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PREFACE 

 

This report documents a new set of monthly rainfall (climate) analyses for Australia. The 

analyses are updated in real-time and extend as far back as the late nineteenth century. These 

analyses improve the spatial representation of Australian rainfall and drought as part of the 

"Enhanced weather information for farm drought resilience in NSW" initiative. Funding for this 

work has come from the New South Wales (NSW) government under the 2015 Drought 

Strategy, administered through the NSW Rural Assistance Authority (RAA).   

 

Gridded rainfall data inform decision-making in response to drought. Specifically, these data are 

used to highlight regions which are adversely affected by rainfall deficiencies to better target 

relief measures and plan drought related response. The underlying driver of this project was to 

improve rainfall analyses across NSW, supporting better targeting of the Australian 

Government Department of Agriculture's Drought Concessional Loans Scheme (DCLS). 

Because many farmers and rural groups hold their own rainfall data, it was also agreed to 

develop third party data specifications and back-end IT infrastructure to enable the inclusion of 

qualifying third-party data into future analyses.    

 

Although the immediate beneficiary is the funding provider, the NSW RAA, government 

agencies (Federal, State and Territories) and, more generally, all users of monthly rainfall 

information across the entire country will benefit from the improved analyses.  

 

Overall, implementation of the new analysis scheme has seen an increase in spatial resolution of 

monthly rainfall analyses from 5×5 km grids to 1×1 km grids, substantial reduction in 

interpolation errors and bias, and a new capacity for inclusion of third-party data. Furthermore, 

early testing has indicated the method is appropriate for extension to other climate variables 

such as temperature and vapour pressure, and analyses at the daily timescale. These extensions 

will be pursued when the opportunity arises.  
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1. INTRODUCTION 

Recognising that managing climate variability can pose significant challenges for rural 

businesses and communities, the Australian Government and States and Territories have 

developed a range of policies to assist those affected to better manage drought risk and alleviate 

financial burdens and environmental impacts. With Australian rainfall being highly variable, a 

question often arising in administering such policies is: "which areas are most affected by poor 

rainfall conditions causing drought, and how severe are the conditions?" Descriptions like these 

are often used as input into drought assessment in Australia (Gibbs and Maher 1967). As such, 

policy outcomes and community response are sensitive to the accuracy of rainfall analyses and 

their granularity. 

 

In this context, with a policy that used Bureau rainfall data to determine eligibility for financial 

assistance, the NSW government supported the Bureau to improve rainfall data and analyses. 

Two pathways were chosen to achieve this: 

 

• The strengthening and upgrading of the weather station network over central and 

western New South Wales. We have used the data coming from this activity, but do not 

specifically discuss the details here. 

• Providing an enhanced spatial rainfall analysis to better determine the severity of dry 

periods and the spread of drought across New South Wales and enabling the 

incorporation of third-party data. 

It is important to note that once the physical rainfall network reaches a modest station density 

there are diminishing returns on investment, at which point investment might be better directed 

toward improving analyses and leveraging third-party or non-traditional (e.g., satellite) data. As 

is shown in this report, the length scales for monthly rainfall are such that data can be 

interpolated over significant distances, but to achieve substantially smaller errors would require 

unrealistic high station densities. These issues were a key consideration in this work, including 

ensuring that the systems developed could be applied in the future to alternative observations 

data, such as those coming from satellites or radar. 

 

This report focuses on the improved analysis scheme and including third-party data. Emphasis 

is given to providing a detailed description of the scientific basis and methods used for the new 

analysis scheme which analyse station observations data onto a regular grid ('gridded data'). 

 

Gridded data have now been established as the primary means for describing past and current 

climate over Australia particularly when examining spatial variability (e.g. Jeffrey et al., 2001; 

Jones et al., 2009). Such gridded products carry many advantages over ‘raw’ station data 

including continuous values at all points through time, less sensitivity to changes at stations, and 

ease of use across a wide range of applications because of their consistency and completeness. 

They are also less influenced by outages or misreporting and have been shown to generally 

provide a superior estimate of rainfall at the broad scale than single observations alone (Jones et 

al., 2009). These benefits do come at some costs, including that gridded values may not capture 

peak values observed at the stations (Jones et al. 2009; King et al. 2013) and tend to smooth the 

data. 

 

The application of gridded rainfall data to agricultural decision-making is widespread and 

varied, such as determining farmer pre-qualification for a range of drought relief schemes, the 

monitoring of extreme events, generation of web-based maps and a variety of downstream 

products.  



 

Page 4 
 

The Bureau's current operational gridded rainfall analyses developed under the Australian 

Water Availability Project (AWAP), uses a procedure (Jones et al. 2009) that employs 

the Barnes successive-correction gridding method described in Koch et al. (1983) and 

Barnes (1964) combined with a three-dimensional analysis of the climatology of rainfall 

(Hutchinson 1995). The generation of the climatologies employs a trivariate spline 

function with the incorporation a continuous spatially varying dependence on elevation, 

defined with the use of a digital elevation model (DEM) (Hutchinson 1998a). With 

position coordinates defined in degrees of longitude and latitude, and elevations scaled in 

units of kilometres above sea-level, this approach has been shown to greatly improve 

analysis accuracy compared to methods which do not consider altitudinal effect 

(Hutchinson 1995).   

 

The AWAP approach is based on considering rainfall as a combination of the 

climatological average and the rainfall ratio (rainfall as a fraction of the climatology). The 

rainfall ratio for each grid point is calculated from a weighted sum of the rainfall ratio at 

all rainfall stations within a given search radius of the point, across several passes using 

different length scales. The weighting given to each station for each pass is a function of 

only the distance between the station and the grid point (Jones and Trewin, 2000). The 

weighting applied to stations is optimised in so far as the parameters which define the 

weighting function are tuned to give the most accurate final analysis. However, this 

approach may not necessarily reflect the exact characteristics of rainfall events and can 

fail to account for station covariability by giving too much weight to some stations and 

too little to others in some cases.  

 

Whilst AWAP remains the Bureau's main operational product for the monitoring of 

climate across many time scales and several variables, there are known interpolation 

errors and under-representations of extremes, particularly for rainfall, that account for 

biases and errors in the product (e.g.: Beesley et al. 2008; Tozer et al. 2010; King et al, 

2012; Chubb et al. 2016). Indeed, Jones et al. (2009) note that analysis errors were only 

weakly dependent on the optimisation of Barnes parameters, and more likely an 

indication of the markedly varying length scales for rainfall across time and space, 

making rainfall analysis difficult (e.g., localised intense precipitation often associated 

with thunderstorms as compared to wider-spread rainfall from synoptic systems such as 

cyclones and fronts). Moreover, the product is also no longer state-of-the-art in the sense 

that that re-calculation of the entire historical dataset to allow refinement given new data 

and quality control corrections is very computationally expensive, and out of step with 

the very best practices used in the international meteorological community. 

 

We reviewed gridded dataset generation procedures with the aim of facilitating current 

and future developments that may include: 

 

• Increased accuracy of national gridded products and support for numerous existing 

downstream applications; 

 

• Higher spatial resolution, more accurate quantification of errors and the potential to 

apply different error characteristics to different data sets; 

• Inclusion of third-party data sources that comply with the Bureau’s minimum quality 

standards (see Section 2.2); 
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• Incorporation of rainfall estimates over data-sparse areas using remotely sensed and earth 

system model information; and 

 

• Improved presentation of rainfall information and analyses, including greater data 

accessibility. 

 

Specifically, improvements were sought to the underlying gridded analysis of rainfall, through 

the use of new and improved statistical analysis techniques. This supports the provision of 

better information in monitoring and forecasting systems used in agricultural decision-making 

and across a wide range of other applications. In particular, we demonstrate the applicability of 

Statistical Interpolation (SI) techniques toward fulfilling the above aims.  

