Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as
trusted third parties to process electronic payments. While the system works well enough for
most transactions, it still suffers from the inherent weaknesses of the trust based model.
Completely non-reversible transactions are not really possible, since financial institutions cannot
avoid mediating disputes. The cost of mediation increases transaction costs, limiting the
minimum practical transaction size and cutting off the possibility for small casual transactions,
and there is a broader cost in the loss of ability to make non-reversible payments for non-
reversible services. With the possibility of reversal, the need for trust spreads. Merchants must
be wary of their customers, hassling them for more information than they would otherwise need.
A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties
can be avoided in person by using physical currency, but no mechanism exists to make payments
over a communications channel without a trusted party.

What is needed is an electronic payment system based on cryptographic proof instead of trust,
allowing any two willing parties to transact directly with each other without the need for a trusted
third party. Transactions that are computationally impractical to reverse would protect sellers
from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In
this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed
timestamp server to generate computational proof of the chronological order of transactions. The
system is secure as long as honest nodes collectively control more CPU power than any
cooperating group of attacker nodes.

2. Transactions

We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the
next by digitally signing a hash of the previous transaction and the public key of the next owner
and adding these to the end of the coin. A payee can verify the signatures to verify the chain of
ownership.

Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key

] Ty I

Ve, Vg,

Owner 0's N Owner 1's N Owner 2's
Signature v Signature v Signature

&5 &5
Owner 1's - Owner 2's i Owner 3's
Private Key Private Key Private Key

The problem of course is the payee can't verify that one of the owners did not double-spend
the coin. A common solution is to introduce a trusted central authority, or mint, that checks every
transaction for double spending. After each transaction, the coin must be returned to the mint to
issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent.
The problem with this solution is that the fate of the entire money system depends on the
company running the mint, with every transaction having to go through them, just like a bank.

We need a way for the payee to know that the previous owners did not sign any earlier
transactions. For our purposes, the earliest transaction is the one that counts, so we don't care
about later attempts to double-spend. The only way to confirm the absence of a transaction is to
be aware of all transactions. In the mint based model, the mint was aware of all transactions and
decided which arrived first. To accomplish this without a trusted party, transactions must be
publicly announced [1], and we need a system for participants to agree on a single history of the
order in which they were received. The payee needs proof that at the time of each transaction, the
majority of nodes agreed it was the first received.

3. Timestamp Server

The solution we propose begins with a timestamp server. A timestamp server works by taking a
hash of a block of items to be timestamped and widely publishing the hash, such as in a
newspaper or Usenet post [2-5]. The timestamp proves that the data must have existed at the
time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in
its hash, forming a chain, with each additional timestamp reinforcing the ones before it.

e

Block Block

‘ItemHltemH ‘ ‘ItemHltemH ‘

4. Proof-of-Work

To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof-
of-work system similar to Adam Back's Hashcash [6], rather than newspaper or Usenet posts.
The proof-of-work involves scanning for a value that when hashed, such as with SHA-256, the
hash begins with a number of zero bits. The average work required is exponential in the number
of zero bits required and can be verified by executing a single hash.

For our timestamp network, we implement the proof-of-work by incrementing a nonce in the
block until a value is found that gives the block's hash the required zero bits. Once the CPU
effort has been expended to make it satisfy the proof-of-work, the block cannot be changed
without redoing the work. As later blocks are chained after it, the work to change the block
would include redoing all the blocks after it.

Block Block
7*‘ Prev Hash ‘ ‘ Nonce‘ >} Prev Hash ‘ ‘ Nonce‘
i R

The proof-of-work also solves the problem of determining representation in majority decision
making. If the majority were based on one-IP-address-one-vote, it could be subverted by anyone
able to allocate many IPs. Proof-of-work is essentially one-CPU-one-vote. The majority
decision is represented by the longest chain, which has the greatest proof-of-work effort invested
in it. If a majority of CPU power is controlled by honest nodes, the honest chain will grow the
fastest and outpace any competing chains. To modify a past block, an attacker would have to
redo the proof-of-work of the block and all blocks after it and then catch up with and surpass the
work of the honest nodes. We will show later that the probability of a slower attacker catching up
diminishes exponentially as subsequent blocks are added.

To compensate for increasing hardware speed and varying interest in running nodes over time,
the proof-of-work difficulty is determined by a moving average targeting an average number of
blocks per hour. If they're generated too fast, the difficulty increases.

5. Network

The steps to run the network are as follows:

1) New transactions are broadcast to all nodes.

2) Each node collects new transactions into a block.

3) Each node works on finding a difficult proof-of-work for its block.

4) When a node finds a proof-of-work, it broadcasts the block to all nodes.

5) Nodes accept the block only if all transactions in it are valid and not already spent.

6) Nodes express their acceptance of the block by working on creating the next block in the
chain, using the hash of the accepted block as the previous hash.

Nodes always consider the longest chain to be the correct one and will keep working on
extending it. If two nodes broadcast different versions of the next block simultaneously, some
nodes may receive one or the other first. In that case, they work on the first one they received,
but save the other branch in case it becomes longer. The tie will be broken when the next proof-
of-work is found and one branch becomes longer; the nodes that were working on the other
branch will then switch to the longer one.

New transaction broadcasts do not necessarily need to reach all nodes. As long as they reach
many nodes, they will get into a block before long. Block broadcasts are also tolerant of dropped
messages. If a node does not receive a block, it will request it when it receives the next block and
realizes it missed one.

6. Incentive

By convention, the first transaction in a block is a special transaction that starts a new coin owned
by the creator of the block. This adds an incentive for nodes to support the network, and provides
a way to initially distribute coins into circulation, since there is no central authority to issue them.
The steady addition of a constant of amount of new coins is analogous to gold miners expending
resources to add gold to circulation. In our case, it is CPU time and electricity that is expended.

The incentive can also be funded with transaction fees. If the output value of a transaction is
less than its input value, the difference is a transaction fee that is added to the incentive value of
the block containing the transaction. Once a predetermined number of coins have entered
circulation, the incentive can transition entirely to transaction fees and be completely inflation
free.

The incentive may help encourage nodes to stay honest. If a greedy attacker is able to
assemble more CPU power than all the honest nodes, he would have to choose between using it
to defraud people by stealing back his payments, or using it to generate new coins. He ought to
find it more profitable to play by the rules, such rules that favour him with more new coins than
everyone else combined, than to undermine the system and the validity of his own wealth.

7. Reclaiming Disk Space

Once the latest transaction in a coin is buried under enough blocks, the spent transactions before
it can be discarded to save disk space. To facilitate this without breaking the block's hash,
transactions are hashed in a Merkle Tree [7][2][5], with only the root included in the block's hash.
Old blocks can then be compacted by stubbing off branches of the tree. The interior hashes do
not need to be stored.

Block Block
Block Header (Block Hash) Block Header (Block Hash)

‘ Prev Hash ‘ ‘ Nonce ‘ ‘ Prev Hash ‘ ‘ Nonce ‘

 Hashot | | Hash23 | Hash01 | Hash23 |

Hash0 |Hasht Hash2 Hash3| Hash3
(o] [m] [me] [1a] <3
Transactions Hashed in a Merkle Tree After Pruning Tx0-2 from the Block

A block header with no transactions would be about 80 bytes. If we suppose blocks are
generated every 10 minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. With computer systems
typically selling with 2GB of RAM as of 2008, and Moore's Law predicting current growth of
1.2GB per year, storage should not be a problem even if the block headers must be kept in
memory.

8. Simplified Payment Verification

It is possible to verify payments without running a full network node. A user only needs to keep
a copy of the block headers of the longest proof-of-work chain, which he can get by querying
network nodes until he's convinced he has the longest chain, and obtain the Merkle branch
linking the transaction to the block it's timestamped in. He can't check the transaction for
himself, but by linking it to a place in the chain, he can see that a network node has accepted it,
and blocks added after it further confirm the network has accepted it.

Longest Proof-of-Work Chain

Block Header Block Header Block Header

fﬂ Prev Hash ‘ ‘ Nonce ‘ >} Prev Hash ‘ ‘ Nonce ‘ >} Prev Hash ‘ ‘ Nonce ‘ ——

Merkle Root Merkle Root Merkle Root

HashO1

As such, the verification is reliable as long as honest nodes control the network, but is more
vulnerable if the network is overpowered by an attacker. While network nodes can verify
transactions for themselves, the simplified method can be fooled by an attacker's fabricated
transactions for as long as the attacker can continue to overpower the network. One strategy to
protect against this would be to accept alerts from network nodes when they detect an invalid
block, prompting the user's software to download the full block and alerted transactions to
confirm the inconsistency. Businesses that receive frequent payments will probably still want to
run their own nodes for more independent security and quicker verification.

9. Combining and Splitting Value

Although it would be possible to handle coins individually, it would be unwieldy to make a
separate transaction for every cent in a transfer. To allow value to be split and combined,
transactions contain multiple inputs and outputs. Normally there will be either a single input
from a larger previous transaction or multiple inputs combining smaller amounts, and at most two
outputs: one for the payment, and one returning the change, if any, back to the sender.

Transaction
] [ouf—>
nl

+
’

+
il

It should be noted that fan-out, where a transaction depends on several transactions, and those
transactions depend on many more, is not a problem here. There is never the need to extract a
complete standalone copy of a transaction's history.

(V)]

10. Privacy

The traditional banking model achieves a level of privacy by limiting access to information to the
parties involved and the trusted third party. The necessity to announce all transactions publicly
precludes this method, but privacy can still be maintained by breaking the flow of information in
another place: by keeping public keys anonymous. The public can see that someone is sending
an amount to someone else, but without information linking the transaction to anyone. This is
similar to the level of information released by stock exchanges, where the time and size of
individual trades, the "tape", is made public, but without telling who the parties were.

Traditional Privacy Model

" . Trusted » ;
‘ Identities H Transactions }—V Third Party P Counterparty Public

New Privacy Model

‘ Identities ‘ ‘Transactions }—V Public

As an additional firewall, a new key pair should be used for each transaction to keep them
from being linked to a common owner. Some linking is still unavoidable with multi-input
transactions, which necessarily reveal that their inputs were owned by the same owner. The risk
is that if the owner of a key is revealed, linking could reveal other transactions that belonged to
the same owner.

11. Calculations

We consider the scenario of an attacker trying to generate an alternate chain faster than the honest
chain. Even if this is accomplished, it does not throw the system open to arbitrary changes, such
as creating value out of thin air or taking money that never belonged to the attacker. Nodes are
not going to accept an invalid transaction as payment, and honest nodes will never accept a block
containing them. An attacker can only try to change one of his own transactions to take back
money he recently spent.

The race between the honest chain and an attacker chain can be characterized as a Binomial
Random Walk. The success event is the honest chain being extended by one block, increasing its
lead by +1, and the failure event is the attacker's chain being extended by one block, reducing the
gap by -1.

The probability of an attacker catching up from a given deficit is analogous to a Gambler's
Ruin problem. Suppose a gambler with unlimited credit starts at a deficit and plays potentially an
infinite number of trials to try to reach breakeven. We can calculate the probability he ever
reaches breakeven, or that an attacker ever catches up with the honest chain, as follows [8]:

p = probability an honest node finds the next block
g = probability the attacker finds the next block
g- = probability the attacker will ever catch up from z blocks behind

qZ: z .
(q/p) if p>q

1 ifpsq]

Given our assumption that p > ¢, the probability drops exponentially as the number of blocks the
attacker has to catch up with increases. With the odds against him, if he doesn't make a lucky
lunge forward early on, his chances become vanishingly small as he falls further behind.

We now consider how long the recipient of a new transaction needs to wait before being
sufficiently certain the sender can't change the transaction. We assume the sender is an attacker
who wants to make the recipient believe he paid him for a while, then switch it to pay back to
himself after some time has passed. The receiver will be alerted when that happens, but the
sender hopes it will be too late.

The receiver generates a new key pair and gives the public key to the sender shortly before
signing. This prevents the sender from preparing a chain of blocks ahead of time by working on
it continuously until he is lucky enough to get far enough ahead, then executing the transaction at
that moment. Once the transaction is sent, the dishonest sender starts working in secret on a
parallel chain containing an alternate version of his transaction.

The recipient waits until the transaction has been added to a block and z blocks have been
linked after it. He doesn't know the exact amount of progress the attacker has made, but
assuming the honest blocks took the average expected time per block, the attacker's potential
progress will be a Poisson distribution with expected value:

A=z4
p

To get the probability the attacker could still catch up now, we multiply the Poisson density for
each amount of progress he could have made by the probability he could catch up from that point:

gl p)" ifk<z
1 ifk>z

Rearranging to avoid summing the infinite tail of the distribution...

1- ZAei((q/p)*")

Converting to C code...

#include <math.h>
double AttackerSuccessProbability(double g, int z)
{
double p = 1.0 - qg;
double lambda = z * (g / p);
double sum = 1.0;
int i, k;
for (k = 0; k <= z; k++)
{
double poisson = exp (-lambda);
for (1 = 1; i <= k; 1i++)
poisson *= lambda / 1i;
sum -= poisson * (1 - pow(qg / p, z - k));
}

return sum;

Running some results, we can see the probability drop off exponentially with z.

g=0.1

z=0 P=1.0000000
z=1 P=0.2045873
z=2 P=0.0509779
z=3 P=0.0131722
z=4 P=0.0034552
z=5 P=0.0009137
z=6 P=0.0002428
z=7 P=0.0000647
z=8 P=0.0000173
z=9 P=0.0000046
z=10 P=0.0000012
g=0.3

z=0 P=1.0000000
z=5 P=0.1773523
z=10 P=0.0416605
z=15 P=0.0101008
z=20 P=0.0024804
z=25 P=0.0006132
z=30 P=0.0001522
z=35 P=0.0000379
z=40 P=0.0000095
z=45 P=0.0000024
z=50 P=0.0000006

Solving for P less than 0.1%...

P < 0.001
g=0.10 z=5
g=0.15 z=8
g=0.20 z=11
g=0.25 z=15
g=0.30 z=24
g=0.35 z=41
g=0.40 z=89
g=0.45 z=340

12. Conclusion

We have proposed a system for electronic transactions without relying on trust. We started with
the usual framework of coins made from digital signatures, which provides strong control of
ownership, but is incomplete without a way to prevent double-spending. To solve this, we
proposed a peer-to-peer network using proof-of-work to record a public history of transactions
that quickly becomes computationally impractical for an attacker to change if honest nodes
control a majority of CPU power. The network is robust in its unstructured simplicity. Nodes
work all at once with little coordination. They do not need to be identified, since messages are
not routed to any particular place and only need to be delivered on a best effort basis. Nodes can
leave and rejoin the network at will, accepting the proof-of-work chain as proof of what
happened while they were gone. They vote with their CPU power, expressing their acceptance of
valid blocks by working on extending them and rejecting invalid blocks by refusing to work on
them. Any needed rules and incentives can be enforced with this consensus mechanism.

References
[1] W. Dai, "b-money," http://www.weidai.com/bmoney.txt, 1998.

[2] H. Massias, X.S. Avila, and J.-J. Quisquater, "Design of a secure timestamping service with minimal
trust requirements," In 20th Symposium on Information Theory in the Benelux, May 1999.

[3] S. Haber, W.S. Stornetta, "How to time-stamp a digital document," In Journal of Cryptology, vol 3, no
2, pages 99-111, 1991.

[4] D. Bayer, S. Haber, W.S. Stornetta, "Improving the efficiency and reliability of digital time-stamping,"
In Sequences II: Methods in Communication, Security and Computer Science, pages 329-334, 1993.

[5] S.Haber, W.S. Stornetta, "Secure names for bit-strings," In Proceedings of the 4th ACM Conference
on Computer and Communications Security, pages 28-35, April 1997.

[6] A.Back, "Hashcash - a denial of service counter-measure,"
http://www.hashcash.org/papers/hashcash.pdf, 2002.

[7] R.C. Merkle, "Protocols for public key cryptosystems," In Proc. 1980 Symposium on Security and
Privacy, IEEE Computer Society, pages 122-133, April 1980.

[8] W. Feller, "An introduction to probability theory and its applications," 1957.

I am fascinated by Tim May's crypto-anarchy. Unlike the communities
traditionally associated with the word "anarchy", in a crypto-anarchy the
government is not temporarily destroyed but permanently forbidden and
permanently unnecessary. It's a community where the threat of violence is
impotent because violence is impossible, and violence is impossible
because its participants cannot be linked to their true names or physical
locations.

Until now it's not clear, even theoretically, how such a community could
operate. A community is defined by the cooperation of its participants,
and efficient cooperation requires a medium of exchange (money) and a way
to enforce contracts. Traditionally these services have been provided by
the government or government sponsored institutions and only to legal
entities. In this article I describe a protocol by which these services
can be provided to and by untraceable entities.

I will actually describe two protocols. The first one is impractical,
because it makes heavy use of a synchronous and unjammable anonymous
broadcast channel. However it will motivate the second, more practical
protocol. In both cases I will assume the existence of an untraceable
network, where senders and receivers are identified only by digital
pseudonyms (i.e. public keys) and every messages 1is signed by its sender
and encrypted to its receiver.

In the first protocol, every participant maintains a (seperate) database
of how much money belongs to each pseudonym. These accounts collectively
define the ownership of money, and how these accounts are updated is the
subject of this protocol.

1. The creation of money. Anyone can create money by broadcasting the
solution to a previously unsolved computational problem. The only
conditions are that it must be easy to determine how much computing effort
it took to solve the problem and the solution must otherwise have no
value, either practical or intellectual. The number of monetary units
created is equal to the cost of the computing effort in terms of a
standard basket of commodities. For example if a problem takes 100 hours
to solve on the computer that solves it most economically, and it takes 3
standard baskets to purchase 100 hours of computing time on that computer
on the open market, then upon the broadcast of the solution to that
problem everyone credits the broadcaster's account by 3 units.

2. The transfer of money. If Alice (owner of pseudonym K A) wishes to
transfer X units of money to Bob (owner of pseudonym K B), she broadcasts
the message "I give X units of money to K B" signed by K A. Upon the
broadcast of this message, everyone debits K A's account by X units and
credits K B's account by X units, unless this would create a negative
balance in K A's account in which case the message is ignored.

3. The effecting of contracts. A valid contract must include a maximum
reparation in case of default for each participant party to it. It should
also include a party who will perform arbitration should there be a
dispute. All parties to a contract including the arbitrator must broadcast
their signatures of it before it becomes effective. Upon the broadcast of
the contract and all signatures, every participant debits the account of
each party by the amount of his maximum reparation and credits a special
account identified by a secure hash of the contract by the sum the maximum

reparations. The contract becomes effective if the debits succeed for
every party without producing a negative balance, otherwise the contract
is ignored and the accounts are rolled back. A sample contract might look
like this:

K A agrees to send K B the solution to problem P before 0:0:0 1/1/2000.

K B agrees to pay K A 100 MU (monetary units) before 0:0:0 1/1/2000. K C
agrees to perform arbitration in case of dispute. K A agrees to pay a
maximum of 1000 MU in case of default. K B agrees to pay a maximum of 200
MU in case of default. K C agrees to pay a maximum of 500 MU in case of
default.

4., The conclusion of contracts. If a contract concludes without dispute,
each party broadcasts a signed message "The contract with SHA-1 hash H
concludes without reparations." or possibly "The contract with SHA-1 hash
H concludes with the following reparations: ..." Upon the broadcast of all
signatures, every participant credits the account of each party by the
amount of his maximum reparation, removes the contract account, then
credits or debits the account of each party according to the reparation
schedule if there is one.

5. The enforcement of contracts. If the parties to a contract cannot agree
on an appropriate conclusion even with the help of the arbitrator, each
party broadcasts a suggested reparation/fine schedule and any arguments or
evidence in his favor. Each participant makes a determination as to the
actual reparations and/or fines, and modifies his accounts accordingly.

In the second protocol, the accounts of who has how much money are kept by
a subset of the participants (called servers from now on) instead of
everyone. These servers are linked by a Usenet-style broadcast channel.
The format of transaction messages broadcasted on this channel remain the
same as in the first protocol, but the affected participants of each
transaction should verify that the message has been received and
successfully processed by a randomly selected subset of the servers.

Since the servers must be trusted to a degree, some mechanism is needed to
keep them honest. Each server is required to deposit a certain amount of
money in a special account to be used as potential fines or rewards for
proof of misconduct. Also, each server must periodically publish and
commit to its current money creation and money ownership databases. Each
participant should verify that his own account balances are correct and
that the sum of the account balances is not greater than the total amount
of money created. This prevents the servers, even in total collusion, from
permanently and costlessly expanding the money supply. New servers can
also use the published databases to synchronize with existing servers.

The protocol proposed in this article allows untraceable pseudonymous
entities to cooperate with each other more efficiently, by providing them
with a medium of exchange and a method of enforcing contracts. The
protocol can probably be made more efficient and secure, but I hope this
is a step toward making crypto-anarchy a practical as well as theoretical
possibility.

Appendix A: alternative b-money creation

One of the more problematic parts in the b-money protocol is money
creation. This part of the protocol requires that all of the account
keepers decide and agree on the cost of particular computations.
Unfortunately because computing technology tends to advance rapidly and
not always publicly, this information may be unavailable, inaccurate, or
outdated, all of which would cause serious problems for the protocol.

So I propose an alternative money creation subprotocol, in which account
keepers (everyone in the first protocol, or the servers in the second
protocol) instead decide and agree on the amount of b-money to be created
each period, with the cost of creating that money determined by an
auction. Each money creation period is divided up into four phases, as
follows:

1. Planning. The account keepers compute and negotiate with each other to
determine an optimal increase in the money supply for the next period.
Whether or not the account keepers can reach a consensus, they each
broadcast their money creation quota and any macroeconomic calculations
done to support the figures.

2. Bidding. Anyone who wants to create b-money broadcasts a bid in the
form of <x, y> where x is the amount of b-money he wants to create, and y
is an unsolved problem from a predetermined problem class. Each problem in
this class should have a nominal cost (in MIPS-years say) which is
publicly agreed on.

3. Computation. After seeing the bids, the ones who placed bids in the
bidding phase may now solve the problems in their bids and broadcast the
solutions.

4. Money creation. Each account keeper accepts the highest bids (among
those who actually broadcasted solutions) in terms of nominal cost per
unit of b-money created and credits the bidders' accounts accordingly.

ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2570020
Design Of A Secure Timestamping Service With Minimal Trust Requirement

Article - July 2002

Source: CiteSeer

CITATIONS READS
87 2,759

3authors, including:

Jean-Jacques Quisquater
Université Catholique de Louvain - UCLouvain
409 PUBLICATIONS 14,376 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject Secure blockchain in the long-term: SBILL View project

All content following this page was uploaded by Jean-Jacques Quisquater on 21 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2570020_Design_Of_A_Secure_Timestamping_Service_With_Minimal_Trust_Requirement?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2570020_Design_Of_A_Secure_Timestamping_Service_With_Minimal_Trust_Requirement?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/secure-blockchain-in-the-long-term-SBILL?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Quisquater?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Quisquater?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-Catholique-de-Louvain-UCLouvain?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Quisquater?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Quisquater?enrichId=rgreq-55bb76e164bc3e9226b11bbfa210c796-XXX&enrichSource=Y292ZXJQYWdlOzI1NzAwMjA7QVM6Mjg3MTA5MzIwNTkzNDA4QDE0NDU0NjM2MDQxMjY%3D&el=1_x_10&_esc=publicationCoverPdf

DESIGN OF A SECURE TIMESTAMPING SERVICE
WITH MINIMAL TRUST REQUIREMENT

H. Massias, X. Serret Avila, J.-J. Quisquater
UCL Crypto group
Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium

massias, serret, jjq@dice.ucl.ac.be

This paper presents our design of a timestamping system for the Belgian
project TIMESFEC. We first introduce the timestamping method used and we
gustify our choice for it. Then we present the design of our implementation
as well as some of the important issues we found and the solutions we gave

to them.
INTRODUCTION

The creation date of digital documents and the times expressed in them are
becoming increasingly important as digital documents are being introduced into
the legal domain.

