
Messenger End-to-End
Encryption Overview

December 6, 2023
Version 1

Messenger End-to-End Encryption Overview 2

TABLEOF CONTENTS

Messaging Security 4
Introduction 4
Scope 5

Signal Protocol 6
Terms 6

Public Key Types 6
Session Key Types 6
Cryptographic Operations 6

Device Registration 7
Initiating One-to-One Session Setup 8

One-to-One Session Setup 8
One-to-One Receiving Session Setup 9

Exchanging One-to-OneMessages 10
Calculating a Message Key From a Key Chain 10
Calculating a Chain Key From a Root Key 10

GroupMessages 12
Group Session Setup 12
Exchanging GroupMessages 12

Message Retries 14
Sender Side Backfill 16
TransmittingMedia and Other Attachments 17
Abuse Reporting 18

Franking 18
Franking Tag 18
Franking Messages 19

Reporting Abuse 19
Security and Privacy 19

Server-SideMessage Storage 20
Calling 21

One-to-One Calling 21
Group Calling 22

Data Encryption 22
KeyManagement 24

Verifying Keys 25
Transport Security 25

Messenger End-to-End Encryption Overview 3

Displaying End-to-End Encryption Status 25

Messenger End-to-End Encryption Overview 4

Messaging Security

1. Introduction

This whitepaper describes Meta’s current designs and intention around how end-to-end

encryption will operate. Details of Meta’s implementation may differ in places and will likely

evolve over time. This white paper should not be read as making any assurances or

commitments to users onMeta’s products or services.

We are publishing this whitepaper to help the security community understand and analyze our

approach to end-to-end encryption. It provides a technical explanation of the cryptography

underpinning the design of Messenger and Instagram Direct's end-to-end encryption system.

They use the same encryption scheme, so for brevity throughout the rest of this doc, we will

refer only to Messenger. Please visit Messenger's website at

https://about.meta.com/actions/protecting-privacy-and-security/ for more information.

Messenger allows people to exchangemessages (including chats, group chats, images, videos,

voice messages and files) andmake voice and video calls around the world. End-to-end

encryptedmessages, voice and video calls use the Signal protocol outlined below. See "Defining

End-to-End Encryption" for information about which communications are end-to-end

encrypted.

The Signal Protocol, developed by the Signal Foundation, is the basis for Messenger's

end-to-end encryption. This end-to-end encryption protocol is designed to prevent third parties

(including Meta) from having plaintext access to messages or calls. For more information on our

guiding values for howwe are approaching securely building end-to-end encryption for

Messenger and Instagram Direct, which is consistent with howWhatsApp currently operates,

see our 2022 white paper Security Principles for Private Messaging.

A person can have multiple devices, each with its own set of encryption keys. If the encryption

keys of one device are compromised after the device has been revoked, an attacker cannot use

them to decrypt messages sent from or to other devices, even devices registered to the same

user.

https://engineering.fb.com/wp-content/uploads/2022/07/Meta-Security-Principles-for-Private-Messaging-White-Paper-July-2022-2.pdf

Messenger End-to-End Encryption Overview 5

2. Scope

Not all message threads are currently end-to-end encrypted. Messenger is rolling out

end-to-end encryption for 1:1 chats, and beginning to make it optionally available for group

chats.

Messenger End-to-End Encryption Overview 6

Signal Protocol
Messenger uses Signal Protocol as the basis for its 1:1 sessions. The library used byMessenger is

based on the Open Source library, with one of its implementations available at

https://github.com/signalapp/libsignal-protocol-java/

The protocol described here, for 1:1 messages, describes the protocol as implemented in the

above library.

Terms

Public Key Types

● Identity Key Pair – A long-term Curve25519 key pair, generated at registration time.

● Signed Pre Key – Amedium-term Curve25519 key pair, generated at registration time,

signed by the Identity Key, and rotated on a periodic timed basis.

● One-Time Pre Keys – A queue of Curve25519 key pairs for one time use, generated at

registration time, and replenished as needed.