 

2. DATA SOURCES 

The data used in this work are obtained from the Australian Data Archive for Meteorology 

(ADAM) which is Australia's national climate database (Australian Bureau of Meteorology, 

2010). The maintenance of climate data held within ADAM is a core activity of the Bureau of 

Meteorology and underpins many of the services provided by the organisation including 

analysis, monitoring, forecasting and verification.  

 

The rainfall analyses reported here are generated using observed rainfall data contained in this 

database. While ADAM is updated in real-time, there is significant non-real-time inputs for 

some meteorological variables, particularly for total monthly rainfall observations. This is 

because site-based rainfall data reports have varying delays. 

 

 

 
 

Figure 1: Representative example of the mean fraction of stations reporting monthly rainfall data after the last date of 

the month. The fraction is relative to the number of stations reporting after two years from the observation. This is 

based on observation reports between June 2015 to March 2017. 

 

Just over 50% of the current rainfall network in ADAM reports in real-time using electronic 

means, whilst the remaining data arrive via mail or post with most records added within three 

months of the end of the month (Figure 1). After 30 days about 80% of the network has 
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reported, and about 97% of the network is available after one year. As the ADAM database is 

an evolving resource, with the addition of new and historical data and ongoing quality control, 

improvements to the station data and any subsequent analyses are frequently made over time. 

Additional data coming from 8 automatic weather stations (AWSs) and the 20 rainfall gauges 

newly installed by the NSW government funded project, referred to in the Introduction, have 

been incorporated into the new analysis.   

 

 Improved quality control of data 

 

While every effort is taken by the Bureau to accurately record rainfall, it is inevitable that some 

data will have "errors". In this context “error” has a specific meaning, in that the data is not 

representative of an observable truth.  Common factors which contribute to inaccurate rainfall 

recordings include communication outages or observers being away and hence missing 

readings, gauge blockages or damage, misreporting either electronically or through hard copy 

forms, or stations which are not ideally sited (such as too close to trees). Some of the data issues 

are less about erroneous readings, and more about practices not matching how data should be 

captured. As an example, it has been quite common for some manual stations not to report 

rainfall on Sundays (and sometimes Saturdays) which means that the reporting on a Monday is 

often a two- or three-day rainfall accumulation that may have either been recorded correctly as a 

multi-day accumulation, or at times, incorrectly as a single day total. This issue is particularly 

pronounced when the Sunday or Monday occurs in a new month, which may mean the rainfall 

could be counted against the 'wrong month' or otherwise not able to be used.  

 

Alongside improvements to the rainfall analysis scheme, improvements have also been made to 

rainfall quality control outside of this project. One significant change has been the systematic 

application of both manual and automated quality control which is applied to the Bureau's 

station climate database in ADAM. The approach taken to quality assure data in ADAM has 

improved through time, with greater automation applied to both historical and new recordings. 

This quality assurance process is applied to all data prior to use in the analysis process. 

 

Quality control of data in ADAM is multifaceted, with initial gross error checks on incoming 

data, combined with variable dependent checks looking at data and physical consistency. The 

methods applied to quality control have tended to improve with time, with growing use of 

automated methods. Automated data are largely quality controlled in real-time (i.e., with 

minimal delay) while manually observed data which require digitisation are mainly quality 

controlled at the time of entry. 

 

In addition to quality assurance on ADAM, the statistical interpolation (SI) procedure supports 

the detection of likely erroneous data, which are removed through an integrated cross-validation 

procedure prior to the final rainfall analysis being formed. This is a strength of this new method, 

as it provides an independent estimate at every station, which includes an interpolated value and 

the expected station error for each individual monthly value. When a station departs 

significantly from the interpolated value, it is possible to provide a detailed probabilistic 

assessment of whether the input station value is likely to be accurate or not.  Hence the 

incorporation of quality control within the scheme is comprehensive, and one of the factors for 

the SI method producing superior results compared to AWAP. 

 

The implementation of the SI analysis method follows that described in Blomley et al. (1989). 

This applies a complete data check to ensure that flagged and subsequent removed data are not 
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negatively influencing the resulting analyses. This is efficiently applied so that when multiple 

sectors of the full domain are analysed separately, they correctly incorporate the appropriate 

nearby site data. Multiple (nested) sectors are used, as the spatial domain can only be as large as 

the dimension of the correlation matrix (set by the maximum computational matrix array size), 

and the spatial domain (sector) depends on the number of sites in an analysed region.  

 

The removal of suspect data involves a comparison between cross validated interpolated values 

and observed values, weighted by the observational error variance. The criteria has been set 

conservatively to ensure only a small percentage of data are rejected (typically around 1% or 

less of the total network). 

 

We have looked to enhance the use of historical rainfall data which previously were not fully 

incorporated in the AWAP dataset. One area of significant improvement has been through the 

updating of stations that had previously not reported a siting altitude. This is achieved by 

making use of a DEM (BAP 2014) to provide a siting elevation estimate. This is particularly 

important for defining the climate averages, either for determining or applying the climatology 

as described in Section 3. Many stations, especially prior to about the 1960s, lack this level of 

detail (see Figure 2). However, using station position coordinates, we have enabled the 

inclusion of an additional 1160 stations for NSW, and more than 3800 stations nationally over 

the full period. Figure 2 shows the average annual count of monthly reporting rainfall stations 

used in the analysis and highlights the size of the network, throughout time, with and without 

stations that have reported elevation details.   
 

Figure 2: Annual average count of reporting monthly rainfall stations extracted from ADAM and used here. The 

grey curve represents the average of all stations, Blue curve representing the operational extraction from ADAM, 

yellow curve represents stations that have elevation metadata, and orange curve represents the hydrological network 

which are station reporting for the purpose of (mainly) flood forecasting.  
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 Third-party and hydrological network data 

The project has developed new specifications for third-party data to allow the future inclusion 

of non-Bureau data sources. The specifications correspond to the third tier of the Bureau's 

observational network, and whilst not appropriate for operational aviation and warning types of 

applications (the domain of tiers one and two), they are appropriate – subject to compliance and 

final data quality - for use in a range of other applications and Bureau services including rainfall 

analyses (e.g., as discussed by King et al. 2013). In particular, the developed specifications are 

for Equipment, Metadata, Siting and Maintenance. The equipment specification covers all 

standard AWS parameters. The other specifications only cover rainfall, but the intention is to 

generalise these to all standard AWS parameters post-project.  

 

Whilst the ingestion methodology for third-party rainfall developed under the project has been 

generalised, as a starting point at the time of writing, approximately 176 stations from the 

OzForecast network (ozforecast.com.au) were under assessment for potential inclusion in the 

analysis. A desktop assessment against the Equipment Specification has indicated that if the 

siting, metadata and maintenance specifications are met, these data could be included in future 

versions of the SI rainfall analyses.  

 

Given their ready availability and extremely successful operational use in flood warning 

applications, experiments were undertaken to test the suitability of the hydrology site network, 

comprising around 3500 stations nationally and 830 stations in NSW. No screening against the 

Tier 3 Specifications and no additional quality control was undertaken in this process. It was 

found that overall the use of the data degrades the quality of the rainfall analyses, even though 

the number of stations was substantially increased. Further investigation is required, but it 

appears that in part at least this outcome could be the result of non-standard equipment setups 

relative to the Tier 3 Specifications. An example is rain gauges sited at non-standard heights 

which tend to give observations which are biased low. To resolve the reasons why, and also 

extract maximum benefit from hydrology site network, it is intended to undertake a detailed 

evaluation against the Tier 3 Specifications, from which it is believed will emerge a significant 

number of suitable, conforming stations for inclusion in the analyses. This brings into sharp 

focus the importance of conformance of third-party data to the Tier 3 Specifications.     

