Thursday, February 28, 2013

State of the book, 2/28/13


Since the book is moving along fairly well lately--that is, I'm running out of things to research and actually writing it--I thought I'd start giving regular updates. Regular readers know how much my life sucked last year. It was basically a lost year for me. Except for a few weeks, the year was taken up by either by dealing with or being curled up in a ball because of end-to-end personal catastrophes  Things quieted down toward the end of the year and I was finally able to do useful work again in mid-January.

So, here we are. It's the last day of February. Over the last couple weeks I have completed and polished my book proposal. Unlike article proposals, non-fiction book proposals can be quite long. The usual advice for articles is that the proposal should be no longer than two pages. Book proposals, on the other hand need to go into a number of issues such as marketing, illustrations, and include at least one polished sample chapter. When I researched proposals I discovered that a forty page proposal wasn't unusual. "Holy crap!" I thought, "do I have that much to say about the book?" My current draft is forty-one pages long. I'm still wondering if I should have said more. For example, my author's biography is two sentences long.

That's the state of the book. The proposal and chapter are written and rewritten and going to my trusted reviewer/editors for comments. I've started into another chapter. The next big deadline will be sending it out the door a little over a year later than I had expected.

Sunday, February 17, 2013

Just how badly do we treat our teachers


This chart just showed up on my Facebook feed.

It's an odd chart, with no explanations. I think most of my friends will have the same reaction as I did, a resigned sigh over how badly we treat teachers in this country. Unfortunately, there were other reactions. Of the twenty or so comments I read, this is the stupidest.
Ryan Kaiser Lol just goes to show that all those extra hours they work do nothing for the outcome of our students and if they turned out more students with better skills I would opt to pay them more but until then keep slaving on teachers that are not producing and thank you to all those who are.
Mr. Kaiser's English and logic teachers need to hang their heads in shame, though perhaps there were extenuating circumstances, such as--oh, I don't know--overwork. I suppose he's one of those who think we need to kill their unions,raise the price of their insurance, take their pensions, and give them guns (logic teacher hangs head in shame second time).

The countries are selected from the members of the Organisation for Economic Co-operation and Development (OECD), but several have been left out, Canada (if you want to comment on social metrics in the US, our slightly poorer, but culturally highly similar neighbor is usually a good data point to include), Sweden, Israel, and most East European countries. Why were those excluded? What's the deal with Sweden and Turkey? Is GDP per capita the best metric for pay? Why not compared to average or median income or some kind of cost of living index? We would do a little better on either of those measures. How did they determine hours worked? The 1500 hours they credit the US teachers as working is apparently based on nine months of 40 hour weeks. Most teaches I know would have a hearty laugh at the idea they only work 40 hours. Then they would reach for a glass of box wine and break down weeping. Is the hours estimate as unrealistic for other countries?

Who cares? As Mr. Kaiser says, "the floggings will continue until morale improves!

The worst possible example


The Washington pundit class is in love with the idea of bipartisanship and compromise for their own sake. That is, they don't really care what actual laws are passed or policies adopted as long as they represent bipartisanship. If you were going to argue for this, you would probably look for good examples from the past of both sides giving a little to move forward on an important issue. But, what if you were looking for a bad example? What if you wanted an example of compromise that brought shame on the American form of government? What would be your choice as the worst possible example of compromise and bipartisanship in American history? It might be this one:
One instance of constitutional compromise was the agreement to count three-fifths of the slave population for purposes of state representation in Congress. Southern delegates wanted to count the whole slave population, which would have given the South greater influence over national policy. Northern delegates argued that slaves should not be counted at all, because they had no vote. As the price for achieving the ultimate aim of the Constitution—"to form a more perfect union"—the two sides compromised on this immediate issue of how to count slaves in the new nation. Pragmatic half-victories kept in view the higher aspiration of drawing the country more closely together. 
Some might suggest that the constitutional compromise reached for the lowest common denominator—for the barest minimum value on which both sides could agree. I rather think something different happened. Both sides found a way to temper ideology and continue working toward the highest aspiration they both shared—the aspiration to form a more perfect union. They set their sights higher, not lower, in order to identify their common goal and keep moving toward it.
James Wagner, the President of Emory University in Atlanta, wrote those words in an editorial entitled "As American as … Compromise" for the university's alumni magazine. I'm not sure when the winter issue of Emory Magazine began hitting people's mailboxes, it could have been months ago because no one ever reads these Letter from the President columns. But it began getting attention yesterday, including attention from the Black Student Alliance.

For those who aren't sure what he's talking about, this is what is usually called the "Three-Fifths Compromise" in the US Constitution. The Constitution requires the federal government to take a census every ten years and to use the census numbers to apportion seats in the House of Representatives. Each state is told how many seats they get and the states draw their own congressional districts according to their own processes. That sounds pretty simple, doesn't it? Well it wasn't. The Southern states had, within their boundaries, a huge number of people who were not allowed to vote, who weren't really citizens, African slaves. The Northern states had a much larger population of real citizens than the South. The Southern delegates to the Constitutional Convention assumed that the main divisions in the new congress would be regional and wanted more power for their region. They demanded that slaves be counted in the apportioning of House seats, giving them more power in Congress and in the Electoral College. Northern delegated argued that the apportioning of House seats should reflect the number of voters in each state. Eventually, a compromise was reached allowing the Southern states to claim three-fifths of the number of slaves in each state for the purpose of apportioning of House seats. Wagner was holding up one of the most shameful examples of compromise in American history as a shining example of doing things right.

There is one popular misconception about the "Three-Fifths Compromise" and that is that it implied that African slaves were three-fifths of a person. This is often brought up as a grave injustice against the ancestors of African-Americans. That would have been an improvement of their lot or, at least, a concession that they were entitled to a certain amount of human dignity. Prior to the Civil War, slaves were not people at all; they were property; they were zero-fifths of a person. The only concessions that African slaves were even marginally human was their forced conversion to Christianity and the fact that laws were eventually passed making it illegal to kill a slave without first conducting a sham trial.