Session Key Types

● Root Key – A 32-byte value that is used to create Chain Keys.

● Chain Key – A 32-byte value that is used to create Message Keys.

● Message Key – An 80-byte value that is used to encrypt message contents. 32 bytes are

used for an AES-256 key, 32 bytes for a HMAC-SHA256 key, and 16 bytes for an IV.

Cryptographic Operations

● ECDH - An Elliptic Curve Diffe-Hellman key agreement.

● HMAC - A hash-basedmessage authentication code.

● SHA256 - A cryptographic hash function.

● HKDF - A key derivation function based on HMAC-SHA256.

● AES - Advanced Encryption Standard, a symmetric block cipher.

● CBC - Cipher Block Chaining - a block cipher mode.

https://github.com/signalapp/libsignal-protocol-java/

Messenger End-to-End Encryption Overview 7

Device Registration
At registration time, a Messenger client transmits its public Identity Key, public Signed Pre

Key (with its signature), and a batch of public One-Time Pre Keys to the server.

The Messenger server stores these public keys associated with the user's device specific

identifier. This facilitates offline session establishment between two devices when one device is

offline.

Messenger End-to-End Encryption Overview 8

Initiating One-to-one Session Setup

1. One-to-one Session Setup (Sender)

In order for Messenger users to communicate with each other securely and privately, the device

sending a message establishes a pairwise encrypted session with each of the recipient's devices.

Additionally, the sending device establishes a pairwise encrypted session with all other devices

associated with the sender account.

Once these pairwise encrypted sessions have been established, clients do not need to rebuild

new sessions with these devices unless the session state is lost or damaged, which can be

caused by an event such as an app reinstall or device change.

Messenger uses this "client-fanout" approach for transmitting messages to multiple devices,

where the Messenger client transmits a single message `N` number of times to `N` number of

different devices. Each message is individually encrypted using the established pairwise

encryption session with each device.

To establish a session using the Signal Protocol:

1. The initiating client ("initiator") requests the public Identity Key, public Signed Pre

Key, and a single public One-Time Pre Key for each device of the recipient and each

additional device of the initiating user (excluding the initiator).

2. The server returns the requested public key values. A One-Time Pre Key is only used

once, so it is removed from server storage after being requested. If the recipient's latest

batch of One-Time Pre Keys has been consumed and the recipient has not replenished

them, no One-Time Pre Keywill be returned.

After fetching the keys from server, the initiator starts to establish the encryption session with

each individual device using the X3DH protocol:

1. The initiator saves the recipient's Identity Key as Irecipient, the Signed Pre Key as

S_recipient, and the One-Time Pre Key as Orecipient.

2. The initiator generates an ephemeral Curve25519 key pair, Einitiator.

Messenger End-to-End Encryption Overview 9

3. The initiator loads its own Identity Key as Iinitiator.

4. The initiator calculates a master secret as master_secret = ECDH(Iinitiator, Srecipient)

|| ECDH(Einitiator, Irecipient) || ECDH(Einitiator, Srecipient) || ECDH(Einitiator,

Orecipient). If there is no One Time Pre Key, the final ECDH is omitted.

5. The initiator uses HKDF to create a Root Key and Chain Keys from the

master_secret.

2. One-to-oneSession Setup (Recipient)

After building a long-running encryption session, the initiator can immediately start sending

messages to the recipient, even if the recipient is offline. Until the recipient responds, the

initiator includes the information (in the header of all messages sent) that the recipient requires

to build a corresponding session. This includes the initiator's public components of Einitiator,

Iinitiator, and Orecipient (if used).

When the recipient receives a message that includes session setup information:

1. The recipient calculates the corresponding master_secret using its own private keys

and the public keys advertised in the header of the incomingmessage.

2. The recipient deletes the One-Time Pre Key used by the initiator.

3. The initiator uses HKDF to derive a corresponding Root Key and Chain Keys from the

master_secret.

