 

second protocol and the first is in the 

division of risk: in the second proto-

col B will be left holding the bag if 

A's signing key is compromised. Clear-

ly, B must be given assurances that this 

condition is unlikely before he will be 

willing to use this protocol. 

10. The Time-Stamp Protocol 

A protocol that would allow A to 

report loss or theft of DA and disclaim 

messages signed after the reported loss 

yet force A to acknowledge the validity 

of signatures made before the reported 

loss must involve the concept of time. 



We introduce time into the following 

protocol by using time-keepers who can 

digitally time-stamp information given 

to them. We assume that both A and B 

have agreed on a set of acceptable 

time-keepers whose time-stamps will be 

accepted in dispute resolution. 

If A can report that DA has been 

lost, then he must report this fact to 

some agent who will be responsible for 

answering queries about the current 

status of DA, i.e., has it been lost or 

not. For simplicity, we shall assume 

this role is played by the t central au-

thority, CA. CA will sign messages 

stating that A's secret deciphering key 

has not been compromised as of the 

current time. These signed messages 

will be called "validity-checks." 

In the time stamp protocol, user A 

signs message m by computing DA(m) and 

sending it to B. B then has a time­

keeper time stamp the message and ob-

tains a validity-check from CA. 

has already been reported lost B rejects 

the signature, otherwise he accepts. 

In dispute resolution, the judge 

holds that a message has been validly 

signed if and only if it can be checked 

by applying A's public enciphering key 

AND it has been time-stamped prior to 

any reported loss of DA• 

This protocol provides very good 

assurance to all parties that they have 

130 

been dealt with fairly. 

The major disadvantage of this pro­

tocol, as compared with the basic digi­

tal signature protocol, is the require­

ment that B obtain both a time-stamp and 

a validity-check, presumably in real 

time. These requirements force the use 

of a communications network, which both 

increases expense and decreases relia-

bility. 

If B is willing to obtain the 

time-stamp and the validity-check after 

the transaction has been completed, 

i.e., within a few days, an off-line 

system can be used. This modified pro­

tocol could be used by B either as a 

fail-soft protocol during communications 

outages, or as the standard protocol if 

communication costs are too high. 

Off-line operation is cheaper ahd 

more reliable, but it exposes B to some 

risk: A might have recently reported 

the loss of DA and B would not know 

about it. If physical security for 

secret deciphering keys is good, this 

risk should be minimal. 

11. Witnessed Digital Signatures 

If the value of a transaction is 

high enough, it might be desirable to 

have a witness physically confirm that A 



signed message m. The witness, W, would 

compute DW("I, W, physically saw A agree 

to and sign message m.n). It would be 

necessary for A and B to agree in ad-

vance on acceptable witnesses. 

The primary advantage of this pro­

tocol is that it reduces B~s risk. The 

primary disadvantage is that it forces A 

to find a (physically present) witness 

to confirm the transaction. 

12. Digital Signature Applications ~ 

Involving Dispute 

Not all applications of digital 

signatures involve contracts between two 

potentially disputing parties. Digital 

signatures are also an ideal method of 

broadcasting authenticated messages from 

a central source which must be confirmed 

by many separate recipients, or repeat­

edly confirmed by the same recipient at 

different times to insure that the mes-

sage has not been modified. 

One example of such an application 

is the distribution of network software 

to individual nodes of a .communications 

network. It would be clearly undesir-

able for any node to start executing the 

wrong software. On the other hand, it 

is very desirable to send updates to the 

nodes over the network itself. The ob-

131 

vious solution is for updates to be di-

gitally signed by an appropriate network 

administrator, and for the nodes to 

check the digital signature prior to ex-

ecuting them. 

This example leads naturally to 

another ap~lication of digital signa-

tures in operating system security. A 

major risk to the security of an operat­

ing system is the possibility that the 

system code that it is executing today 

is not the same that it was executing 

yesterday: someone might have put a trap 

door into the operating system that lets 

them do anything they please. To guard 

against this possibility, the operating 

system could refuse to execute any code 

in privileged mode unless that code had 

been properly signed. Carried to its 

logical conclusion, the operating system 

would check the digital signature of 

privileged programs each time they were 

loaded into central memory If this check 

were implemented in hardware, it would 

be impossible for any software changes 

to subvert it. The machine would be 

physically incapable of executing code 

in privileged mode unless that code was 

signed. 

If privileged programs are digital­

ly signed by the programmer who origi­

nally wrote them, as well as by various 

supervisory levels, and if the computer. 

is physically unable to execute unsigned 



code in privileged mode, then it is pos­

sible to have complete assurance that 

the privileged programs running on the 

computer Tight now have not been modi­

fied since they were given there final 

checkout and signed by the programmer. 

Of course, this does not necessarily 

mean that the operating system is 

secure, but it does eliminate a major 

class of worries. 

