
Loopring 3.6 Design + Implementation: Smart
Contracts
Security Audit Report

Loopring
Final Report Version: 16 March 2021

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Scope

Code Quality + Documentation

System Design

Specific Issues

Issue A: Operator Has Total Authority Over State Verification

Issue B: Potential Limbo Exit – Withdrawal Fee Griefing

Suggestions

Suggestion 1: Remove Simple Unused Code Relic

Suggestion 2: Improve Withdrawal Processing

Suggestion 3: Check for Null Recipient Addresses

Suggestion 4: Audit the Operator

Suggestion 5: Require A Signature as Private Key for Account Updates

Suggestion 6: Improve Documentation

Recommendations

About Least Authority

Our Methodology

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 1
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Loopring is a flexible layer-2 scalability solution for basic value transactions as well as a variety of
exchanges such as order book and Automated Market Maker (AMM). This system uses advanced
cryptography in the form of a limited one-way homomorphic encryption using bilinear pairings,
popularized in the implementation of the Zcash protocol. This solution is classified as a validity proof
system that ensures that state transition must be correct by the properties provided in the encryption
scheme.

Loopring has requested that Least Authority perform a security audit of Loopring 3.6, a zkRollup layer-2
decentralized exchange and payment protocol implementation on the Ethereum blockchain. Loopring 3.6
is an improved version of Loopring 3.1, which is built on top of the same technical stack, and introduces
Solidity smart contracts and libsnark and ethsnark-based circuits code.

Project Dates
● October 5 - November 13: Initial Review (Completed)
● November 18: Initial Audit Report delivered (Completed)
● March 11 - 15: Verification Review (Completed)
● March 16: Final Audit Report delivered (Completed)

Review Team
● Nathan Ginnever, Security Researcher and Engineer
● Dominc Tarr, Security Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Loopring 3.6 followed by issue
reporting, along with mitigation and remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● Smart Contracts:

https://github.com/Loopring/protocols/tree/master/packages/loopring_v3/contracts
○ Core:

https://github.com/Loopring/protocols/tree/master/packages/loopring_v3/contracts/cor
e

○ AddressSet.sol:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib
/AddressSet.sol

○ AddressUtil.sol:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib
/AddressUtil.sol

○ EIP712.sol:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib
/EIP712.sol

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 2
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

http://loopring.org/
https://loopring.org/resources/en_whitepaper.pdf
https://github.com/Loopring/protocols/tree/master/packages/loopring_v3/contracts
https://github.com/Loopring/protocols/tree/master/packages/loopring_v3/contracts/core
https://github.com/Loopring/protocols/tree/master/packages/loopring_v3/contracts/core
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/AddressSet.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/AddressSet.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/AddressUtil.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/AddressUtil.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/EIP712.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/EIP712.sol

○ FloatUtil.sol:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib
/FloatUtil.sol

○ MathUtil.sol:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib
/MathUint.sol

○ Poseidon.sol:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib
/Poseidon.sol

○ SignatureUtil.sol:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib
/SignatureUtil.sol

○ AMM:
https://github.com/Loopring/protocols/tree/master/packages/loopring_v3/contracts/am
m.

Specifically, we examined the Git revisions for our initial review:

c918b164d30f7b9a3d948225f09b635257b06844

For the verification, we examined the Git revision:

5eb273fe76ba242c6a5f1bb3d1cd0edd57d070b4

These repositories were cloned for use during the audit and are linked for reference in this report:

https://github.com/LeastAuthority/loopring-protocols

All file references in this document use Unix-style paths relative to the project’s root directory.

Supporting Documentation
The following documentation was available to the review team:

● Loopring 3.6 Design:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md

● Loopring 3.6 README:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/README.md

● Loopring 3.6 vs. 3.1:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/security_audit/Loopri
ngV3_6_vs_V3_1.pdf

● Loopring 3.6 Circuit Documentation:
https://github.com/Loopring/protocols/blob/d0eec91edc9bb195acbeddd38ebbdb71e6938127/p
ackages/loopring_v3/circuit/statements.md

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation based on the changes made to the design documentation;
● Resistance to Distributed Denial of Service (DDoS), Reentrance attacks, and similar attacks;
● Common and case-specific implementation errors in the circuit code;
● Cost analysis for the Deposit, Withdrawal, Trades, Transfer, low cost and high throughput metrics;
● Overflow protection against the SNARK scalar field;