 

Beyond OzForecast and the hydrology site networks, there are a range of other third-party 

networks that could potentially total more than 1000 additional stations nation-wide. 

Incorporation of such networks will be pursued as time and resources allow, and at some point 

it will be opened up to potential individual suppliers of third-party data, however, in all cases 

the Tier 3 Specifications will apply. 

 

In a parallel tender process the Bureau approached the equipment market for supply of an all-in-

one AWS. The tender has been awarded, subject to extensive testing, which is now underway. 

This all-in-one unit is expected to conform to the Tier 3 Specifications, and may help in the 

expansion of networks in the future. 

 

The longer term vision is to have qualifying third-party data across a range of parameters 

included in Bureau analyses and other products, plus, to have on offer to potential third-party 

data suppliers for either the Tier 3 Specifications which they could use to go to market, or 

details of the Bureau approved all-in-one.   
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 Extending the rainfall analyses back to 1880 

The Australian rainfall network from official Bureau sites is particularly sparse prior to 1900, 

with large data voids across much of the central and western parts of the country. This sparsity 

is even greater if stations are required to have a recorded elevation as was the case in Jones et 

al. (2009). The number of contributing stations to a given month's national analysis varies from 

less than 3000 in the last couple of decades of the nineteenth century to a peak of more than 

7000 in the late twentieth century. It is for this reason that the AWAP rainfall analyses 

commenced in January 1900 (Jones and Weymouth 1997; Jones et al. 2009).  

 

In theory an analysis can be constructed with very few stations, but this will result in a product 

which has very large uncertainties and may not be useful or, at worst, misleading. From 1870 to 

2010, we analysed the number of stations reporting monthly rainfall per 0.25º (approximately 

25km) grid cell. From this, the fractional area of each State and Territory with one or more 

station per 0.25º grid cell was computed. Results shown in Figure 3 are generally consistent 

with the analysis of Jones and Weymouth (1997) where they show the change in the mean 

number of stations reporting monthly data by decade.   

 

 

Figure 3: Timeseries of the fractional area containing one or more monthly reporting rainfall station per 0.25º grid 

cell for each State/Territory and the Murray-Darling Basin region (MDB) 

For the Australian region as a whole, the fractional area that contains at least one monthly 

reporting rainfall station has remained above 20% since 1900 which supports the conclusion 

that rainfall analyses back to 1900 have a fairly consistent supporting network. Across much of 

the southeast of Australia there is extensive coverage of sites that have reported rainfall, within 

0.25º grid cell, for more than 100 years (Figure 4). It is interesting that the larger states have 

little change in data coverage from around 1930, highlighting the difficulties of large network 

expansions. For much of Australia, the ability to observe rainfall is limited by the low 



 

Page 10 
 

population density and the lack of suitable infrastructure, meaning that future large 

improvements in networks are unlikely. 

 

 
 

Figure 4: Map showing the number of years between 1870 and 2019 for which sites report rainfall within a 0.25º 

grid cell. 

 

Across southeast Australia (Victoria, Tasmania and New South Wales) the spatial distribution 

of stations has extended across non-negligible fractional areas since approximately 1880. This 

distribution has been relatively stable across time since around 1890 for New South Wales and 

since 1900 for Victoria. For Australia the fractional area is approximately stable since 1910. 

With the addition of interpolated station elevations, improved statistical analysis (described in 

the following section), and use of pseudo-observations (see Section 3.3), it was assessed as 

feasible to extend the analyses as early as 1880, though noting the network is clearly sparser. 

The resultant analyses indeed appear realistic and are consistent with other information 

available from the time. 

3. GENERATING the SPATIAL ANALYSES 

As already mentioned, AWAP makes use of the Barnes successive-correction procedure. 

However, in the case of the Australian rainfall network, where large areas are poorly observed, 

the fixed length-scales underlying the AWAP scheme can often result in under-represented and 

poorly resolved gridded analyses. We also note that the method applied a weight to stations 

which does not take into account the common information (covariability) in station data. As an 

example, two stations sitting at a similar distance from an interpolated grid point will get the 

same weight whether they are close together (i.e., strongly correlated) or in different directions, 

which can introduce bias in the end result. 

 



 

Page 11 
 

In this work, we utilise a method of gridded analysis known as Statistical Interpolation (Gandin 

1963; Lorenc 1981). Statistical Interpolation (SI) is a widely used technique for the objective 

analysis of meteorological and atmospheric data (Daley 1993; Glowacki et al. 2012) and is a 

simplified form of least squares regression applied in two dimensions. Often referred to as 

optimal interpolation, the technique yields grid-point values from a weighted sum of 

observation increments to a background field. While for equally weighted stations at similar 

distances from the interpolated point, SI yields similar results to Barnes, we take advantage of 

the SI technique to avoid oscillation problems inherent in successive correction methods and 

make use of more explicit means of using data of differing quality. SI has the additional 

strength of allowing more precise representation of the rainfall fields correlation structure. 

 

SI is closely related to Kriging, in that it defines a set of optimal weights that minimises the 

estimated analysis error variance (Daley 1993).  For the sake of brevity, the reader is referred to 

existing literature on the full formulation of the SI technique and its various applications (e.g.: 

Lorenc 1981; Glowacki and Seaman 1987, Blomley et al. 1989; Daley 1993; Glowacki et al. 

2012).  

 

Here we restrict discussion of SI to application of monthly rainfall across Australia. 

Nevertheless, we present a brief summary on the mathematical basis of SI, closely following 

that presented in Daley (1993). The estimates of grid-point values (Ai) are determined from the 

weighted sum of observation increments to background values (Bi), this is written as 

 

𝐴𝑖 = 𝐵𝑖 + ∑ 𝑊𝑖𝑘[𝑂𝑘  − 𝐵𝑘]                                                            (1)

𝐾

𝑘=1

   

Here, [Ok  - Bk] are the observation increments at observation points (k). Wik is a weight function 

given to each observation increment at each analysis grid point, obtained from the column 

vector Wi which are called the 'optimum weights', given by    

 

                                                                 Wi = [B + O]-1 Bi                                                         (2) 

 

B and O are the background and observation error covariance matrices, Bi is a column vector 

containing the background error correlation between observations and analysis points. For the 

most part, the column vector Bi and the background error covariance B form the most important 

elements in SI and determine the resulting analysis (Daley 1993).  

 

As with the AWAP monthly rainfall analyses, a ratio-based approach is used in the generation 

of the gridded spatial analyses, except since SI necessarily requires a background estimate 𝐵𝑖, 

we set 𝐵𝑖 = 0 and define the anomaly field R'(t) to be zero-mean centred, as    

 

𝑅′(𝑡) =
𝑅(𝑡)−[𝑅]

[𝑅]
=

𝑅(𝑡)

[𝑅]
− 1                                                   (3) 

 

                                                                   

 

The background estimate, commonly called the "first-guess" background field in meteorological 

analysis is a field against which observational increments and the associate correlations 

structures are defined. The closer the first guess field, generally the better the analyses. 

 

Equation (3) expresses the rainfall as an anomaly-ratio, a difference of the rainfall observation 

R(t) for a given month from the respective monthly climatology average [R]. This 

representation is applicable for both station observations and the gridded analysis and provides 



 

Page 12 
 

an unbiased background estimate. The monthly climatological averages are generated using the 

smoothing thin-plate spline approach based on the work of Hutchinson (1995), details of which 

are given in the next section. The use of the anomaly ratio ensures that the long-term average of 

the increments is zero and the values are approximately mean centred, while the variance is also 

adjusted by the mean rainfall. Noting that when the interpolated anomaly ratios are 

subsequently back transformed, the rainfall field is obtained. 