13. Conclusions 

This paper has briefly described a 

number of cryptographic protocols. Cer-

tainly, these are not the only ones pos­

sible; however, they are valuable tools 

to the system designer: they illustrate 

what can be achieved and provide feasi­

ble solutions to problems of recur$ing 

interest. 

Further constructive work in this 

area is very much needed. 

14. ACKNOWLEDGEMENTS 

It is a great pleasure for the au­

thor to acknowledge the pleasant and in-

formative conversations he had with Dov 

Andelman, Whitfield Diffie, Martin Hell-

man, Raynold Kahn Loren Kohnfelder, 

Frank Olken, and Justin Reyneri. 

132 

15. BIBLIOGRAPHY 

1. Diffie, W., and Hellman, M. New 

directions in cryptography. IEEE Trans. 

on Inform. IT-22, 6(Nov. 1976), 644-654. 

2. Evans A., Kantrowitz, W., and Weiss, 

E. A user authentication system not re-

quiring secrecy in the computer. Comm. 

ACM 17, 8(Aug. 1974),437-442. 

3. Kohnfelder, L.M. Towards a practical 

public-key cryptosystem. MIT EE 

Bachelor~s thesis. 

4. Lipton, S.M., and Matyas, S.M. Mak­

ing the digital signature legal--and 

safeguarded. Data Communications (Feb. 

1978), 41-52. 

5. McEliece, R.J. A public-key cryp-

tosystem based on algebraic coding 

theory. DSN Progress Report, JPL, (Jan. 

and Feb. 1978), 42-44. 

6. Merkle, R. Secure Communications 

over Insecure Channels. Comm. ACM 21, 

4(Apr. 1978), 294-299. 

7. Merkle, R., and Hellman, M. Hiding 

information and signatures in trapdoor 

knapsacks. IEEE Trans. on Inform. IT-

24, 5(Sept. 1978), 525-530. 

I 
:1 

I 



• 

8 . Rives t, R.L ., Shamir, A., a nd Ad l e ­

man, L. A method f or obtaining digital 

sig natur es and public - key cryptosystems. 

Comm . ACM 21 , 2 (Feb . 1978) , 120-1 26 . 

9. Wilkes, M. V. , Time- Sharing Computer 

Systems . El sev i e r, New York, 1972. 

1 0 . Diffie , W., and Hellman , M.E. , 

Privacy and authenticat i o n: an introduc­

tion to cryptography, Proc e edings of the 

IEEE Vol. 67, No.3, Ma r . 1979 pp . 397-

427. 

11. Squires, J. Russ monitor of U. S, 

phones, Ch icago Tribune pp. 123, J une 

25, 1975. 

12. Davi s , R. Remedies sought to defeat 

Soviet eavesdropping on microwave links, 

Microwave Syst ., vol. 8 , no. 6 , pp . 17-

20, Ju ne 1978. 

13. Merkle , R.C. A certified digi tal 

signatur e, to appear, CACM. 

14. Kahn, D. The Code br eake rs, New 

York: Macmillan. 1967 . 

15. Rab in, M.O. , Digitalized 5igna-

tures, in Foundation s o f Secure Computa­

tion , ed . DemilIo , R. A., et. a]. pp. 

155-166. 

133 

16 . Salt ze r, J. On Digital Signatures, 

private communication . 

17. Popek G.J. and Kline , C. S. Encryp­

tion Protocols , Public Key Algori thms, 

and Digital Sig natur es in Computer Net-

works ; in Foundations of Secur e Computa-

tion pp . 133-153 . 

18. Needham R. M. a nd Schroeder, M.D . 

US ing Encryption for Authentication in 

Large Networks o f Computers . CACM 21,12 

Dec . 1978 pp . 993 - 999 . 

19 . Me r kl e , R. Secrecy, authentication , 

a nd public key sys tems . S tanford El ec . 

Eng . Ph . D. Thesis , ISL SEL 79 - 017 , 1979. 

20 . Popek , G. J ., and Kline , C.S. En-

crypt ion and Secure Computer networks. 

Computing Surveys 11 ,4 Dec. 1979 pp. 

331- 356 . 

21. Simmons, G.J . Symmetric and Asym-

me tric Encryption . Computing Surveys 

11,4 Dec. 1979 pp . 305-3 30. 

22. Lamport , L. Time, clocks, and the 

o rdering of events in a distributed sys -

t ern. CACM 21,7 Jul 1978 pp . 558 - 565. 



23. Ehrsam, W.F., Matyas, S.M., Meyer, 

C.H., and Tuchma~ W.L. A cryptographic 

key management scheme for implementing 

the data encryption standard. IBM sys. 

Jour. 17,2 1978 pp. 106-125. 

24. Lamport, L., Constructing digital 

signatures from a one way function. SRI 

Int1. CSL - 98 

no. 1 

134 
