Messenger End-to-End Encryption Overview 10

Exchanging One-to-oneMessages
Once a session has been established, clients exchangemessages that are protected with a

Message Key using AES-256 in CBCmode. The client uses client-fanout for all the exchanged

messages, which means each message is encrypted for each device with the corresponding

pairwise session.

The Message Key changes for each message transmitted, and is ephemeral, such that the

Message Key used to encrypt a message cannot be reconstructed from the session state after a

message has been transmitted or received. The Message Key is derived from a sender's Chain

Key that "ratchets" forward with every message sent.

Additionally, a new ECDH agreement is performed with each message round-trip to create a new

chain key. This provides forward secrecy through the combination of both an immediate "hash

ratchet" and a round trip "DH ratchet." This means that, due to the ephemeral nature of these

cryptographic keys, even in a situation where the current encryption keys from a user's device

are physically compromised, they should not be usable for decrypting previously transmitted

messages.

1. Calculating aMessage Key from a Chain Key

Each time a new Message Key is needed by a message sender, it is calculated as:

1. Message Key = HMAC-SHA-256(Chain Key, 0x01).

2. The Chain Key is then updated as Chain Key = HMAC-SHA-256(Chain Key, 0x02).

This causes the Chain Key to "ratchet" forward, and also means that a stored Message Key

can't be used to derive current or past values of the Chain Key.

2. Calculating a Chain Key from a Root Key

Each time amessage is transmitted, an ephemeral Curve25519 public key is advertised along

with it. Once a response is received, a new Chain Key and Root Key are calculated as:

1. ephemeral_secret = ECDH(Ephemeral_sender, Ephemeral_recipient).

Messenger End-to-End Encryption Overview 11

2. Chain Key, Root Key = HKDF(Root Key, ephemeral_secret).

A chain is only ever used to sendmessages from one user, so message keys are not reused.

Because of the way Message Keys and Chain Keys are calculated, Message Keys can be

cached - meaning that messages can arrive delayed, out of order, or can be lost entirely without

any problems.

Messenger End-to-End Encryption Overview 12

Groupmessages
Messenger leverages "Server-side fanout" messaging for a majority of groupmessaging

use-cases.

Group sessions are defined as sessions supporting efficient one-to-many communication.

The protocol here describes the “Sender Keys” variant of the Signal Protocol, referred to as

“GroupCipher” within Signal’s reference implementation.

1. Group Session Setup

End-to-end encryption of messages sent in Messenger groups utilizes the established

one-to-one encrypted sessions, as previously described in the "Initiating One-to-one Session

Setup" section, to distribute the "Sender Key" component of the Signal Messaging Protocol.

When sending a message to a group session for the first time, and periodically thereafter, a

"Sender Key" is generated and distributed to each member device of the session, using the

pairwise encrypted sessions.

The first time aMessenger groupmember sends a message to a group:

1. The sender generates a random 32-byte Chain Key.

2. The sender generates a random Curve25519 Signature Key key pair.

3. The sender combines the 32-byte Chain Key and the public key from the Signature

Key into a Sender Keymessage.

4. The sender individually encrypts the Sender Key to each member of the group, and

exchanges it as a normal "one-to-one" message.

2. Exchanging GroupMessages

Once a session group session is established. Messages can be sent to those users as follows:

1. The sender derives a Message Key from the Chain Key, and updates the Chain Key.

2. The sender encrypts the message using AES-256 in CBCmode.

3. The sender signs the ciphertext using the Signature Key.

Messenger End-to-End Encryption Overview 13

4. The sender transmits the single ciphertext message to the server, which does server-side

fan-out to all group participants.

The "hash ratchet" of the message sender's Chain Key provides forward secrecy. Sender Keys

are distributed to new groupmembers as they join, allowing them to decrypt future messages

while being unable to decrypt past messages. Whenever a groupmember leaves, or a device

associated with a groupmember is removed, all group participants clear their Sender Key and

start over at "Group Session setup.”