 

The approach used here assumes that removal of the climatological signal largely removes the 

relationship with altitude, and that the climatology is a reasonable first guess of the rainfall in a 

given month. One reason for applying the SI here is that it is a simple task to improve the first 

guess field going forwards, for example using a short-term rainfall forecasts and a satellite 

based gridded product, and this points one way forward for potential further development of the 

analysis system in future. 

 Defining the station and gridded climate averages 

Climate averages are calculated for each calendar month for the period 1981-2010. This 

represents a period when both station density and observation practices are representative of the 

climate in most recent decades. Figures 2 and 3 also show that the rainfall network has 

remained more consistent across this period as compared to the earlier period in the record. 

However, in practice, many stations do not have complete data across this 30-year period due to 

missed observations and some stations having opened or closed during these 30 years.  

 

Hopkinson et al. 2012 show that, with regression, 30-year mean estimates can be determined for 

stations with shorter observation records from nearby stations with longer term averages, 

however for this work, we have only made use of stations that have a minimum of 21 valid 

months of data for each calendar month during the 1981-2010 period (see section 5.2.3 of 

WMO-No.1203). In the case for stations at higher elevations, a more relaxed rule with a 

minimum count of 14 valid months of data was adopted as very few stations are available to the 

analysis. High elevation stations (at 1000 m or higher) are important in defining the vertical 

gradient of climate averages and ultimately the final analysis. Jones et al. (2009) note that the 

use of additional high elevation stations in the generation of climate averages made modest but 

important improvement in the representation of high elevation climate in their final analysis.  

 

The climatology period used in Jones et al. (2009) was separated over three different epochs, 

(1911-1940; 1941-1970; 1971-2000), with the earlier and latter periods applied to data earlier 

than 1911 and later than 2000 respectively. For analysis of remaining years, the climatology 

epoch applicable to that period's climatology was used. This contrasts with that used here, 

which makes use of only the 1981-2010 period. In theory an evolving climatology (1911-1940, 

1941-1970, etc) may appear superior as it means that the first guess field is unbiased and closer 

to the target analysis at each time. However, in practice it was found that changes in stations 

through time lead to small but detectable drifts in the climatology and resultant analyses and 

comes at significant computational cost. 

 

The station climate averages are used to generate the gridded climate averages to a resolution of 

0.01º×0.01º (approximately 1 km × 1 km) using the thin-plate spline technique of Hutchinson 

(1995). Smoothing thin-plate splines are particularly useful for analysing climatological 

surfaces in three-dimensional space and have been widely used in Australia and elsewhere (e.g. 

Tait et al., 2006; Jones et al. 2009) and can effectively reduce error where stations lack longer 

term observations (Hutchinson and Bischof 1983). The resulting spline coefficients are then 

used to subsequently provide an estimated climatological average for 'any' station that has, at 
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any time, reported an observation across the network. Noting substantial changes across the 

Australian rainfall network, the ability to use estimated climate averages from the spline 

coefficients across a fluctuating network is practical, preserves continuity across the whole 

historical record and ultimately results in a more stable analysis system.  

 

Ideally, stations used in creating the climatology must have a recorded elevation value although 

several studies have shown that making use of generalised interpolated elevations, determined 

from DEM's, can improve predictive accuracy (e.g.: Hutchinson 1998b, Sharples et al. 2005, 

Daly et al. 2008). In this work we make use of the DEM to determine an elevation, only for 

where a known elevation estimate is not available. We have chosen not to optimise the 

smoothing applied to the DEM as previous studies have shown the dependency is not strong, 

and is also likely to be quite regime, location and seasonally dependent. Retaining the full 

resolutions has the additional advantage of maintaining consistency with other variables such as 

temperature for which the relationship with elevation is stronger and more broadly consistent.   

 

The accuracy of the spatial climatologies has been determined using verification against station 

climate averages. Fully cross-validated estimates have been generated for the 30 years 1981-2010, 

following the method described in Jones and Trewin (2002). The cross-validation analysis was 

performed by randomly deleting 10% of the stations in the network, invoking the three-

dimensional thin-plate spline analysis using the remaining 90% of station climatologies, and then 

calculating the climatological analysis errors for the omitted stations. This process was repeated 

10 times for each month which then provides independent verification statistics at all stations. We 

note that this process gives a slightly inflated error measure, because the method itself involves 

degrading the data network compared to 'reality' (Jones et al., 2009), but is enough for this 

purpose. The errors at stations are used to map analysis error and to generate all-station average 

errors which describe our ability to represent climate average rainfall at stations. The 

determination of the cross-validated analysis errors, root-mean squared error (RMSE), bias and 

other measures of analysis error are found in Appendix 1. 

 

The cross-validation analyses show that there is a marked north-south gradient in RMSE for 

monthly climatological rainfall across Australia. In part this reflects the higher rainfall in the 

tropical regions in the warmer months (Figure 5, left), while the gradient flips in the cooler 

months (Figure 5, right). Across the tropical regions, the pattern is amplified by the tendency for 

rainfall to be highly convective, meaning it varies a lot in space and time, whereas in southern 

Australia rainfall is more often associated with larger-scale weather systems such as cyclones 

and fronts (Ebert et al., 2007; Dowdy and Catto 2017). Such results will lead to better 

knowledge of analysis errors for a given data smoothness and network density.  
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Figure 5: Cross-validated RMSE (mm) for January (left) and July (right) climatologies (1981-2010) 

For NSW, climatological rainfall has higher confidence in the cool season, and in central and 

western areas. This, in part, reflects variations in underlying rainfall (less convection in the west 

and during winter), as well as the tendency for cool season rainfall to be dominated by larger 

scale lows and fronts. The annual variation in the long-term (climatological) nationally-

averaged RMSE, and associated bias for each calendar month shown in Figure 6 also reflect 

features of Australian rainfall. Larger values in the transition seasons are indicative of the 

broadscale variability of rainfall across the country.  

 

Importantly, rapid and easily updateable rainfall climatologies for new stations are available via 

the use of the spline coefficients. The ability to generate climatologies is necessary to allow 

stations with short observation records and newly opened stations to be used in the analysis and 

the future expansion to include third-party data. 

 

A significant departure here compared to Jones et al. (2009) is the use of a single fixed climate 

period for analysis, and the use of fully interpolated climatologies rather than a mix of station 

and interpolated climatologies. In theory, a time varying climatological period is preferable as it 

means that the station increments (departures) remain mean centred and that the first guess field 

is more accurate, but in practice changes in networks introduces drifts in the final dataset such 

that it is preferable to use a fixed climate period.  

 

 

 
 

Figure 6: Nationally averaged cross validated RMSE (left) and associated bias (right) (1981-2010), with units in 

mm, compared to monthly climatological rainfall averages. 



 

Page 15 
 

 Correlation structure and background error variance 

As noted earlier, the most important element of the SI algorithm is appropriate characterisation 

of the background covariance matrix and the related correlation functions. In practice, these are 

prespecified and there is a wealth of literature on suggested analytical forms for fitting the best 

correlation function to meteorological data (e.g. Julian and Theibaux 1975; Theibaux 1975).  