We define “digital timestamp” as a digital certificate intended to assure the
existence of a generic digital document at a certain time.

In order to produce fully trusted timestamps, very specific designs have been
introduced. We give an overview of the most relevant methods and we introduce
the one we used for the implementation of the Belgian project TIMESEC (see
[PRQ'98]), justifying our choice for it. Then we present the design of the times-
tamping system we made for this project. We separate the different processes that
are: document timestamping, timestamp verification, auditing, system start-up

and system shutdown.
INTRODUCTION OF THE TIMESTAMPING TECHNIQUES

There are two families of timestamping techniques: those that work with a
trusted third party and those that are based on the concept of distributed trust.
Techniques based on a trusted third party rely on the impartiality of the entity
that is in charge of issuing the timestamps. Techniques based on the distributed
trust consist on making documents dated and signed by a large set of people
in order to convince the verifiers that we could not have corrupted all of them.
The trusted third party techniques can also be classified into two different kinds:
those where the third party is completely trusted and those where it is partially

trusted. A detailed study of timestamping techniques can be found in [MQ97|.
We believe that techniques based on distributed trust are not really workable in a
professional environment, that is why we concentrate on the trusted third party
approach. Nevertheless, we imposed to ourselves the requirement to lower the
necessary trust on the third party to the maximum extend.

The “easy” solution, which consists on concatenating the document with the
current time and sign the result, has been discarded because it has two main
drawbacks:

1. We must completely trust the third party, called Secure Timestamp Autho-
rity (STA), which can issue undetectable back-dated timestamps.
2. The limited lifetime of cryptographic signatures, which can be shorter than

the document time-to-life.

The timestamping method that we have chosen uses a binary tree structure and
has been described in [HS91| and [HS97|. This method works by rounds. For each
round a binary tree is constructed with the requests filled during it. The rounds
have a fixed duration, which is the result of a trade-off between the timestamps
accuracy and the number of requests submitted. In Figure 1 we can see a graphical

representation of a round constructed using this method.

Figure 1: The binary tree structure

Each of the timestamp requests consists on a hash value of a given document.
The leafs of the tree are each of those hash values. The leaf values are then

concatenated by two and hashed again to obtain the parent value (Ex: Hzy =
H(ys | y4)). The process is repeated for each level until a single value is obtained.
Finally, the top value of the round tree (Hyg), called the “Round Root Value”, is
then concatenated with the value obtained for the preceding round (RH,_;) and
then hashed again to obtain the actual “Round Value” (RH;).

The timestamp of the document contains all the values necessary to rebuilt
the corresponding branch of the tree. For example, the timestamp for y, contains
{(ys, L), (H12, L), (Hss, R), (RH; 1, L)}. The verification process consists of re-
building the tree’s branch and the linking chain of “Round Values” until a trusted
(from the verifier point of view) “Round Value” is recomputed. This verification
method is explained in detail in [HS91| and [MQ97|.

Periodically, one of the “Round Values” is published on an unmodifiable,
widely witnessed media (Ex: newspaper...). These special “Round Values”, which
we will call “Big Round Values”, are the base of the trust for all the timestamps
issued. All verifiers must trust these “Big Round Values” as well as the time
associated with them. This is a reasonable requirement because those values are
widely witnessed. The absolute time trusted by all the potential verifiers is the
time indicated by the unmodifiable media. We suppose that this time is the same
than the time indicated by the STA for the “Big Round”. Forcing the clients to
check the timestamps as soon as they get them is another requirement. In that
way the process is continuously audited and the STA will not have any margin
to maneuver in an untrusted way.

A very useful method for extending the lifetime of timestamps is described
in [BHS92|. It basically consists on re-timestamping the hash of the document
as well as the original timestamp before the hash function is broken.

We build two trees in parallel for each round using two different hash functions
(SHA-1 and RIPEMD-160). In that way, the system remains secure in the case

of an unexpected break of one of the hash functions used.

DESCRIPTION AND ANALYSIS OF THE TIMESEC TIMESTAMPING IM-
PLEMENTATION

We will now introduce the basic design of the system we have developed,
which is based on the technique introduced above.

Initially, the user designates a document to be timestamped. Two hashes
of it are created using the SHA-1 and RIPEMD-160 algorithms. The request

containing the two hashes is then sent by the client to the STA . Upon request,

receipt, the STA creates the corresponding timestamp using the following process.

Main description of the timestamping process

The system design follows a highly decoupled multi-threaded approach. Each
step is assigned to a specific component, which has its own different thread. In
the Figure 2 we present a schematic outline of the process. The multi-thread
approach is justified by the requirement to obtain a highly responsive and load
independent implementation. By isolating the process charges into independent
steps we try to decouple the load between them. Each step has also a working
queue. Those queues are in charge of softening the speed differences between the
different process steps.

Network Listener > Request Timer > Round Queue Coordinator i Timestamp Generator
Round Queue Coordinator i1 Network Answer

Figure 2: Interactions between the components

The “Network Listener” is in charge of continuously listen to the clients’
timestamp requests. The “Request Timer” receives the constructed requests from
the “Network Listener”. Then, it times and forwards them to the actual “Round
Queue Coordinator”. Each round has its own “Round Queue Coordinator”, which
is in charge of compiling and processing into a tree all the requests belonging
to the round. When the round tree has been computed it is forwarded to the
“Timestamp Generator”, which generates the corresponding timestamps. Once a
timestamp is generated, the “Timestamp Generator” forwards it to the “Network

Answer”, which in turn forwards it to the client.

The Network Listener

The “Network Listener” responsibility is to listen the network continuously for
timestamping requests. When it receives a data stream, the “Network Listener”
checks it in order to determine if it is a valid request. In the case it is, it sends
an affirmative contact response to the client, it creates a “Timestamp Request”

object and adds it to the “Request Timer” queue. Then it goes back to listen

to the network. In the case the request message is not correct, it sends an error
message to the client.

We tried to give as few tasks as possible to the “Network Listener” to let it
listen the network, which is its primary task. In order to improve the overall
performance, and to avoid the fact that a slow client connection could affect the
other ones, several copies of the “Network Listener” can be active at the same

time.

The Request Timer

There is only an instance of “T’he Request Timer” in the system. The “Request
Timer” is in charge of ordering the requests received from the several “Network
Listeners” and timing them accordingly. All delays introduced by the system
before that point (namely, those introduced by the “Network Listener”) are in-
distinguishable from network delays, and thus not taken into account. Once a
request has been timed, the “Request Timer” tries to add it to the current round
queue. As the rounds are closed asynchronously by the corresponding “Round
Queue Coordinator” this operation is not always successful, in that case, the “Re-
quest Timer” re-times the request and retries to queue it until it finds an open
round. In that process the request sequence is preserved in order to provide a

consistent, behavior.

Round Queue Coordinator creation: “Round Queue Coordinator” instances
are created by the “Request Timer” upon processing a request corresponding to a
non-existing round. The creation of the rounds that have no requests is delayed
until a request is received. Once created, those empty rounds are immediately

processed, introducing no significant delay into the process.

Round number determination: Round numbers form a non-interrupted in-
creasing integer sequence. Rounds are always in synchronization with the round
duration intervals. In other words, if the round duration is one minute, all rounds
will start in an absolute minute boundary, independently from when the system
has been started. “Big Rounds” are determined by the “Request Timer” using a
similar approach to the one followed to determine the round boundaries. We do
not restrict the duration of the round to a fixed value for the lifetime of the STA.
To achieve this, the information about round and “Big Round” duration is intro-

duced into the system at the start-up phase. If we wish to modify it, we must

first shutdown the system, change the values and then restart the system, which

is the only safe procedure we had foreseen.

The Round Queue Coordinator

The first thing a “Round Queue Coordinator” does is to determine the offset
between the actual time and the round due time. Requests will be accepted
only if the round is still valid (round is open). When requested by the “Request
Timer”, the “Round Queue Coordinator” adds the request to the queue and logs
it. This logged request will be latter used for process auditing purposes.

When the round time is over, it obtains the “Round Values” from the preced-
ing round and it computes the round binary trees (one for each hash algorithm)
to obtain the corresponding “Round Values”. Then it gives the computed trees to
the “Timestamp Generator” and finally adds to the log the “Round Values” and
the “Round Root Values”. Those logged values will be latter used for timestamp
verification and process auditing purposes. If the actual round is a “Big Round”
those values are forwarded to a fixed media as well.

As you may have noticed in the section “Introduction of the timestamping
techniques”, the binary tree is defined for a number of leafs (requests) that is a
power of 2. In general, this is not the case. We could create fake requests to finish
the tree, but this will add a lot of requests (if we have 2" +1 requests, then we will
need to add 2" — 1 fake requests). A smarter solution is to add a random value
only when we need it. Then, we add at most n values (one for each level of the
tree). We call these nodes “Special Node”, which will be logged as well. Instead
of random values we could choose to use 0 or another fixed value, this would be
as secure as our choice if the hash functions were “perfect”. As hash functions are
only “presumably perfect”, we though that we could made our design more secure
with really few additional computations.

In our implementation, the STA queues the requests and computes the tree at
the end of the round. At first sight, it could seem a more natural solution to build
the tree as soon as the requests arrive. At the end of the round, the computation
of the tree would then be ended by getting the last “Round Value” and computing
the actual “Round Value”. In fact, this solution is harder to implement, and has
no effect on the security achieved as no one can check that the STA does not

perform any reordering of the requests before it publishes the “Round Value”.

The Timestamp Generator

The “Timestamp Generator” processes the round trees by pairs (one for each hash
algorithm) in order to generate the timestamps for each of the requests contained
in the trees. In order to maximize the system responsiveness, once a timestamp
has been generated it is immediately forwarded to the “Network Answer”. Finally,
when all the timestamps contained in a round tree have been processed the tree

is destroyed.

The Network Answer

The “Network Answer” is in charge of forwarding the processed timestamps to
the clients. It has been specified in such a way that it can run several threads,
in that way the rest of the timestamping process can be isolated from possible

network delay problematic.

The timestamp verification process

First, the verifier designates a document and its corresponding timestamp for
verification. Then, the verifier’s system (his personal computer or a remote com-
puter independent from the STA) generates the two document hashes and checks
if they match with those contained in the timestamp. Afterwards, the “Round
Value” is reconstructed using the data provided in the timestamp. If the com-
puted “Round Value” is consistent with the one contained in the timestamp then
the next step in the verification process is to compare this “Round Value” to the
“Round Value” obtained from the STA repository. Finally, the verifier provides his
system with the two “Big Round Values” that he founds in the “unmodifiable me-
dia”; the verifier’s system gets all the necessary “Round Values” and “Root Round
Values” from the STA and it checks the coherency of the two linking chains (one

for each hash function).

The audit process

The auditor designates two “Big Rounds”, which he fetches from a fixed media.
The system behavior will be checked between these two “Big Round Values”. For
each round, the auditor’s system gets all the hash values (leafs of the tree and
“Special Nodes”) and the “Round Value” from the STA. Then, it constructs the

two trees and checks that the “Round Value” is consistent. These two steps are

repeated until all the considered rounds are checked or until an error has been
found. In that way, all theoretically verifiable system behavior can be verified a

posteriori.

The system start-up process

Here the most sensible issue is to be able to correctly start-up the system when
an unexpected shutdown has occurred. If that is the case, the log will show an
unfinished round; then the system marks all entries after the last complete round
as invalid and publishes that round as a “Big Round”. If the log was consistent,
it accesses the last valid “Round Value” in the log and publishes it as a “Big
Round”. This process insures a fully verifiable behavior; we are able to detect

non fully-processed requests.

The system shutdown process

The administrator signals the system to shutdown. No more timestamping re-
quests are accepted. The system waits until the current round is finished and
this “Round Value” is published as “Big Round”.

REFERENCES

[BHS92| D. Bayer, S. Haber, and W.-S. Stornetta. Improving the efficiency
and reliability of digital timestamping. In Springer Verlag, editor,
Sequences’91: Methods in Communication, Security, and Computer
Science, pages 329 334, 1992.

[HS91| S. Haber and W.-S. Stornetta. How to timestamp a digital document.
Journal of Cryptology, 3(2):99 112, 1991.

[HS97| S. Haber and W.S. Stornetta. Secure names for bit-strings. In Pro-
ceedings of the 4th ACM Conference on Computer and Communication
Security, pages 28 35. ACM Press, April 1997.

[MQ97| H. Massias and J.-J. Quisquater. Time and cryptography. Technical
report, TIMESEC Project (Federal Governement Project, Belgium),
1997. Available at http://www.dice.ucl.ac.be/crypto/TIMESEC.html.

[PRQ"98] B. Preneel, B. Van Rompay, J.-J. Quiquater, H. Massias, and X. Serret
Avila. Design of a timestamping system. Technical report, TIMESEC
Project (Federal Governement Project, Belgium), 1998. To be avail-
able at http://www.dice.ucl.ac.be/crypto/TIMESEC.html.

https://www.researchgate.net/publication/2570020

J. Cryptology (1991) 3: 99-111

Journal of Cryptology

© 1991 International Association for
Cryptologic Research

How To Time-Stamp a Digital Document’

Stuart Haber and W. Scott Stornetta

Bellcore, 445 South Street,
Morristown, NJ 07960-1910, U.S.A.
stuart@bellcore.com stornetta@bellcore.com

Abstract. The prospect of a world in which all text, audio, picture, and video
documents are in digital form on easily modifiable media raises the issue of how
to certify when a document was created or last changed. The problem is to
time-stamp the data, not the medium. We propose computationally practical
procedures for digital time-stamping of such documents so that it is infeasible for
a user either to back-date or to forward-date his document, even with the collusion
of a time-stamping service. Our procedures maintain complete privacy of the
documents themselves, and require no record-keeping by the time-stamping
service.

Key words. Time-stamp, Hash.

Time’s glory is to calm contending kings,

To unmask falsehood, and bring truth to light,
To stamp the seal of time in aged things,

To wake the morn, and sentinel the night,

To wrong the wronger till he render right.

The Rape of Lucrece, 1. 941

1. Introduction

In many situations there is a need to certify the date a document was created or last
modified. For example, in intellectual property matters, it is sometimes crucial to
verify the date an inventor first put in writing a patentable idea, in order to establish
its precedence over competing claims.

One accepted procedure for time-stamping a scientific idea involves daily
notations of one’s work in a lab notebook. The dated entries are entered one after
another in the notebook, with no pages left blank. The sequentially numbered,
sewn-in pages of the notebook make it difficult to tamper with the record without
leaving telltale signs. If the notebook is then stamped on a regular basis by a notary
public or reviewed and signed by a company manager, the validity of the claim is
further enhanced. If the precedence of the inventor’s ideas is later challenged, both

! Date received: August 19, 1990. Date revised: October 26, 1990.

99

100 ‘ S. Haber and W. S. Stornetta

the physical evidence of the notebook and the established procedure serve to
substantiate the inventor’s claims of having had the ideas on or before a given date.

There are other methods of time-stamping. For example, one can mail a letter to
oneself and leave it unopened. This ensures that the enclosed letter was created
before the time postmarked on the envelope. Businesses incorporate more elaborate
procedures into their regular order of business to enhance the credibility of their
internal documents, should they be challenged at a later date. For example, these
methods may ensure that the records are handled by more than one person, so that
any tampering with a document by one person will be detected by another. But all
these methods rest on two assumptions. First, the records can be examined for
telltale signs of tampering. Second, there is another party that views the document
whose integrity or impartiality is seen as vouchsafing the claim.

We believe these assumptions are called into serious question for the case of
documents created and preserved exclusively in digital form. This is because elec-
tronic digital documents are so easy to tamper with, and the change need not
leave any telltale sign on the physical medium. What is needed is a method of
time-stamping digital documents with the following two properties. First, we must
find a way to time-stamp the data itself, without any reliance on the characteristics
of the medium on which the data appears, so that it is impossible to change even
one bit of the document without the change being apparent. Second, it should be
impossible to stamp a document with a time and data different from the actual one.

The purpose of this paper is to introduce a mathematically sound and computa-
tionally practical solution to the time-stamping problem. In the sections that follow,
we first consider a naive solution to the problem, the digital safety-deposit box. This
serves the pedagogical purpose of highlighting additional difficulties associated
with digital time-stamping beyond those found in conventional methods of time-
stamping. Successive improvements to this naive solution finally lead to practical
ways to implement digital time-stamping.

2. The Setting

The setting for our problem is a distributed network of users, perhaps representing
individuals, different companies, or divisions within a company; we refer to the users
as clients. Each client has a unique identification number.

A solution to the time-stamping problem may have several parts. There is a
procedure that is performed immediately when a client desires to have a document
time-stamped. There should be a method for the client to verify that this procedure
has been correctly performed. There should also be a procedure for meeting a third
party’s challenge to the validity of a document’s time-stamp.

As with any cryptographic problem, it is a delicate matter to characterize precisely
the security achieved by a time-stamping scheme. A good solution to the time-
stamping problem is one for which, under reasonable assumptions about the
computational abilities of the users of the scheme and about the complexity of a
computational problem, and possibly about the trustworthiness of the users, it is
difficult or impossible to produce false time-stamps. Naturally, the weaker the
assumptions needed, the better.

How To Time-Stamp a Digital Document 101

3. A Naive Solution

A naive solution, a “digital safety-deposit box,” could work as follows. Whenever
a client has a document to be time-stamped, he or she transmits the document to
a time-stamping service (TSS). The service records the date and time the document
was received and retains a copy of the document for safe-keeping. If the integrity
of the client’s document is ever challenged, it can be compared with the copy stored
by the TSS. If they are identical, this is evidence that the document has not been
tampered with after the date contained in the TSS records. This procedure does in
fact meet the central requirement for the time-stamping of a digital document.?
However, this approach raises several concerns:

Privacy. This method compromises the privacy of the document in two ways: a
third party could eavesdrop while the document is being transmitted, and after
transmission it is available indefinitely to the TSS itself. Thus the client has to
worry not only about the security of documents it keeps under its direct control,
but also about the security of its documents at the TSS.

Bandwidth and storage. Both the amount of time required to send a document for
time-stamping and the amount of storage required at the TSS depend on the
length of the document to be time-stamped. Thus the time and expense required
to time-stamp a large document might be prohibitive.

Incompetence. The TSS copy of the document could be corrupted in transmission
to the TSS, it could be incorrectly time-stamped when it arrives at the TSS, or
it could become corrupted or lost altogether at any time while it is stored at
the TSS. Any of these occurrences would invalidate the client’s time-stamping
claim.

Trust. The fundamental problem remains: nothing in this scheme prevents the
TSS from colluding with a client in order to claim to have time-stamped a
document for a date and time different from the actual one.

In the next section we describe a solution that addresses the first three concerns
listed above. The final issue, trust, is handled separately and at greater length in the
following section.

4. A Trusted Time-Stamping Service

In this section we assume that the TSS is trusted, and describe two improvements
on the naive solution above.

4.1. Hash

Our first simplification is to make use of a family of cryptographically secure
collision-free hash functions. This is a family of functions h: {0, 1}* — {0, 1}
compressing bit-strings of arbitrary length to bit-strings of a fixed length /, with the
following properties: '

2 The authors recently learned of a similar proposal sketched by Kanare [14].

102 S. Haber and W. S. Stornetta

1. The functions h are easy to compute, and it is easy to pick a member of the
family at random.

2. It is computationally infeasible, given one of these functions h, to find a pair
of distinct strings x, x’ satisfying h(x) = h(x’). (Such a pair is called a collision
for h.)

The practical importance of such functions has been known for some time, and
researchers have used them in a number of schemes; see, for example, [7], [15], and
[16]. Damgard gave the first formal definition, and a constructive proof of their
existence, on the assumption that there exist one-way “claw-free” permutations [4].
For this, any “one-way group action” is sufficient [3].

Naor and Yung defined the similar notion of “universal one-way hash functions,”
which satisfy, in place of the second condition above, the slightly weaker require-
ment that it be computationally infeasible, given a string x, to compute another
string x’ # x satisfying h(x) = h(x’) for a randomly chosen h. They were able to
construct such functions on the assumption that there exist one-to-one one-way
functions [17]. Rompel has recently shown that such functions exist if there exist
one-way functions at all [20]. See Section 6.3 below for a discussion of the differences
between these two sorts of cryptographic hash functions.

There are practical implementations of hash functions, for example, that of Rivest
[19], which seem to be reasonably secure.

We use the hash functions as follows. Instead of transmitting his document x to
the TSS, a client will send its hash value h(x) = y instead. For the purposes of
authentication, time-stamping y is equivalent to time-stamping x. This greatly
reduces the bandwidth problem and the storage requirements, and solves the
privacy issue as well. Depending on the design goals for an implementation of
time-stamping, there may be a single hash function used by everybody, or different
hash functions for different users.

For the rest of this paper, we speak of time-stamping hash values y—random-
appearing bit-strings of a fixed length. Part of the procedure for validating a
time-stamp will be to produce the preimage document x that satisfies h(x) = y;
inability to produce such an x invalidates the putative time-stamp.

4.2. Signature

The second improvement makes use of digital signatures. Informally, a signature
scheme is an algorithm for a party, the signer, to tag messages in a way that uniquely
identifies the signer. Digital signatures were proposed by Rabin [18] and by Diffie
and Hellman [7]. After a long sequence of papers by many authors, Rompel [20]
showed that the existence of one-way functions can be used in order to design a
signature scheme satisfying the very strong notion of security that was first defined
by Goldwasser et al. [10].

With a secure signature scheme available, when the TSS receives the hash value,
it appends the date and time, then signs this compound document and sends it to
the client. By checking the signature, the client is assured that the TSS actually did
process the request, that the hash was correctly received, and that the correct time
is included. This takes care of the problem of present and future incompetence on
the part of the TSS, and reduces the need for the TSS to store records.

How To Time-Stamp a Digital Document 103
5. Two Time-Stamping Schemes

Sed quis custodiet ipsos Custodes?
Juvenal, c. 100 A.D.

But who will guard the guards themselves?

What we have described so far is, we believe, a practical method for time-stamping
digital documents of arbitrary length. However, neither the signature nor the use
of hash functions in any way prevents a time-stamping service from issuing a false
time-stamp. Ideally, we would like a mechanism which guarantees that no matter
how unscrupulous the TSS is, the times it certifies will always be the correct ones,
and that it will be unable to issue incorrect time-stamps even if it tries to.

It may seem difficult to specify a time-stamping procedure so as to make it
impossible to produce fake time-stamps. After all, if the output of an algorithm
A, given as input a document x and some timing information 7, is a bit-string
¢ = A(x, t) that stands as a legitimate time-stamp for x, what is to prevent a
forger some time later from computing the same timing information t and then
running A4 to produce the same certificate ¢? The question is relevant even if A is a
probabilistic algorithm.

Our task may be seen as the problem of simulating the action of a trusted TSS,
in the absence of generally trusted parties. There are two rather different approaches
we might take, and each one leads to a solution. The first approach is to constrain
a centralized but possibly untrustworthy TSS to produce genuine time-stamps in
such a way that fake ones are difficult to produce. The second approach is somehow
to distribute the required trust among the users of the service. It is not clear that
either of these can be done at all.

5.1. Linking

Our first solution begins by observing that the sequence of clients requesting
time-stamps and the hashes they submit cannot be known in advance. So if we
include bits from the previous sequence of client requests in the signed certificate,
then we know that the time-stamp occurred after these requests. But the requirement
of including bits from previous documents in the certificate can also be used to solve
the problem of constraining the time in the other direction, because the time-
stamping company cannot issue later certificates unless it has the current request
in hand.

We describe two variants of this linking scheme; the first one, slightly simpler,
highlights our main idea, while the second one may be preferable in practice. In
both variants, the TSS makes use of a collision-free hash function, denoted H. This
is in addition to clients’ use of hash functions in order to produce the hash value of
any documents that they wish to have time-stamped.

