
Optimizing Tegra Apps and Games using
Unity
Paul “Hodge” Hodgson (Manager, Tegra Developer Technologies)

What's to come?

 Generic issues with Unity based solutions.

 Can be applied to other engines.

 Based on analysis of many Tegra applications.

Know how you have spent your budget

 Use available tools both within and external to Unity

 Many possible bottlenecks

— Vertex

— Primitive

— Fragment

— Bandwidth

— CPU

 Be aware of cumulative effects

 Spend your optimization budget wisely also

Use optimized triangle lists

 Effectively zero contribution

 Reduces three potential bottlenecks

— Vertex transform and vertex cache re-use

— Primitive count

— Attribute bandwidth

 Important for multi-pass techniques

Use optimized triangle lists

 For imported meshes

— Player settings->Optimise mesh data

— Import new asset->Inspector->Optimise mesh

 For dynamic meshes

— Mesh.SetTriangles(triangles, submesh)

— Mesh.Optimize()

Only clear what/when you need to

 Zero contribution is common case with HUD/overlays

 Saves bandwidth from clear

 Saves bandwidth from content by removing

— Depth test

— Depth write

Only clear what/when you need to

 For each camera

— Camera->Inspector->Clear flags

 For each subshader

Shader “DepthIgnore Example" {

 SubShader {

 Pass {

 ZWrite off

 ZTest Always

 // Rest of shader

 }

 }

}

Use appropriate texture settings

 Near zero contribution depending on assets

 DXT

— Compressed RGBA

— GA compress normal maps

 UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap))

 Mipmap

 Anisotropy

 Filter mode

Use appropriate texture settings

 Select texture->Inspector

— Filter mode

— Format

— Aniso level

 File->Build settings->Android->Texture compression

Match shader cost to results

 Avoid uber-shaders

 Use GLSL „lowp‟ precision where possible

— Cg type „fixed‟

 Move constant or near constant results to vertex shader

Render order optimizations

 Zero contribution

 Divide geometry appropriately

 Render largest occluders first

 Ensure skybox is rendered after all other opaque objects

Shader “LargestOccluder Example" {

 SubShader {

 Tags {"Queue" = " Geometry-1 " }

 Pass {

 // Rest of shader

 }

 }

}

Render order optimizations

 Consider depth pre-pass

— Normally at (shadeCost*fragments)

— Opaque at (0.5*fragments)+(shadeCost*visibleFragments)

— Discards at (minDiscard*fragments)+(shadeCost*visibleFragments)

Render order optimizations

Shader “DepthPrepass Example" {

 SubShader {

 // Pass to render to the depth buffer only

 Pass {

 ColorMask 0

 // Rest of pre-pass shader

 }

 // Pass to shade only the finally visible opaque fragments

 Pass {

 ZWrite off

 ZTest Equal

 // Rest of shader

 }

 }

}

Questions?

 Paul “Hodge” Hodgson

 NVIDIA Developer Zone

— http://developer.nvidia.com/develop4tegra

 Next up in this room:

— Stephen Jones with “Performance and Debugging Tools for High-

performance Android Applications”

http://developer.nvidia.com/develop4tegra