Messenger End-to-End Encryption Overview 14

Message Retries
Occasionally, a recipient device may fail to decrypt a message, for example, if a ciphertext is

corrupted in transit. We have added a retry mechanism on top of the Signal protocol to securely

re-attempt message delivery.

When a recipient device fails to decrypt a message, it will send a “retry receipt” back to the

original sender, specifying the ID of the message which failed. In order to track which retry

receipts may be honored, the sender keeps track of the following things on each message send

in an “encrypt journal”:

1. The list of intended recipient devices. This includes other devices of the sender, as well as

devices of other users.

2. The “identity version” of each device. The identity version refers to the number of identity

changes the local device has processed. Each time a local device processes a new identity

key for a remote device, the local device increments and locally assigns a new identity

version for the remote device. The current identity version (at the time of message send)

is saved in the encrypt journal.

3. The original timestamp of the message send.

4. The number of times a retry attempt has been honored for a specific device andmessage.

When the sender receives a delivery receipt from a device for a specific message, it will delete

the entry for that message and device from the encrypt journal. This ensures that any future

retry receipts claiming to be from that device for that message will not be honored. The entry

will remain in the encrypt journal until a delivery receipt is received or until 30 days (after which

retries cannot be honored).

The sender will honor the retry (i.e. re-encrypt and re-send the message) under the following

conditions, in order to uphold privacy and security expectations:

1. The recipient device’s identity key has not changed. This is tracked using the

aforementioned “identity version”. If the identity key has changed (determined by

whether the current identity version for the device is higher than the version saved in the

encrypt journal at send time), this entry in the encrypt journal will be treated as ineligible

for any future retries.

2. The message is less than 30 days old. On the server registration side, we expire devices

after 30 days offline. This enforces the same expectation on the client side.

Messenger End-to-End Encryption Overview 15

3. There have been fewer than 5 previous retry attempts.

4. The message has not previously been delivered successfully to the device requesting the

retry (i.e. sender has not received a delivery receipt).

Messenger End-to-End Encryption Overview 16

Sender Side Backfill
Unlike most messages, in cases of control messages like “remove for me” and “unsend”, senders

will encrypt the messages to devices they learn of at send-time. This is to ensure that these

commands, which themselves serve the user’s privacy, can be respected across all relevant

devices. These control messages do not themselves contain message content.

As described above, in Messenger, the sender client must specify all the destination devices at

the sending time for a message. Any device which is not listed at the sending time will not be

able to receive the encryptedmessage. Each client maintains a list of devices for Messenger

accounts the user communicates with, as well as all other devices associated with its own

account, and uses this list to specify the destination devices at send-time.

However, when sending a message, it is possible for a client to miss valid devices if its current

device list is out-of-date. The mechanism "Sender Side Backfill" is designed so that, in the

specific set of cases where it is used, these missed devices may recover from permanently

missing the control message. WhenMessenger receives the encryptedmessage from the

sender, it compares the hash of all the destination devices listed by the sender to the hash of

server-side device records of these accounts. If there is a mismatch between two hash values,

the server will notify the sender to update the devices list for itself and all the recipient accounts.

The sender client will establish pairwise sessions with those devices using the samemethod

described in the "Initiating One-to-one Session Setup" section, encrypt and resend the original

message to these new devices. Users can bemade aware of the new devices, as described under

“Verifying Keys” below.

Messenger End-to-End Encryption Overview 17

Transmitting Media and Other Attachments
Large attachments of any type (video, audio, images, or files) are also end-to-end encrypted:

1. The Messenger user's device sending a message ("sender") generates an ephemeral 32

byte media_key From the media_key, it derives a 32-byte media_encryption_key, a

16-byte media_initialization_vector, and a 32-byte media_hmac_key.

2. The sender encrypts the attachment with the media_encryption_key and

media_initialization_vector via AES-CBCmode, then appends an HMAC-SHA-256

of the ciphertext.