I imagine that when President Wagner arrives in his office Tuesday morning he will find several unpleasant message waiting for him including requests for interviews from local and even national media. Someone from the University's press office is probably already spoiling his three-day weekend. What will happen next is that he will issue a standard non-apology apology. He's sorry IF anyone took offense. He won't admit he was wrong to say it; he's just sorry he created a shit-storm. He'll call it a "misstatement," meaning his argument is valid, he just chose a bad example.

So, what was his point? It's hard to tell because, even without that horrifying example, its a really badly written column. He starts out saying some "distinguished public servant," speaking on a forum last Fall, mentioned political polarization, the Constitution, and compromise. He them pulls out the three-fifth compromise as a shining example that we should try to emulate. Then he mentions the fiscal debate. He's halfway through the column now. This, he says is just like trying to consider different view points in a university. Then something about teaching liberal arts classes at a research university. Maybe he's arguing for creationism in the biology classes. It's impossible to tell what compromise he's talking about.

I cannot imagine anyone defending this mess except those who think every word in the constitution was dictated by God and white supremacists (just to be clear, I'm not saying the two are the same). In any case, It's not going to be fun to be James Wagner for the next week or so. He'll be lucky to get out of this with his job.

Update: And he's already issued the non-apology apology: " Certainly, I do not consider slavery anything but heinous, repulsive, repugnant, and inhuman. I should have stated that fact clearly in my essay. I am sorry for the hurt caused by not communicating more clearly my own beliefs. To those hurt or confused by my clumsiness and insensitivity, please forgive me."

Friday, February 15, 2013

That other Russian meteor

Many of the news stories about the Chelyabinsk meteor have mentioned the Tunguska event of 1908. This is a piece I wrote on the 100th anniversary of that explosion. Enjoy.

********

One hundred years ago today, something exploded over Siberia.

The weather in central Siberia on June 30, 1908, a Tuesday, was warm and mostly clear. Ten days after the summer solstice, the days are not appreciably shorter than they are on that longest day. In Siberia, that means the days are very long. North of the Arctic Circle the sun does not go down at all. Instead, it approaches the south and rolls along the horizon for a few minutes at midnight before beginning to rise again. Five degrees south of the circle, it dips just barely below the southern horizon a little before eleven and rises back above it just after one in the AM. At midnight it is still light enough to read a newspaper outdoors on a clear night. People and animals adjust to the long days by rising early and staying up late. There will be time to sleep during the long nights of winter.

At a little after seven in the morning, settlers near the north end of Lake Baikal saw something bright appear in the sky, crossing to the northwest leaving a trail behind it. As it touched the horizon, it was transformed into a column of black smoke in which flames could be seen. Soon after, they felt a thump in the ground and heard a series of bangs that they compared to artillery in the distance. Other villagers to the west of them gave similar descriptions. Later scientific expeditions would locate the ground zero of the explosion in a remote area among the tributaries of the Podkamennaya (Stony or Upper) Tunguska River. Seismic stations around the world recorded the ground movement and set the time at precisely 07:17:11 AM.

The closest people to ground zero were Evenki reindeer herders camped along the Chambe River forty kilometers away. They reported being thrown in the air by the shock, along with their tents and belongings. They saw trees broken off by the shock and the forest set on fire. Several herders were injured, but the only reported death was an old man who probably had a heart attack. One herder, Ilya Potapovich, later reported that his brother was so shocked by the explosion that he didn't speak for years after. Their herds were scattered and many reindeer perished in the fire.



The devastated forest at Tunguska photographed twenty years later.


At the Vanavara trading post, seventy kilometers from ground zero, people were knocked to the ground, with enough force to lose consciousness. Windows were broken and buildings damaged. The heat was painful, but not hot enough to start fires. Two hundred kilometers south, the ground shock and wind were strong enough to knock people and animals off their feet. Six hundred kilometers southwest, an eastbound train on the Trans-Siberian Railroad shook so hard the engineer feared the train might be derailed and brought it to a screeching halt.

When all of the reports were collected in the 1920s, it revealed that the object in the sky was visible 700 kilometers away and the explosion was heard over 1200 kilometers away.

Sibir a regional newspaper published in Irkutsk was the first to make an official notice publishing on July 2:
In the N Karelinski village (200 verst N of Kirensk) [one verst equals 1.0668 kilometers] the peasants saw to the North-West, rather high above the horizon, some strangely bright (impossible to look at) bluish-white heavenly body, which for 10 minutes moved downwards. The body appeared as a "pipe", i.e. a cylinder. The sky was cloudless, only a small dark cloud was observed in the general direction of the bright body. It was hot and dry. As the body neared the ground (forest), the bright body seemed to smudge, and then turned into a giant billow of black smoke, and a loud knocking (not thunder) was heard, as if large stones were falling, or artillery was fired. All buildings shook. At the same time the cloud began emitting flames of uncertain shapes. All villagers were stricken with panic and took to the streets, women cried, thinking it was the end of the world.

Another Siberian paper, Golos Tomska, wrote more cynically on the fourth:
The noise was considerable, but no stone fell. All the details of the fall of a meteorite here should be ascribed to the overactive imagination of impressionable people. There is no doubt that a meteorite fell, probably some distance away, but it's huge mass and so on are doubtful.

A few other local newspapers added their stories through the rest of the short Siberian summer, but by late August, when the nights were growing noticeably longer and cooler, the mysterious blast of June was forgotten amid other concerns.



The most likely path of a meteorite based on witness recollections in the 1920s.


Although the Tunguska blast did not raise any attention outside Siberia, the effects of the blast were noticed across the Northern Hemisphere. The dust from the blast was injected into the stratosphere and circled the globe creating spectacular sunsets and bright night skies for the next few days. In London, cricket games continued after midnight. In Scotland, farmers used the extrra daylight to harvest the hay crop. In the cities and countryside of Northern Europe, intelligent observers wondered about the cause of the displays. Newspapers in London, Berlin, Prague, and New York sent reporters to interview astronomers. The most common answer given was that the bright skies were probably unusual auroral displays brought on by energetic eruptions on the sun. A few experts admitted that the displays didn't show the normal characteristic sheets and scintillations of an aurora, but they didn't have a better explanation on hand. Some of the older observers, expert and amateur, came closer to the truth when they compared the skies to the displays that followed the eruption of Krakatau in 1883. The mystery was soon forgotten in the face of other news. There were crises in Central Europe to worry about and it was the regatta season.