To be specific, a time-stamping request consists of an /-bit string y (presumably
the hash value of the document) and a client identification number ID. We use a(-)
to denote the signing procedure used by the TSS. The TSS issues signed, sequentially
numbered time-stamp certificates. In response to the request (y,, ID,) from our
client, the nth request in sequence, the TSS does two things:

104] S. Haber and W. S. Stornetta

1. The TSS sends our client the signed certificate s = ¢(C,), where the certificate
Cn = (n, L IDm Vns Ln)

consists of the sequence number n, the time ¢, the client number ID, and the
hash value y, from the request, and certain linking information, which comes
from the previously issued certificate: L, = (t,—y, ID,—1, Yp—1, H(Ly—1)).

2. When the next request has been processed, the TSS sends our client the
identification number ID,,, for that next request.

Having received s and ID,,,, from the TSS, she checks that s is a valid signature of
a good certificate, i.e., one that is of the correct form (n, t, ID,, y,; L,), containing
the correct time ¢.

If her time-stamped document x is later challenged, the challenger first checks
that the time-stamp (s, ID,) is of the correct form (with s being a signature of a
certificate that indeed contains a hash of x). In order to make sure that our client
has not colluded with the TSS, the challenger can call client ID, ., and ask him to
produce his time-stamp (s’, ID,,). This includes a signature

s'=0a(n+ 1, tye1, IDps1, Yur1s Losa)

of a certificate that contains in its linking information L, a copy of her hash value
y,. This linking information is further authenticated by the inclusion of the image
H(L,) of her linking information L,. An especially suspicious challenger now can
call up client ID, . , and verify the next time-stamp in the sequence; this can continue
for as long as the challenger wishes. Similarly, the challenger can also follow the
chain of time-stamps backward, beginning with client ID,,_;.

Why does this constrain the TSS from producing bad time-stamps? First, observe
that the use of the signature has the effect that the only way to fake a time-stamp is
with the collaboration of the TSS. But the TSS cannot forward-date a document,
because the certificate must contain bits from requests that immediately preceded
the desired time, yet the TSS has not received them. The TSS cannot feasibly
back-date a document by preparing a fake time-stamp for an earlier time, because
bits from the document in question must be embedded in certificates immediately
following that earlier time, yet these certificates have already been issued. Fur-
thermore, correctly embedding a new document into the already-existing stream
of time-stamp certificates requires the computation of a collision for the hash
function H.

Thus the only possible spoof is to prepare a fake chain of time-stamps, long
enough to exhaust the most suspicious challenger that one anticipates.

In the scheme just outlined, clients must keep all their certificates. In order to
relax this requirement, in the second variant of this scheme we link each request
not just to the next request but to the next k requests. The TSS responds to the nth
request as follows:

1. As above, the certificate C, is of the form C, = (n, t,, ID,, y,; L,), where now
the linking information L, is of the form

Ln = [(tn-—k: IDn—k? Yn—k> H(Ln-k)), e (tn—b IDn—la Vn-1> H(Ln—l))]

How To Time-Stamp a Digital Document 105

© 2. After the next k requests have been processed, the TSS sends our client the list
(ID, 415 - -5 IDyk).

After checking that this client’s time-stamp is of the correct form, a suspicious
challenger can ask any one of the next k clients ID,,; to produce his time-stamp.
As above, his time-stamp includes a signature of a certificate that contains in its
linking information L, ; a copy of the relevant part of the challenged time-stamp
certificate C,, authenticated by the inclusion of the hash by H of the challenged
client’s linking information L,. His time-stamp also includes client numbers
(ID,yit15 - --» ID,1;41), Of which the last i are new ones; the challenger can ask these
clients for their time-stamps, and this can continue for as long as the challenger
wishes.

In addition to easing the requirement that clients save all their certificates, this
second variant also has the property that correctly embedding a new document into
the already-existing stream of time-stamp certificates requires the computation of
a simultaneously k-wise collision for the hash function H, instead of just a pairwise
collision.

5.2. Distributed Trust

For this scheme we assume that there is a secure signature scheme so that each user
can sign messages, and that a standard secure pseudorandom generator G is
available to all users. A pseudorandom generator is an algorithm that stretches short
input seeds to output sequences that are indistinguishable by any feasible algorithm
from random sequences; in particular, they are unpredictable. Such generators were
first studied by Blum and Micali [2] and by Yao [22]; Impagliazzo et al. have shown
that they exist if there exist one-way functions [12].

Once again, we consider a hash value y that our client would like to time-stamp.
She uses y as a seed for the pseudorandom generator, whose output can be inter-
preted in a standard way as a k-tuple of client identification numbers:

G(y) =(1D,, ID,,...,ID,).

Our client sends her request (y, ID) to each of these clients. She receives in return
from client ID; a signed message s; = g;(t, ID, y) that includes the time t. Her
time-stamp consists of [(y, ID), (sy, ..., s,)]. The k signatures s; can easily be
checked by our client or by a would-be challenger. No further communication is
required in order to meet a later challenge.

Why should such a list of signatures constitute a believable time-stamp? The
reason is that in these circumstances, the only way to produce a time-stamped
document with an incorrect time is to use a hash value y so that G(y) names k clients
that are willing to cooperate in faking the time-stamp. If at any time there is at most
a constant fraction ¢ of possibly dishonest clients, the expected number of seeds y
that have to be tried before finding a k-tuple G(y) containing only collaborators
from among this fraction is ¢*. Furthermore, since we have assumed that G is a
secure pseudorandom generator, there is no faster way of finding such a convenient
seed y than by choosing it at random. This ignores the adversary’s further problem,

106 S. Haber and W. S. Stornetta

in most real-world scenarios, of finding a plausible document that hashes to a
convenient value y.

The parameter k should be chosen when designing the system so that this is an
infeasible computation. Observe that even a highly pessimistic estimate of the
percentage of the client population that is corruptible—¢ could be 90% —does not
entail a prohibitively large choice of k. In addition, the list of corruptible clients
need not be fixed, as long as their fraction of the population never exceeds e.

This scheme need not use a centralized TSS at all. The only requirements are that
it be possible to call up other clients at will and receive from them the required
signatures, and that there be a public directory of clients so that it is possible to
interpret the output of G(y) in a standard way as a k-tuple of clients. A practical
implementation of this method would require provisions in the protocol for clients
that cannot be contacted at the time of the time-stamping request. For example, for
suitable k' < k, the system might accept signed responses from any k' of the k clients
named by G(y) as a valid time-stamp for y (in which case a greater value for the
parameter k would be needed in order to achieve the same low probability of finding
a set of collaborators at random).

6. Remarks

6.1. Tradeoffs

There are a number of tradeoffs between the two schemes. The distributed-trust
scheme has the advantage that all processing takes place when the request is made.
In the linking scheme, on the other hand, the client has a short delay while she waits
for the second part of her certificate; and meeting a later challenge may require
further communication.

A related disadvantage of the linking scheme is that it depends on at least some
parties (clients or, perhaps, the TSS) storing their certificates.

The distributed-trust scheme makes a greater technological demand on the
system: the ability to call up and demand a quick signed response at will.

The linking scheme only locates the time of a document between the times of the
previous and the next requests, so it is best suited to a setting in which relatively
many documents are submitted for time-stamping, compared with the scale at which
the timing matters.

It is worth remarking that the time-constraining properties of the linking scheme
do not depend on the use of digital signatures.

6.2. Time Constraints

We would like to point out that our schemes constrain the event of time-stamping
both forward and backward in time. However, if any amount of time may pass
between the creation of a document and when it is time-stamped, then no method
can do more than forward-constrain the time at which the document itself was
created. Thus, in general, time-stamping should only be considered as evidence that
a document has not been back-dated.

How To Time-Stamp a Digital Document 107

On the other hand, if the time-stamping event can be made part of the document
creation event, then the constraint holds in both directions. For example, consider
the sequence of phone conversations that pass through a given switch. In order to
process the next call on this switch, we could require that linking information be
provided from the previous call. Similarly, at the end of the call, linking information
would be passed onto the next call. In this way, the document creation event (the
phone call) includes a time-stamping event, and so the time of the phone call can
be fixed in both directions. The same idea could apply to sequential financial
transactions, such as stock trades or currency exchanges, or any sequence of
electronic interactions that take place over a given physical connection.

6.3. Theoretical Considerations

Although we do not do it here, we suggest that a precise complexity-theoretic
definition of the strongest possible level of time-stamping security could be given
along the lines of the definitions given by Goldwasser and Micali [9], Goldwasser
et al. [10], and Galil et al. [8] for various cryptographic tasks. The time-stamping
and the verification procedures would all depend on a security parameter p. A
time-stamp scheme would be polynomially secure if the success probability of a
polynomially bounded adversary who tries to manufacture a bogus time-stamp is
smaller than any given polynomial in 1/p for sufficiently large p.

Under the assumption that there exist one-way claw-free permutations, we can
prove our linking scheme to be polynomially secure. If we assume that there is
always at most a constant fraction of corruptible clients, and assuming as well
the existence of one-way functions (and therefore the existence of pseudorandom
generators and of a secure signature scheme), we can prove our distributed-trust
scheme to be polynomially secure.

In Section 4.1 above we mentioned the difference between “collision-free” and
“universal one-way” hash functions. The existence of one-way functions is sufficient
to give us universal one-way hash functions. However, in order to prove the
security of our time-stamping schemes, we apparently need the stronger guarantee
of the difficulty of producing hash collisions that is provided by the definition of
collision-free hash functions. As far as is currently known, a stronger complexity
assumption—namely, the existence of claw-free pairs of permutations—is needed
in order to prove the existence of these functions. (See also [5] and [6] for further
discussion of the theoretical properties of cryptographic hash functions.)

Universal one-way hash functions were the tool used in order to construct a
secure signature scheme. Our apparent need for a stronger assumption suggests a
difference, perhaps an essential one, between signatures and time-stamps. It is in
the signer’s own interest to act correctly in following the instructions of a secure
signature scheme (for example, in choosing a hash function at random from a certain
set). For time-stamping, on the other hand, a dishonest user or a colluding TSS may
find it convenient not to follow the standard instructions (for example, by choosing
a hash function so that collisions are easy to find); the time-stamping scheme must
be devised so that there is nothing to be gained from such misbehavior.

If it is possible, we would like to reduce the assumptions we require for secure

108 S. Haber and W. S. Stornetta

time-stamping to the simple assumption that one-way functions exist. This is the
minimum reasonable assumption for us, since all of complexity-based cryptography
requires the existence of one-way functions [12], [13].

6.4. Practical Considerations

As we move from the realm of complexity theory to that of practical cryptosystems,
new questions arise. In one sense, time-stamping places a heavier demand on
presumably one-way functions than would some other applications. For exampie,
ifan electronic funds transfer system relies on a one-way function for authentication,
and that function is broken, then all of the transfers carried out before it was broken
are still valid. For time-stamps, however, if the hash function is broken, then all of
the time-stamps issued prior to that time are called into question.

A partial answer to this problem is provided by the observation that time-stamps
can be renewed. Suppose we have two time-stamping implementations, and that
there is reason to believe that the first implementation will soon be broken.
Then certificates issued using the old implementation can be renewed using the new
implementation. Consider a time-stamp certificate created using the old
implementation that is time-stamped with the new implementation before the old
one is broken. Prior to the old implementation’s breaking, the only way to create
a certificate was by legitimate means. Thus, by time-stamping the certificate itself
with the new implementation, we have evidence not only that the document existed
prior to the time of the new time-stamp, but that it existed at the time stated in the
original certificate.

Another issue to consider is that producing hash collisions alone is not sufficient
to break the time-stamping scheme. Rather, meaningful documents must be found
which lead to collisions. Thus, by specifying the format of a document class, we can
complicate the task of finding meaningful collisions. For example, the density of
ASClII-only texts among all possible bit-strings of length N bytesis (27/2%)¥, or 1/2%,
simply because the high-order bit of each byte is always 0. Even worse, the density
of acceptable English text can be bounded above by an estimate of the entropy of
English as judged by native speakers [21]. This value is approximately 1 bit per
ASCII character, giving a density of (2'/28)¥, or 1/128".

We leave it to future work to determine whether we can formalize the increased
difficulty of computing collisions if valid documents are sparsely and perhaps
randomly distributed in the input space. Similarly, the fact that a k-way linking
scheme requires the would-be adversary to compute k-way collisions rather than
collision pairs may be parlayed into relaxing the requirements for the hash function.
It may also be worthwhile to explore when there exist hash functions for which there
are no k-way collisions among strings in a suitably restricted subset of the input
space; the security of such a system would no longer depend on a complexity
assumption.

7. Applications

Using the theoretically best (cryptographically secure) hash functions, signature
schemes, and pseudorandom generators, we have designed time-stamping schemes

How To Time-Stamp a Digital Document 109

that possess theoretically desirable properties. However, we would like to emphasize
the practical nature of our suggestion: because there are practical implementations
of these cryptographic tools, both of our time-stamp schemes can be inexpensively
implemented as described. Practical hash functions like Rivest’s are quite fast, even
running on low-end PCs [19].

What kinds of documents would benefit from secure digital time-stamping? For
documents that establish the precedence of an invention or idea, time-stamping has
a clear value. A particularly desirable feature of digital time-stamping is that it
makes it possible to establish precedence of intellectual property without disclosing
its contents. This could have a significant effect on copyright and patent law, and
could be applied to everything from software to the secret formula for Coca-Cola.

But what about documents where the date is not as significant as simply whether
or not the document has been tampered with? These documents can benefit from
time-stamping, too, under the following circumstances. Suppose we can establish
that either the necessary knowledge or the motivation to tamper with a document
did not exist until long after the document’s creation. For example, we can imagine
a company that deals with large numbers of documents each day, some few of which
are later found to be incriminating. If all the company’s documents were routinely
time-stamped at the time of their creation, then by the time it became apparent
which documents were incriminating and how they needed to be modified, it would
be too late to tamper with them. We call such documents tamper-unpredictable. It
seems clear that many business documents are tamper-unpredictable. Thus, if
time-stamping were to be incorporated into the established order of business, the
credibility of many documents could be enhanced.

A variation that may be particularly useful for business documents is to time-
stamp a log of documents rather than each document individually. For example,
each corporate document created in a day could be hashed, and the hash value
added to the company’s daily log of documents. Then, at the end of the business
day, the log alone could be submitted for time-stamping. This would eliminate the
expense of time-stamping each document individually, while still making it possible
to detect tampering with each document; we could also determine whether any
documents had been destroyed altogether.

Of course, digital time-stamping is not limited to text documents. Any string of
bits can be time-stamped, including digital audio recordings, photographs, and
full-motion videos. Most of these documents are tamper-unpredictable. Therefore,
time-stamping can help to distinguish an original photograph from a retouched
one, a problem that has received considerable attention of late in the popular press
[17, [11]. It is in fact difficult to think of any other algorithmic “fix” that could add
more credibility to photographs, videos, or audio recordings than time-stamping.

8. Summary

In this paper we have shown that the growing use of text, audio, and video
documents in digital form and the ease with which such documents can be modified
creates a new problem: how can we certify when a document was created or last
modified? Methods of certification, or time-stamping, must satisfy two criteria.

110 S. Haber and W. S. Stornetta

First, they must time-stamp the actual bits of the document, making no assumptions
about the physical medium on which the document is recorded. Second, the date
and time of the time-stamp must not be forgeable.

We have proposed two solutions to this problem. Both involve the use of one-way
hash functions, whose outputs are processed in lieu of the actual documents, and
of digital signatures. The solutions differ only in the way that the date and time are
made unforgeable. In the first, the hashes of documents submitted to a TSS are
linked together, and certificates recording the linking of a given document are
distributed to other clients both upstream and downstream from that document.
In the second solution, several members of the client pool must time-stamp the hash.
The members are chosen by means of a pseudorandom generator that uses the hash
of the document itself as seed. This makes it infeasible to choose deliberately which
clients should and should not time-stamp a given hash. The second method could
be implemented without the need for a centralized TSS at all.

Finally, we have considered whether time-stamping could be extended to enhance
the authenticity of documents for which the time of creation itself is not the critical
issue. This. is the case for a large class of documents which we call “tamper-
unpredictable.” We further conjecture that no purely algorithmic scheme can add
any more credibility to a document than time-stamping provides.

Acknowledgments

We gratefully acknowledge helpful discussions with Donald Beaver, Shimon Even,
George Furnas, Burt Kaliski, Ralph Merkle, Jeff Shrager, Peter Winkler, Yacov
Yacobi, and Moti Yung.

References

[1] J. Alter. When photographs lie. Newsweek, pp. 44—45, July 30, 1990.

[2] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random
bits. SIAM J. Comput., 13(4): 850—864, Nov. 1984.

[3] G.Brassard and M. Yung. One-way group actions. In Advances in Cryptology—Crypto '90. Lecture
Notes in Computer Science, Springer-Verlag, Berlin, to appear.

[4] I. Damgird. Collision-free hash functions and public-key signature schemes. In Advances in
Cryptology— Eurocrypt *87, pp. 203-217. Lecture Notes in Computer Science, vol. 304, Springer-
Verlag, Berlin, 1988,

[5] I. Damgéird. A design principle for hash functions. In Advances in Cryptology—Crypto '89
(ed. G. Brassard), pp. 416—-427. Lecture Notes in Computer Science, vol. 435, Springer-Verlag,
Berlin, 1990.

[6] A. DeSantis and M. Yung. On the design of provably secure cryptographic hash functions. In
Advances in Cryptology— Eurocrypt *90. Lecture Notes in Computer Science, Springer-Verlag,
Berlin, to appear.

[7]1 W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory,
22: 644-654, Nov. 1976.

[8] Z. Galil, S. Haber, and M. Yung. Interactive public-key cryptosystems. Submitted for publication,
1990.

[9] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. System Sci., 28: 270299, April
1984.

How To Time-Stamp a Digital Document 111

[10] S. Goldwasser, S. Micali, and R. Rivest. A secure digital signature scheme. SIAM J. Comput.,
17(2): 281-308, 1988.

[11] A. Grundberg. Ask it no questions: The camera can lie. The New York Times, Section 2, pp. 1, 29,
August 12, 1990.

[12] R. Impagliazzo, L. Levin, and M. Luby. Pseudorandom generation from one-way functions. In
Proc. 21st STOC, pp. 12-24. ACM, New York, 1989.

[13] R.Impagliazzo and M. Luby. One-way functions are essential for complexity-based cryptography.
In Proc. 30th FOCS, pp. 230-235. IEEE, New York, 1989.

[141 H.M. Kanare. Writing the Laboratory Notebook, p. 117. American Chemical Society, Washington,
D.C, 1985.

[15] R. C. Merkle. Secrecy, authentication, and public-key systems. Ph.D. thesis, Stanford University,
1979.

[16] R. C. Merkle. One-way hash functions and DES. In Advances in Cryptology—Crypto 89
(ed. G. Brassard), pp. 428—446. Lecture Notes in Computer Science, vol. 435, Springer-Verlag,
Berlin, 1990.

M Naonr an AM Vaea TTniva } way hach firnatian

7 . d thai
L1/ ivi. (N&OT anid . YUng. universai o NG neir Cr

\.-vva.y L1401l TUIILVUVIID all
In Proc. 21st STOC, pp. 33-43. ACM, New York, 1989.

[18] M. O. Rabin. Digitalized signatures. In Foundations of Secure Computation (ed. R. A. DeMillo
et al.), pp. 155-168. Academic Press, New York, 1978.

[19] R. Rivest. The MD4 message digest algorithm. In Advances in Cryptology—Crypto *90. Lecture
Notes in Computer Science, Springer-Verlag, Berlin, to appear.

[20] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proc. 22nd
STOC, pp. 387-394. ACM, New York, 1990.

[21] C. Shannon. Prediction and entropy of printed English. Bell System Tech. J., 30: 50-64, 1951.

[22] A.C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd FOCS, pp. 80-91. IEEE,
New York, 1982.

Improving the Efficiency and Reliability of Digital
Time-Stamping

Dave Bayer* Stuart Haber
Barnard College Bellcore
Columbia University 445 South Street
New York, N.Y. 10027 U.S.A. Morristown, N.J. 07960 U.S.A.
dab@math.columbia.edu stuart@bellcore.com

W. Scott Stornetta
Bellcore
445 South Street
Morristown, N.J. 07960 U.S.A.
stornetta@bellcore.com

March 1992

Abstract

To establish that a document was created after a given moment in time, it
is necessary to report events that could not have been predicted before they
happened. To establish that a document was created before a given moment
in time, it is necessary to cause an event based on the document, which can be
observed by others. Cryptographic hash functions can be used both to report
events succinctly, and to cause events based on documents without revealing
their contents. Haber and Stornetta have proposed two schemes for digital
time-stamping which rely on these principles [HaSt 91].

We reexamine one of those protocols, addressing the resource constraint
required for storage and verification of time-stamp certificates. By using trees,
we show how to achieve an exponential increase in the publicity obtained for
each time-stamping event, while reducing the storage and the computation
required in order to validate a given certificate.

We show how time-stamping can be used in certain circumstances to extend
the useful lifetime of different kinds of cryptographic certifications of authen-
ticity, in the event that the certifying protocol is compromised. This can be
applied to digital signatures, or to time-stamping itself, making the digital
time-stamping process renewable.

*Partially supported by NSF grant DMS-90-06116.

1 Introduction

Causality fixes events in time. If an event was determined by certain earlier events,
and determines certain subsequent events, then the event is sandwiched securely
into its place in history. Fundamentally, this is why paper documents have forensic
qualities allowing them to be accurately dated and examined for signs of after-the-fact
tampering. However, documents kept in digital form need not be closely tied to any
physical medium, and tampering may not leave any tell-tale signs in the medium.

Could an analogous notion of causality be applied to digital documents to correctly
date them, and to make undetected tampering infeasible? Any solution would have
to time-stamp the data itself, without any reliance on the properties of a physical
medium, and would be especially useful and trustworthy if the date and time of the
time-stamp could not be forged.

In [HaSt 91], Haber and Stornetta posed this problem, and proposed two solutions.
Both involve the use of cryptographic hash functions (discussed in §2 below), whose
outputs are processed in lieu of the actual documents. In the linking solution, the
hash values of documents submitted to a time-stamping service are chained together
in a linear list into which nothing can feasibly be inserted or substituted and from
which nothing can feasibly be deleted. This latter property is insured by a further
use of cryptographic hashing. In the random-witness solution, several members of
the client pool must date and sign the hash value; their signatures form a composite
certification that the time-stamp request was witnessed. These members are chosen
by means of a pseudorandom generator that uses the hash of the document itself as a
seed. This makes it infeasible to deliberately choose which clients should and should
not act as witnesses.

In both of these solutions, the record-keeping requirements per time-stamping
request are proportional to the number of (implicit) observers of the event. In §3 below
we address the following problem: What if an immense flood of banal transactions
want their time-stamps to become part of the historical record, but history just isn’t
interested? We propose to merge many unnoteworthy time-stamping events into one
noteworthy event, using a tournament run by its participants. The winner can be
easily and widely publicized. Each player, by remembering a short list of opponents,
can establish participation in the tournament. We do this by building trees in place
of the linked list of the linking solution, thus achieving an exponential increase in the
number of observers. Such hash trees were previously used by Merkle [Merk 80] for
a different purpose, to produce authentication certificates for a directory of public
enciphering keys.

There are several ways in which a cryptographic system can be compromised. For
example, users’ private keys may be revealed; imprudent choice of key-lengths may be
overtaken by an increase in computing power; and improved algorithmic techniques
may render feasible the heretofore intractable computational problem on which the
system is based. In §4 below we show how time-stamping can be used in certain
circumstances to extend the useful lifetime of digital signatures. Applying the same
technique to time-stamping itself, we demonstrate that digital time-stamps can be

renewed.

Finally, in §5 we discuss the relationships between the different methods of digital
time-stamping that have been proposed.