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 3
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/FloatUtil.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/FloatUtil.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/MathUint.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/MathUint.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/Poseidon.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/Poseidon.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/SignatureUtil.sol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/lib/SignatureUtil.sol
https://github.com/Loopring/protocols/tree/master/packages/loopring_v3/contracts/amm
https://github.com/Loopring/protocols/tree/master/packages/loopring_v3/contracts/amm
https://github.com/LeastAuthority/loopring-protocols
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/README.md
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/security_audit/LoopringV3_6_vs_V3_1.pdf
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/security_audit/LoopringV3_6_vs_V3_1.pdf
https://github.com/Loopring/protocols/blob/d0eec91edc9bb195acbeddd38ebbdb71e6938127/packages/loopring_v3/circuit/statements.md
https://github.com/Loopring/protocols/blob/d0eec91edc9bb195acbeddd38ebbdb71e6938127/packages/loopring_v3/circuit/statements.md

● Sybil attack in layer-2 account registration;
● Adversarial actions and other attacks on the smart contracts;
● Potential misuse and gaming of the smart contracts;
● Attacks that impact funds, such as the draining or the manipulation of funds;
● Mismanagement of funds via transactions;
● Alignment of incentive mechanisms to help prevent unwanted or unexpected behavior;
● Vulnerabilities in the smart contracts code as well as secure interaction between the contracts

and with related network components;
● Proper management of encryption and signing keys;
● Protection against malicious attacks and other ways to exploit contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity;
● Performance problems or other potential impacts on performance; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
The Loopring smart contracts investigated during this audit handle the deposit, withdrawal, and block
state updates of the exchange that are verified against the SNARK proofs on each update. To address the
issue of liveness, and ensure that the Loopring system operator continues to process transactions
submitted offline, a staking protocol enables users to shut the exchange down and burn this stake if their
withdrawals are not processed within a reasonable amount of time.

Loopring poses challenges due to the integration of zk-SNARK circuits for state updates and verification.
These challenges include complexity of verifying correctness of the proof the circuit is enforcing leading
to a system for swapping SNARK circuits if necessary, the cost of pairing functions in the Ethereum
Virtual Machine (EVM), and the cost of needing to supply public inputs for data availability. This is a
layer-2 scalability solution that handles more than simple transfers: it also includes an order book
exchange, which makes state updates more complicated than most layer-2 systems. An additional
challenge is the use of the Poseidon hash function, which optimizes the SNARK constraints and is
relatively new and has a new Solidity implementation. Most other projects use the well-known
keccak256 function instead and, as a result, this novel approach by the Loopring team presents some
risk.

In general, layer-2 scalability solutions are required to identify a balance between ensuring the security of
the transactions and adding the value of convenience, which is a difficult undertaking. For example, some
layer-2 solutions, such as payment or state channels, reduce the security requirements of a blockchain
network by only requiring consensus of the parties involved, but not the network as a whole. This, in turn,
requires timeouts for fraud proofs to ensure that the parties do not stall or cheat the channel.

In Loopring, the state updates are secured by a SNARK circuit that ensures that the state update is
correct, making this system one of validity proofs. This addresses most of the concerns fraud proofs
need to handle on-chain. In order to ensure that the operator continues to process transactions, Loopring
allows the operator one to two weeks to process withdrawal transactions before users may submit a
claim on-chain that shuts the Loopring system down, causing a mass exit, allowing the Loopring operator
enough time to increase the chances of avoiding DoS attacks, while balancing opportunity cost losses
from the users if an operator were to become defunct.

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 4
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Scope
The scope of the audit was sufficient and encompassed the security-critical components of the system.
Although the complexity of logic that states may mutate to is fairly simple, a large Solidity codebase such
as Loopring can be difficult to assess for small issues that can lead to a failure where large amounts of
money are at stake. In addition, there are several dependencies outside of the scope of the audit, which
could introduce security issues. However, this risk is minimized by the use of standard libraries that are
widely used and have been previously reviewed.

One crucial component of the system outside the scope of this audit is the operator. Since significant
aspects of the security of Loopring depend on how the operator behaves, we recommend a security audit
of the operator (Suggestion 4).

Code Quality + Documentation
We found the code to be well organized. Given the complexity of this codebase as a decentralized
exchange, especially one using advanced validity proofs, this system logic is easy to follow. This made
auditing this system less challenging and reduces the concerns that various systems states remain
unexplored. As a result, we determined that fuzz testing in order to explore the system’s various states
was unnecessary. This simplified our audit approach and allowed opportunity to focus on other areas of
concern.