European Russia paid even less attention to the mysteries of nature than their neighbors to the West. Ever since the disastrous war with Japan in 1904-05 the empire had been in a state of crisis. The stress of the war brought about a revolutionary situation that was only calmed by the Tsar agreeing to the formation of a parliament. Three separate elections were held during 1906-07 before a government could be formed that could work with the Tsar. Meanwhile, unrest continued in the countryside with peasants burning manor houses and the army burning peasant villages right up till the end of 1907. At the same time as the government tried to establish some kind of domestic peace, it also had to establish a safe diplomatic space in which to rebuild its military strength. Russia's diplomats tried unsuccessfully to balance between Germany and Austria on one side and Britain and France on the other without committing to either alliance. As if all of that wasn't enough, the constitutional ideas of the Revolution of 1905 appeared to have infected Russia's neighbors to the South, Turkey and Persia, adding more crises and instability for the rulers to deal with. The result was that in the cities of European Russia the ruling elites had little attention to spare for exploring Siberian mysteries. No official attention was directed into the explosion at Tunguska until after the World War, the Revolutions of 1917, and the following Civil War were over and the country had had a few years to catch its breath.

The man who brought the mystery of the Tuguska explosion to the attention of the world was Leonid Kulik. Kulik had ideal credentials for the job. Although of a bourgeois background, the son of a doctor, he had been expelled from school for pro-Bolshevik revolutionary activities. He continued his education in forestry, physics, and mathematics in the years before WWI, with occasional breaks to be arrested for continuing revolutionary activities. Working in the Urals as a forester, he had come to the attention of Vladimir Vernadsky and acquired an interest and quick education in geology. The Revolution found him in Tomsk, Siberia teaching mineralogy. He joined the Red Army and served till the end off the Civil War, when he was discharged with honor. He took a museum job in Petrograd (the less German sounding name given to St. Petersburg in 1914) studying under Evgenii Krinov, the country's leading authority on meteors. Thus he came to the problem with a broad education, influential intellectual patrons, impeccable revolutionary credentials, and a familiarity with Siberia.

In 1921 the Soviet Academy of Sciences approved an expedition to Siberia to collect information on meteors. The Purpose of the expedition was not particularly scientific. Some had the idea that utilizing the concentrated ore of iron meteorites they might jump-start the recovery of Soviet industry. No doubt the people who approved the expedition were influences by a number of discoveries of giant iron meteors in recent years. In 1894, the Arctic explorer Robert Peary located the Cape York meteorite in Greenland consisting of nearly 35 tons of almost pure iron-nickel alloy. In 1902, an American entrepreneur located the Willamette meteorite in Oregon, which weighed in at 15.5 tons. Most impressive of all, in 1920 a farmer near Grootfontein, Southwest Africa (now Namibia) found the Hoba meteorite with 66 tons of alloy. Kulik was made the head of the Siberian meteorite expedition.

As Kulik was boarding his train to the Far East one of his colleagues handed him a page torn from an old calendar that had a news article about a meteor fall in Siberia in 1908. Almost every detail of the article was wrong. It described a red glowing stone landing near the railroad and curious passengers standing around to watch it cool. However, from the date and location in the story, Kulik was able to figure out what had happened. He prepared a questionnaire about the event that he gave to people across Siberia. Comparing witness accounts he was able to calculate approximately where the streak in the sky should have touched down. Kulik had no doubt that the 1908 explosion was a meteorite.

Despite his confidence, it would take Kulik six years to convince the academy to fund another expedition. During that time he corresponded with other researchers in that part of Siberia and published his theory. S.V. Obruchev, a geologist, interviewed some of the locals in 1924. A.V. Voznesensky, former director of the Irkutsk observatory, did his own interviews and calculated the ground zero for what he also believed was a giant meteorite. He published his findings in 1925. In 1926, I.M. Suslov, an ethnologist working among the Evenki people conducted over sixty interviews and published his work. The force of this collected testimony enabled Kulik to overcome the Academy and get funds for an expedition in the spring of 1927 to ground zero. At this point, no outside had seen the damage caused by the explosion, though Suslov's witnesses described a great area where the trees no longer stood.

In February of 1927, Kulik and an assistant traveled from Leningrad (as Petrograd had been renamed) to Taishet, a station on the Trans-Siberian Railroad 900 kilometers from the believed epicenter of the Tunguska explosion. From there they traveled by horse-drawn sledge and cart to the Vanavara trading post. After recovering for a few days, Kulik began negotiating for a guide to take him to the center of the blast. The local Evenki had developed a strong aversion to the region which they believed had been cursed by Ogdy, their god of thunder. Eventually, Kulik convinced Ilya Potapovich, the brother of the herder who was probably closest to the explosion, to take him there.

After a false start, the group traveled by horse and reindeer north to the River Makirta. As soon as they crossed the river, they began to find whole stands of trees broken off and knocked over. On April 15, Kulik and his group climbed the highest hill they could find to survey the forest. From that vantage, Kulik reports that as far as he could see to the North, the forest had been leveled and burned, with all of the fallen trees pointing south. In all, 80 million trees were flattened over an area of over 2000 square kilometers. Potapovich and a second guide refused to go any further.

Kulik returned to Vanavara and hired some laborers to take him to the center of the blast area. He expected to find a large crater there, like the one that was becoming a famous attraction in Arizona. He found the exact opposite. Kulik could tell, from the direction the trees had fallen, where the approximate center was. Instead of a crater, he found a circular stand of trees still upright, but with all their branches blown off. Kulik deduced that his meteor had broken apart above the ground and the force of that shattering had blown downward, stripping the trees directly below and knocking over the trees further away. Kulik also noticed circular potholes, sometimes tens of meters across and filled with water. He decided these must be the small craters that the fragments of the meteor made. Unfortunately, the summer thaw was now well underway and the countryside was turning into a sea of mud. After taking some photographs, Kulik's group returned to Vanavara.