2 Hash functions

The principal tool we use in specifying digital time-stamping schemes, here as in
[HaSt 91], is the idea of a cryptographic hash function. This is a function compressing
digital documents of arbitrary length to bit-strings of a fixed length, for which it is
computationally infeasible to find two different documents that are mapped by the
function to the same hash value. (Such a pair is called a collision for the hash
function.) Hence it is infeasible to fabricate a document with a given hash value. In
particular, a fragment of a document cannot be extended to a complete document
with a given hash value, unless the fragment was known before the hash value was
created. In brief, a hash value must follow its associated document in time.

There are practical implementations of hash functions, for example those of Rivest
[Riv 90] and of Brachtl, et al. [BCT 88], which seem to be reasonably secure.

In a more theoretical vein, Damgard defined a family of collision-free hash func-
tions to be a family of functions h : {0,1}* — {0,1}' compressing bit-strings of
arbitrary length to bit-strings of a fixed length [, with the following properties:

1. The functions h are easy to compute, and it is easy to pick a member of the
family at random.

2. Tt is computationally infeasible, given a random choice of one of these functions
h, to find a pair of distinct strings x, 2’ satisfying h(z) = h(z’).

He gave a constructive proof of their existence, on the assumption that there ex-
ist one-way “claw-free” permutations [Dam 87]. For further discussion of theoretical
questions relating to the existence of families of cryptographic hash functions (vari-
ously defined) see [HaSt 91] and the references contained therein.

In the rest of this paper, we will assume that a cryptographic hash function A is
given: either a particular practical implementation, or one that has been chosen at
random from a collision-free family.

3 Trees

In the linking scheme, the challenger of a time-stamp is satisfied by following the
linked chain from the document in question to a time-stamp certificate that the
challenger considers trustworthy. If a trustworthy certificate occurs about every N
documents, say, then the verification process may require as many as N steps. We
may reduce this cost from N to log IV, as follows.

Suppose we combine the hash values of two users’ documents into one new hash
value, and publicize only the combined hash value. (We will consider a “publicized”

3

value to be trustworthy.) Either participant, by saving his or her own document
as well as the other contributing hash value, can later establish that the document
existed before the time when the combined hash value was publicized.

More generally, suppose that N hash values are combined into one via a binary
tree, and the resulting single hash value is widely publicized. To later establish
priority, a participant need only record his own document, as well as the [log, N|
hash values that were directly combined with the document’s hash value along the
path to the root of the tree. In addition, along with each combining hash value, the
user needs to record its “handedness,” indicating whether the newly computed value
was placed before or after the combining hash value. Verification consists simply of
recomputing the root of the tree from this data.

Once hashing functions are chosen, such a scheme could be carried out like a world
championship tournament: Heterogeneous local networks could govern local subtrees
under the scrutiny of local participants, and regional “winners” could be combined
into global winners under the scrutiny of all interested parties. Global communication
facilities are required, and a broadcast protocol must be agreed upon, but no central-
ized service bureau need administer or profit from this system. For example, given
any protocol acceptable separately to the western and eastern hemispheres for estab-
lishing winners for a given one-hour time period, the winners can be broadcast by
various members of the respective hemispheres, and anyone who wants to can carry
out the computations to determine the unique global winner for that time period.
Winners for shorter time periods can similarly be combined into unique winners for
longer time periods, by any interested party.

At a minimum, daily global winners could be recorded in newspaper advertise-
ments, to end up indefinitely on library microfilm. The newspaper functions as a
widely available public record whose long-term preservation at many locations makes
tampering very difficult. An individual who retains the set of values tracing the path
between his document and the hash value appearing in the newspaper could establish
the time of his document, without any reliance on other records. Anyone who wishes
to be able to resolve time-stamps to greater accuracy needs only to record time-stamp
broadcasts to greater accuracy.

4 Using time-stamping to extend the lifetime of a
threatened cryptographic operation

The valid lifetime of a digitally signed document can be extended with digital time-
stamping, in the following way. Imagine an implementation of a particular digital
signature scheme, with a particular choice of key lengths, and consider a plaintext
document D and its digital signature o by a particular user. Now let the pair (D, o)
be time-stamped. Some time later the signature may become invalid, for any of a
variety of reasons, including the compromise of the user’s private key, an increase
in available computing power making signatures with keys of that length unsafe, or
the discovery of a basic flaw in the signature scheme. At that point, the document-

signature pair becomes questionable, because it may be possible for someone other
than the original signer to create valid signatures.

However, if the pair (D, o) was time-stamped at a time before the signature was
compromised, then the pair still constitutes a valid signature. This is because it is
known to have been created at a time when only legitimate users could have pro-
duced it. Its validity is not in question even though new signatures generated by the
compromised method might no longer be trustworthy.

The same technique applies to other instances of cryptographic protocols. In
particular, the technique can be used to renew the time-stamping process itself. Once
again, imagine an implementation of a particular time-stamping scheme, and consider
the pair (D, C), where C' is a valid time-stamp certificate (in this implementation) for
the document D. If (D, () is time-stamped by an improved time-stamping method
before the original method is compromised, then one has evidence not only that
the document existed prior to the time of the new time-stamp, but that it existed
at the time stated in the original certificate. Prior to the compromise of the old
implementation, the only way to create a certificate was by legitimate means. (The
ability to renew time-stamps was mentioned in [HaSt 91] but an incorrect method
was given. The mistake of the previous work was in assuming that it is sufficient
to renew the certificate alone, and not the document-certificate pair. This fails, of
course, if the compromise in question is a method of computing hash collisions for
the hash function used in submitting time-stamp requests.)

5 Different methods of time-stamping

To date, three different digital time-stamping techniques have been proposed: linear
linking, random witness and linking into trees. What is the relationship between
them? Does one supersede the others? Initially, one might think that trees satisfy
time-stamping requirements better than the two previously proposed methods, be-
cause the tree protocol seems to reduce storage requirements while increasing the
number of interested parties who serve as witnesses. But there are other tradeoffs to
consider.

First we consider the linking protocol. In certain applications, such as a laboratory
notebook, it is crucial not only to have a trustworthy date for each entry but also to
establish in a trustworthy manner the exact sequence in which all entries were made.
Linear linking of one entry to the next provides the most straightforward means of
achieving this.

Next we consider the difference between the random-witness method and the tree
method. While trees increase the number of witnesses to a given time-stamping event
in proportion to the number of documents time-stamped, they do not guarantee a
minimum number of witnesses. Neither do they guarantee that witnesses will retain
their records. In contrast, in random witness the effective number of witnesses is the
entire population, though only a small fraction are actually involved in any given
time-stamping event. Furthermore, the set of signatures computed by the random-
witness protocol explicitly creates a certificate which is evidence that a time-stamping

event was widely witnessed. Thus, the protocol does not depend for its final valid-
ity on witnesses keeping records. Random witness is somewhat analogous to placing
an advertisement in the newspaper, as discussed earlier, but with an additional re-
finement. Like the newspaper ad, it is effectively a widely witnessed event, but in
addition it creates a record of the witnessing.

Given these tradeoffs, we imagine that the three methods may be used in a com-
plementary fashion, as the following example illustrates. An individual or company
might use linear linking to time-stamp its own accounting records, sending the final
summary value for a given time period to a service maintained by a group of indi-
viduals or parties. This service constructs linked trees at regular intervals. The root
of each tree is then certified as a widely viewed event by using the random-witness
protocol among the participants. In this way, individual and group storage needs can
be minimized, and the number of events which require an official record of witnessing
can be greatly reduced.

References

[BCT 88] B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas, Jr.,
C. H. W. Meyer, J. Oseas, Sh. Pilpel, and M. Shilling. Data authen-
tication using modification detection codes based on a public one way
encryption function. U.S. Patent No. 4,908,861, issued March 13, 1990.
(Cf. C. H. Meyer and M. Shilling, Secure program load with modification
detection code. In Securicom 88: 6eme Congrés mondial de la protection
et de la sécurité informatique et des communications, pp. 111-130 (Paris,

1988).)

[Dam 87] 1. Damgard. Collision-free hash functions and public-key signature
schemes. In Advances in Cryptology—FEurocrypt 87, Lecture Notes in
Computer Science, Vol. 304, pp. 203-217, Springer-Verlag (Berlin, 1988).

[HaSt 91] S. Haber, W. S. Stornetta, How to time-stamp a digital document, Jour-
nal of Cryptography, Vol. 3, No. 2, pp. 99-111 (1991). (Presented at
Crypto ’90.)

[Merk 80] R. C. Merkle, Protocols for public key cryptosystems. In Proc. 1980 Symp.
on Security and Privacy, IEEE Computer Society, pp. 122-133 (Apr.
1980).

[Riv 90] R. L. Rivest. The MD4 message digest algorithm. In Advances in
Cryptology— Crypto 90, Lecture Notes in Computer Science, Vol. 537
(ed. A. J. Menezes, S. A. Vanstone), pp. 303-311, Springer-Verlag (Berlin,
1991).

Hashcah- A Denid of Servce Couner-Measue

AdamBack
e-mail: adam@ygpherspace.gr

1stAugust2002

Abstract

Hashcashwasoriginally proposedasa mechanisnto throttle systematiabuseof un-meterednternetresources
suchasemail,andanorymousremailersin May 1997. Five yearson, this papercapturesn one placethe various
applications,improvementssuggeted and relatedsubsequet publications and describesnitial experien@ from
experimentsusinghashcash

The hashcashCPU cost-functioncompuesa token which canbe usedasa proof-of-work. Interactve andnor-
interactive variantsof cost-functionscanbe constructedvhich canbe usedin situationswherethe sener canissue
achallengeg(connectiororientedinteracte protocol),andwhereit cannot (wherethe commuricationis store—and-—
forward,or paclet oriented)respectrely.

KeyWords: hashcasicost-functions

1 Intr oduction

HashcaslH1] wasoriginally proposedasa mechaism to throttle systematiabuseof un-meteredinternetresouces
suchasemail, andancymous remailersin May 1997 Five yearson, this papercaptuesin one placethe various
applications, improvements suggeste@ndrelatedsubseqant pulications,anddescribe initial experiencefrom ex-
perimerts usinghashcash.

The hashcashCPU cost-furction computesa token which canbe usedasa proof-of-work. Intereactive andnon
interactve varians of cost-functionscanbe corstructedwhich canbe usedin situationswherethe sener canissue
achalleng (comectionoriental interactie pratocol), andwhereit cannot (where the communicationis store—ad—
forward, or paclet oriented respectiely.

At the time of publicationof [1] the authorwas not aware of the prior work by Dwork and Naorin [2] who
proposeda CPU pricing function for the applicationof combattiy junk email. Subsequetty applicatiors for cost-
functions have beenfurther discussedy JuelsandBrainardin [3]. JalobssonandJuelsproposea dual purposefor
thework spentin a cost-function: to in additionperfam anothewise usefulcomputationin [4].

2 Cost-Functions

A cost-funtion shouldbe efficiently verifiable, but paraneterisablyexpersive to compute. We usethe following
notationto definea cost-function.

In the context of cost-functionswe useclient to referto the userwho mustcompue a token (deroted 7)) usinga
cost-furction MINT() whichis usedto createtokensto participatein a protacol with a server We usethe term mint
for the cost-functionbecaseof theanalogybetweercreatingcosttokensandminting physicalmoney.

The sener will checkthe value of the token usingan evaluation function VALUE(), andonly proceedwith the
protccol if thetokenhastherequiredvalue.

Thefunctions are paraneteriseddy the amoun of work w thatthe userwill have to expend on averageto mint a
token.

With interadive cost-furttions thesenerissuesachallengC to theclient—theseneruseshe CHAL() function
to compue the challenge (Thechallengeunction is alsoparametasedby thework factor)

C «+ CHAL(s,w) senerchalleng function
T « MINT(C) mint tokenbasedn challenge
V <+ VALUE(T) tokenevalugion function

With norrinteractivecost-furctionstheclientchosest’s own challeng or randan startvaluein the MINT() func-
tion, andthereis no CHAL() function

T < MINT(s,w) minttoken
V <+ VALUE(T) tokenevaluationfundion

Clearlyanoninteractivecost-funtion canbeusedin aninteractve setting,wherea the corverseis not possible.

2.1 Publicly Auditable, Probabilistic Cost

¢ A publicly auditale cost-functioncanbe efficiertly verified by ary third party without accesgo ary trapcor
or secretinformation. (Whenwe saypulicly auditade we meanimplicitly thatthe cost-furction is efficiently
puHicly auditablecomparedto the costof minting thetoken, ratherthanauditablein the wealer sensehatthe
audtor coudd repeathework doneby theclient.)

¢ A fixed costcost-furction takesa fixed amount of resourceso compue. Thefastesalgaithm to mint a fixed
costtokenis adetermiristic algorithm

¢ A probabilistic costcost-fundion is onewherethecostto theclientof mintingatokenhasapredctableexpectel
time,butarandmactualtime astheclientcanmostefficiently conputethecost-furctionby startingatarandan
startvalue. Sometinesthe clientwill getlucky andstartcloseto thesolution.

There aretwo typesof probailistic costboundedprobabilisticcostandunbounded probahilistic cost

— An unboundedprobalilistic costcost-furction, canin theorytake foreverto compue, thoud the proba-
blity of takingsignificantlylongerthanexpecteddecreaesrapidly towardszera (An exanple would be
the cost-function of beingrequred to throw a headwith a fair coin; in theorythe usercould be unlucky
andendup throwving mary tails, but in practicethe prabability of notthrowing a headfor & throws tends
towards0 rapidlyaslim_,« () = 0.)

— With a boundedprobabilistic costcost-furction thereis a limit to how unlucky the client canbein it's
searchfor the solution; for exampe wherethe client is expectedto searchsomekey spacefor a known
solution;the sizeof thekey spacdmpaosesanupper bourd onthe costof finding the solution.

2.2 Trapdoor-free

A disadwantageof known solutioncost-functionsis thatthe challengr cancheaplycreatetokers of arbitray value.
This precluespulic auditwherethe sener mayhave a conflict of interestsfor examge in webhit metering where
thesener mayhave aninterestto inflatethe numter of hits onit’s pagewhereit is beingpaidperhit by anadwertiser.

¢ A trapdoa-free cost-functionis onewherethesenerhasno advantag in minting tokens.

An exampleof a trapdor-freecost-funtion is the Hashcasliil] cost-funtion. JuelsandBrainards client-pwzzle
cost-furction is an examge of a knownsolutioncost-furction wherethe sener hasan adwartagein minting tokens.
Client-puzzesasspecifiedn the pape arein addition notpulicly auditalte, thoudh thisis dueto a storageoptimiza-
tion andnotinheren to their design

3 The Hashcashcost-function

Hashcaslis a norrinteractie, publicly auditable frapdamr-free costfunction with unbounded probabilistic cost.
Firstwe introducesomenotation considetitstrings = {0, 1}*, we define[s]; to mears the bit at offseti, where
[s]1 is theleft-most bit, and[s] | is theright-mostbit. [s];.. ; meanghebit-wise substringoetweerandincludingbits
iandj, [s]i..; = [s]i [| .- || [s];. S0s = [s]1..s|-
We definea binary infix commrisonopeatorlgtb whereb is thelengthof thecomman left-substrirg from thetwo
bit-strings.

Hashcaslis compuedrelative to a servicenames, to prevent tokensmintedfor onesener beingusedon anotler
(seners only accepttokers minted using their own service-nam). The service-mmecanbe ary bit-string which
unigely identifiesthe service(eg. hostname emailaddess etc).

Thehashcaslfunction is definedas(notethis is animproved simplifed vaiiant sinceinitial pulication seenotein
section5:

(PUBLIC: hashfunction #(-) with output sizek bits

T + MINT(s,w) find z € {0,1}* stH(s||z) ‘2", OF
return (s, z)
left

V « VALUE(T) H(s|lz) 'E, O
return v

\

Thehashcasleost-furction is basedon finding partial hashcollisionsontheall 0 bits k-bit string0 *. Thefastest
algorittm for compuing partial collisionsis bruteforce. Thereis no challeng asthe client can safely choosehis
own randm challen@, and so the hashcasltost-functionis a trapdamr-free and nonrinteractive cost-furction. In
additionthe Hashcasltost-furctionis pulicly auditalde, becauseanyonecanefficiently verify ary publistedtokens.
(In practice|z| shouldbe chasento belarge enoudn to male the prokability thatclientsreusea previously usedstart
valuenggligible; |z| = 128 bits shouldbe enowgh evenfor abusysener)

The sener needsto keepa doube spendingdatabasef spenttokens,to detectandrejectattemptsto spendthe
sametokenagain.To preventthedatabasgrowing indefiritely, theservicestringcaninclude thetime atwhichit was
minted. This allows the sener to discardentriesfrom the spentdatabasafterthey have expired. Somereasonale
expiry periad shoud bechoserto take account of clockinaccuagy, computationtime, andtransmissiordelays.

Hashcashwas origindly proposedas a courtermeasureagairst email spam,and agairst systematicabuse of
anorymous remailers.It is necessaryo usenon-irteractive cost-furttionsfor thesescenarig asthereis no chanrel
for the sener to senda challeng over. However one adwartage of interactive cost-furttionsis thatit is possible
to prevent pre-canputationattacks. For exanple, if thereis a costassociatedvith sendingeachemail this may be
sufficient to limit the scaleof email aluse perpetratedby spammes; however for a pure DoS-mdivated attacka
determiredadwersay mayspenda yearpre-omputirg tokers to all bevalid on the sameday, andonthatdaybeable
to temporaily overloadthe system.

It would be possibleto redu@ the scopefor suchprecompuation attacksby using a slovly changimg beacm
(unpredictablebroadtastautheticatedvalue changng overtime) suchassaythis weekswinning lottery numbes. In
this eventthe currentbeaconvalueis included in the startstring, limiting pre-canputationattacksto beingcondicted
within thetime periad betweerbeaca valuechangs.

4 Interactive Hashcash

With theinteractve form of hashcashfor usein interactve settingssuchas TCR, TLS, SSH,IPSECetc conrection
establishmena challeng is choserby the sener. Theaim of interactve hashcahis to deferd sener resoucesfrom
premauredepletion andprovide gracetil degradationof servicewith fair allocationacrossusersin thefaceof aDoS
attackwhereoneuserattemptgo dery serviceto the otherusersby consumiig asmary senerresourcesshecan.In

thecaseof securityprotacolssuchasTLS, SSHandIPSECwith computationallyexpensie conrectionestablishment
phasesnvolving public key cryptothe senerresourcébeingdeferdedis the senersavailableCPUtime.
Theinteractize hashcasleost-functionis definedasfollows:

(C < CHAL(s,w) choosec €g {0,1}*
return (s,w, ¢)
T« MINT(C) find z €g {0, 1}* stH(s||c||z) 'Z",, O
return (s, z)
V « VALUE(T) H(s|/c||z) 'L, ok
{ return v

4.1 Dynamic throttling

With interactive hashcaslit beconespossibleto dynamically adjustthe work factorrequited for the client basedon
sener CPUload Theappioachalsoadmitsthe possibility thatinteractve hashcasithalleng-respoee would only
be usedduring periods of high load This makesit possibleto phase-inDoS resistentprotocds without breking
backwards comptibility with old client software. Underperials of high load non-hashcastaware clientswould be
unable to conrect,or would beplacedn alimited conrectionpoolsubjecto olderlesseffective DoScounte-measures
suchasrandm connetion dropping.

4.2 hashcash-cookies

With conrection-slotdepletio attackssuchasthe syn-floal attack,andstraightforward TCP comection-slo depe-
tion thesenerresourcehatis beingconsunedis spaceavailableto the TCP stackto storeperconnectionstate.

In this scenariat may be desiralte to avoid keepirg per conrectionstate,until the client hascompued a token
with theinteractie hashcasleost-funtion. This deferseis similar to the syn-cmkie defensdo the syn-floodattack,
but herewe propaseto additiorally impasea CPU coston the conrectingmachire to resere a TCP conrection-slot.

To avoid storingthe challerge in the conrection state(which itself consume space)the sener may chaseto
computeakeyed MAC of theinformationit would otherwisestoreandsentit to the clientaspartof thechalleng so
it canverify the autheticity of the challeng andtokenwhenthe client returrs them. (This geneal techrique — of
sendinga recod you would otherwisestoretogethe with a MAC to the entity the informationis abou — is referrel
to asa symmetrickey certificate) This appoachis anal@ousto the techniqie usedin syn-mokies,and Juelsand
Brainardproposeda relatedappoachbut at theapplication protocd level in their client-pwzlespaper

For examge with MAC function M keyedby senerkey K thechalleng MAC couldbecompitedas:

PUBLIC: MAC function M-, -)

C « CHAL(w) choosec € {0,1}*
computem + M (K, t||s||p[lwl|c)
return (¢, s, p,w,c, m)

The client mustsendthe MAC m, andthe challen@ ¢ and challerge paranetersp with the responsdoken so
thatthe sener canverify the challeng andthe respmse. The sener shouldalsoinclude in the MAC the conrection
paraneters,at minimum enough to identify the conrection-slotand sometime measurmentor increasiig courter ¢
sothatold challeng resposescannot be collectedandre-usedafterthe conrection-slotsarefree. The challengeand
MAC would be sentin the TCP SYN-ACK respose messageandthe client would includethe interactve hashcash
token (challerge-respase)in the TCP ACK messageAs with syn-@okies,the sener would not needto keepary
stateperconrectionprior to receving the TCP ACK.

For backvardscompatibility with syn-cakie aware TCP stacks,a hashcash-akie avare TCP stackwould only
turnonhashcasltookieswhenit detectedhatit wassubjecto a TCP connetion-depletionattack.Similararguments
asgiven by DanBernsteinn [5] canbeusedto shav thatbackvardscompatilility is retainegnamelyunder syn-floa
attacksBernsteins agumentsshov how to provide backvardscomptibility with nonsyn-codie awareimplemerta-
tions; similarly underconrection-dgletionattackhashcah-cookesareonly turnedon ata point whereservicewould
aryway othewise be unavailableto a non-hashcash-aikie avare TCP stack.

Asthefloodincrease severity thehashcasttookie algoithm wouldincreaseahecollisionsizerequredto bein
theTCPACK messageThehashcash-aikie awareclientcanstill comect(albeitincreasinlyslowvly) with amorefair
chanceagairst the DoS attacler presuming the DoSerhaslimited CPU resouces. The DoS attacler will effectively
be pitting his CPU againstall the other(hashcasttookieaware)clientsalsotrying to conrect. Withoutthe hashcash
cookie defensehe DoSercanflood the sener with conrectionestablishmentandcanmoreeasilytie up all it's slots
by complding n connetionsperidle connectim time-ou wheren is the size of the connetion table,or pingng the
conrectionsonceperidle conrectiontime-ou to corvincethesenerthey arealive.

Conrectionswill behande outto userscollectively in rough propation to their CPUresource, andsofairnesds
CPUresoucebasedpresuming eachuseris trying to open asmary conrectionsashecan)sotheresultwill bebiased
in favor of clientswith fastprocessorasthey cancompue moreinteractve-hashcaslthallerge-respasetokensper
second.

5 Hashcashimprovements

In theinitially pudishedhashcaslschemethetarge stringto find a hashcollision on waschoserfairly by usingthe
hashof the service-mme(andrespectrely the service-mmeandchallengen theinteractive setting). A subsequeat
improvemert suggesteihdependentlyby Hal Finney [6] andThomasBoschloo[7] for hashcahis to find a collision
agairstafixedoutpu string. Their obserationis thata fixedcollision targetis alsofair, simplerandreducs verifica-
tion costby afactorof 2. A fixedtarget stringwhichis corvenientto compae trial collisionsagairstis thek-bit string
0% wherek is the hashoutput size.

6 Low Variance

Ideally cost-furctiontokensshouldtake a predctableamoun of compuing resource$o compue. JuelsandBrainards
client-pwezle construction providesa probabhlistic boundedeostby issuingchallengesvith known-séutions, however
while thislimits thetheoreical worstcaserunnirg time, it makeslimited practicaldifferenceto thevariarceandtypical
expeliencedrunnirg time. Thetechnqueof usingknown solutionsis alsonotapplicdle to thenoninteractve setting.
It is anopenquestionasto whetherthereexist prokabilistic bourded-cat, or fixed-costnon4interactive cost-functions
with the sameorde of magritude of verification costashashcash.