 

Following examples in Jones and Trewin (2002), we examined several fitting functions, 

including Gaussian, exponential and polynomial damped cosine functions. Each of these 

correlation models were found to be somewhat unsatisfactory, and poorly represented the 

observed correlation for monthly rainfall. We found the best performing candidate correlation 

function by fitting a function using a convolution process as described by Savitzky and Golay 

(1964). This process takes successive sub-sets of adjacent data points and fits a low-degree 

polynomial by the method of linear least-squares. The analytical solution to the resulting least-

squares equations take the form of a set of convolution coefficients that give estimates of a 

smoothed correlation function and derivatives of the smoothed signal (Savitzky and Golay, 

1964; Steinier et al. 1972). It is a requirement that the candidate correlation function be positive 

definite (Gandin 1963, Julian and Thiebaux 1975). The Savitzky-Golay method used here 

specifies a weighting vector that contains real, positive-valued weights that minimise the least-

squares solution which ensures the solution to the system is positive definite (Orfanidis, 1996).    

Interstation correlations of monthly rainfall anomaly-ratios (R') were calculated for all possible 

station pairings for each calendar month in the 1981-2010 base period. A representative 

example, Figure 7, shows the increment correlations for July monthly rainfall spanning 1981-

2010, together with the least squares fit provided by the fitting of a low-degree polynomial as 

described above. Here, we also show a sub-sample of 'all' station pairings (of which there are 

more than 10 million). Each point in Figure 7 represents the correlation of a single station pair.  

 

Our results from this show the presence of significant correlations (~40%) beyond 500 km for 

the July monthly rainfall. The scatter of the data points in figure 7 reflects spatial variations and 

anisotropies in the correlation decay scales, as well as random sampling errors. While we 

explored using anisotropic correlation functions, we found results to be highly variable in space 

and time. This presented significant challenges as we noted an improvement in error estimates 

in one region while leading to a deterioration in another unless multiple functions were used. 

Based on this work, the pragmatic decision was made to confine the analysis to an isotropic 

function. In future work, we will look to incorporate anisotropic correlation functions which 

spread increment values differently in space. Alternatively, a better background field may 

reduce the anisotropy. 

 

To provide a measure of the characteristic length scales of the climate averaged monthly rainfall 

data, in Figure 8 we show the distance at which the best fit function falls to 0.463 for each 

calendar month. This defines the correlation values that are significant at the 99% level under a 

two-sided t-test for 30 years of data. While we note that this measure of length scale is 

somewhat arbitrary, there is sufficient indication of considerable large-scale structure in the 

monthly rainfall for length scales of the order of 300-500 km, significantly different to the 

current fixed-length scale of monthly rainfall generated by AWAP (250 km). 
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Figure 7: Observation correlation coefficients (%) as a function of station separation for the month of July (1981-

2010). The best fit curve is determined using a convolution filter as described in the text. 

 

 

 
 

Figure 8: Annual cycle of the observation decorrelation length scales for monthly rainfall (1981-2010). Correlation 

values shown are significant at the 95% and 99% level under a two-sided t-test. 
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The decorrelation length scales highlight important and well understood features of Australian 

rainfall. It is evident that rainfall tends to be broader scale during the cooler months when it is 

more dominated by frontal systems and mid-latitude lows. There are also spatial structures in 

the decorrelation length scales (not shown) with smaller values in the northern tropics where 

convection tends to dominate, and longer values in the south where more rainfall falls from 

synoptic-scale weather systems. These results are interesting in that the rainfall network tends to 

be denser in those regions where rainfall analysis is apparently easier, while it is less dense 

where rainfall analysis is more challenging.  

 

The respective monthly background error variance (BGE) are constructed by running a Barnes 

analysis on the standard deviation of the observation increments derived from the monthly 

station climate averages. Under the SI analysis scheme (Eq. 2) the BGE matrix largely 

determines the resulting analysis (Daley, 1993). Essentially, for a given realisation, the 

observation increment is spread out according to the spatial structure of the respective BGE for 

that month. This means that the level of accuracy is expected to be better in data dense areas 

and degrade to those defined by the BGE in areas of data-sparseness.    

 Data-sparse regions and generation of pseudo-
observations 

 

The general irregularity and sparseness of the observation network presents a significant 

challenge in generating a consistent spatial analysis of historical data across Australia. It is well 

known that the SI technique, and indeed other existing spatial analysis approaches, are 

adversely influenced by network inconsistencies (Barnes, 1964; Bratseth, 1986; Koch et al. 

2004). This is particularly notable the further back in time we wish to analyse, where the 

analysis in data-sparse areas can produce spurious noise and larger extrapolation errors. This 

can be understood in terms of stations effectively coming in and out of the analysis at different 

locations across a domain (noting that weights approach zero at some distance). When a region 

is poorly sampled, one station dropping out can effectively lead to a jump in the analysis 

between neighbouring regions which may be reflected in a step or a wiggle on contours. Since 

the SI is undertaken in sectors (a division of the whole domain), to keep the size of the 

covariance matrix manageable, discontinuities between sectors become notable in areas of low 

network density.  While such features have barely any impact on error statistics as they tend to 

occur in dry and low station density regions, they can leave unrealistic structure in analyses. 

 

We formally addressed this issue by generating a regular spaced coverage of pseudo-

observations in the very data-sparse areas, following the method of Glowacki et al. (2012). The 

term pseudo-observations has a long history in meteorological analyses, and refers to additional 

data used to infill and stabilise analyses in very poorly observed regions. 

 

This approach is achieved by executing two SI passes, the first pass being a low-resolution 

analysis from which a gridded data density field is computed, and pseudo-observations 

determined. The network density grid is computed at a resolution of 0.25º×0.25º for efficiency 

purposes. The second SI pass is computed at a resolution of 0.01º×0.01º, taking in all available 

observations for that given time stamp with the addition of pseudo-observations. There is little 

or no evident impact of the two-pass approach where the station network is reasonable (i.e. most 

of Australia), but it greatly improves the spatial smoothness in very data-sparse parts of the 

Australian interior. The process of using pseudo-observations has the effect of infilling data 

sparse regions with a smooth analysis and avoiding data jumps as described previously. It 

shares similarities with the method of knots which may be used in spline analyses. 
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From its formulation, the SI analysis gives a normalised analysis error estimate, 𝜀𝑘 (e.g. 

Blomley et al. 1989; Daley, 1993; Glowacki et al. 2012), which is used to derive the 

observation network data density:  
 

𝛿𝑘 = 1 −  (𝜀𝑘)2                                                                          (4)       
 

Figure 9 shows an example of the gridded data density field. Glowacki et al. (2012) describe the 

suitability of this approach for defining poorly observed, data-sparse areas, since it is based off 

a measure of analysis error covariances, that will vary according to analysis variable and scales 

being resolved. 

 

 

 

Figure 9: Representative network station data density grid from a January 2019 analysis. Areas of low station density 

(nominally less than or equal to 0.65) are used to define data voids. 

 

For computational efficiency the first pass, low-resolution analysis also takes a subset of the full 

network by the method of super-observations, where stations in high data dense regions that are 

highly correlated are combined into a single observation (Glowacki and Seaman 1987). This 

reduces the order of the covariance matrix, speeding up the calculations with fewer sectors. 
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Figure 10: Available station network indicating the count of individual sites located in 25 km × 25 km grid cell that 

have reported at least once in the decade 2000-2009. Black markers show representative pseudo-observations 

determined from each monthly analysis in the corresponding decade, as described in text.  

Through extensive testing, we implemented this procedure to constrain extrapolation errors and 

discontinuities in areas of a sparse network. However, we also limit the number of pseudo-

observations used in the second SI pass so as to not overstate their influence on the final 

analysis. We achieve this by selecting grid points from the 0.25º data density field at minimum 

separation of 2º and take only those grid point values where 𝛿𝑘  ≤ 0.65. While the threshold 

value of network density is set somewhat arbitrarily, extensive testing showed that this 

threshold does not cut off network density so much so that it introduces too many pseudo-

observations. Figure 10 shows an example of the spatial representation of these pseudo-

observations (black markers), as determined across a 10-year period 2000-2009. 