We found the code comments to be minimal with the exception of some comments describing key
components and feature functionality. We suggest expanding the comments coverage to be more
exhaustive and ensuring that most functions adhere to the style guidelines for Solidity (Suggestion 6).

The overview documentation is sufficient in helping to understand how the system operates. However, we
recommend adding more detail, particular regarding the withdrawal process (Suggestion 2).

We commend the Loopring team for providing sufficient test coverage with many quality tests. We also
found that these tests anticipate the possible failure conditions that we identified during our review.

System Design
We commend the Loopring team for adhering to best practices for system design theorized by layer-2
scaling teams over the past few years. Given how complex an exchange’s state is, the Loopring team has
managed to reduce the logical complexity to a level that is easy to reason about. It is apparent that
security is integral to the smart contract system. This is exemplified by several commendable properties
of the system, including:

● The exhaustive use of non-rentrancy guards and the use of extensions to the standard ownership
contracts with the new claimable ones that ensure transfer must be a two-step process;

● Careful initialization of state and thought put into the proxy pattern of updates; and
● The general use of good modifiers and Solidity patterns that ensure visibility of functions are

proper.

However, we have identified areas for critical improvement: the ability for a single forced withdrawal
transaction to be left out long enough for the entire exchange to be shut down (Suggestion 2) and the
power that the operator has to switch the snark circuit (Issue A).

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 5
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://solidity.readthedocs.io/en/v0.5.3/style-guide.html#natspec

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Operator Has Total Authority Over State Verification Partially Resolved

Issue B: Potential Limbo Exit - Withdrawal Fee Griefing Resolved

Suggestion 1: Remove Simple Unused Code Relic Resolved

Suggestion 2: Improve Withdrawal Processing Unresolved

Suggestion 3: Check for Null Recipient Addresses Resolved

Suggestion 4: Audit the Operator Unresolved

Suggestion 5: Require a Signature as Private Key for Account Updates Unresolved

Suggestion 6: Improve Documentation Resolved

Issue A: Operator Has Total Authority Over State Verification

Location

/packages/loopring_v3/contracts/core/impl/BlockVerifier.sol#L27

Synopsis

In the current implementation, the Loopring contracts allow for the centrally owned operator to replace the
SNARK circuit at any time. This SNARK circuit is used to verify incoming blocks generated off-chain that
will subsequently update the stored merkle root that controls the account state of all users and all
components of the system. If this verification circuit is changed for something malicious, it will allow
state updates that are malicious.

Impact

Severe. If the operator of the SNARK circuit becomes malicious or compromised, they are able to control
all state updates. This can lead to the users losing all funds in the system.

Feasibility

In the early stages of the exchange, it is against the self interest of the Loopring organization to commit
fraud. However, this is a single point of failure that could become compromised through other attack
methods.

Mitigation

In advance of delivering this audit report, the Loopring team responded that they are dedicated to
resolving this issue. While the SNARK circuits are still being finalized, it is favorable to be able to switch a

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 6
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/loopring-protocols/blob/c918b164d30f7b9a3d948225f09b635257b06844/packages/loopring_v3/contracts/core/impl/BlockVerifier.sol#L27

broken circuit out quickly. Once the SNARK circuits have been finalized, the update function should be
immediately switched to one controlled by a multisig contract.

Remediation

As discussed with the Loopring team, a democratic and transparent approach to the update of the
consensus rules would be an ideal alternative to the currently centralized design. One way to do this
would be to place a proposed circuit update on-chain where it could be voted on by the users of the
system, or by those qualified to ensure that the new circuit is correct. SNARK circuits are complicated
protocols and not easily reviewed by most people. Votes should be only placed on circuits that have been
thoroughly audited by reliable and ethical sources.

Status

The Loopring team has informed us that they intend to launch with a multisig contract, per the
suggested mitigation, in addition to delays for ownership transfer and circuit upgrade of seven days that
will also allow users time to exit if they suspect that a governance action is malicious. A full remediation
is currently difficult since an agreed upon democratic and transparent approach to the update of the
consensus rules has not been established, however, we recommend that the Loopring team continue to
investigate, research, and implement long term strategies that promote decentralization.

Verification

Partially Resolved.