The othermoresignificantincrememal improvementdueto JuelsandBrainardis the suggestiorto usemultiple
sub-pzzleswith the sameexpectedcost,but lower variancein cost. This technique shouldbe applicalte to boththe
non4interactve andinteractize vaiiantsof hashcash.

6.1 Non-Parallelizability and Distrib uted DoS

RogerDingledne, Michael Freedmanand David Molnar put forward the argumentthat nonparallelizablecost-
functionsarelessvulnerableto DistributedDoS (DDoS)in chager 16 of [8]. Theirargumentis thatnonparallelizalbe
cost-furctionsfrustrateDDoS becauséhe attacler is thenunable sub-dvide andfarm out thework of compuing an
individual token.

The authordescribd a fixed-costcost-functionin [9] using Rivest, Shamirand Wagners time-lodk puzzle[10]
which alsohappes to be nonparallelizable. The time-lock puzzlecost-function canbe usedin eitheraninteractve
or non-irteractive settingasit is safefor the userto chosetheir own challerge. The applicability of Rivestet al's
time-lockpuzzleasa cost-functionwasalsosubsequely obsevedby Dingledne etal in [8].

For completeesswe presenthetime-lock puzzlebasedixed-costandnonparallelizatte cost-furction from [9]
here:

(PUBLIC: n = pq
PRIVATE: primesp andg, ¢(n) = (p —1)(q — 1)

C + CHAL(s,w) choosec €x [0,n)
return (s,c, w)

T + MINT(C) computex + H(s||c)
computey < z*° (mod n)
return (s,c, w,y)

V + VALUE(T) computez < H(s||c)
computez < z* mod ¢(n)
if 22 =y (mod n) return w
elsereturn 0

\

The client doesnot know ¢(n), andso the mostefficient methodfor the client to calculateMINT() is repeatd
exponentiation which requilesw exponentiatiors. The challengr knows ¢(n) which allows a moreefficientcompu
tation by redwcing the exporentmod¢(n), sothe challemer canexecue VALUE() with 2 modular exponentiatios.
The challengr asa side-efecthasa trapdoa in compuing the cost-functionashe cancompue MINT() efficiently
usingthesamealgorithm

We argue however that the added DDoS protectionprovided by nonjparallelizablecost-funtions is maminal:
unlessthesenerrestrictsthe nunberof challengsit hand outto arecogizablyunigueclientthe DDoSattacler can
farmoutmultiple challengsaseasilyasfarmoutasub-dvidedsinglechallerge,andconsumeesource onthesener
atthe samerateasbefore Furtherit is notthathardfor a singleclientto masqueraglasmultiple clientsto a sener.

Considemlso:the DDoSattaclerhasgeneally dueto the natureof his methodof commanleeringnodesanequal
numter of network conneted noces at his disposalas proessors. He cantherebre in ary casehave eachattack
nodedirectly participatein the normal proto®l indistingtisably from ary legitimate user This attackstratey is also
otherwiseoptimd aryway asthe attacknodeswill presenha variedsetof sourceaddessesvhich will foil attempts
at percomectionfairnessthrottling stratgiesandrouterbasedDDoS courter-measuredasedon volume of traffic
acrosdP addressranges. Thereforefor the natual attacknodemarshdling patterrs nonparallelizablecost-functions
offer limited addedresistance.

As well asthe agumentsagairst the practicalefficacy andvalue of nonparallelizalbe cost-furctions, to date
nonparallelizatte costfunctions have had ordersof magritude slower verificationfunctions thannon-parallelizale
cost-furctions. Thisis becasethenon-parallelizablecost-furctionssofar discussedh theliteraturearerelatedto trap-
doorpulic key cryptagraply constriectswhich areinherettly lessefficient. It is anopenquestionasto whetherthere
exist nonparallelizablecost-furctionsbasedon symmetrickey (or publickey) construts with veiification functions
of thesameorderof magnitude asthoseof symmetric-cypto baseccost-furctions.

While for the applicatio of time-lockpuzzlesto cost-furctions,a redwedpublic key sizecoud beusedto speed
up the verificationfunction, this appioachintroducesrisk thatthe moddus will be factoredwith the resultthat the
attacler gairs a big adventagein minting tokens.(Note: factorirg is itself alargdy parallelizalle computation.)

To combatthis the sener shouldchang the pulic parametes periadically. However in the particlar caseof the
public paranetersusedby time-lock puzzles (which arethe sameasthe RSA moddus usedin RSA encnyption), this
operdion is itself modeately expensie, so this operatiom would not be perfamedtoo frequently. It would probably
notbewiseto deplo/ softwarebasednkey sizesbelov 768bits for thisaplicatian, in addition it would helpto chang
keys periddically, sayevery hou or so. (RSA modudii of 512 bits have recentlybeenfactoed by a closedgroup as
discussedn [11] and morerecentlyhave beendemastratedby Nicko van Somerenret al to be factofzable using
standardequipmentin anoffice asrepotedin [12]; DDoSattaclersareknown beableto mustersignificantresouces,
prokably easilyexceedimg thoseusedin this demorstration.)

The time-lock puzzle cost-function alsois necessarilyrap-cor asthe sener needsa private veiification-key to
allow it to efficiently verify tokers. The existarce of a veiification-key presentghe addedrisk of key compomise
allowing the attacler to by-passthe cost-function protection (Theinteractve hashcasltost-functionby comparison
is trap-bor-free, so thereis no key which would allow an attacler a shorteut in compuing tokens). In factif the
verificatin-key werecompiomised,it could be replacedbut this needaddscompleity andadmirnistrative overhead
asthis evert needsto be detectecandmanualintervertion or someautanateddetectiontriggering key-replacemat
implemerted.

The time-lock puzzle cost-furction also will tendto have larger messagess thereis a needto comnunicate
planredandemepgeng re-keyedpulic paraneters.For someapplicatiors, for exanple thesyn-codkie andhashcash
cookie protacols, spaces at a premium dueto backwards compatibility andpaclet size constraits imposedby the
network infrastricture.

Soin summay we argue that nonparallelizablecost-furctions are of questionale practica valuein protectirg
agairst DDoS attacks have moreexpersive verificationfunctions, incur the risk of verification key comgomiseand
attendahkey managerantcompleities, have large messagesndaresignificantlymorecomple to implement. We
therefae recomnendinsteadthe simplerhashcasipratocol (or if the public-auditability andnoninteractve options
arenotrequiredJuelsandBrainards client-puzlesarerougHy equialert).

7 Applications

Apart from theinitially proposedapplicatiosfor hashcaslof throttling DoS againstremailernetworks anddeterirg
emailspamsincepubicationthefollowing applicatioshave beerdiscussedexploredandin somecasesmplemente
anddeplo/ed:

¢ hashcah-cooles,apotentialextensionof thesyn-codie asdiscussed sectiord.2for allowing moregracetil
servicedegradationin thefaceof comectiondepletionattacks.

e interadive-haskashasdiscussedn section4 for DoS throttling andgracdul servicedegradationunderCPU
overloadattackson security pratocols with compuationally expensive connetion establishmenphases.No
depgoymentbut theanalogusclient-pwzzle systemwasimplemenedwith TLS in [13]

e hashcahthratling of DoS puHication floodsin anorymouspulication systemssuchasFreene{14], Publius
[15], Tangler[16],

¢ hashcahthrottling of servicerequestsin thecryptagraphc Self-certifying File Systen{17]
¢ hashcahthrottling of USENETflooding via mail2rews networks [18]

e hashcahasa minting mechaism for Wei Dai’s b-money electroniccashproposal,an electroniccashscheme
without a bankng interface[19]

8 Cost-function classificationscheme

We list herea classificatiorof charactestics of cost-functions.We usethefollowing notationto dende the properties
of a cost-function:

(fe = {1, 3,0}], [0 = {0,5, 1}, [{i, 2}), [{a, a}], [{t. £}], [{p, P}])

Wheree istheefficiengy: valuee = 1 meansficiertly-verifiade —verifiablewith costcompaableto or lowerthan
thecostof verifying symmetic key constructsuchashashcasihich consumejustasinglecompessiorround of an
iterative compressionfunctionbasechashfunction suchasSHA1 or MD5. Valuee = % meangractically-verifiable
we meanlessefficiently thanefficientyverifiable but still efficient enowgh to be practicalfor someapplicatiors, for
exampe the authorconsides the time-lock puzzlebasedcost-functionwith it's two moduar exponentiationgo fall
into this categgary. Valuee = 0 meansrerifiablebutimpracticd, thatthe cost-functionis verifiablebut theverification
function is impractically slow suchthat the existanceof the cost-function senesonly asa proof of concet to be
improveduponfor practicaluse.

And ¢ is a characteization of the standareteviation, valueoc = 0 mears fixed-cet, ¢ = 1 meansbourded
probablistic costandoc = 1 meansunbaindedprobabilistic cost Note by bounded probalilistic-cost we mean
usefully boinded— a bound in the work factorin excessof a work-factor that an othewise fundionally similar
unbaindal cost-functionwould only reachwith negligible prokability would not be useful.

And i derotesthatthe cost-fundion is interactive andz thatthe cost-fundion is non-irteractive

And a denoteghatthecost-functionis publiclyauditalle, a denoteshatthecost-functionis notpubliclyaudtable,
whichmeansn practicethatit is only verifiableby the serviceusinga privatekey material.Noteby puHic-auditability

we meanefficiently pulicly-audtable, and would not considerrepeting the work of the token minter as adeqate

efficiency to classify
And ¢ denoteghatthe sener hasa trapdor in computing the cost-furction, conversely t denoteshatserer has

notrapdorin compuing the cost-furction.
And p dendesthatthe cost-functionis parallelizdle, 5 deonesthatthe cost-functionis non-parallelizade.

trapdmr-free trapcbor
interactve hashcash client-puzzles
(ezl,g:laiaaatap) (eZI,U:%,i,a,t,p)
time-lock

(e=1%,0=0,i,a,t,p)

noninteractve hashcash

(e = 170 = 17i7a7t7p)
time-lock

(e=3,0=0,%a,t,p)

8.1 OpenProblems

¢ existane of efficiently-verifialle noninteractive fixed-cet cost-furctions (e =

1,0 = 0,7) (andtherelated
wealer proem: existanceof samewith probabilistic bourded-cst (e = 1,0 = 1,7))

¢ existane of efficiently-verifiade non-irteractivenon-parallelizable cost-functions(e = 1,7, p) (andtherelated
wealer prodem: existanceof samein interactve setting(e = 1,4, p))

¢ existane of publicly-auditalde non-interactive fixedeost cost-furctions (¢ = 0,7,a) (andthe relatedwealer
problem: existanceof samewith bourdedprobabilistic-cost(c = %,7, a))

References

[1] AdamBack. Hashcashiiay 1997 Publishedathttp://w ww.cyphersp ace.org/has hcash/ .

[2] CynthiaDwork and Moni Naor Pricing via processingr comtatting junk mail. In Proceeding of Crypta,
19. Also availableashttp://iww w.wisdom.w eizmann.ac. il:81/Diens t/Ul/2.0/D escribe/
ncstrlw eizmann_il /CS95- 20.

[3] Ari JuelsandJohnBrainard. Client puzzles: A cryptogaphic courtermeasuregairst connetion depletion
attacks. In Networkand Distributed SystemSecuritySympsium 199. Also available as http://iww w.
rsasecur ity.com/rs alabs/staff /bios/ajuel s/publicat ions/client - puzzles/

[4] Markus JalobssonandAri Juels.Proofsof work andbreadpudding protacols. In Proceeding of the IFIP TC6
and TC11Joint Working Confeenceon Commuitationsand MultimediaSecurity(CMS’99), LeuvenBelgium,
Septembr 199. Also availableashttp:/ /citeseer.n j.-nec.com/2 38810.html

[5] DanBernstein.Syncookies. Publishedathttp://c r.yp.to/syn cookies.htm | .
[6] Hal Finney. Personatomnunication Mar 202.
[7] ThomasBoschloo.Personatommuication,Mar 2002

[8] Andy Oram, editor Peerto-Peer: Harnessing the Power of Disruptive Technolagies O'Reilly
and Associates, 200L. Chapter 16 also available as http:/fr eehaven.net /doc/oreill y/
accounta bility- ch16 .html

[9] AdamBack. Hashcash amortizalte pulicly auditatbe costfunctions. Early draft of papey2000.

[10] RonaldL Rivest, Adi Shamir and David A Wagner Time-lock puzzlesand timed-releasecrypto. Tech-
nical Report MIT/LCS/TR-684, 1996 Also available as http://the ory.lcs.mit .edu/"rives t/
publicat ions.html

[11] Hermante Riele. Securityof e-commercethreatered by 512-bit numker factorization Publishedat http:
IIwww.cw i.nl/"kik/ persb- UK.htm| , Aug 1999

[12] DennisFisher Expets debaterisksto crypto, Mar 2002 Also available as http://w ww.eweek.co m/
article/ 0, 3658, s=720 &a=24663, 00.asp .

[13] Drew Deanand Adam Stubbldield. Using cleint puzzlesto protecttls. In Proceeding of the 10th USENIX
SecuritySympsium Aug 2001 Also availableashttp://www. cs.rice.edu ["astubble /papers.
html .

[14] lanClarke,OskarSandbay, Brandm Wiley, andTheodwe Hong FreenetA distributedanorymous information
storageandretrieval system.In Hannes~ederratheditor, Proceedhgs of the International Workshopon Design
Issuesin Ananymity and Unokservability. Springer, 2001 Also available as http://fr eenetprojec t.
org/cgi- bin/twiki/v iew/Main/Pa pers .

[15] Marc Waldman,Aviel D Rubin, and Lorrie Faith Cranor Publiss: A robust, tamperevident, censorship
resistantweb publishirg system. In Proceeding of the 9th USENIX Security Sympsium Aug 200Q
Also availableashttp:// www.usenix. org/publica tions/libr ary/proceed ings/sec200 0/
waldman/ waldman_ht ml/v2.html

[16] Marc Waldmanand David Mazieres. Tangler A censoship resistantpulishing systembasedon doaiment
entangement. In Proceeding of the 8th ACM Confeenceon Computerand Communiation Security Nov
200L. Also availableashttp:// www.cs.nyu. edu/"waldma n/.

[17] David Mazieres Self-certifying-ile SystemPhDthesis Massachusetisistituteof Technolgy, May 200Q Also
availableashttp://scs. cs.nyu.edu/ “dm/ .

[18] Alex de Joode.Hashcashsuppat at dizum mail2rews gatevay. Publishedat https://s sl.dizum.co m/
hashcash /, 20@.

[19] Wei Dai. b-maey. Publishedathttp://w ww.eskimo.c om/"weidai /bmoney.txt , Nov 1998

10

Secure Names for Bit-Strings

Stuart Haber*
stuart@surety.com

Abstract

The increasing use of digital documents, and the need to
refer to them conveniently and unambiguously, raise an im-
portant question: can one “name” a digital document in a
way that conveniently enables users to find it, and at the
same time enables a user in possession of a document to
be sure that it is indeed the one that is referred to by the
name? One crucial piece of a complete solution to this prob-
lem would be a method that provides a cryptographically
verifiable label for any bit-string (for example, the content,
in a particular format, of the document). This problem has
become even more acute with the emergence of the World-
Wide Web, where a document (whose only existence may
be on-line) is now typically named by giving its URL, which
is merely a pointer to its virtual location at a particular
moment in time.

Using a one-way hash function to call files by their hash
values is cryptographically verifiable, but the resulting names
are unwieldy, because of their length and randomness, and
are not permanent, since as time goes on the hash function
may become vulnerable to attack. We introduce procedures
to create names that are short and meaningful, while at the
same time they can persist indefinitely, independent of the
longevity of any given hash function. This is done by naming
a bit-string according to its position in a growing, directed
acyclic graph of one-way hash values. We prove the security
of our naming procedures under a reasonable complexity-
theoretic cryptographic assumption, and then describe prac-
tical uses for these names. Animplementation of our naming
scheme has been in use since January 1995.

1 Introduction

Users of documents need to refer to those documents in or-
der to keep records and in order to communicate with other
users of the documents. In practice, users name their doc-
uments in various ways. A name must be unambiguous, at
least in the context of its use; this requires some connec-
tion between the name and the integrity of the document it

*Surety Technologies, 1 Main Street, Chatham, N.J. 07928, U.S.A.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee

CCS 97, Zurich, Switzerland

Copyright 1997 ACM 0-89791-912-2/97/04 ..$3.50

28

W. Scott Stornetta*
scotts@surety.com

names.

In the traditional world of paper documents, there are
usually reasonable guarantees of this connection. In the case
of printed books and magazines, large print runs that are
the result of single typesetting efforts make it easier to be
confident that all copies of a printed document are the same,
with a definite name printed in a conventional place in the
document. Making a change to a paper document of any
sort, even a small change, typically leaves forensic evidence.

A characteristic feature of digital documents, by con-
trast, is that they are easy to copy and to alter. The naming,
problem is especially troubling if the document exists only
on-line and never in conventional paper-based form. For on-
line documents, a useful naming scheme would allow users
to employ the name to find documents, as well as to check
the integrity of the documents that they find. A number of
proposals have been made for such naming systems (see e.g.
[SM 94, KW 95, BD* 95]). These proposals address in dif-
ferent ways the problem of how to “resolve” the name into
a location where the document might be found.

It is the integrity-checking problem that we address in
this work: how to make sure that the bit-string content
of a given digital document is indeed the same as the bit-
string that was intended. Heretofore, two different sorts of
mechanisms have been proposed, digital signatures and one-
way hash values.

Having the author or publisher of a document compute a
digital signature for its bit-string content is a reasonable use
of cryptographic tools for this purpose. (See, for example,
[R 95, M 94].) However, the ability to validate many digital
signatures requires the presence of a public-key infrastruc-
ture, and the trustworthiness of the validation procedure
relies on the assurance that the signer’s private signing key
is indeed secure. For some on-line documents, the infras-
tructure and these assurances may not be available. For
long-lived documents, the security of the binding between
a public key and the person or role of the putative signer
becomes even more problematic. (A general solution to the
latter problem is briefly described in §5.)

Thus it would be useful to have an integrity mechanism,
depending on the exact contents of the bit-string in question,
that does not depend on the secrecy of a cryptographic key.
A natural choice for such a mechanism is the use of a onc-
way hash function, naming any bit-string by its hash value.
(See, for example, [BD* 95].) However, while this method
is intrinsically verifiable, there are several inconvenient fea-
tures:

o A desirable feature for the names given to a collection

of objects is that they be long-lasting, if not perma-
nent. (This is one of the functional requirements for
URNs [SM 94].) But as technology advances, any par-
ticular choice of a presumably one-way function for a
naming scheme becomes less secure, so that it must be
replaced (see [Dob 96a, Dob 96b])." The unpleasant
result is that the name of a long-lived document will
need to change over time.

o Hash values are too long for a human user to remember
or even to communicate easily to another human being.
{For example, it is currently recommended that one-
way hash functions compute outputs that are at the
very least 128 bits long; this is the output length of
MD5 [Riv 92]. In a 6 bit/character encoding, this is
22 alphanumeric characters long.)

o The author of a bit-string document has no control
over the form of its name. A one-way hash function
produces a random-appearing bit-string of the appro-
priate length as the hash value of a document. Thus,
inconvenient as it may be for the author, there will be
no connection between the names of documents that
are related to each other, either in form or in sub-
stance.

This paper presents a method for naming bit-strings that
retains the verifiable security of hash-based names, while
avoiding the constraints listed above, as well as avoiding the
use of secret cryptographic keys. The method is a variation
on the digital time-stamping schemes of [HS 91, BHS 93].
In summary, the essence of the new scheme is to keep a
repository of hash values that depend on many bit-string
inputs, and to name each bit-string by a concise description
of a location in the repository to which it can be securely
“linked” by a one-way hashing computation.

An implementation of our naming scheme has been run-
ning continuously since January 1995 [Sur 95].

The rest of this paper is organized as follows. After tech-
nical preliminaries in §2, including both a brief discussion
of the wider problem of naming digital documents as well
as a formal description of our sub-problem, we present our
scheme and prove its security in §3. Motivated by the explo-
sive growth of the Internet, we mention a number of possible
applications of our scheme in §4. In §5, we describe a method
for extending the lifetime of our digital names beyond the
cryptographically secure lifetime of the hash functions used
to compute them. Finally, we discuss several different sorts
of practical implementation in §6.

2 Preliminaries

2.1 Naming digital documents

A naming system for digital documents should perform (at
least) two functions. It should help the user (1) to find the
document named; and (2) to reassure himself or herself that
a given document is indeed the correct one, i.e. that it is
indeed a perfect copy of the document that was intended.
To enable both these functions, the “name” could include
both identification information as well as location informa-
tion. System design may include procedures for registration
of new documents, for finding a document given its name,

IFor example, because of recent attacks on MD5, RSA Laborato-
ries recommends that “in the future MD35 should no longer be imple-
mented in signature schemes, where a collision-resistant hash function
15 required” [Dob 96¢].

29

for updating a document’s location information, and for val-
idating the integrity of a document. Typically, there is a
server that “resolves” or translates a name into location in-
formation, for example into a URL or a list of URLs. The
name may include other information about the document,
including such data as title, author, format, price, and ac-
cess privileges.

A large body of work has been devoted to the difficult
problem of designing and building a naming system of this
sort so that it is usable, useful, and reliable. In [SM 94]
a set of functional requirements is described for Uniform
Resource Names (URNs), the names to be assigned by a
naming system for resources on the Internet. A number
of researchers have built naming systems, including, among
others, [KW 95, BD* 95]. (This is by no means an exhaus-
tive list.)

In this work we propose a new method for the integrity-
checking piece of naming systems for digital documents. All
previously proposed systems that included mechanisms for
checking the integrity of the bit-string or bit-strings that
make up a digital document have used either digital signa-
tures or one-way hash functions for this purpose. For certain
applications, these methods have the problems described in
§1 above.

2.2 Hash functions

The principal technical tool we use in this paper is that
of a one-way hash function. This is a function compressing
digital documents of arbitrary length to bit-strings of a fixed
length, for which it is computationally infeasible to find two
different documents that are mapped by the function to the
same hash value. (Such a pair is called a collision for the
hash function.)

Practical proposals for one-way hash functions include
those of MD5 [Riv 92], SHA-1 [NIST 94], and RIPEMD-
160 [DBP 96]. Though the actual security of these functions
(i.e., the precise difficulty of computing collisions for them)
is not known, they are now in more or less widespread use.

Definition In a more theoretical vein, Damgard defined
a family of collision-free hash functions to be a family {Hx}«
of sets of functions (indexed by a security parameter k) with
the following properties:

1. Each Hy is a set of functions & : {0,1}* — {0, 1}* that
are computable in polynomial time.

2. Given k, it is easy to choose b € H}; at random.

3. It is computationally infeasible, given a random choice
of one of these functions, to find a collision for the
function. More precisely, for any polynomial algorithm
A, for any positive constant c,

Pr[h — Hy;(z,2") — A(R) 1z # 2’ h(z) = h(z")] < k¢
for sufficiently large k.

Damgérd gave a constructive proof of their existence, on
the assumption that there exist families of one-way “claw-
free” permutations [Dam 87]. More generally, any “one-way
group action” is sufficient [BY 90]. Concretely, the construc-
tion can be based on the difficulty either of factoring or of the
discrete logarithm function. (As usual, the collision adver-
sary A in condition (3) above can be uniform or non-uniform,
depending on the precise form of the hypothesis made on the
computational complexity of the underlying problem.) For

e

a variety of reasons, none of the known theoretical construc-
tions of collision-free hash functions are practical.