While the pseudo-observations help to constrain extrapolation errors it should be noted that as 

late arriving data becomes available to the analysis the network data density increases. 

Therefore, fewer are incorporated into subsequent re-runs for a given month's realisation. The 

analysis accuracy is expected to improve on re-runs, however this will mostly depend on 

appropriate representation of the correlations, and the observational and background variances 

which can be defined from Ok  - Bk as                                   

 

                                             
1

𝐾
∑ (𝑂𝑘 −  𝐵𝑘)2   =  𝐸𝑂

2 + 𝐸𝐵
2                                                (5)

𝐾

𝑘=1
 

 

Here, 𝐸𝐵
2 is the background error variance and 𝐸𝑜

2 is the observational error variance which sets 

the floor for analysis accuracy (Daley 1993). In fitting the correlation curve to the inter-station 

correlation pairs, as discussed in section 3.2 (e.g. Figure 7), it should be noted that only auto-

correlations rkk = 1, and so it follows that the candidate correlation function must be 
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extrapolated back to a zero distance (z) crossing. This gives a correlation value referred to as rz 

which in itself is the measure of total error, and can be defined by  

 

𝑟𝑧 =
𝐸𝐵

2

𝐸𝐵
2 +  𝐸𝑜

2                                                                      (6)  

 

Figure 11 shows the zero-crossing correlations (rz) for each climatological month across the 

1981-2010 period. This figure is consistent with our earlier point in that it highlights well 

understood features of Australian rainfall, such as the broader scale rain features during the 

cooler months (stronger correlations) and more convective, localised rainfall that occurs during 

warmer months (weaker correlations). The value of (rz) sets a lower bound on the analysis 

accuracy, and highlights that even a perfect analysis system will be subject to errors due to 

imperfect observations. 

 

 
 

Figure 11: Zero distance-crossing (rz) correlation for each climatological month spanning the period 1981-2010. 

 

4. ANALYSIS ACCURACY and ASSESSMENT 

The accuracy of the spatial analyses for reproducing station data has been determined through 

generalised cross-validation at stations. One of the benefits of the SI technique is the ability to 

efficiently use integrated cross-validation, by removing one station from the set of observations 

for that given month, performing the analysis using the remaining station observations and then 

calculating the analysis errors for the omitted stations. This process is repeated for each month 

providing fully independent verification statistics for every station.  

 

We calculate a station root mean square analysis error (RMSE) along with additional measures 

of bias and mean absolute error (MAE) as defined in Appendix 1. The resulting RMSE is 

plotted as a function of time and we provide station averaged results, for all stations in NSW as 

well as all Australian averaged statistics.  
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 Quality of the analyses 

We have generated a full set of cross-validated statistics spanning the entire historical SI 

analyses (1900-2018). For reference, in the sections that follow, we also provide NSW average 

and national average statistics for the current operational AWAP product and summary 

statisticsof running the SI technique with the inclusion of stations from the hydrological station 

network mentioned in Section 2.2, above. Additional summary statistics shown in section 4.4, 

represent a fully independent period (2000-2019) which also allows for more direct comparison 

of the performance of SI with the inclusion of the hydrological network. This period represents 

the hydrological network at its densest (as shown in figure 2).  

Spatial maps of SI analysis error (Figure 12, left) show marked reduction in RMSE across the 

entire continent compared to AWAP (Figure 12, right). We note that both show a north-south 

gradient in the rainfall RMSE, as expected given the underlying rainfall climatologies. This was 

pointed out in Jones et al. (2009), reflecting the higher rainfall totals in tropical regions, leading 

to larger analysis errors for the given station network. Such a pattern also represents the 

tendency of highly convective rainfall with shorter and more variable length scales (Mills et al. 

1997; Ebert et al. 2007; Jones et al. 2009).  

 

 
 

Figure 12: Cross-validated root mean square error (RMSE) for monthly rainfall for the eight years 2011-2018. Left 

map showing RMSE from SI analysis, right map showing AWAP. Units in mm. 

Figure 13 shows a year-by-year comparison of the annual average RMSE (a), bias (b) and MAE 

(c). These are produced by taking the annual average across each calendar month for all stations 

across the continent as a whole. It is clear that the SI analysis shows significant improvement 

across all these measures when compared to AWAP.  

The time-series of bias is particularly interesting, with SI bias being small in magnitude, slightly 

negative and relatively stationary over time, whereas the bias in AWAP exhibits higher 

magnitude, and is mostly positive, with a large degree of variability. Equations (7) and (13) 

(Appendix 1) indicate that positive bias at a station results when the analysed value is higher 

than the observed value. The variation shown in the AWAP bias appears to arise from the fact 

the AWAP analysis is based upon a 3-epoch, rolling climatology (see Jones et al. 2009 for 

details). This means that while the climatological analysis in each of the epochs are mean-

centred, they tend to influence analysis outside their respective periods thereby incurring larger 

bias.  
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Figure 13: National annual average cross-validated RMSE (a), bias (b) and MAE (c) for monthly rainfall for the full 

analysis period (1900-2018). Blue curves represent results from AWAP, orange curves are results from SI analysis. 

Units in mm. 
 

The quality assurance using the SI algorithm is part of the new analysis, so the deletion of 

erroneous data outliers is part of the analysis improvement. It is worth noting that the AWAP 

method also deploys a relatively simple quality control process to remove data outliers where 

those data are more than 7 standard deviations above a local mean, or the estimated percentage 
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probability of being correct is less than 0.1% and there are no similar outliers. When the rainfall 

total is < 0.1 mm, erroneous data are removed if there is no supporting nearby data, or are more 

than 50 mm less than the local mean. 

 

Finally, we note that the bias and MAE which are much less sensitive to outliers show 

significant improvement, indicating that the improvements are quite general and not confined to 

large station values. 

 

The RMSE and MAE timeseries comparison in Figure 13 (a and c), shows that the SI is able to 

reproduce the signal with respect to AWAP, though lower in both measures. Overall, RMSE is 

reduced by an average of 13.5% and MAE is reduced by an average 18.8%. There is 

considerable interannual variability in the RMSE and MAE plots, with the peaks being 

dominated by wet years and as noted in Jones et al. 2009, RMSE is substantially larger than the 

MAE as this metric weights towards large errors. This is owing to significant skewness in the 

distribution of rainfall errors, with a relatively small number of large errors at the wettest sites. 

We also assess the analysis (not shown) where rainfall at stations are less than 1 mm. For the 

period since 1900, the median absolute error from the SI is approximately 20% lower compared 

to AWAP. We report the median absolute error in this case, from each month, due to the 

skewed distribution at low rainfall totals with stations in climatological dry regions often 

showing zero. We note for AGCD that the rainfall analysis is not forced to zero in cases of zero 

or near-zero rainfall, resulting in a slight positive bias for the lowest rainfall totals.  

 

It is interesting that while the rainfall network has improved somewhat through time, the 

analysis errors tend to slightly increase over the ~120 year period. There are a number of likely 

reasons for this trend. The expansion of the rainfall network has tended to be greater in the more 

convective (tropical and inland) parts of Australia where rainfall is harder to analyse and errors 

are greater. In addition, Australian area-averaged rainfall has shown an increase, particularly 

since around 1970 driven by positive rainfall trends in inland and northern parts of the country. 

Finally, there is an indication that large scale rainfall driven out of the middle latitudes, and 

mainly during the cool season has declined (Bureau of Meteorology and CSIRO 2018).  The 

aggregate of these changes would all be expected to lead to an increase in analysis errors, even 

those where the input data has improved through time. 