Back in Leningrad, Kulik's report got considerably more attention than his 1921 report had. Western scientific journals wrote him up. Observatories and scientists began combing through records from 1908 to find out how they could have missed the explosion. The mysterious bright nights of the summer of 1908 were recalled and declared solved. In London, C.J.P. Cave unveils a set of records from a device called a microbarograph. This device invented in 1903, was able to ignore normal changes in air pressure, such as storm fronts, and record tiny fluctuations in pressure. Cave shows that six of these devices recorded four waves of pressure in rapid succession exactly five hours after the explosion in Siberia.

With the whole world watching, the honor of Soviet science was at stake and the Academy quickly approved another expedition for the next year. At first the 1928 expedition didn't seem to have much hope of adding to the information gained the previous year. Kulich, three assistants, and a film maker surveyed the blast area, but the equipment they brought was not up to the task of drilling in the soggy ground or detecting buried metallic objects. When food began to run low, Kulik sent the others home.

They couldn't have arrived at a better time. Umberto Nobile's attempt to reach the North Pole by zeppelin had ended in a crash on the return leg and the crew was left stranded on the Arctic icepack. The Soviet Union dispatched a state-of-the-art icebreaker to rescue them. Day after day the world watched the dramatic rescue take place. No sooner was the drama over, than three scientists arrived from the wastes of Siberia to announce that their leader had refused to leave his work and was stranded there. They had a nice documentary film to go with their story. The press corps turned their attention ninety degrees and looked to Siberia for the next adventure.

The ethnologist I.M. Suslov, who had worked among the Evenki and knew the area, led the rescue expedition. He took along an army of reporters. When they arrived, Kulik put everyone to work digging for meteorite fragments. No one found anything. At the end of the summer, the whole group returned to Leningrad to examine their findings. Kulik and Tunguska were world famous.

There was no question of the Academy refusing a 1929 expedition. This time Kulik had an army of engineers and fifty carts of supplies. Kulik's boss at the museum, Krinov, also came along. They spent two summers and a winter making major excavations at a number of sites around ground zero. The lack of meteor fragments was causing some controversy. Arctic geologists pointed out that the pothole formations were a permafrost structure found all over the North. Krinov and Kulik got into a fight over the exact epicenter of the blast and stopped talking to one another. By the end of the summer, it looked like Tunguska research was over for a while. Kulik's health had been severely degraded by the rough trips. Russia was pulling into isolation under Stalin. The World Depression and new crises in Europe had taken over the interest of the news reading public. Finally, there was no money left for research.

Kulik managed one more expedition in 1939. By now aerial surveys had precisely mapped the blast area and a road and airstrip had been built to make travel to the site a holiday compared to his journey's of the previous decade. Kulik was planning another series of annual research trips when the war interrupted. His short 1939 trip was his last. When the Nazis invaded the Soviet Union in 1941, Kulik, who was almost sixty, joined the militia and fought in the defense of Moscow. He was wounded and captured by the Germans and died of typhus in a prison camp in April 1942. When the Soviets mapped the back of the moon, they named a crater for him.



Leonid Kulik memorial stamp issued in 1958 on the fiftieth anniversary of the Tunguska explosion. The cause of the blast was still very much a mystery when the stamp was issued.


To Kulik and many others, it was obvious from the very beginning that the Tunguska explosion was the result of some type of meteorite. However, a large portion of the world scientific community resisted the idea. The lack of a crater or fragments of the impactor were major sticking points, to be sure, but even if they had been found, many would have tried to explain them away. They just didn't like the idea of big things hitting the Earth. Their hostility came from two scientific battles fought in the early part of the nineteenth century.

The founding of the science of geology was made especially difficult because it seemed to go in the face of the Biblical narrative in Genesis. Prior to the Enlightenment, it was commonly believed in the Western world that the Earth was only a few thousand years old. The whole idea of a separate history of the Earth was meaningless, because the Earth was only a few days older than human history. The formation of the Earth was a simple matter of divine will and the structure of the Earth's surface was all conveniently explained as the scars of the Mosaic Flood. The Copernican revolution created the first cracks in this cozy view of the universe. By making the universe much bigger than the Biblical-Aristotelian worldview allowed, astronomers created a need for more time to let cosmic processes work their way out. An older universe had more time for gentle processes, like erosion, to explain the shape of an older Earth. The idea that gradualistic processes were sufficient to explain the mountains and the seas was particularly hard resisted by English speaking Protestants. In fighting to establish geology on a naturalistic basis, scientists in Britain and the United States took an equally hard line against anything that appeared miraculous or catastrophically sudden.

At the same time geologists were fighting to establish the Earth sciences on a rationalistic basis, astronomers were settling a long-standing controversy over the nature of meteors. It may come as a surprise to some to discover that the very idea of meteorites is a new one that was strongly resisted by many in the scientific community. According to the Aristotelian science that was endorsed by the Church, meteors were an atmospheric phenomenon similar to the Northern Lights. When Western thinkers began to reject the miraculous, they lumped reports of rocks falling out of a clear sky together with rains of blood or frogs as something not to be believed. The streaks of light called meteors had nothing to do with things falling from the sky.

The conversion of the scientific world to the idea that rocks really did fall out of the sky came rather quickly. Between 1794 and 1803 a number of meteor falls were well documented in Italy, England, and India. The climax was a meteor shower over L'Aigle, Normandy on April 23, 1803 that dropped over 2500 stones. So many rocks witnessed by so many people was more than could be denied.

To fit the idea of meteorites in with the non-catastrophic, or uniformatarian, view of geology a compromise was struck: it was agreed that meteors really existed, but that they were always small and insignificant as a geological process. This was easy to believe at first. When no one knew where meteors came from, it was easy to say they were by definition small, for example, they might be rocks tossed out by lunar volcanoes. A better understanding of comets and the discovery of asteroids challenged this compromise by adding big rocks in strange orbits to the prevailing model of the universe.