In practice, the infeasibility of computing collisions for a
particular hash function depends on the current state of the
art, both the current state of algorithmic knowledge about
attacking the function in question, as well as the compu-
tational speed and memory available in the best current
computers. As the state of the art advances, it is likely
that a function that was once securely one-way will even-
tually cease to be so. For example, Dobbertin’s recently
announced attacks on MD4 and MD5 have considerably re-
duced the community’s confidence in the strength of these
two functions [Dob 96a, Dob 96b, Dob 96c¢]. In §5 below we
offer a solution to the problem this poses for certain practi-
cal systems whose real-world security depends on the actual
infeasibility of specific computational tasks.

We refer the reader to [Pre 93] for a thorough discussion
of one-way hash functions.

2.3 Theoretical model

We emphasize that this is a theoretical description of the
problem of verifiably “naming” bit-strings, which is only a
piece of the larger problem of naming digital documents.

The setting for our problem is a distributed network of
parties. The network may include a server S as well as a
repository R; parties may query the repository, asking for a
copy of a particular item it contains.

Definition A naming scheme for this setting consists of:
o a security parameter k;

o a polynomial-time naming protocol N, possibly requir-
ing interaction with the server S, taking as input a
bit-string z, and producing as output a name n for z,
a certificate ¢, and the addition of items to the repos-
itory R; and

¢ a polynomial-time validation protocol V, that takes as
input a triple (z,n,c) and the result of a query to R,
and either accepts or rejects its inputs.

If (n, ¢) is the output of an invocation of N on input z, then
V accepts the input (z,7,c) when it is accompanied by a
correct response to a query to R.

It is possible, of course, to specify a naming scheme that
does not require a server or a repository. In that case, the
naming protocol and the validation protocol may simply be
algorithms that any party in the network may invoke with-
out interacting with outside parties.

Definition A counterfeiting adversary to a naming scheme
[N,V, S] is a (possibly probabilistic) algorithm A that per-
forms as follows. Given k as input, A produces (polyno-
mially many) naming requests zj,zs2,...; for each z; A is
given the output of N(z;). The request £:4; may be com-
puted after A has received the response to its ith request.
In addition, 4 may make (polynomially many) queries to
R. Finally (after ¢ naming requests, say), A’s output is of
the form (z,n,c). This output is a successful counterfeit if
z#z, (fori=1...q)and V accepts (z, n, c) (after a correct
response to any queries to R).

Definition A naming scheme is secure if for any poly-
nomially bounded counterfeiting adversary A and for any
positive constant ¢, A’s success probability on input k is
less than k™ for sufficiently large k.

30

To illustrate our definitions, here is a simple example of
a naming scheme, where the only role of the server is to
announce its random choice of a hash function & € Hy.. The
naming procedure is just N(z) = h(z) with no certificates,
and V accepts (z,n) if n = h(z). It is clear that this defines
a secure naming scheme as long as Hy is the kth set in a
family of collision-free hash functions.

We remark that the roles of S as trusted server and R
as trustworthy repository in these definitions are just an
artifact of how we have chosen to present and to analyze
our naming schemes, allowing a clean separation between
issues of the security of the scheme itself and issues of how
it might be implemented in practice.

2.4 Digital time-stamping

Our solution to the naming problem builds on the work of
[HS 91] and [BHS 93], whose authors describe several pro-
cedures with which users can certify (the bit-string contents
of) their digital documents, computing for any particular
document a time-stamp certificate. Later, any user of the
system can validate a document-certificate pair; that is, he
or she can use the certificate to verify that the document
existed, in exactly its current form, at the time asserted in
the certificate. It is infeasible to compute an illegitimate
document-certificate pair that will pass the validation pro-
cedure.

Because we use it directly in our naming scheme, we
summarize here one digital time-stamping scheme. A cen-
tral “coordinating server” receives certification requests—
essentially, hash values of files—from users. At regular in-
tervals, the server builds a binary tree out of all the requests
received during the interval, following Merkle’s tree authen-
tication technique; the leaves are the requests, and cach
internal node is the hash of the concatenation of its two
children [Merk 80]. The root of this tree is hashed together
with the previous “interval hash” to produce the current in-
terval hash, which is placed in a widely available repository.
The server then returns to each requester a time-stamp cer-
tificate consisting of the time at which the interval ended,
along with the list of sibling hash values along the path lead-
ing from the requester’s leaf up to the interval hash, cach
one accompanied by a bit indicating whether it is the right
or the left sibling. The scheme also includes a validation
procedure, allowing a user to test whether a document has
been certified in exactly its current form, by querying the
repository for the appropriate interval hash, and comparing
it against a hash value appropriately recomputed from the
document and its certificate.

It is noteworthy that the trustworthiness of the certifi-
cates computed in this scheme depends only on the integrity
of the repository, and not (for example) on trusting that a
particular private key has not been compromised or that
a particular party’s computation has been performed cor-
rectly.

3 A naming scheme for bit-strings

Next we describe a naming scheme for a network that in-
cludes a server S and a repository R. Many executions of
N and of V may be performed concurrently in the network.
We assume that there exists a family {H}s of collision-frec
hash functions. Given an initial choice of security param-
eter k, S announces to all parties its random choice of a
one-way hash function 2 € Hi. Our scheme is a variation
on the time-stamping scheme described in §2.4 above, with

S playing the role of the coordinating server that computes
certificates in response to requests and makes additions to
the repository R.

We abbreviate a bit-string’s certificate by omitting the
list of hash values, leaving only a pointer to the relevant
interval hash (for example, the time at which it was com-
puted), and an encoding of the position of the request in
the tree for that interval (for example, the sequence of left
or right bits). It is this abbreviation that we propose to use
as the name of the bit-string.

More explicitly, an invocation of N on input z begins
with the computation of y = k(z), and the submission of y
to S, which includes y as one of the leaves of the tree being
built in the current time interval. At the end of the interval,
having built a tree of height I (that includes the previous
interval hash), S places the root of the tree in R as the
current interval hash with label ¢, say. S responds to the re-
quest by returning the certificate ¢ = [#; (21, b1), ..., (21,)],
where each b, = L or R. Finally, the name returned by N
for argument z is n = [t; b1,...,bi).

One uses the entire certificate in order to validate that
a particular string correctly names a particular bit-string
document, first by checking that the putative name was cor-
rectly extracted from the certificate, and then by following
the usual validation procedure for the document-certificate
pair (recomputing the path from the leaf to the root of the

tree).
To be precise, V operates as follows, given as inputs a
document z, a name n = [¢;b1,...,b], and a certificate ¢ =

[t's (21,81),- .-, (z1,8))]: First, V' checks that ¢t = ¢’ and that
each b, = b;. Next, V computes y1 «— h(z) and then (for
1 1...0)if b = L then yig1 — h(z:i - yi) else if b, = R
then 341 < h(#: - z). Finally, V queries R for the hash
value stored at location ¢, and checks that it is identical to
1. V accepts if all these checks are satisfied and rejects
otherwise.

Figure 1 below illustrates the tree built by S for a time
interval during which it received eight requests, containing
the eight hash values a, b, ¢, d, ¢, f, g, and k. In this diagram,
ab is the hash of the concatenation of a and b, etc., and I H,
and I H,_; are the respective interval hashes for the current
and the previous intervals. The certificate computed by S
for the third request (the one containing hash value ¢}, for
example, is the following:

it; (4,R), (ab, L), (eh, R), (I He—1, L)].

3.1 Security

"The security of this naming scheme follows directly from the
infeasibility of computing hash collisions for functions from
{Hx}r, since the only possible counterfeit names include
hash collisions. In essence, if z is a bit-string on which
N was never invoked during a run, any triple (z,n,c) that
V' will accept (after the correct response to a query to R)
will include a hash collision for the function & announced by
S at the beginning of the run: either « itself or one of the
hash values z, in ¢ (when combined on the left or the right
with 3,) collides with another argument to h whose hash
value was computed during the run. Therefore we have the
following theorem.

Theorem 1 If{Hy}k is a family of collision-free hash func-
tions, then the naming scheme [N,V, S] described above is
secure.

Because the reduction in the proof is so direct, it is easy
to give an “exact security” analysis (cf. {Lev 85, BKR 94}) of

31

the strength of this scheme, whether the hash functions used
are from the collision-free family provided by a theoretical
cryptographic assumption or rather practical hash functions,
as in the implementations described in §6 below.

3.2 Variations on the scheme

Of course, the secure verifiability of the names assigned by
the scheme described above does not depend on the partic-
ular combination of binary trees and linked lists used. By
systematically invoking the hash function on pairs or or-
dered lists of hash values, new hash values can be computed
from old ones so as to form a directed acyclic graph (by di-
recting an edge from each of the inputs to the hash value
output). Design considerations (including those discussed
in §6.1 below) may dictate several different combinatorial
structures for this directed graph.

Whatever the structure of the growing graph of hash
values, it is secured by making portions of the graph widely
witnessed and widely available. To insure the verifiability
of the names, it suffices that every document in the naming
structure be linked by a directed path to a widely witnessed
hash value; a standard ordering of the incoming edges at
each node can be used to encode the path. Then the name
of a document is given by this encoding of its location in the
graph, together with a pointer to the hash value at the end
of the path, and the argument of Theorem 1 applies.

For example, in one variation of the scheme described
above, a list of documents may be used to build a local tree
(following Merkle, again), whose root is sent off in turn as a
request to the coordinating server. The location information
for a document in this “tree-of-trees” scheme can be written
as a position in the server’s tree followed by a position in
the local tree.

In another variation, the widely witnessed hash values
in the repository could conmsist simply of a linked list (as
in the simple linking scheme of [HS 91]). In this case the
location information for a document is a simple pointer into
the repository.

4 Applications

The problem of naming digital documents might have seemed
like a curiosity only a few years ago. However, with the
growth in use of the Internet, more and more people need to
be able to refer confidently to meaningful bit-sequences. The
problem is now a matter of immediate practical concern.

The problem has become especially acute with the emer-
gence of the World-Wide Web. Jumping from one URL
(Uniform Resource Locator) to the next in a sequence of
WWW documents may seem at first to be exactly analo-
gous to following a bibliographic reference in a traditional
scholarly paper. In fact it is something quite different: a
URL is only a pointer to a location, with no guarantee that
what a user finds there today is the same reference that
the author originally intended. If on-line citations include
secure names for the bit-string contents of the documents
cited, then it is possible to traverse a path of citations with
confidence that one is indeed following the authors’ inten-
tions. This ability would be especially useful for the many
documents on the World-Wide Web that exist only on-line.

In most electronic commerce systems, transaction records
of all sorts are kept on-line, and it would be useful to have a
cryptographically secure means of assigning serial numbers
or tracking numbers to these records.

IH

IH

ah

eh

ad

Figure 1: 8-leaf tree for the example of §3.

32

N

Software code is another class of digital document for
which it would be useful to have an easy way for a short
name to carry a guarantee of integrity. A user who down-
loads software (along with its naming certificate) from a site
on the Net can be sure of its integrity if he or she is able to
check that the code is correctly named by a short string of
letters and numbers. Here, of course, bit-string equality is
eractly the point. The great strength of using secure names
in this application is that the short name of a program is
considerably easier to distribute widely and robustly than
the program itself. (It is also easier to distribute reliably
than the sort of public-key infrastructure information that
is required in order to use digital signatures in order to val-
idate the integrity of code.)

For another example of a type of large digital document
whose integrity matters a great deal, consider the case of ge-
netic data. Scientists now routinely download others’ data
sets for use in their own research. The use of our naming
scheme would allow the user to be sure of the data’s in-
tegrity, as well as providing a convenient and verifiable way
to cite the data in published descriptions of the work that
was done with it.

5 Long-lived names

The technique described in [BHS 93] for renewing crypto-
graphic certifications of authenticity applies directly to the
certificates of the present naming scheme.

The renewing process works as follows. Let us suppose
that an implementation of a particular time-stamping sys-
tem is in place, and consider the pair (z,C), where C is a
valid time-stamp certificate (in this implementation) for the
bit-string r. Now suppose that an improved time-stamping
system is implemented and put into practice—by replacing
the hash function used in the original system with a new
hash function, or even perhaps after the invention of a com-
pletely new algorithm. Further suppose that the pair (z,C)
is time-stamped by the new system, resulting in a new cer-
tificate C’, and that some time later, i.e. at a definite later
date, the original method is compromised. C' provides evi-
dence not only that the document contents z existed prior
to the time of the new time-stamp, but that it existed at the
time stated in the original certificate, C; prior to the com-
promise of the old implementation, the only way to create a
certificate was by legitimate means. (It is similarly recom-
mended that if a digitally signed document is likely to be
important for a long time—perhaps longer than the signer’s
key will be valid—then the document-signature pair should
be time-stamped [BHS 93, Odl 95, HKS 95].)

In our naming schemes, the verifiable name for the bit-
string z is a standard abbreviation a for its original certifi-
cate C. In order that a continue to be verifiable as a name for
r, the certificate C should be renewed (as above) from time
to time as new time-stamping systems are put in place. As
long as this is done, a is still a verifiable name for z. There
is now an additional step to the procedure for validating the
name: after checking that a is correctly extracted from C,
one must follow the usual time-stamp validation procedure
for the certificate, which now includes both the original-
system validation of (z,C) and the new-system validation
of [(z, C), C']. We note that in practice this additional vali-
dation step would be automated, and would not at all affect
the convenient use of a to name z.

33

6 Practical implementations

A practical implementation of a naming scheme cannot use
the known theoretical constructions of collision-free hash
functions. If the decision is made to use practical one-way
hash functions such as MD5, then users of the system do
not need to trust the server’s random choice of a function
h € Hi. (However, they do have to hope that the hash
function chosen is one-way in practice; see section §5 for one
way to allay users’ concerns on this score.)

The naming scheme described in §3 above, based on the
digital time-stamping scheme described in §2.4, was imple-
mented by Surety Technologies, and has been in continuous
commercial use since January 1995. The implementation
uses practical hash functions; specifically, the current im-
plementation uses h(z) = (MD5(z),SHA(z)) as the hash
value for any argument z. A number of supplemental mech-
anisms are employed in order to maintain the integrity and
wide distribution of the repository [Sur 95].

The names assigned by our scheme are indeed concise,
growing essentially as slowly as possible while still providing
unique names. If the repository contains n interval hashes,
and no more than m naming requests are received during
each interval, the names can be written with at most lg, nm
bits. Just to give a numerical example, a repository repre-
senting a thousand requests per minute for the length of 2
century requires 36-bit names; in the MIME encoding (six
bits per alphanumeric character) such a name can be jotted
down with six characters, while hash-value names of this
length are completely insecure.

6.1 Meaningful names

There are several variations of our naming scheme that allow
an author a fair measure of control over the names of his or
her documents, so that the author can choose a verifiable
name that is meaningful in one or another useful way.

First, and most obviously, observe that in the scheme
described in detail in §3 a convenient way to encode the
location in the repository to which a document’s contents
are linked is by the date and time at which the interval
hash at that location was computed. Instead of (e.g.) a
MIME encoding of the number of seconds since a moment
in early 1970 (Unix standard time), it would often be useful
to express at least a part of this date and time in human-
readable form.

In a slight variation, we can allow “personalized” naming
requests, as follows. Suppose that the repository items are
formatted in a standard way every day, and let F{-) denote
any standard mapping from ASCII-encoded strings to the
list of daily repository locations. When the server receives a
personalized naming request that includes the ASCII string
s, the request is held until the appropriate moment in the
day and then linked to the widely witnessed hash value
stored at location F'(s); in this way, s is made to be part of
the name of the documents included in those special nam-
ing requests. Thus, for example, the author of The History
of Computers in Zurich can arrange for the verifiable name
of its bit-string contents to have the form [“The History of
Computers in Zurich” date suffix], where suffix includes
a few bits of disambiguating information that distinguishes
this request from all others that were linked to the same
repository location.

In another example, consider the tree-of-trees variation
briefly mentioned in §3.2. An author can name a multi-part
document by placing the contents of each successive part at

consecutive leaf nodes of a local tree. The resulting request
to the server gives the consecutive parts of the document
consecutive local positions and therefore consecutive names.
Furthermore, the other portions of these consecutive names
are identical, explicitly encoding the fact that they are parts
of the same document. And local trees can have sub-trees, so
that our historian can arrange to name the th section of the
jth chapter of his masterpiece [“The History of Computers
in Zurich” infix i.7], for all appropriate pairs (3, 5).

More complicated ways of structuring the parts of a doc-
ument can similarly be encoded in the verifiable names as-
signed by our naming scheme. Note that conventional nam-
ing schemes do allow for encoding document structure into
names, but not in a verifiable manner.

In another variation, a table of contents for a long or
complicated multi-part document can be included in a stan-
dard place in the request—Ifor example, as its last piece. The
table of contents may contain more or less detailed descrip-
tions of the parts of the document. At a later time, together
with a list of documents to be authenticated and their cer-
tificates, such an authenticated table of contents can be used
to verify (1) that each document in the list is an exact copy
of one that was registered with the table of contents, and
(2) that none of the documents in the list are missing.

Acknowledgements

We would like to thank Ralph Merkle, R. Venkatesan, Matt
Franklin, Avi Rubin, Bill Arms, and Dave Richards for help-
ful discussions about this work. We would also like to thank
the anonymous referees for their very useful suggestions.

References
[BHS 93] D. Bayer, S. Haber, and W.S. Stornetta. Im-
proving the efficiency and reliability of digi-
tal time-stamping. In Sequences II: Methods in
Communication, Security, and Computer Sci-
ence, ed. R.M. Capocelli, A. De Santis, U. Vac-
caro, pp. 329-334, Springer-Verlag, New York
(1993).

M. Bellare, J. Kilian, and P. Rogaway. The
security of cipher block chaining. In Advances
in Cryptology—Crypto ’94, Lecture Notes in
Computer Science, Vol. 839, ed. Y. Desmedt,
pp. 94-107, Springer-Verlag (1994).

[BKR 94]

[BY 90] G. Brassard and M. Yung. One-way group ac-
tions. In Advances in Cryptology— Crypto 90,
Lecture Notes in Computer Science, Vol. 537,
pp. 94-107, Springer-Verlag (1991).

[BD* 95 S. Browne, J. Dongarra, S. Green, K. Moore,
T. Pepin, T. Rowan, and R. Wade. Location-
independent naming for virtual distributed
software repositories. Univeristy of Tennessee
Computer Science TR 95-278 (1995). (Avail-
able at http://www.cs.utk.edu/~1ibrary/

TechReports/1995/).

[Dam 87} I. Damgird. Collision-free hash functions and
public-key signature schemes. In Advances in
Cryptology— Eurocrypt ’87, Lecture Notes in
Computer Science, Vol. 304, pp. 203-217,

Springer-Verlag (Berlin, 1988).

34

[Dob 963]

[Dob 96b]

[Dob 96¢]

[DBP 96]

[HKS 95]

[HS 91]

[KW 95]

[Lev 85]

[Merk 80]

[M 94]

[NIST 94]

[Od1 95]

[Pre 93]

[Riv 92]

H. Dobbertin. Cryptanalysis of MD4. In Fust
Software Encryption, Lecture Notes in Com-
puter Science, Vol. 1039, ed. D. Gollman,
pp. 53-69, Springer-Verlag (Berlin, 1996).

H. Dobbertin. Cryptanalysis of MD5 com-
press. Private communication (May 1996).
Described by B. Preneel, Rump Session, Eu-
rocrypt 96 (May 1996).

H. Dobbertin. The status of MD5 after a re-
cent attack. CrytoBytes, Vol. 2, No. 2 (Summer
1996).

H. Dobbertin, A. Bosselaers, and B. Pre-
neel. RIPEMD-160: A strengthened version of
RIPEMD. In Fast Software Encryption, Lec-
ture Notes in Computer Science, Vol. 1039,
ed. D. Gollman, pp. 71-82, Springer-Verlag
(Berlin, 1996).

S. Haber, B. Kaliski, and W.S. Stornetta. How
do digital time-stamps support digital signa~
tures? CryptoBytes, Vol. 1, No. 3 (Autumn
1995). (Available at http://www.rsa.con/
rsalabs/pubs/cryptobytes.html.)

S. Haber and W.S. Stornetta. How to time-
stamp a digital document. Journal of Cryptol-
ogy, Vol. 3, No. 2, pp. 99-111 (1991).

R. Kahn and R. Wilensky. A framework for
distributed digital object services. Corporation
for National Research Initiatives technical re-
port cnri.dlib/tn95-01 (May 1995). (Available
at http://www.cnri.reston.va.us/.)

L.A. Levin. One-way functions and pseudo-
random generators. In Proceedings of the 17th
Annual Symposium on Theory of Computing,
pp. 363-365, ACM (1987).

R.C. Merkle. Protocols for public key cryp-
tosystems. In Proc. 1980 Symposium on Se-
curity and Privacy, IEEE Computer Society,
pp. 122-133 (April 1980).

J.W. Moore. The use of encryption to en-
sure the integrity of reusable software com-
ponents. In Proc. 8rd International Conf. on
Software Reusability, IEEE Computer Society
Press (November 1994).

National Institute of Standards and Tech-
nology. Secure Hash Standard. NIST Federal
Information Processing Standard Publication
180-1 (May 1994).

A. Odlyzko. The {uture of integer factoriza-
tion. CrytoBytes, Vol. 1, No. 2 (1995).

B. Preneel. Analysis and Design of Cryp-
tographic Hash Functions. Ph.D. disserta-
tion, Katholieke Universiteit Leuven (January
1993).

R. Rivest. The MD5 Message-Digest Algo-
rithm. Internet Network Working Group Re-
quest for Comments 1321 (April 1992).

[R 95]

[SM 94]

[Sur 95)

A. Rubin. Trusted distribution of software over
the Internet. In Internet Society 1995 Sympo-
sium on Network and Distributed System Se-
curity (1995).

K. Sollins and L. Masinter. Functional require-
ments for Uniform Resource Names. Internet
Network Working Group Request for Com-
ments 1737 (December 1994).

Surety Technologies, Inc. Answers to Fre-
quently Asked Questions about the Digital
Notary™ System. http://www.surety.com
(since January 1995).

35

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

Ralph C. Merkle

ELXSi International

Sunnyvale, Ca. N

ing both public key and conventional

Abstract systems

New cryptographic protocols which The reader is assumed to be fami-

take full advantage of ghe unique pro- liar with the general ideas behind pub-

perties of public key cryptosystems are lic key cryptosystems, as described in

now evolving. Several protocols for {1,10].

public key distribution and for digital For many of the following examples]

signatures are briefly compared with we assume there are two communicants, J

each other and with the conventional al- called A and B, and an opponent E. A %

ternative. and B will attempt to send secret mes- ?
H
i

sages and sign contracts, while E will

PR,

1. Introduction attempt to discover the keys, learn the
secrets, and forge contracts. Some-

times, A will attempt to evade a con-
The special strengths of public key

. . . tract he signed with B, or B will at-
systems are briefly considered by exa-

.) tempt to forge A’s signature to a new
nmining cryptographic protocols for Kkey .

. . . L. . contract.
distribution and digital signatures us-

A and B will need to apply one way

functions to various arguments of vari-

This work was partia .
P lly supported under ous sizes, so we assume we have a one

NSF Grant ENG 10173, and much of the way function F which can be applied to

work was done at Stanford University arguments of any size and produce a

ISL. The i - . .
author would also like to ack fixed size output. For a more complete

nowledge the su rt o . .
9 ppo £ BNR Inc, where discussion of one way functions, see

h of
much of the work reported here was done. [(2,9,13,19].

An extended version has been submitted

to CACM.

122
CH1522-2C/80/0000-0122$00.75 © 1980 IEEE

- -
.57»««/79.5{.4,“ e fecf._,<r-/r’-7 ea ?n'u.-\r_sv.
/

- e

gy

2. Centralized Key Distribution

Centralized key distribution using
conventional encryption functions was
the only reasonable method of handling
key distribution in a multi-user network
environment before the discovery of pub-
lic key distribution methods. Only con-
ventional encryption functions need be
used, which presently offers a perfor-
mance advantage. (Presently known pub-
lic key systems are less efficient than
conventional cryptographic systems.
Whether or not this will continue is not
now known. Discover} of new public key
systems seemns

almost inevitable, and

discovery of more efficient ones prob-
able.)