 

Extensive analysis on a month-by-month comparison (not shown here) reveals similar 

characteristics to the annual averages. For example, at the regional scale, Figure 14 shows the 

month-to-month bias averaged across all stations in NSW. Again, throughout the whole 

historical record these results exhibit a striking degree of stationarity and a very large reduction 

in bias when compared to AWAP. 
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Figure 14: Cross-validated bias for monthly rainfall for the full analysis period (1900-2019) 

averaged across all NSW stations. Blue curves represent results from AWAP, orange curves are 

results from SI analysis. Units in mm. 

 Area-average and spatial comparisons 

The obvious application of the SI analyses is for documenting the temporal and spatial 

representation of monthly, seasonal and annual rainfall totals in the context of past climatology. 

Figure 15 shows the comparison of area-averaged annual total rainfall, as generated by both SI 

and AWAP, for NSW (left) and Australia (right).  These figures show that the area average 

totals generated by both methods show very good agreement. This provides some assurance 

that, although significant improvements have been achieved with SI, overall at the broadscale, 

past analyses under AWAP were indeed relatively robust spatially, and that major revisions of 

decisions or policy with the transition to SI are not warranted. Nevertheless, we do note that the 

early period analyses (looking at the first few decades in the twentieth century) shows that the 

Australian annual totals, as generated by SI, are slightly wetter than AWAP, then tend to be 

slightly drier in the final period of the analyses. In other words. AWAP appears to slightly 

exaggerate the wetting trend overall when compared to stations, as shown by the biases through 

time. 
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Figure 15: Scatter plots of annual total rainfall from SI against annual total rainfall from AWAP, as averaged across 

NSW (left) and averaged across Australia (right). 

The corresponding scatter plot for NSW area-averaged annual rainfall totals indicates good 

agreement over time between the two datasets. Table 1 shows the ranked top 10 (wettest) and 

ranked bottom 10 (driest) years, for both the NSW (left) and national totals (right).   

Table 1. Comparison of the rank changes between AWAP and SI for NSW on left and Australia on right, shown for 

the driest 10 years and wettest 10 years.  

There are a number of possible reasons for the change over time in the differences in Australian 

area averages, between AWAP and SI. The reduction in the station bias using SI compared with 
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AWAP is one key component. However, the other may relate to the use of an anomaly-ratio for 

SI, compared with just a ratio (total rainfall/climatology rainfall) for AWAP. In the earlier 

period of record, when the station network is relatively sparse compared with present time, the 

background (first-guess) field used in the AWAP analysis is zero. This contrasts with SI where, 

due to the anomaly-ratio method, the background field, while zero, is actually climatology. In 

data-sparse regions (i.e. far away from observations) AWAP will have lower rainfall totals than 

the same region using SI, with the difference forced by the first guess field.  

A key output from this work is the application of the analyses to reporting rainfall deficiencies 

in a drought context. Figure 16 shows a comparison of a 16-month realisation of rainfall 

percentile analysis from the current operational analysis (AWAP right) to the SI procedure (left) 

for April 2018 to July 2019. While both methods share similar structure in their spatial 

distribution of rainfall deficiencies, it is notable that the SI method has resulted in smoother, 

more contiguous analysis field. This is an interesting result as the SI data is at a higher 

resolution and suggests that AWAP may have contained rather more excessive local noise. 

 

 
Figure 16: Comparison of 16 month (April 2018 to July 2019) realisation of rainfall percentile analysis (Lowest on 

record = 0th percentile, Severe deficiency = 5th percentile, Serious deficiency = 10th percentile) from the current 

operational analysis (AWAP on right; 0.05⁰ x 0.05⁰) and the statistical interpolation (SI on left; 0.01⁰ x 0.01⁰) 

procedure, resampled for mapping at 0.05⁰.   

 

Again, similar spatial structure but improved contiguity with SI is evident when comparing SI 

and AWAP rainfall trends and variability. Figure 17 shows the trend in winter rainfall spanning 

the period 1980 to 2019 (SI on left, AWAP on right). Noting the reduction in overall analysis 

biases and errors, the data can be expected to more accurately capture climate trends, but as 

always should be used with caution with reference made back to the contributing stations as 

applicable. 
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Figure 17: Trends in winter rainfall as represented by SI (left) and AWAP (right) over the period 1980-2019.  

 

We extend the comparison and look at a measure of variability, which combines the 10th and 

90th percentiles as well as the median (Figure 18). This measure provides an indication of the 

regularity of rainfall from one year to the next across Australia, but also incorporates within one 

figure, extreme ends of the rainfall distribution. Overall, where the data density is reasonable, 

both AWAP and SI have similar contours, showing broad scale agreement. The SI analyses 

show less noise than AWAP and overall less inter-annual variability in data-sparse regions. This 

may partly be attributed to AWAP reverting to zero rainfall in data-sparse regions during the 

early period of record (and so the 10th percentile will be closer to 0 mm), whereas SI has less 

spread between the 10th and 90th percentiles. It's also noticeable that the structures in the SI data 

are much less centred on stations over the inland (such as Giles) suggesting they give a better 

overall analysis consistent with the verification results. 

 

Figure 18: Annual rainfall variability, defined as the 90th rainfall percentile minus the 10th rainfall percentile, with 

the result divided by the 50th percentile (or median). Data from 1900 to 2018 used in the analysis. SI analysis on left, 

AWAP analysis on right 
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 Pre-1900 analyses   

 

In Australia, historical accounts and scientific evidence have revealed the extent and spatial 

variations of drought, and wet years for that matter, across the continent (Heathcote 1969, 

Fenby and Gergis 2012, Gergis and Ashcroft 2013). Indeed, the Federation drought that 

occurred at around the turn of the twentieth century is widely recognised as one of the most 

notable droughts in Australia's recorded history. This drought became established in the late 

1890s and affected large areas across southeast Australia before culminating in severe dry 

conditions and large stock and agricultural loses in 1901-1902. Despite accounts that the 

Federation drought was characterised as an extended period of very dry conditions, there were 

reports that some areas recorded very wet months from unseasonably heavy rainfall (Gibbs and 

Maher, 1967). Earlier, in the late 1880s, reports described contrasting conditions from one side 

of the country to the other, hinting to broad scale variability in the climate system. For example, 

extremely dry conditions occurred in Victoria, Tasmania, New South Wales and Queensland 

during years 1888-1889 while agricultural areas in Western Australia saw a period of above 

average rainfall that was then followed by a year of rainfall deficits in 1891 (Foley, 1957).  

 

The presence of drought events and periods of above average rainfall in the early part of the 

climate record, and their relevance in historical context sets our primary motivation for 

extending our analyses as far back as feasibly representable.   

 

With consideration of the fractional area that shows reasonable station density coverage across 

southeast Australia, the decorrelation length-scales and incorporation of pseudo-observations, as 

discussed in previous sections, we have extended the SI monthly rainfall analyses back to 1880. 

Despite the sparseness of the rainfall network across inland Australia, previous studies have 

attempted to define pre-1900 periods of drought through spatial decile analysis (e.g. Gibbs and 

Maher 1967, Heathcote 1969). We assess the ability for SI to reproduce previously reported 

percentage area statistics for the 'centennial' drought of 1888 as described in Gibbs and Maher 

(1967). For the areas defined to be in the decile-1 band in 1888, Table 2 and Figure 19 show a 

high level of agreement between the values reported in Gibbs and Maher (1967) and SI.  