The nebular hypothesis of the origin of the Earth also presented a challenge. In this theory, the Earth was formed by the agglomeration of comets and asteroids in the early solar system. The uniformitarian paradigm absorbed this idea by making the age of bombardment a one-time era in the distant past. Large rocks once hit the Earth, but they don't do that anymore. All visible craters, therefore, were judged to be volcanic in origin and all large meteorites discovered, like the Willamette, Hoba, and Cape York meteorites, were judged to be very ancient, relics of the formation of the Earth. This resistance to allowing the possibility of large meteorites in modern time was mast extreme among American scientists. The Barringer Crater in Arizona was dismissed as volcanic in origin, despite a total lack of evidence, and all of the craters on the Moon were explained as ancient volcanoes.

The resistance to the idea that a large meteorite might be behind the Tunguska explosion created an opening where wild ideas were allowed to proliferate. The ideas can easily be divided into three types: natural objects falling from the sky that are natural but stranger than normal meteorites, natural causes coming up from the earth, objects of intelligent design coming from Earth or space.

The most commonly mentioned natural but strange object from space is a tiny black hole. This idea was first stated by A.A. Jackson and Michael P. Ryan in a 1973 article in journal Nature. Jackson and Ryan described a black hole with a event horizon radius less than a millimeter across. It entered the atmosphere creating a tube of superheated air that created the visible passage across the sky and the damage to the forest with no crater. The black hole itself passed at an angle through the Earth and exited in the North Atlantic. Its exit point off the western end of the Azores should have created an equally spectacular display, but none was reported.

When Kulik was still alive, a fellow Russian, Vladimir Rojansky suggested the possibility the Earth could be bombarded by small anti-matter meteors. In 1965 two American physicists, again in the pages of Nature explored the possibility of an anti-matter meteor explaining the puzzling aspects of the Tunguska blast. The authors admitted that an anti-matter meteor would erode during the entire course of its passage through our atmosphere rather than save most of its energy for blast at the end.

The idea of mirror matter, a type of matter with the particle spins reversed, was proposed in 1956 by two Chinese-American physicists. Mirror matter provides a mathematical solution to some problems of symmetry, but it should be completely undetectable. In a self-published book in 2002, Robert Foot, an Australian physicist, suggested a mirror matter asteroid exploding the upper atmosphere could have provided the energy for the Tunguska blast while leaving no trace of itself. The biggest problem with this theory is that mirror matter has never been found and isn't even widely accepted as necessary by most physicists.

In 2001, a German writer suggested leaking methane from a natural gas field might have caused the explosion. Andreii Olkhovatov of Moscow, postulates something he calls geometeors, an eruption from the Earth caused by an electrical linkage between some kind of meteorological activity and an earthquake. The key problem with all from-below theories is that they ignore the testimony of the dozens of people who saw some thing streak across the sky toward Tunguska before the explosion.

Jack Stoneley, in his 1977 book Cauldron of Hell: Tunguska brought up the possibility that the explosion was the largest incident of ball lightening ever seen, but even he wasn't that enthusiastic about the idea, only mentioning it before going on to give the most space to the idea of a spaceship crashing in Siberia. Others have developed variations on this idea comparing the collapse of the ball to a natural atomic bomb.

The most famous alternative theory is the crashing spaceship, which can incorporate anti-matter or an atomic explosion coming from the spaceship engines. Aleksandr Kazantsev, an engineer who also writes science fiction, wrote the earliest version of this scenario. In 1946, Kazantsev published a short story called "The Blast" about aliens coming to steal water from Lake Baikal whose ship malfunctions and explodes. Kazantsev was clearly influenced by descriptions of the atomic bombing of Hiroshima and Nagasaki the year before. In 1963 Kazantsev developed his idea into a book length work of non-fiction. This is a favorite theory of the UFO crowd and of science fiction fans and has received dozens, if not hundreds of treatments over the last sixty years.



Nikola Tesla: A Serbian with a death ray?


One of my favorites is what I call the oops theories. There are two of these. The first, which appeared in Russia in 1964, is that aliens on a planet orbiting the star 61 Cygni saw the explosion of Krakatau and thought we were trying to communicate with them. Their answer, sent by a super tight laser pulse, burned up a big chunk of Siberia. Messages like that are the extraterrestrial equivalents of sending e-mails written with the Cap-Lock on. The second is home grown. In this theory the brilliant physicist and electrical engineer Nikola Tesla accidentally blew up the Tunguska forest while testing a death ray at his lab at Wardenclyffe on Long Island. When he realized how dangerous it was he dismantled his lab. Of course it would have taken Tesla twenty years to realize how dangerous it was because that's when the first reports from Kulik's expeditions reached the West.

The UFO magazine Nexus published a novel explanation in their 2004 and 2005 issues. The forests at Tunguska, they tell us, are home to mysterious underground installations built by sophisticated ancients. Every few centuries these installations come to life to defend the Earth from rogue meteors and alien invasions. The 1908 blast was just the latest battle waged by these heroic machines.

In describing the Tunguska explosion, a literary tradition has been established of comparing it to a nuclear weapon and describing its power in megatons. The Tunguska blast was equal to about twenty megatons (million tons) of TNT. Hiroshima was about twenty kilotons (thousand tons), one one-thousandth the size of Tunguska. There are good reasons for this comparison. A very hot, concentrated blast, above the surface of the ground accurately describes both the Tunguska and Hiroshima explosions.

But the main reason for the comparison probably has more to do with literary sensationalism than accuracy. Atomic blasts are one of the most frightening things that the post WWII generation can imagine (after clowns). The nuclear weapon comparison allows writers to paint vivid scenarios of what would have happened if the object had detonated over a populated area. The area of blown down trees is approximately the same size as a number of major cities including Washington, DC. It is frequently pointed out that the blast was at the same latitude as the Russian capital of St. Petersburg. If the Earth had been turned four and a half hours further when it met the object, the explosion would have happened over the northern industrial suburbs of the city and burned the entire metropolitan area to the ground.

In one way, the comparison is very false. Whatever exploded at Tunguska, it was not radioactive. The heat of the blast was great enough that it emitted x-rays, elements were ionized, and strange chemical reactions occurred, but these were the result of extreme heat, not of radioactive decay or fission. The atomic comparison brings on thoughts of modern weirdness and opens the door to ideas of strange forms of matter, spaceships, or super weapons. A more natural comparison would be to rank it next to other natural disasters.