Issue B: Potential Limbo Exit – Withdrawal Fee Griefing

Location

/packages/loopring_v3/contracts/core/impl/libexchange/ExchangeWithdrawals.sol#L61

Synopsis

A limbo exit is a result of a single source of truth creating off-chain state updates and a data availability
problem, as was first theorized during Plasma scalability discussions. A form of it is present in Loopring
as well: operators have the ability to process state but not reveal this processed state to anyone. If a user
submits a transaction off-chain but does not see that their transaction is being processed, they will initiate
a forced withdrawal on-chain. At a later point, the operator can reveal the block that includes the
transaction that invalidates the withdrawal and block the process of forced withdrawal. These forced
withdrawals require fees to be processed, and if the withdrawal is invalidated by the revealed block, the
user will be griefed a small amount for the fees.

Impact

The impact of this is low because fees are not very high, and the operator is not incentivized to hurt their
own business by committing these types of infractions.

Preconditions

The operator includes a transaction for a trade or a transfer of funds, but does reveal or commit the block
that includes this transaction to the mainnet.

Feasibility

This is easily feasible but the incentive to do so is not aligned.

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 7
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/loopring-protocols/blob/c918b164d30f7b9a3d948225f09b635257b06844/packages/loopring_v3/contracts/core/impl/libexchange/ExchangeWithdrawals.sol#L61
https://ethresear.ch/t/reliable-exits-of-withheld-in-flight-transactions-limbo-exits/1901

Mitigation

This issue results from the fact that data availability is in the control of layer-2 operators and, to the best
of our knowledge, reasonable protocol level solutions for addressing this issue are currently unavailable.
However, out-of-band channels such as social media will ensure that there is a reputation loss for the
Loopring organization if this is attempted beyond an accidental incident. We simply suggest that this
issue be made public to encourage transparent reporting of incidents that may arise.

Status

The Loopring team has incorporated additional documentation on the issue of withdrawal fee griefing,
along with providing a mitigation strategy, in accordance with our suggested mitigation.

Verification

Resolved.

Suggestions

Suggestion 1: Remove Simple Unused Code Relic

Location

/packages/loopring_v3/contracts/core/impl/libexchange/ExchangeAdmins.sol#L22

Synopsis

There is an event to signify that the operator has been changed, but this event is never used. This
functionality has been replaced with the more robust claimable and ownable contacts provided by
OpenZeppelin and can be removed. Removing it will also slightly reduce gas costs when deploying the
contract.

Mitigation

We recommend removing the unused event from the code base.

Status

The Loopring team has removed the unused code relic, thus slightly reducing gas costs during contract
deployment and ensuring that unnecessary functionality is removed from the code, as suggested.

Verification

Resolved.

Suggestion 2: Improve Withdrawal Processing

Location

/packages/loopring_v3/contracts/core/impl/ExchangeV3.sol#L512

Synopsis

There is a safety mechanism for users of the exchange to enforce that they are able to withdraw their
funds. This is to prevent the case that an operator becomes malicious or offline for too long and will not
process transactions off-chain for some deposited amount of funds. If the withdrawal is valid, as
witnessed in the merkle tree, and MAX_AGE_FORCED_REQUEST_UNTIL_WITHDRAW_MODE reached, the
exchange will enter withdrawal mode and be shut down entirely. This presents a danger for the operator

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 8
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md#withdrawal-fee-griefing
https://github.com/LeastAuthority/loopring-protocols/blob/c918b164d30f7b9a3d948225f09b635257b06844/packages/loopring_v3/contracts/core/impl/libexchange/ExchangeAdmins.sol#L22
https://github.com/Loopring/protocols/commit/5eb273fe76ba242c6a5f1bb3d1cd0edd57d070b4
https://github.com/LeastAuthority/loopring-protocols/blob/c918b164d30f7b9a3d948225f09b635257b06844/packages/loopring_v3/contracts/core/impl/ExchangeV3.sol#L512

that they may miss a valid withdrawal by software failure and lose their stake, while forcing the exchange
to shut down for all users.

Mitigation

Given that this is a severe penalty, some added robustness in the way that withdrawals are processed
could be useful. Mitigating against this accidental closure of the exchange and stake burning is generally
out of the scope of the contracts, and requires the server infrastructure to ensure that forced withdrawal
requests are processed in a timely manner. However, as discussed with the Loopring team before the
writing of this report, they have ideas for allowing multiple operator servers or organizations to handle
simple requests like this. Having added a quorum of withdrawal operators to the contracts that are in
some way incentivized, potentially by the withdrawal fee, could add an extra layer of security such that the
entire system does not shut down by a single server missing a single transaction. We suggest further
research be done on this topic and documentation be added that will describe this potential process in
more detail.