 

 
 

Table 2: Comparison of the percentage area in drought (decile 1 rainfall), as defined in Gibbs and Maher (1967) to 

the analysed percentage area from SI for the year 1888. 
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Figure 19: Rainfall deciles for the 12-month period January-December 1888. The percentile calculation has a 

reference period of 1885-1965 to enable a direct comparison with Gibbs and Maher (1967). 

 Incorporation of hydrological station network 

In this section we show how the inclusion of the hydrological station network influences the SI 

analyses. A focus of this study has been to both look to use more rainfall data in the analysis as 

well as improving the use of those data (i.e. the spatial analysis method). 

As shown previously (Figure 2), the hydrological network has grown from a few hundred 

stations in the early to mid-2000's to more than 1000 from around 2010. In light of this, we 

show the month-by-month results of analysis bias over the period 2000-2019. The grey curve 

shown in Figure 20 includes all available hydrological stations included in the SI analysis. As 

compared to the orange curve, it is evident that the hydrological network recordings are biased 

low when compared to the conventional network, resulting in an underestimation in the 

analysed rainfall field when they are used in the SI algorithm. In other words, the rainfall 

recorded by the hydrological stations appears too low compared to other stations in the rainfall 

network which are maintained to a higher standard.   
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Figure 20: Cross-validated bias for monthly rainfall for the analysis period (January 2000- December 2018) averaged 

across all stations. Blue curves represent results from AWAP, orange curves are results from SI analysis, grey curve 

are results from SI with the inclusion of all available hydrological stations. Units in mm. 

 

A possible reason why adding hydrological stations leads to a poorer rainfall analysis could be 

the use of equipment types and siting characteristics that differ from the Bureau's climate 

rainfall network specification. Additionally, the data coming from the hydrological sites does 

not undergo the same level of quality control as Bureau operated stations and tends to have 

more data outages (i.e., miss reports). The bias does appear to close over the most recent years 

when a greater effort has gone into the maintenance and support for these networks suggesting 

that the quality gap between the data has been partially addressed. Further work is required to 

completely understand why the hydrology stations are biased slightly low compared to the 

conventional rainfall network. The overall bias is small, but this flows directly through to the 

analysis errors. 
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Figure 21: Cross-validated root mean square error (RMSE) for monthly rainfall for the eight years 2011-2018. SI 

analysis on left (as in figure 12, left) and SI analysis with the inclusion of hydrological locations (right). Units in mm. 

 

The introduction of a particularly dense hydrological network shows a tendency to degrade the 

bias (Figure 20, Table 3). Indeed, comparison of the mapped RMSE in Figure 21, does indicate 

that the SI analysis with the inclusion of the hydrological stations tends to locally increase the 

RMSE, particularly throughout southeast and northern Queensland (i.e. Figure 21 right). 

However, there is negligible difference in the all station average RMSE and MAE across all 

months for the period 2000-2018, which suggests that if the bias could be removed from the 

hydrology stations then they could add to an improved rainfall analysis overall..    

 

 
Table 3: Comparison of verification statistics, bias, RMSE and MAE. All station average, across all months spanning 

2000-2018. 

The minimal change and local increase in analysis errors when more stations are used can come 

about for two reasons. The first is when the data have a bias (which we have shown is the case 

here). The second case is when the stations have notably larger observational errors and so 

introduce more error into the analysis. Both of these issues can be addressed but require a 

longer period of data and a better description of the interstation correlations. 

 

The results here do not invalidate the use of hydrological stations for other purposes, but rather 

highlight that they may not be so easily used for some climate applications. This point is important 

as it is not unreasonable to expect that other networks such as those using low-cost private weather 

stations are likely to have similar issues. These do present a potentially rich data source, but their 
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use will not always be straight-forward or simple and it is possible that they may lead to a 

somewhat worse analysis outcome on some attributes. 

5. SUMMARY and CONCLUSIONS 

In this report we have provided a detailed description of a new meteorological analysis product 

developed by the Australian Bureau of Meteorology as a contribution to the New South Wales 

(NSW) Rural Assistance Authority (RAA) project "Enhanced weather information for farm 

drought resilience in NSW". This system is running in real time and is expected to form the basis 

for ongoing monitoring and mapping of Australia’s climate by the Australian Bureau of 

Meteorology going forwards.  

 

We have shown that, with the use of SI, analysis error of monthly rainfall is greatly improved 

with a reduction in the annual average RMSE of 13.5% with respect to AWAP. To achieve the 

same result with AWAP alone, would require up to 2600 additional rainfall stations nationally. 

Based upon purchase and installation prices plus 5 years of running cost, this equates to $41.6M 

if the stations are automated rain gauges only. The bias from the implementation of SI, such that 

its timeseries exhibits near stationarity are also greatly reduced with respect to AWAP. This 

indicates that the SI tuning coefficients are pretty close to optimal and the choice of a single 

reference baseline period has significant benefits for analysis accuracy.  

 

Future work will look to extend this analysis technique across multiple variables and multiple 

time-scales (particularly days). The approach has been found to be robust, to preserve the 

background climatology in the long term and to be computationally efficient such that the entire 

historical analyses can be re-run in a short period of time. These systems produce a substantial 

improvement on existing Bureau practice.  

 

The benefits for adopting the SI methodology also include the ease with which additional datasets 

can be included into the analysis process. For example, adding radar, satellite rainfall estimates 

or short-range model forecasts is quite simple. Our results show that the analysis errors are quite 

insensitive to station number (e.g. they don't change much through time). This means that very 

large networks will be required if significant further improved analyses are required, and clearly 

this will not be feasible using traditional rainfall networks. As such, future work should focus on 

expanding the range of data used for analysis, eventually moving to multivariate analyses where 

the physical relationship between the variables is preserved. This is done in data assimilation to 

numerical weather prediction models and is the basis for so-called reanalysis datasets.   
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APPENDIX 1  

 

We calculate the Root Mean Square Error (RMSE) of the analysis at the observation stations as 

follows:  

Consider a cross-validated estimate of a station value T at station k and time t, denoted by 

),,,(ˆ tzyxT kkk . The cross-validated analysis error is given by 

)(),,,(ˆ)( tTtzyxTtE kkkkk −= .                               (7) 

Aggregating across time, the RMSE at the station is  
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Noting that N will vary from station to station and according to whether the analysis is for daily 

or monthly data. The observation Tk(t) can be divided into a “true” component and an 

“observational error” component ek(t). The true component is what would be measured if the 

observation at station k was completely accurate, while the error component is the error 

introduced due to factors such as instrument miscalibration, misreading by the observer, errors 

in spatial representativeness arising from specific factors at the observation site and so on. 

Hence we have 
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On the assumption that the observational errors are statistically independent of the interpolated 

and true values (Daley 1993), this can be further simplified to 
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The first term in eq. 13, ( )2True

kE , is the “true error variance” and is a measure of the accuracy 

of the analysis in estimating the true field. This value is the true analysis error. The second 

term in eq. 13, ( )2Obs

kE , is the “observational error variance” and measures the accuracy of 

the observations. Clearly, even a perfect analysis will have a non-zero cross-validated error 

because observations have some level of error. To obtain a zero cross-validated error, the 
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observations need to be “perfect”, also noting that analysis methods are also not perfect. 

While it is common practice for the cross-validated differences between independent 

observations and analyses to be treated as “analysis errors”, and they are defined as such 

here, it is important to keep in mind that they also contain an observation error component. 

Daley (1993) and Jones and Trewin (2000) describe how the observational errors can be 

estimated.  

In defining the analysis errors averaged across time and stations, additional measures of bias 

and Mean Absolute Error (MAE) are computed. These are both defined as (e.g., Jones and 

Weymouth 1997), 
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The all station average is these terms extended across stations, 
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