In earthquakes, a twenty-megaton explosion releases about the same energy as an earthquake measuring 7.0 on the Richter Scale. The world sees about a twenty each year that are this strong or worse. The World Series earthquake that hit San Francisco in 1989 was in this range. The San Francisco earthquake of 1906 unleashed about 1000 megatons of energy and the Alaska earthquake of 1964 unleashed about 30,000 megatons.

Even a moderate hurricane has many times more power than that. Hurricane Katrina had an energy equivalent of over 8000 megatons or 400 times the size of the Tunguska blast. There are two important differences here: size and time. A hurricane spreads that energy over several thousand square kilometers and builds gradually over hours. Tunguska spread out from a spot only a few meters across and traveled three or four times faster than the strongest hurricane.

Volcanoes make the best comparison to meteors because they come in all sizes and can leak their energy out or deliver it in an explosion. Mount St. Helens delivered about seven megatons in its May 18, 1980 eruption. Krakatau's 1883 explosion is estimated to have been about 100 megatons. The explosion that took away most of the Greek island of Thera in the seventeenth century BC was six to ten times stronger than that.



And Having Writ... by Donald R. Bensen. A humorous alternative history novel published in 1978. The story centers on the extraterrestrial crew of the spaceship that almost crashed at Tunguska. Now stranded on Earth, they do everything they can to jump start WWI in order to advance human technology to the point where they can build a new spaceship and go home. Unfortunately, their best efforts keep causing peace to break out. When this book was published, the idea of the Tunguska spaceship was so familiar to me that using it for an alternate history made perfect sense and needed no explanation.


Over the years, the wilder explanations of the cause of the Tunguska blast have ensured it a place in popular culture. It has appeared in novels by writers as diverse as Stanisław Lem (a spaceship), Spider Robinson (Tesla), Larry Niven (a black hole), and Thomas Pynchon (an Awakened Chthulu like force). It has been mentioned in television shows and movies like Stargate SG-1, Star Trek, Dr. Who, Hellboy, Ghostbusters, Buffy, the Vampire Slayer, and the latest Indiana Jones. Tunguska was a major plot element in two episodes of the fourth season of The X-Files. An adventure game "Secret Files: Tunguska" is published by Deep Silver. It is even now the name of an herbal energy drink.



Tunguska Blast energy drink made from the same herbs that grow in the mysterious Tunguska region.


While these ideas have kept the name Tunguska alive in the popular mind, conventional researchers have continued to visit the site and collect evidence of a more prosaic meteorite. They have gathered what most believe is convincing evidence that a large body entered the atmosphere from the southeast and exploded at an altitude of some kilometers over the ground zero stands of trees that remained vertical. The main argument among most scientists is over the nature of the meteorite, whether it was a comet, a stony asteroid, or an iron asteroid. The composition of the meteor determines the altitude and power of the blast. Computer models have shown that most of the features of the blast can be explained by an airburst, just as Kulik believed. One of the strongest supports for the comet theory is the timing of the blast. Every year, in late June and early July, the Earth passes through a meteor stream called the Beta Taurids, which are fragments of Comet Encke. The strongest evidence for a stony asteroid is fine particles of dust found embedded in tree sap from the region and dated to 1908.

The most recent revelation from the site came from a team in Italy who examined Lake Cheko eight kilometers north of ground zero. They believe a fragment of the exploding object made it to the ground and is in the bottom of the lake. They will be returning in 2009 to excavate the lake bottom and see if they can recover something that will end the debate.

Besides simply being an persistent mystery that has engaged minds for a century, Tunguska has real relevance to our lives. In 1908, the world had many places like Tunguska that were so remote a giant meteorite could strike and still go almost unnoticed by the outside world. Today, there are fewer places where that is possible. A strike like Tunguska today could have global consequences. Obviously, a strike in a populous region could kill millions, but even the most remote regions are now tied into the global economic infrastructure. Siberia is criss-crossed by oil and natural gas pipelines. Even if people and infrastructure are missed, a large strike could have temporary climactic effects resulting in major food or economic crops failing for one or more years. An increasing number of historians are beginning to believe that meteorites and volcanic eruptions explain certain plagues, famines, and even the fall of empires in the past.

The smooth survival of our civilization might depend on getting to know more about the objects with which we share our solar system. But even if we never have to face a civilization busting threat from space, the knowledge we gain from Tunguska is priceless and the story is a great yarn. Happy birthday, old rock, snowball, spaceship or whatever you were. It's been a fun century and the adventure shows no sign of stopping.

Wednesday, February 06, 2013

Boltunov's drawing

In the winter of 1803-4, Roman Boltunov, a merchant from Yakutsk, worked his way down the Lena River selling and trading his goods. At that time of year, the main currency of the native Sakha and Evenki* would have been freshly trapped furs. In March, Boltunov reached Kumak Surka, the last village before the Lena Delta. There, the local headman, Ossip Shumachov, showed him two very nice mammoth tusks, which Boltunov promptly bought for fifty rubles in goods. Mammoth tusks weren't exactly rare on the coast east of the delta, and he was always happy to buy them if they were in good condition. What was special about this pair was where Shumachov said he found them: They had still been attached to a mammoth.

Anyone who spent any amount of time in Siberia knew about mammoths. Their horns or teeth or whatever they were sometimes found in the northern part of the country, usually in the coast or on the banks of rivers and they were valuable. Over the last forty or fifty years a whole profession of ivory hunting had grown up around them. The mammoth animal itself was a mystery. No one had ever seen a live one. On very rare occasions, dead ones were found on river banks, their flesh still bloody, as if they had died only days before. The Siberians, Russian and native, had many legends about them. One of the most common was that seeing a mammoth corpse was bad luck and that they should be avoided. On the other hand, educated Russians from the West and other Europeans were quite interested in mammoths and would even pay for information about them.

Since Shumachov didn't seem particularly afraid of the mammoth, Boltunov was able to convince him to take him to place where the rest of the carcass was. This involved more than a day trip. The mammoth remains were on the far side of the Bykovsky Peninsula facing the Arctic Ocean. The route led across the Lena and over a high range of hills, two days each direction. But Shumachov was proud of his find and maybe a few more goods were exchanged to encourage him.