In centralized key distribution, A,
B, and all other system users somehow
deposit a conventional cryptographic key
with a central key distribution center.
If A wishes to communicate with B, the
key distribution center will send a com-
mon (session) key to A and B using the
previously agreed on central keys. A
and B can then communicate with no
further assistance from the key distri-
bution center.

This protocol 1is simple and re-

quires only conventional encryption

functions. 1Its use has been defended in

the literature [17,18,20].

123

The major drawback of this protocol
is its vulnerability to both centralized
loss of security and centralized loss of
function. Theft of the central keys, or

bribery of personnel at the central site
will compromise all users of the system.
Similarly, destruction of the central
keys destroys the key distribution
mechanism for all users.

The security and reliability of
centralized key distribution can be in-
creased by using two or more centers,
each with its own keys [1l]. Destruction

or compromise of a single center will
not affect the other centers.

Security can also be improved if
all the user keys are encrypted with a
master key by the center. The master
key must still be stored securely (and
suitable provision made for its backup) .,

keys can be

but the (encrypted) user

stored anywhere. This approach is wused
by IBM [23].

This protocol does not fully solve
the key distribution problem: some sort
of key distribution method must be used
between each user and the center to es-

tablish the original keys. This problem

is nontrivial because no electronic com-
munications can be used and inexpensive
physical methods, e.g./ registered mail,

offer only moderate security. The use

of couriers is reasonably secure,

although more expensive.

3. Simple Public Key Distribution

This is the most basic application

of public key systems [1,5,6,7,8]. 1Its
purpose is to allow A and B to agree on
a common key k without any prior secret

arrangements, even though E overhears

all messages. A randomly computes enci-

phering and deciphering keys EA and Dy

and B picks the

sends EA to B (and E).
random key, k, and transmits EA(k) to A

(and E). A computes DA(EA(R)) = k. A

then discards both EA and DA' and B dis-

cards Ep. The key in future communica-

tions is k.

It is used to encrypt all

further messages using a conventional

encryption function. Once A and B have

finished talking, they both discard k.

If they later resume the conversation

the process is repeated to agree on' a

new key k”.

This protocol is very simple, and

has a great deal to recommend it.

Pirst, no keys and no secret materials
exist before A and B start communicat-
ing, and nothing is retained after they

have finished. It is impossible for E

to compromise any keys either before the
conversation takes place, or after it is
over, for the keys exist only during the

conversation.

124

The disadvantage of this protocol
is that E might actively interfere with
the exchange of keys. Worse yet, E can

force a known k on both A and B.

4. Authenticated Public Key Distribution

The now classic protocol [l1l] for

secure and authenticated communications

between A and B is: A and B generate E

A
and EB and make them public, while keep-

ing DA and DB secret. The public enci-

phering keys of all users are entered in
a public file, allowing easy and authen-
ticated access to Ex for any user, X.

If A and B wish to agree on a com-
mon key Kk, then each sends a (session)
key to the other by encrypting it with

the others public key. The two keys

thus agreed on are combined and used to
encrypt further messages.

At the end of this protocol, A and

B have agreed on a common key, k, which
is both secret and authenticated.

This protocol suffers from two

weaknesses. First, entries in the pub-

lic file might be altered. This can be

dealt with both by good physical securi-
ty, or by using new protocols (see sec-
tions 5 and 6) for authenticating the

entries in the public file.

i wtler et e

A

Second, secret deciphering keys can
be lost. This problem must ultimately

be solved by good physical security.

5. Public Key Distribution with Certifi-

cates

Kohnfelder (3] first suggested that
entries in the public file be authenti-
cated by having a Central Authority (CA)
sign them with Deace He called such
signed entries certificates.

The protocol with certificates is
the same as the authenticated protocol,
except that A and B can now check the
entries in the public file by checking
each other”s certificates. This proto-
col assures A and B that each has the
other”s public enciphering key, and not
the public enciphering key of some im-
poster.

The security of this protocol rests
on the assumptions that the secret deci-
phering keys of A, B, and CA have not
been compromised; that A and B have
correct copies of ECA (to check the
sigged certificates); and that CA has
not issued a bad certificate, either
deliberately because it was un-

trustworthy, or accidentally because it

was tricked.

125

ECA can be published in newspapers
and magazines, and sent over all avail-
able communication channels: blocking
its correct reception would be wvery dif-
ficult.

If DCA is compromised, then it is
no longer . possible to authenticate the
users of the system and their public en-
ciphering keys. The certificates are
now worthless because the (unauthorized)

person who has learned Do, can produce

false certificates at will.

6. Public Key Distribution with Tree Au-

thentication

—-—~Ké§ distribution with certificates
was vulnerable to the criticism that DCA
can be compromised, resulting in system
wide loss of authentication. This prob-
lem can be solved by using tree authen-
tication [13].

Again, this protocol attempts to
authenticate entries in the public file.
However, instead of signing each entry
in the public file, this protocol ap-
plies a one way hash function, H, to the
entire public file. Even though R is
applied to the entire public file, the
output of H is only 1100 or 200 bits
long. The (small) output of H will be

called the root, R, of the public file.

If all users of the system know R, then
all users can authenticate the correct-
ness of the (whole) public file by com-
puting R = H(public file). Any attempt
to introduce changes into the public
file will imply R # H(altered public
file), an easily detected fact.

This method effectively eiiminates

the possibility of compromising D be-

CA
cause no secret deciphering key exists.

Because the public file will be sub-
jected to the harsh glare of public
scrutiny, and because making alterations
in the public file is effectively impos-
sible after it has been published, a
high dg;ree of assurance that it is
correct can be attained.

This method is impractical as stat-
ed. Fortunately, it is possible to
selectively authenticate individual en-
tries in the public file without having
to know the whole publig file by using
Merkle’s "tree authentication,” [13]..

The essence of tree authentication
is to authenticate the entire public
file by "divide and conquer." If we de-
fine Y = public file = Yl, Yz, cee Yn’
(so the ith entry in the public file is
denoted Yi' and B”s entry is YB); we can

define H(public file) = H(Y) as:

H(Y) = F(H(first half of Y),

H(second half of Y))

126

Where F is a one way function.

If A wishes to confirm B”s public
enciphering key, then A need only know
the first half of the public file,
(which is where YB appears) and H(second
half of public file) which is only 100
bits long. A can compute H(public file)
knowing only this information, and yet A
only knew half the entries in the public
file.

In a similar fashion, A does not
really need to know all of the first

half of the public file, for

H(first half of public file) =
F(H(first quarter of public file),

H(second quarter of public file))

All A needs to know is the first quarter
of the public file (which has YB), and
H(second quarter of public file).

By applying this concept recursive-
ly, A can confirm YB in the public file
knowing only R, log2 n intermediate
values, and YB itself. The information
needed to authenticate YB' given that R
has already been authenticated; lies
along the path from R to YB and will be
called the authentication path.

These definitions are illustrated
in figure 1, which shows the authentica-

tion path for Ys.

NPT ;..'li"

For a more detailed discussion the
reader is referred to (13].
Using tree authentication, wuser A

has an authentication path which can be
used to authenticate user A”s public en-
ciphering key, provided only that R has
already been authenticated. An "authen-
tication path" is a new form of certifi-
cate, with EcA replaced by R.

This protocol can only be comprom-
ised if: DA or DB is compromised, or if
R is not correctly known by A or B, or
if there is a false and misleading entry
in the public file.

The latter two are easily detect-
able. If either A or B has the wrong R,
they will be unable to complete the pro-
tocol with any other legitimate user who
has the correct R, a fact that will be
quickly detected.

Because the public file is both

open to public scrutiny and unalterable,

false or misleading entries can be ra-
pidly detected. In practice, a few
users concerned with correctness can

verify that the public file satisfies
some simple global properties, i.e.,

each user name appears once and once

only in the entire public file; indivi-

dual users can then verify that their

own entry is correct, and need not both-
rest of the public

er examining the

file.

127

The only

practical

method of

compromising this protocol is to

compromise D, or Dg. A user’s security
is thus dependent on himself and no one

else.

7. Digital Signatures

The use of public key cryptosystems
to provide digital signatures was sug-
gested by Diffie and Hellman [1}.
Rivest, Shamir and Adleman {8] have sug-
gested attractive

an implementation.

Signature techniques based on methods
other than public key cryptosystems have
been suggested by Lamport and Diffie
[1,24], Rabin [15], and Merkle [13].
Digital signatures, whether based
on conventional encryption functions, on
public key cryptosystems, on probabilis-
tic computations, or on other techniques
share several important properties in

common. These common properties are

best illustrated by the following now
classic example.

A wishes to place a purchase order
with his stock broker B. A, on the
Riviera, cannot send a written order to
B in New York in time. All that A can
quickly send to B is information, i.e.,
a sequence of bits, but B is concerned

that A may later disclaim the order. A

must somehow generate a sequence of bits
(a digital signature) which will con-
vince B (and if need be a judge) that A
authorized the order. It must be easy
for B to validate the digital signature,
but impossible for him (or anyone other
than A) to generate it (to prevent
charges that B was dabbling in the mark-
et illegally with A“s money).

There are digital signature schemes
which do not involve public key cryp-
tosystems but it will be convenient no-
tationally to let A sign message m by
computing the signature, Dp (m) . Check-
ing a signature will then be done by

computing m = E, (Dp (m)) . If Ep(Dy(m))

produces an illegible message (random
bits) then the signature is rejected as
invalid. This notation is somewhat
misleading because the actual method of
generating and validating signatures can
be very different from this model; it is
retained because it is widely known and
because we will not discuss the differ-
ences among different digital signature
methods, only their common properties.
Digital signature protocols are na-
turally divided into three parts: 5
method of signing messages used by A, a
method for authenticating "a signature
used by B, and a method for resolving

disputes, used by the judge. It is im-

portant to note that two protocols that

differ only in the method of resolving

128

disputes are different. Failure to
understand this point has led to confu-

sion in the literature [17,20].
We now turn to specific digital

signature protocols.

8. A Conventional Signature Protocol

A conventional "signature" protocol
relies on the observation that if A and
B trust some central authority CA, and
if A and B have a secure method of com-
municating with CA, then A can "sign® a
message simply by sending it to CA and
relying on CA to adjudicate disputes.
This approach is defended by some [17].

This protocol 1is subject to the
weaknesses of centralized key distribu-

tion (described earlier).

9. The Basic Digital Signature Protocol

The first public key based digital

signature protocol ([1l], proceeded by

having A sign message m by computing

DA(m) and giving it to B as the signed

message. B (or a judge) can compute

Ep (Dp (m)) = m, thus confirming the

correctness of the signed message. A is
held responsible for a signed message if
and only if it can be verified by apply-
ing A”s public enciphering key to it.
This

protocol can be criticized

[16,17,20] on two grounds: First, the
public file might have been tampered
with. Methods of

authenticating the

public file, discussed previously under
key distribution protocols, solve this
problem.

A second criticism is that A has no
recourse should his secret deciphering

key be compromised and made public.
Anyone can sign any message they desire
with A°s compromised DA, and A will be
held responsible.

It seems clear that A will only
agree to this digital signature protocol
if he can provide very good physical
security for D,. The loss to A if Dp is
compromised can be substantial.

A different method of solving this

problem is to alter the dispute resolu-

tion protocol so that A is not held
responsible for his. signature if his
secret deciphering key is compromised

and made public.

The fact that altering the dispute
resolution procedure creates a different
protocol has not been fully appreciated,

and the preceding two protocols have

129

been confused with each other for this

reason. Some criticism of "the" public
key digital signature protocol has actu-
ally been of this second protocol, and

failed to consider the first protocol at

all.

If we assume that A knows DA' then
under the second protoccol A can make DA
public and effectively disavow the

signed message. For this reason, some

critics have argued that this protocol
is inadequate.
If we assume that A does not know

D then he 1is unable to disavow his

I
signature under this protocol. It is
easy to design a system in which this is
the case.

The major difference between the
second protocol and the first is in the
division of risk: in the second proto-
col B will be left holding the bag if
A’s signing key is compromised. Clear-
ly, B must be given assurances that this
condition is unlikely before he will be

willing to use this protocol.

10. The Time-Stamp Protocol

A protocol that would allow A to
report 1loss or theft of D, and disclaim
messages signed after the reported 1loss
yet force A to acknowledge the validity
the

of signatures made before reported

loss must involve the concept of time.

We introduce time into the following

protocol by using time-keepers who can
digitally time-stamp information given
to them. We assume that both A and B

have agreed on a set of acceptable

time-keepers whose time-stamps will be

accepted in dispute resolution.
If A can report that DA has been

lost, then he must report this fact to

some agent who will be responsible for

answering queries about the current

status of DA' i.e., has it been lost or

not. For simplicity, we shall assume

this role is played by the : central au-

thority, ca. CA will sign messages

stating that A“s secret deciphering key
has not been compromised as of the

current time. These signed messages

will be called "validity-checks."
In the time stamp protocol, user A
signs message m by computing DA(m) and

B then has a

sending it to B. time-

keeper time stamp the message and ob-

tains a validity-check from CA. If D

A
has already been reported lost B rejects

the signature, otherwise he accepts.

In dispute resolution, the judge

holds that a message has been validly

signed if and only if it can be checked
by applying A°s public enciphering key
AND it has been time-stamped prior to
any reported loss of DA‘

This protocol provides very good

assurance to all parties that they have

130

been dealt with fairly.

The major disadvantage of this pro-
tocol, as compared with the basic digi-
tal signature protocol, is the require-
ment that B obtain both a time-stamp and
in‘;real

a validity-check, presumably

time. These requirements force the use

of a communications network, which both

increases expense and decreases relia-
bility.
If B is willing to obtain the

time-stamp and the validity-check after

the transaction has been completed,

i.e., within a few days, an off-line

system can be used. This modified pro-

tocol could be used by B either as a

fail-soft protocol during communications

outages, or as the standard protocol if

communication costs are too high.

Off-line operation is cheaper and

more reliable, but it exposes B to some

risk: A might have recently reported

of DA

If physical

the loss and B would not know

about it. security for
secret deciphering keys is good, this

risk should be minimal.

11. WwWitnessed Digital Signatures

If the value of a transaction is

high enough, it might be desirable to

have a witness physically confirm that A

PRI PRS- AT S ¥

H
g
%

signed message m. The witness, W, would
compute Dw("I, W, physically saw A agree
to and sign message m."). It would be
necessary for A and B to agree in ad-
vance on acceptable witnesses.

The primary advantage of this pro-
tocol is that it reduces B”s risk. The
primary disadvantage is that it forces A
to find a (physically present) witness

to confirm the transaction.

12. Digital Signature Applications Not

Involving Dispute

Not all applications of digital
signatures involve contracts between two
potentially disputing parties. Digital
signatures are also an ideal method of
broadcasting authenticated messages from
a central source which must be confirmed
by many separate recipients, or repeat-
edly confirmed by the same recipient at
different times to insure that the mes-
sage has not been modified.

One example of such an application
is the distribution of network software
to individual nodes of a _communications
network. It would be clearly undesir-
able for any node to start executing the
wrong software. On the other hand, it
is very desirable to send updates to the

nodes over the network itself. The ob-

131

vious solution is for updates to be di-
gitally signed by an appropriate network
administrator, and for the nodes to
check the digital signature prior to ex-
ecuting them.

leads

This example naturally to

another application of digital signa-
tures in operating system security. A
major risk to the security of an operat-
ing system is the possibility that the
system code that it is executing today

is not the same that it was executing
yesterday: someone might have put a trap
door into the operating system that lets
them do anything they please. To guard
against this possibility, the operating
system could refuse to execute any code
in privileged mode unless that code had
been properly signed. Carried to its
logical conclusion, the operating system
would check the digital signature of
privileged programs each time they were
loaded into central memory If this check
were implemented in hardware, it would
be impossible for any software changes
to subvert it. The machine would be
physically incapable of executing code
in privileged mode unless that code was
signed.

If privileged programs are digital-
ly signed by the programmer who origi-
nally wrote them, as well as by various
supervisory levels, and if the computer.

is physically unable to execute unsigned

code in privileged mode, then it is pos-
sible to have complete assurance that
the privileged programs running on the
computer Tight now have not been modi-
fied since they were given there final
checkout and signed by the programmer.
Of course, this does not necessarily
mean that the operating system is
secure, but it does eliminate a major

class of worries.

13. Conclusions

This paper has briefly described a
number of cryptographic protocols. Cer-
tainly, these are not the only ones pos-
sible; however, they are valuable tools
to the system designer: they illustrate
what can be achieved and provide feasi-
ble solutions to problems of recurring
interest.

Further constructive work in this

area is very much needed.

14. ACKNOWLEDGEMENTS

It is a great pleasure for the au-
thor to acknowledge the pleasant and in-
formative conversations he had with Dov
Andelman, Whitfield Diffie, Martin Hell-
man, Raynold Kahn Loren Kohnfelder,

Frank Olken, and Justin Reyneri.

132

15. BIBLIOGRAPHY

1. Diffie, W., and Hellman, M. New

directions in cryptography. IEEE Trans.

on Inform. IT-22, 6(Nov. 1976), 644-654.

2. Evans A., Kantrowitz, W., and Weiss,
E. A user authentication system not re-
quiring secrecy in the computer. Comm.

ACM 17, 8(Aug. 1974), 437-442.

3. Kohnfelder, L.M. Towards a practical

public-key cryptosystem. MIT EE

Bachelor’s thesis.

4. Lipton, S.M., and Matyas, S.M. Mak-

ing the digital signature legal--and

safeguarded. Data Communications (Feb.

1978), 41-52.

5. McEliece, R.J. A public-key cryp-

tosystem based on algebraic coding

theory. DSN Progress Report, JPL, (Jan.

and Feb. 1978), 42-44.

6. Merkle, R. Secure Communications

over Insecure Channels. Comm. ACM 21,

4(Apr. 1978), 294-299.

7. Merkle, R., and Hellman, M. Hiding

information and signatures in trapdoor

knapsacks. IEEE Trans. on Inform. IT-

24, 5(Ssept. 1978), 525-530.

_\..Hfi' WL LTSl et 4 S

Dl A TS

8. Rivest, R.L., Shamir, A., and Adle-
man, L. A method for obtaining digital
signatures and public-key cryptosystems.
Comm. ACM 21, 2(Feb. 1978), 120-126.

9. Wilkes, M.V., Time-Sharing Computer
Systems. Elsevier, New York, 1972.

10. Diffie, W., and Hellman, M.E.,
Privacy and authentication: an introduc-
tion to cryptography, Proceedings of the
IEEE Vol. 67, No. 3, Mar. 1979 pp. 397-

427.

1l. sSquires, J. Russ monitor of U.S.
phones, Chicago Tribune pp. 123, June
25, 1975,

12. pavis, R. Remedies sought to defeat
Soviet eavesdropping on microwave links,
Microwave Syst., vol. 8, no. 6, pp. 17-
20, June 1978.

13. Merkle, R.C. A certified digital

signature, to appear, CACM.

14. Kahn, D. The Codebreakers, New
York: Macmillan. 1967.
15 Rabin, M.O., Digitalized signa-

tures, in Foundations of Secure Computa-
tion, ed. Demillo, R.A., et. al. pp.

155-166.

133

16. Saltzer, J. On Digital Signatures,

private communication.

17. Popek G.J. and Kline, C.S. Encryp-

tion Protocols, Public Key Algorithms,

and Digital Signatures in Computer Net-

works; in Foundations of Secure Computa-
tion pp. 133-153.

18. Needham R.M. and Schroeder, M.D.

Using Encryption for Authentication in

Large Networks of Computers. CACM 21,12
Dec. 1978 pp. 993-999.
19. Merkle, R. Secrecy, authentication,

and public key systems. Stanford Elec.

Eng. Ph.D. Thesis, ISL SEL 79-017, 1979.

20. Popek, G.J., and Kline, C.S. En-

cryption and Secure Computer networks.
Computing Surveys 11,4 Dec. 1979 pp.
331-356.

21. Simmons, G.J. Symmetric and Asym-

metric Encryption. Computing Surveys

11,4 Dec. 1979 pp. 305-330.

22. Lamport, L. Time, clocks, and the

ordering of events in a distributed sys-
558-565.

tem. CACM 21,7 Jul 1978 pp.

23. Ehrsam, W.F., Matyas, S.M., Meyer,
C.H., and Tuchman, W.L. A cryptographic
key management scheme for implementing
the data encryption standard. IBM Sys.
Jour. 17,2 1978 pp. 106-125.

24. Lamport, L., Constructing digital
signatures from a one way function. SRI

Intl. CSL - 98

134

An Introduction
to Probability Theory
and Its Applications

WILLIAM FELLER
Eugene Higgins Professor of Mathematics

Princeton University

VOLUME 1

SECOND EDITION

John Wiley & Sons, Inc.
New York - London

52 COMBINATORIAL ANALYSIS (IL9

tical lines z = 3 and z = n — 3. Now 1 log n quite obviously ex-
ceeds the area of the strip n — ¥ < # < n under the curve, and hence
an exceeds the area under the curve and between z = $andz =n. In
other words, we have shown that

9.4) f logz - doe < a, <f log z - dx.
] 1

The indefinite integral of log z is given by zlogz — z, and equation
(9.4) reduces to the double inequality

©.5) (n+ %logn —n+ $(1 — log 3 <

<logn! < (n+ 3)logn —n + 1.
Put for abbreviation

(9.6) o, = logn! — (n + %) logn + n.

Then 1 — 8, is the difference between the extreme right member of
(9.5) and log n!, that is, 1 — 6x equals the area of the domain between
the curve y = log = and the polygon AyAs ... A, Tt follows that 8,
decreases monotonically. But by (9.5) we have 3(1 — log H< <L
We conclude that &, tends to a limit comprised between 1 and
3(1 — log $). Denoting this limit by log ¢ we have

9.7) o, — loge where 2.45 < ¢ < 2.72.

In logarithmic notation Stirling’s formula reduces to (9.7) with ¢ = (2m)}
(or 2.507, approximately). Now = can be defined in many ways, and
for our purposes it is simplest and most natural to define = = ¢*/2.
With this definition we have Stirling’s formula, but it remains to show
that the constant so defined agrees with the more familiar = of other
formulas. This fact will develop as a by-product of other calculations
in chapter VII, and so the proof of Stirling’s formula will be completed
there.

Refinements. Stirling’s formula can be improved by the addition of further
terms. Although we shall never make use of such refinements, we shall here indi-
cate the proof of the following double inequality ®

(9.8) @r)tanHe—n (214D <) < (2 Hemm A,
To prove (9.8) note that

n ¥l 1 1
gl 3(2,.,+1)2+5(2n+1)°+"'

@9 b~ = (n+ %) log

JR——=---

15 [, Robbins, A remark on Stirling’s tormula, American Mathematical Monthly,
vol. 62 (19565), pp. 26-29.

11.10] EXERCISES AND EXAMPLES 53

[the last expansion follows from (8.11) on setting ¢t = 1/(2n + 1)]. We increase the
extreme right member in (9.9) by replacing the coefficients 13 % ... by %; this
leads to a geometric series with ratio (2n + 1)~2 and thus

1 1 1

@ b= <go T —1] 120 12+ 1)

Accordingly, 8, — 1/12n increases monotonically. Now the limit of this sequence
is given by Stirling’s formula, and passing to antilogarithms we have the second
inequality in (9.8). The first inequality follows similarly from (9.9) on noticing
that

1 1 1

O3 > g T a1 2D 1

The accuracy of the approximations (9.8) is remarkable; even for n =1 the
formula leads to the two bounds 0.9958. .. and 1.0023. ... The upper bound pro-
vided in (9.8) is slightly better [ef. (12.28)]. For n = 2 it yields 2.0007, for n = 5
we get 120.01.. ., and for n = 10 the first five significant figures are correct.