Status

The Loopring team has acknowledged this suggestion and have noted that, while they can allow anyone
to submit blocks, open source software that third party operators can use to process withdrawals is
currently unavailable. The Loopring has also noted that their plans for addressing this suggestion are still
to be determined and the suggestion remains unresolved at this time.

Verification

Unresolved.

Suggestion 3: Check for Null Recipient Addresses

Location

/packages/loopring_v3/contracts/core/impl/libexchange/ExchangeWithdrawals.sol#L242

Synopsis

If a user does not supply a transfer _to address to a transaction, the funds will automatically be
transferred to the Loopring protocol fee vault. In general, for ERC-20 contracts, there is a check
require(_to != address(0)); to capture this potentially common fail case. This check is provided
and conceived by the OpenZepplin team as an important modification to the ERC-20 standard to prevent
bad software that causes empty arguments or improper address parsing from sending the funds to an
uncontrollable address. This is reasoned to be a more common failure than supplying a properly
formatted but incorrect address.

Mitigation

We do not consider this a security issue because the funds are not lost entirely and there may be a
centralized method for correcting mistaken transfers. If left unchanged, however, it could be an
inconvenience or potential loss of funds if there is no verifiable way to correct a transaction's intentions.
We suggest separating the intention of sending to the operator from leaving the _to field blank and
making those kinds of transactions more explicit.

Status

The Loopring team has included additional checks that prevent users from withdrawing to address (0), as
suggested. In addition, they have noted that when withdrawing from the protocol fee account (owner ==
address(0)) the to address will still be 0 (which will be translated on-the-fly to the current fee vault

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 9
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/loopring-protocols/blob/audit/packages/loopring_v3/contracts/core/impl/libexchange/ExchangeWithdrawals.sol#L242
https://github.com/Loopring/protocols/commit/5eb273fe76ba242c6a5f1bb3d1cd0edd57d070b4

address), which is done so they are able to update the protocol fee vault address at any time while making
sure that previously withdrawn funds are not already assigned to the old protocol fee vault address.

Verification

Resolved.

Suggestion 4: Audit the Operator

Synopsis

Significant aspects of the security of the total Loopring system depend on what the operator chooses to
do, as most user interactions go through the operator, except some that use contracts directly. This
means that much of the attack surface is in the operator code. Indeed, DoS attacks against crypto
markets are quite common. However, the operator is out of scope for this audit.

Mitigation

We suggest an audit of the operator so that the potential attack vectors are assessed, clarified, and
resolved.

Status

The Loopring team acknowledges this suggestion, however, they have noted that they do not consider the
operator to be security critical. The Loopring team has stated the following:

“The operator needs to do things on-chain and off-chain.

On-chain an extra operator contract is used that has some special privileges on the exchange contract, but
once the exchange contract is fully set up the operator contract can't do anything that is critical for the
security. The security is enforced strictly by the main protocol contracts.

Though as far as they know the only really critical part is that the operator (or any other UI hooking into the
Loopring ecosystem) can help the user create and manage the specific EdDSA keys necessary to do rollup
transactions (though most transactions can also be approved using just standard Ethereum signatures or
transactions). This will be mitigated for MetaMask users when plugin support is enabled in production on
their end (https://github.com/Loopring/eddsa-metamask-plugin). With the plugin the keypair is generated
automatically and the private key never leaves MetaMask.

So while the operator is responsible for some desired properties like liveness and censorship resistance, the
operator is not critical for user security because of the censorship resistant forced withdrawal + withdrawal
mode system. Those are still important properties of course, but for now not something they want to focus
on.”

At the time of this verification, the operator has not undergone a separate security review and we
recommend that the Loopring team continue to consider a follow up audit of the operator.

Verification

Unresolved.

Suggestion 5: Require A Signature as Private Key for Account Updates

Location

/packages/loopring_v3/circuit/Circuits/AccountUpdateCircuit.h#L81-L93

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 10
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Loopring/eddsa-metamask-plugin
https://github.com/LeastAuthority/loopring-protocols/blob/audit/packages/loopring_v3/circuit/Circuits/AccountUpdateCircuit.h#L81-L93

Synopsis

When updating a client key, Loopring recommends using a signature as the private key. This has an
interesting property that it creates a key linked to the root private key, but if an attacker knows the account
key, they cannot derive the root private key. However, the actual update transaction does not depend on
this property: it's simply a statement, signed by the root key, that an arbitrary key is now the account key.
That means a randomly generated key could be used. A key manager usually does not consider a
signature to be a private output – the assumption is that a signature is provided to a third party who will
check it. Using a signature as a private secret may therefore be outside the security model of that key
manager. However, a random number generator is already expected to produce private secrets. As
Loopring does not directly depend on the fact that account keys are linked to root keys (other than the
root key claims it), so it is recommended to simply use a new random key.