It was snowing heavily when they got there. Scavengers had already gotten to this large block of free meat and eaten parts of it. Much of the face had been torn away. Still, the majority of it was still there and in one piece. Boltunov cleared away enough snow to get a good look at it and examined the head. What he saw was bigger than any animal he had ever seen or heard of. It was covered with long rust-colored hair. It had a fat body and thick legs. He made some measurements on the spot. Later on, he wrote down some of the details and, on the opposite side of the same sheet, made a drawing from memory. He was correct that the trip would be worthwhile; when he returned to Yakutsk the head of the merchant’s guild bough his notes and drawing. This is the first reconstruction that we have of a mammoth that is based on more than just bones.

Two years later, the drawing came to the attention of an Adjunct member of the Imperial Academy of Sciences, Mikhail Adams, a botanist who passed through Yakutsk on his way to collect specimens on the lower Lena. Though he was not impressed with the drawing—he described it as "very incorrect"—Adams dutifully forwarded it to the Academy with the notice that he was going directly to Kumak Surka to see if anything of the mammoth could be saved. The Academy was extremely excited by the discovery and published Boltunov's notes as a letter in their popular Russian language newspaper, Technological Journal.** Adams continued the coast and was able to recover most of the bones, three quarters of the skin, and a large sack of hair.

Sixty years later, Karl von Baer went looking for Boltunov's drawing. Baer is usually remembered as the father of embryology, but he also did geological research in the Russian Arctic and was interested in mammoths. Baer could not find the original in the Academy archives but he knew copies of it had been sent abroad. Wilhelm Keferstein at Göttingen University was able to find one among the papers of Johann Blumenbach. Baer suspected that it might even have been the original. It’s probably a copy. Wilhelm Tilesius, writing around 1810, said the original was still in the Academy archives. Keferstein sent Baer a sketch based on Blumenbach’s document and a transcription of the notes on the document. Baer was nice enough to write it up and publish it where I could find it. Copies of Keferstein's sketch were published in several journals at the time. The drawing along with the hair and skin samples are preserved in the Göttingen museum.


Roman Boltunov’s reconstruction of the dead mammoth on Bykovsky Peninsula, 1804. This is the first reconstruction of a mammoth based on more than bones. Source.

Adams wrote that the drawing was "very incorrect…something between a pig and an elephant." Tilesius called it "a poor drawing of a monstrous figure…a most inexperienced and unskilled work." At first glance it's hard to disagree with them. But, considering the information he had to work with, it’s not a bad reconstruction. It demonstrates an intelligent mind and an active curiosity attempting to extract the most information possible from a small amount of information. It is very possible, even likely, that Boltunov had never seen a picture of an elephant and had no reference point for elephantness. He would, however, have seen a boar. Most large mammals he would have been familiar with—dogs, cattle, horses, reindeer—had long relatively thin legs and heads that rose up from the body. Only bears and pigs had thick bodies, heavier legs, and heads that protruded forward from the body. Whether consciously or subconsciously, he used a boar as a model to fill the gaps in his knowledge.

The trunk was gone when he saw the carcass; the base of the trunk could very well have resembled a pig's snout. The tusks in his drawing look bizarre; one seems to be pointing up while the other points down. Baer believed that Boltunov was inexpertly trying to indicate that he believed the tusks should have pointed outward. Even in Baer's time, most scientists believed they pointed outward. The tusks are correctly placed in the upper jaw, not in the lower as they would have been in a boar. The way the tusks are pushed together in the snout is also correct. Mammoth’s tusks start much closer together than those of living elephants. At the top of the drawing is a separate drawing a mammoth’s tooth, which would have been very different from any mammal he was familiar with.

The drawing shows tiny ears on top of the mammoth’s head, which do not match Boltunov's written description. In the latter, he says the ears were six arshins (about eleven inches) long and on the “outside” of the head. I suspect this contradiction means he wrote his notes and made his drawing at two different times. The eyes are far too high on the head. This I think is a result of faulty memory. The skin around the eyes and top of the head was still there when Adams arrives two years later. The body is more elephant-like than boar-like, boxy with pillar legs and a short tail. The only boar-like details on the body are what appear to be fetlocks and thin hooves. Finally, Boltunov drew little lines around the mammoth that show the hair running the full length of its body.

Adams would have done well not to have dismissed Boltunov so quickly. Boltunov saw the mammoth a full two years before Adams when the carcass was in much better condition. By comparing Boltunov's observations with his own, Adams would have avoided some of the mistakes that he made. The mammoth still had its tail when Boltunov saw it. He not only drew the tail, he measured and took note of its length. The tail was gone when Adams arrived and he concluded that the mammoth never had had one. Most of the hair was still on the mammoth when Boltunov saw it and his drawing shows hair the same length over most of the body. Most of the hair had fallen off by the time Adams arrived and, based on where he found hair on the ground, he concluded that the mammoth had a great mane.

Adams was remarkably incurious about the mammoth. His memoir of the trip to recover it is more of a travelogue than a scientific paper. Other scientists complained about his lack of relevant details, but it never occurred to any of them to contact Boltunov (or Shumachov, for that matter) to collect information from a witness who was very curious. Except for Baer’s 1866 paper, I can find no reference to Boltunov that treats his drawing as anything other than an example of how wrong ignorant Siberians could be. Of course, cultural arrogance is hardly unique to that century. The scientists of the time could have gained useful information by mining Boltunov's notes and drawing for data. They could have gained much more if they had written to the governor and had someone interview him. Even though Boltunov has little to tell us today about mammoths, he has plenty to tell us about Boltunov and how people of his time, location, and class viewed their world. Maybe it’s time to take Boltunov's drawing a little more seriously.

* Sakha is the preferred name by those people who, until recently, were called Yakuts by outsiders. The Evenki are the largest of several peoples who are usually lumped together as Tungus.

** This is not the same as the official journal of the Academy, Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg, which was in Latin. Later, they would make the very sensible decision to keep the French title and publish the articles in German.