PROBLEMS FOR SOLUTION

Note: Sections 11 and 12 contain problems of a different character and diverse
complements to the text.

10. EXERCISES AND EXAMPLES
Note: Assume in each case that all arrangements have the same probability.

1. How many different sets of initials can be formed if every person has one
surname and (a) exactly two given names, (b) at most two given names, (c)
at most three given names?

2. In how many ways can two rooks of different colors be put on a chess-
board so that they can take each other?

3. Letters in the Morse code are formed by a succession of dashes and dots
with repetitions permitted. How many letters is it possible to form with ten
symbols or less?

4. Each domino piece is marked by two numbers. The pieces are symmetri-

cal so that the number-pair is not ordered. How many different pieces can be
made using the numbers 1, 2, ..., n?

5. The numbers 1, 2, ..., n are arranged in random order. Find the proba-
bility that the digits (a) 1 and 2, (b) 1, 2, and 3, appear as neighbors in the
order named.

6. (a) Find the probability that among three random digits there occur 2, 1,
or 0 repetitions. (b) Do the same for four random digits.

7. Find the probabilities p, that in a sample of r random digits no two are
equal. Estimate the numerical value of pio, using Stirling’s formula.

8. What is the probability that among k random digits (@) 0 does not appear;
(b) 1 does not appear; (c) neither 0 nor 1 appears; (d) at least one of the two
digits 0 and 1 does not appear? Let A and B represent the events in (a) and
(b). Express the other events in terms of A and B.

54 COMBINATORIAL ANALYSIS [II.10

9. If n balls are placed at random into n cells, find the probability that
exactly one cell remains empty.

10. At a parking lot there are twelve places arranged in a row. A man ob-
served that there were eight cars parked, and that the four empty places were
adjacent to each other (formed one run). Given that there are four empty
places, is this arrangement surprising (indicative of non-randomness)?

11. A man is given n keys of which only one fits his door. He tries them
successively (sampling without replacement). This procedure may require 1,
2, ..., n trials. Show that each of these n outcomes has probability n—".

12. Suppose that each of n sticks is broken into one long and one short part.
The 2n parts are arranged into » pairs from which new sticks are formed.
Find the probability (a) that the parts will be joined in the original order, (b)
that all long parts are paired with short parts.1®

13. Testing a statistical hypothesis. A Cornell professor got a ticket twelve
times for illegal overnight parking. All twelve tickets were given either
Tuesdays or Thursdays. Find the probability of this event. (Was his renting
a garage only for Tuesdays and Thursdays justified?)

14. Continuation. Of twelve police tickets none was given on Sunday. Is
this evidence that no tickets are given on Sundays?

15." A box contains ninety good and ten defective screws. If ten screws are
used, what is the probability that none is defective?

16. From the population of five symbols a, b, ¢, d, e, a sample of size 25 is
taken. Find the probability that the sample will contain five symbols of each
kind. Check the result in tables of random numbers,"” identifying the digits
0 and 1 with a, the digits 2 and 3 with b, ete.

17. If n men, among whom are A and B, stand in a row, what is the probabil-
ity that there will be exactly » men between A and B? If they stand in a ring
instead of in a row, show that the probability is independent of » and hence
1/(n — 1). (In the circular arrangement consider only the arc leading from
A to B in the positive direction.)

18. What is the probability that two throws with three dice each will show
the same configuration if (@) the dice are distinguishable, (b) they are not?

19. Show that it is more probable to get at least one ace with four dice than
at least one double ace in 24 throws of two dice. (The answer is known as
de Méré’s paradox. Chevalier de Méré, a gambler, thought that the two
probabilities ought to be equal and blamed mathematics for his losses.)

20. From a population of n elements a sample of size r is taken. Find the
probability that none of N prescribed elements will be included in the sample,

16 When cells are exposed to harmful radiation, some chromosomes break and
play the role of our “sticks.” The “long” side is the one containing the so-called
centromere. If two “long” or two ‘“‘short” parts unite, the cell dies. See D. G.
Catcheside, The effect of X-ray dosage upon the frequency of induced structural
changes in the chromosomes of Drosophila Melanogaster, Journal of Genetics, vol.
36 (1938), pp. 307-320.

17 They are occasionally extraordinarily obliging: see J. A. Greenwood and E. E.
Stuart, Review of Dr. Feller’s critique, Journal for Parapsychology, vol. 4 (1940),
pp. 298-319, in particular p. 306.

11.10] EXERCISES AND EXAMPLES 55

assuming the sampling to be (¢) without, (b) with replacement. Compare
the numerical values for the two methods when (i) » = 100, r = N = 3, and
(ii)) » = 100, » = N = 10.

21. Spread of rumors. In a town of n + 1 inhabitants, a person tells a
rumor to a second person, who in turn repeats it to a third person, ete. At
each step the recipient of the rumor is chosen at random from the n people
available. Find the probability that the rumor will be told r times without:
(@) returning to the originator, (b) being repeated to any person. Do the same
problem when at each step the rumor is told by one person to a gathering of
N randomly chosen people. (The first question is the special case N = 1.)

22. Chain letters. In a population of n + 1 people a man, the “progenitor,”’
sends out letters to two persons, the “first generation.” These repeat the per-
formance and, generally, each member of the rth generation sends out letters
to two persons chosen at random. Find the probability that the generations
number 1, 2, ..., r will not include the progenitor. Find the median of the
distribution, supposing n to be large.

23. A familiar problem. In a certain family four girls take turns at washing
dishes. Out of a total of four breakages, three were caused by the youngest
girl, and she was thereafter called clumsy. Was she justified in attributing
the frequency of her breakages to chance? Discuss the connection with ran-
dom placements of balls.

24. What is the probability that (a) the birthdays of twelve people will fall
in twelve different calendar months (assume equal probabilities for the twelve
months), (b) the birthdays of six people will fall in exactly two calendar months?

25. Given thirty people, find the probability that among the twelve months
there are six containing two birthdays and six containing three.

26. A closet contains n pairs of shoes. If 2r shoes are chosen at random
(with 2r < m), what is the probability that there will be (z) no complete pair,
(b) exactly one complete pair, (c) exactly two complete pairs among them?

27. A car is parked among N cars in a row, not at either end. On his return
the owner finds that exactly r of the N places are still occupied. What is the
probability that both neighboring places are empty?

28. A group of 2N boys and 2N girls is divided into two equal groups. Find
the probability p that each group will be equally divided into boys and girls.
listimate p, using Stirling’s formula.

29. In bridge, prove that the probability p of West’s receiving exactly %
aces is the same as the probability that an arbitrary hand of thirteen cards
contains exactly k aces. (This is intuitively clear. Note, however, that the
two probabilities refer to two different experiments, since in the second case
thirteen cards are chosen at random and in the first case all 52 are distributed.)

30. The probability that in a bridge game East receives m and South n
spades is the same as the probability that of two hands of thirteen cards each,
drawn at random from a deck of bridge cards, the first contains m and the
second n spades.

31. What is the probability that the bridge hands of North and South to-
gether contain exactly & aces, where k& = 0, 1, 2, 3, 4?

32. Leta, b, ¢, d be four non-negative integers such thata + b + ¢ 4+ d = 13.
I'ind the probability p(a, b, ¢, d) that in a bridge game the players North, East,

56 COMBINATORIAL ANALYSIS (IL.10

South, West have a, b, ¢, d spades, respectively. Formulate a scheme of plac-
ing red and black balls into cells that contains the problem as a special case.

33. Using the result of problem 32, find the probability that some player
receives a, another b, a third ¢, and the last d spades if (a) @ = 5,b = 4, ¢ = 3,
d=1;b)a=b=c=4d=1;(c)a=b=4c=3,d=2.

Note that the three cases are essentially different.

34. Let a, b, ¢, d be integers with @ + b + ¢ + d = 13. Find the probabil-
ity q(a, b, ¢, d) that a hand at bridge will consist of a spades, b hearts, ¢ dia-
monds, and d clubs and show that the problem does not reduce to one of plac-
ing, at random, thirteen balls into four cells. Why?

35. Distribution of aces among r bridge cards. Calculate the probabilities
po(r), pi(r), ..., pa(r) that among r bridge cards drawn at random there are
0,1, ..., 4 aces, respectively. Verify that po(r) = pa(52 —).

36. Continuation: waiting times. If the cards are drawn one by one, find
the probabilities fi(r), ..., fa(r) that the first, ..., fourth ace turns up at the
rth trial. Guess at the medians of the waiting times for the first, ..., fourth
ace and then calculate them.

37. Find the probability that each of two hands contains exactly & aces if
the two hands are composed of r bridge cards each, and are drawn (a) from
the same deck, (b) from two decks. Show that when r = 13 the probability
in part (a) is the probability that two preassigned bridge players receive exactly
k aces each.

38. Misprints. Each page of a book contains N symbols, possibly mis-
prints. The book contains n = 500 pages and r = 50 misprints. Show that
(a) the probability that pages number 1, 2, ..., n contain, respectively,
1, 9, ..., T'n Misprints equals

G- 6+ (7)s

(b) for large N this probability may be approximated by (5.5). Conclude that
the r misprints are distributed in the n pages approximately in accordance with a
random distribution of r balls in n cells. (Note. This may be restated as a
general limiting property of Fermi-Dirac statistics. Cf. section 5.)

Note: The following problems refer to the material of section 5.

39. If r, indistinguishable things of one kind and r, indistinguishable things
of a second kind are placed into n cells, find the number of distinguishable
arrangements.

40. Tf r; dice and 75 coins are thrown, how many results can be distinguished?

41. In how many different distinguishable ways can r; white, 72 black, and r;
red balls be arranged?

42. Find the probability that in a random arrangement of 52 bridge cards
no two aces are adjacent.

43. Elevator. In the example (3.c) the elevator starts with seven passen-
gers and stops at ten floors. The various arrangements of discharge may be
denoted by symbols like (3,2, 2), to be interpreted as the event that three
passengers leave together at a certain floor, two other passengers at another

1I.11] THEORETICAL PROBLEMS 57

floor, and the last two at still another floor. Find the probabilities of the fifteen
possible arrangements ranging from (7) to (1,1,1, 1,1, 1, 1).

44. Birthdays. Find the probabilities for the various configurations of the
birthdays of 22 people.

45. Find the probability for a poker hand to be a (a) royal flush (ten, jack,
queen, king, ace in a single suit); (b) four of a kind (four cards of equal face
values); (c) full house (one pair and one triple of cards with equal face values);
(d) straight (five cards in sequence regardless of suit); (e) three of a kind (three
equal face values plus two extra cards); (f) two pairs (two pairs of equal face
values plus one other card); (g) one pair (one pair of equal face values plus
three different cards).

11. PROBLEMS AND COMPLEMENTS OF A THEORETICAL
CHARACTER

1. A population of n elements includes np red ones and ng black ones
(p+ ¢ =1). A random sample of size 7 is taken with replacement. Show
that the probability of its including exactly % red elements is

(11.1) (2) P+,

2. A limit theorem for the hypergeometric distribution. If n is large and
ny/n = p, then the probability g. given by (6.1) and (6.2) is close to (11.1).
More precisely,

@y ()e-) (@-5F) <a<@re (-0

A comparison of this and the preceding problem shows: For large populations
there is practically mo difference between sampling with or without replacement.

3. A random sample of size r without replacement is taken from a population
of n elements. The probability u, that N given elements will all be included
in the sample is

L “=(GIn)+0)

(The corresponding formula for sampling with replacement is given by (11.10)
and cannot be derived by a direct argument. For an alternative form of (11.3)
¢f. problem IV, 9.)

4. Limiting form. If n — and r — o so that 7/n — p, then u, — p¥
(cf. problem 13).

Note: Problems 5-13 refer to the classical occupancy problem (Maxwell-Boltzmann
statistics): That is, r balls are distribuled among n cells and each of the n" possible dis-
tributions has probability n=".'8

18 Problems 5-19 play a role in quantum statistics, the theory of photographio
plates, G-M counters, etc. The formulas are therefore frequently discussed and
discovered in the physical literature, usually without a realization of their classionl
and essentially elementary character. Probably all the problems occur (although
in modified form) in the book by Whitworth quoted at the opening of this chapter.

58 COMBINATORIAL ANALYSIS [IL.11

5. The probability p; that a given cell contains exactly & balls is given by
the binomial distribution (4.5). The most probable number is the integer »
such that (r — n + 1)/n < » < (r + 1)/n. (In other words, it is asserted that
P0<P1<...<Py1 < Py > Pyg1 >...> Dy; cf. problem 15.)

6. Limiting form. If n — o and r — « so that the average number
A = r/n of balls per cell remains constant, then

(11.4) P — e N/EL

This is the Poisson distribution, discussed in chapter VI; see problem 16.

7. Let A(r,n) be the number of distributions leaving none of the n cells
empty. Show by a combinatorial argument that

11.5) A =% (’) Alr—Fk, n).
i1 \Ek

Coneclude that

(11.6) Arym) = X (=1 (:f) P—1

Hint: Use induction; assume (11.6) to hold and express A(r—Fk, n) in
(11.5) accordingly. Change the order of summation and use the binomial
formula to express A(r, n+1) as the difference of two simple sums. Replace
in the second sum » 4+ 1 by a new index of summation and use (8.6).

Note: Formula (11.6) provides a theoretical solution to an old problem but obviously
it would be a thankless task to use it for the calculation of the probability x, say, that in
a village of r = 1900 people every day of the year is a birthday. In chapter I'V, section
2, we shall derive (11.6) by another method and obtain a simple approximation formula
(showing, e.g., that x = 0.135, approximately).

8. Show that the number of distributions leaving exactly m cells empty s
n N n—m
(1.7) Enlr,n) = (m) Alr, n—m) = (m) b (;)(n —m—)r.

y=0
9. Show without using the preceding results that the probability
D, 0) = n~"En(r; n)
of finding exactly m cells empty satisfies

n— m—1

n

(11.8) Pu(r 41, 1) = pu(r, 1) — + Pps(r,)

10. Using the results of problems 7 and 8, show by direct calculation that
(11.8) holds. Show that this method provides a new derivation (by induction
on r) of (11.6).

11. From (11.6) and problem 8 conclude that the probability of finding m
or more cells empty is

e A =

(For m = n this expression reduces to zero, as is proper.)

.18 THEORETICAL PROBLEMS 59
12. The probability that each of N given cells is occupied is

(11.10) w(r, n) l=nce (,:) Ak, N)(n — Ny —*
k=0
Conclude that
N r
o e Eer()0-2)

(Use the binomial theorem. For N = n we have u(r,n) = n=" A(r, n).
Note that (11.11) is the analogue of (11.3) for sampling with replacement.'®
For an alternative derivation see problem IV, 8.)

13. Limating form. For the passage to the limit described in problem 4 one
has u(r,n) — (1 — e ?)¥,

Note: In problems 14-19 r and n have the same meaning as above, but we assume
that the balls are indistinguishable and that all distinguishable arrangements have
equal probabilities (Bose-Einstein statistics).

14. The probability that a given cell contains exactly k balls is
n+r—k—2\ (m+4r-—1
(i AL et

15. Show that when n > 2 zero is the most probable number of balls in
any specified cell, or more precisely, go > ¢1 > ... (cf. problem 5).

16. Limat theorem. Let n — o and r — o, so that the average number of
particles per cell, r/n, tends to A. Then

xk
q — (1 +>‘)k+l.

(11.12) Qk

(11.13)

(The right side is known as the geometric distribution.)
17. The probability that exactly m cells remain empty is

(11.14) Pm=(7:) (n_r:nl_l)+(n+rr_l)'

19 Note that u(r, n) may be interpreted as the probability that the waiting time
up to the moment when the Nth element joins the sample is less than ». The
result may be applied to random sampling digits: here u(r, 10) — u(r — 1, 10) is
the probability that a sequence of r elements must be observed to include the
complete set of all ten digits. This can be used as a test of randomness. R. I,
Greenwood (Coupon collector’s test for random digits, Mathematical Tables and
Other Aids to Computation, vol. 9 (1955), pp. 1-5) has tabulated the distribution and
compared it to actual counts for the corresponding waiting times for the first 20356
decimals of = and the first 2486 decimals of e. The median of the waiting time for
n complete set of all ten digits is 27. The probability that this waiting time exceeds
50 is greater than 0.05, and the probability of the waiting time exceeding 75 is
nbout 0.0037.

60 COMBINATORIAL ANALYSIS (IT.11

18. The probability that a group of m prescribed cells contains a total of
exactly j balls is

(A8 gm) = (m+j)(n—m+r—j—1)_:_(n+:—1)'

="
19. Limiting form. For the passage to the limit of problem 4 we have
_ w47 — 1)
(11.16) g(m) — (L b e

(The right side is a special case of the negative binomial distribution to be intro-
duced in chapter VI.)

Theorems on Runs. In problems 20-25 we consider arrangements of ry alphas
and 7y belas and assume that all arrangements are equally probable [see example (4.d)).
This group of problems refers to section 5a.

20. The probability that the arrangement contains exactly & runs of either
kind is

(11.17) Py = 's (,, - 1) (r:: 11) ig (n : rz)

when k = 2 is even, and

- 1'1-—1 1’2—1 7‘1—1 o — 1 o T1+T2
wi® Pea={(";) GI)+CI) LN L)
when & = 2v + 1 is odd.

21. Continuation. Conclude that the most probable number of runs is an

integer & such that 2rirs <k< 2rirs + 3. (Hint: Consider the ratios

T+ 72 r+ 72
Py 1o + Py, and Py 4y + Pay—1.)

22. The probability that the arrangement starts with an alpha run of length
v > 01is (r1)re + (r1 4+ 72)y41. (Hint: Choose the » alphas and the beta which
must follow it.) What does the theorem imply for » = 0?

23. The probability of having exactly & runs of alphas is

AL30 e (rI: : i) (1'2 -5 1) (n <+ 1'2)

Hint: This follows easily from the second part of the lemma of section 5.
Alternatively, equation (11.19) may be derived from (11.17) and (11.18), but
this procedure is more laborious.

24. The probability that the nth alpha is preceded by exactly m betas is
rt+re—n—m\ m+n—1\ (ri+7r
@iy (m) (m) = (r)

| i Vi

25. The probability for the alphas to be arranged in & runs of which k&
are of length 1, ks of length 2, ..., ky, of length » (withky 4 ...+ k, = k) is

(11.21) kl'k2 et ”:l) (T‘+”)

11.12] PROBLEMS ON BINOMIAL COEFFICIENTS 61

12. PROBLEMS AND IDENTITIES INVOLVING BINOMIAL
COEFFICIENTS
1. For integral n > 2

i -+
()+2()+3() -
()-2()+3() -+

21(3) +32(5) +43(}) +... = ntn — D2o-2

(Hint: Use the binomial formula.)
2. Prove that for positive integers n, k

o3 (O-OCID+ OGN0

More generally 20

my E()GT)e- Qo

3. Foranya > 0

()= (HEY)

If @ is an integer, this can be proved also by differentiation of the geometric
series Zaf = (1 — z)~L
4. Prove that

()=o)

5. For integral non-negative n and r and all real a
WO a—v\ _(a+1 a—n
13 §) i (r o 1) (r +1

(Iint: Use equation (8.6). The special case n = a is frequently used.)
6. For arbitrary @ and integral n > 0

w Bew()-cr(rY)

|Hint: Use equation (8.6).]

% The reader is reminded of the convention (8.5): if » runs through all integers,
only finitely many terms in the sum in (12.3) are different from zero.

62 COMBINATORIAL ANALYSIS [II.12

7. For positive integers r k
v+k—1 r+k
(89 b bty

(@) Prove this using (8.6). (b) Show that (12.8) is a special case of (12.7). (c)
Show by an inductive argument that (12.8) leads to a new proof of the first
part of the lemma of section 5.

8. In section 6 we remarked that the terms of the hypergeometric distribu-
tion should add to unity. This amounts to saying that for any positive integers
a) b’ n’

@y @@+ 62)++ ()@ =7

Prove this by induction. (Hint: Prove first that equation (12.9) holds for
a = 1 and all b.)

9. Continuation. By a comparison of the coefficients of ¢* on both sides of
(12.10) (1 + %L + 00 = (1 + t)s+

prove more generally that (12.9) is true for arbitrary numbers a, b (and in-
tegral n).

10. Using equation (12.9), prove that

aw QOO ())

11. Using equation (12.11), prove that
(12.12) @] | (2”)

SO WNin — 9)2

12. Prove that for integers 0 < a < b

(12.13) é(—l)“"‘ (Z) (: i I;) - (a z 1)'

Hint: Using (12.4) show that (12.11) is a special case of (12.9). Alternatively,
compare coefficients of £~ in (1 —)%(1 — ¢)=2~2 = (1 — ¢)*—>—2
13. By specialization derive from (12.9) the identities

azg (G)-G2)+-r () =1-C5)

and
(12.15) oine 0 LUy T i B

valid if k, n, and r are positive integers. [Hint: Use (12.4).]
14. Using equation (12.9), prove that

(1216 3 "+’° J—l)(b+7—l) (n+bl—k—l)

=0

11.12] PROBLEMS ON BINOMIAL COEFFICIENTS 63

(Hint: Apply equation (12.4) back and forth.) Note the important special
cases b = 1, 2.

15. Referring to the problems of section 11, notice that equations (11.12),
(11.14), (11,15), and (11.16) define probabilities. In each the quantities should
therefore add to unity. Show that this is implied, respectively, by (12.8),
(12.9), (12.16), and the binomial theorem.

16. From the definition of A(r, n) in problem 7 of section 11 it follows that
A(r,n) = 0if r < n and A(n, n) = nl. In other words

o v ninid (e O ifr<n
(1428 kgb(b (k)k Tl ifr=mn.

(a) Prove (12.17) directly by reduction from n to n — 1. (b) Next prove
(12.17) by considering the rth derivative of (1 — e*)" at ¢t = 0. (c) Generalize
(12.17) by starting from (11.11) instead of (11.6).

17. If 0 < N < n prove by induction that for each integer » > 0
d N n— N
—~1)2 - = !
(12.18) Sy ())e-n=0")
(Note that the right-hand member vanishes when » < N and when r > n.)

Verify (12.18) by considering the rth derivative of "~V — 1)V at ¢t = 1.
18. Prove by induction (using the binomial theorem)

) (3= (et vt (e d ek

n—1
Verify (12.19) by integrating the 1dentity > (1 — ¢’ = {1 — (1 — &)»}¢—1,
0
19. Show that for any positive integer m

m m! a, c
(12.20) +y+2m= Za!b!c! %P2

where the summation extends over all non-negative integers a, b, ¢, such that
a+b+c=m.
20. Using Stirling’s formula, prove that

(12.21) (2:) ~ (mn)—122n,

21. Prove that for any positive integers a and b

2 @+1)a+2)--(@a+mn) b
(3.5 O+ DOF IR alie

22. The gamma function is defined by

(12.23) I(z) = f 27—le= dz
0

where > 0. Show that I'(z) ~ (2r)}¢—*2*—% (Notice that if 2 = = is an
integer, I'(n) = (n — 1)1.)

64 COMBINATORIAL ANALYSIS (II.12

23. Let a and r be arbitrary positive numbers and 7 a positive integer.
Show that

(12.24) ala +r)(a + 2r)- - -(a@ + nr) ~ Crrtipn+@in+Hg—n_

[The constant C is equal to (2r)}/I'(a/r).]
24. Using the results of the preceding problem, show that

a(a +r)(a + 2r)- - -(a + nr) T®/m) -
bo+r)b+2r)---(b+mnr) T(a/r)
25. Prove the following alternative form of Stirling’s formula:
(12.26) n! ~ (2m)i(n 4 Hrte—(n+h,
26. Continuation. Using the method of the text, show that
(12.27) 2m¥(n +) He~HH-12U0+D < n) < (20))n 4 Prtle—(+h,
27. Extending Stirling’s formula, prove that

(Rl ;
120~ 360n°

(12.25)

(12.28) n! ~ (2r)innt exp {—n + L } .