Mitigation

Clients should generate a key with a random number generator and then sign the Account Update
transaction with their root key. This does not require any changes to the protocol, only to the client.

Status

The Loopring team has responded indicating that their current approach is sufficient. In particular, they
state:

“Our current approach was explained here and was well received by the Ethereum community:
https://medium.com/loopring-protocol/looprings-new-approach-to-generating-layer-2-account-keys-4a16cc
334906

The downside of generating the keys some additional information (be it a password or some random
random number) is that security is compromised in other ways. With a password the user is required to pick
a strong password and then remember it. With a random number either the random number or the private
key directly needs to be stored somewhere in a secure way. Both are also pretty bad from a UX perspective
because we now put a lot of responsibility on the user to keep his own account safe while making sure the
private key can be recovered (or even transferred to a different device) in a safe way. Loopring itself could
create specialized tools to do these things, but this is suboptimal because we'd need to create and maintain
this critical part of the system, while other solutions already have widespread use and have been
battle-tested the last couple of years. Often users already have their preferred device or wallet.

The additional benefit of using the signature is that we seamlessly support a wide range of different wallets,
not only MetaMask but also mobile wallets and hardware wallets.”

We agree that this approach is sufficient. The benefit of this approach is that it is possible to regenerate
the account keys if they are lost, as long as the root key has been protected. This is a pragmatic choice
that balances user experience against security. Deriving the account key from a hash of the private key
(via a hash based KDF function) would have the same effect, except that wallet applications already
generally have a signature feature. As a result, we consider this issue to be resolved.

Verification

Resolved.

Suggestion 6: Improve Documentation

Location

/contracts/core/impl/libexchange/ExchangeAdmins.sol#L33

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 11
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://medium.com/loopring-protocol/looprings-new-approach-to-generating-layer-2-account-keys-4a16cc334906
https://medium.com/loopring-protocol/looprings-new-approach-to-generating-layer-2-account-keys-4a16cc334906
https://github.com/LeastAuthority/loopring-protocols/blob/c918b164d30f7b9a3d948225f09b635257b06844/packages/loopring_v3/contracts/core/impl/libexchange/ExchangeAdmins.sol#L33

Synopsis

Code comments were insufficient in many areas and most functions do not follow the style guidelines for
Solidity. Additionally, the Loopring whitepaper describes an old version of the protocol.

Mitigation

We recommend that all outdated documentation be removed or updated, code comment coverage be
expanded and that all functions be updated to follow Solidity style guidelines.

Status

The Loopring team has replaced the previous whitepaper with updated design documentation. In addition,
they have documented all public functions and improved their code comments. We acknowledge that
improvements to documentation is an ongoing effort and encourage the Loopring team to continue
updating the project documentation and adhering to documentation best practices as the code base
continues to mature.

Verification

Resolved.

Recommendations
We recommend that the unresolved and partially resolved Issues and Suggestions stated above are
addressed as soon as possible and followed up with verification by the auditing team.

We recommend that the Loorping team continue to research and investigate the possibility of
implementing a democratic and transparent approach to the update of the consensus rules. This would
reduce the security risk of having an overly authoritative operator and prevent potential malicious updates
when the operator is compromised.

In addition, we suggest the Loopring team explore an Operator Audit to identify any further attack vectors
that may compromise the system

We commend the Loopring team for updating the documentation and removing unused code, thus
reducing confusion for users and reviewers of the code and the potential for risks that stem from human
error. The Loopring team’s consideration for security throughout the system is notable as is demonstrated
through their adherence to best practices for system design theorized by layer-2 scaling teams over the
past few years.

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 12
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://solidity.readthedocs.io/en/v0.5.3/style-guide.html#natspec
https://solidity.readthedocs.io/en/v0.5.3/style-guide.html#natspec
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/contracts/core/iface/IExchangeV3.sol

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 13
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Loopring 3.6 Design + Implementation: Smart Contracts | Loopring 14
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