Sunday, February 03, 2013

An early description of permafrost


At the beginning of the Nineteenth Century, permafrost was a very strange idea to European scientists. The word wouldn't be coined until 1943. The earliest descriptions from the century before were simply of frozen ground running deeper than it should. The idea was completely alien to anything they understood. If the ground was deeply frozen, how could trees grow? Any mining engineer could tell you that it gets hotter as you go down, not cooler. No, they determined, deeply frozen ground was just a myth of superstitious natives.

In 1806, while traveling on the Arctic coast near the Lena delta, Mikhail Adams made some passing references to permafrost that included, as far as I can tell, the first short descriptions of ice wedges and patterned ground. Adams came to the coast attempting to recover a frozen mammoth. Prior to his trip, fewer than a half-dozen mammoth carcasses had been described and one woolly rhinoceros had been recovered. None of these descriptions described them as being frozen, only buried. Adams, in describing his mammoth specifically went into the fact that it had first been sighted in frozen soil. While at the discovery site, he made some casual observations of the place where it was found that included more details than simply stating that the ground was frozen.

First, a few words about permafrost. Permafrost is much more that frozen mud with a foot or so of mushy mosquito maternity wards (tundra) on top, though that's what it mostly is. It's actually a very complex geological phenomenon that still isn't completely understood. Permafrost can contain walls of almost pure ice (ice wedges), mysterious round hills that look like burial mounds (pingos), thousands of small oval ponds that appear and disappear (thermokarst lakes), and rings on gravel beaches and mile after mile of honeycomb patterns on the ground (patterned ground).

Patterned ground is caused by ice wedges. Very simply put, cracks form in permafrost in polygonal patterns similar to cracks in dried up lakebeds during a drought  The case is different but the appearance is the same and the permafrost patterns are much larger. During the summer, melt water fills the cracks. The next winter, the ice expands, as ice will and that widens the crack. The next summer more water can get in, which widens the crack even more. Repeat for a few decades and the permafrost will be thoroughly broken up into a pattern. Because the ice wedge also expands upward, it will create the rice paddy pattern below (Fig. 1). Later in the summer, when the wedge has melted some, the pattern will be the exact opposite with the cracks being lower than the permafrost blocks.

 Fig. 1. Patterned ground. Source.

Back to Adams. The place where Adams recovered his mammoth was a bluff overlooking the sea. Rather than looking at the permafrost through a hole dug into it from above, he has able to see a huge slice of it. The bluff he looked at was well over a hundred feet tall and several miles long. The mammoth had eroded out of a relatively high point on the bluff and tumbled to the beach. While waiting the boat that would take him and his mammoth back to civilization, Adams climbed the bluff to a place near where the mammoth had first appeared. He described it thusly: 
Sa substance est une glace claire pure et d'un goût piquant, elle s'incline vers la mer, sa cime est couverte d'une couche de mousse et de terre friable d'une demie archine d'épaisseur. 
My translation of this is: 
Its substance is pure clear ice and has a pungent taste, it leans towards the sea, its top is covered with a layer of moss and soft earth half an archine thick [14 inches]. 
Two different English translations were published, essentially identical to mine. This passage caused some confusion for Nineteenth Century scientists. All other mammoth carcasses discovered in that century were found in frozen mud, not clear ice. Furthermore, the expeditions that visited the site found only mud. They chalked it up to the fact that Adams was a bit flaky and, outside his field, he was botanist, his work was rather sloppy. However, the existence of ice wedges might redeem Adams' reputation. At least, in this instance.

It just happens that Mamontovy Khayata, the place where the mammoth was found, has been the site of a joint German/Russian permafrost research project for the last twenty years. The picture below (Fig. 2.) is of the bluff in 2002. The light section of the bluff is a section of ice wedge. Beyond it is muddy permafrost and beyond that, the beginning of another ice wedge. It's most likely that Adams did, indeed, find clear ice that tasted terrible. 

Fig. 2. Mamontovy Khayata. Source.

On to the polygons. After examining the bluff, Adams walked inland to collect plant samples. He also poked at the tundra to see if the thickness changed. He saw a great amount of drift wood both on the shore and on the hills. The wood on the hills his Evenki hosts called Adam's wood. The wood on the beach, which came down the Lena every spring, they called Noah's wood. First Adams' comments on the Lena floods: 
J'ai vu dans les grandes fontes de glaces des grosses mottes de terre se détacher des collines, se mêler à l'eau et, former des torrens épais et argilleux qui roulent lentement vers la mer. 
All three English translations agree on the substance of this sentence. 
I have seen, in great thaws, large pieces of earth detach themselves from the hillocks, mix with the water, and form thick and muddy torrents, which roll slowly towards the sea. 
The next sentence is the one that I think describes patterned ground. 
Cette terre forme des figures de coins qui s'enfoncent entre les glaçons. 
The first published English translation (1807) reads: 
This earth forms in different places lumps, which sink in among the ice. 
The second English translation (1820) reads: 
This earth forms wedges which fill up the spaces between the blocks of ice. 
Finally, my crude translation: 
This earth forms figures, which settle among the ice. 
Mine, more or less, agrees with the first, but I've discovered errors in the first. The very reason I've made my own translation is to figure out which one is right when I discover variations. I've also retranslated two German translations because I'm that anal.

In context, the earth (terre) he mentions must be the same muddy earth that he saw during the spring thaw. That would be the same frozen mud that makes up the majority of permafrost. This ice (glaçons) should be the same as the ice (glace) he saw on the bluff face. Knowing what we know about permafrost, it makes much more sense for the earth to be surrounded by ice and not for the ice to be surrounded by earth. The Germans agree with me, though they also call the earth wedge-shaped (diese Erde bildet sodann keilförmige Figuren, welche sich zwischen den Eisschollen festsetzen). If anyone is fluent in French I'd like your opinion on this passage.

Ultimately, it's not important whether or not he got all of the details right. The important thing is that, at that early date, he mentioned the figures on the surface of the ground and correctly identified the underlying structure as being made up of separate parts of ice wedges and regular frozen mud permafrost. At a time when many scientists didn't even recognize the reality of permafrost, that was quite an accomplishment.