3. The sender uploads the encrypted attachment to a blob store via HTTPS.

4. The sender transmits a normal encryptedmessage to the recipient that contains the

media_key, a SHA-256 hash of the encrypted blob, and a pointer to the blob in the blob

store.

5. All receiving devices decrypt the message, retrieve the encrypted blob from the blob

store, generate the SHA-256 hash of the encrypted blob, verify the HMAC-SHA-256, and

decrypt the attachment.

Messenger End-to-End Encryption Overview 18

Abuse Reporting
A participant in an end-to-end encrypted conversation may voluntarily notify Meta of unwanted

message content. Meta uses such reports to identify users who violate its Community

Standards.

The ability to report message content does not represent a relaxation of end-to-end encryption

guarantees. Meta will never have access to end-to-end encryptedmessages unless a participant

voluntarily reports the conversation.

End-to-end encryptedmessages include a mechanism outlined below to ensure reports are

reliable and authentic, while maintaining end-to-end security.

1. Franking

The franking mechanismmust satisfy three main guarantees: authenticity, confidentiality and

third-party deniability. The authenticity property ensures that if a user submits a report then the

messages in the report must have legitimately originated from the sending device. The

confidentiality property ensures that no outside party — including Meta— should learn the

content of an end-to-end encryptedmessage unless a participant voluntarily shares that

information. Finally, the third-party deniability property ensures that no party outside of Meta

can cryptographically determine the validity of a report.

Franking Tag

Authenticity for messages in a secret conversation is provided by the Franking tag TF. Senders

must send the Franking tag along with each encryptedmessage. To compute TF, the sender first

generates a 256-bit random nonce NF. NF is added to the unencryptedmessage being

transmitted. Next, the entire data structure is serialized into a string M, and TF is computed as:

TF = HMAC-SHA256(NF, M)

NF remains within the serialized, encrypted data sent to the recipient. TF is transmitted to Meta

along with each encryptedmessage.

Messenger End-to-End Encryption Overview 19

FrankingMessages

WhenMeta receives TF, it uses a Meta key KF to compute the Reporting tag RF over TF and

conversation context (e.g., sender and recipient identifiers, timestamp) as:

RF = HMAC-SHA256(KF,TF || context)

Both TF and RF are sent to the recipient along with the encryptedmessage. RF is also sent in an

ack response to the sender. The recipient decrypts the ciphertext, parses the resulting plaintext

to obtain NF, and verifies the structure of TF prior to displaying the message. The sender and

recipient store the message M, NF, TF, RF and context in their message storage.

2. Reporting Abuse

To report abuse, the recipient of a message submits to Meta the full serialized message

plaintext, TF, RF, NF, and context. Upon receiving this messageMeta first recomputes TF and

then validates RF using the provided information as well as its internal key KF.

Security and Privacy

The authenticity properties of the franking mechanism are based on reasonable assumptions

about the collision resistance of the SHA256 hash function and the unforgeability of

HMAC-SHA256.

Authenticity
In order to “forge” invalid content M’, a user must either (a) produce a forged HMAC tag under

Meta’s key KF, or (b), identify a collision NF’, M’, context’ such that the HMAC of these values is

equal to the HMAC of a different valid message M sent throughMeta.

Confidentiality
Similarly, under reasonable assumptions about HMAC-SHA256, the resulting tag reveals no

information about the message to Meta or to eavesdroppers.

Third-party deniability
The guarantee holds under the assumption that HMAC-SHA256 is a pseudorandom function

and that KF is never publicly revealed. Meta rotates KF periodically.

Messenger End-to-End Encryption Overview 20

Server-SideMessage Storage
Prior to end-to-end encryption, Messenger users relied on server-side storage of their message

history so they could access their message history from anywhere while minimizing the use of

scarce client-side storage. To preserve this capability, while maintaining E2EE safeguards, we

designed a new server-side storage protocol that people can use for their message history.

Further details in its dedicated whitepaper.

https://engineering.fb.com/wp-content/uploads/2023/12/TheLabyrinthEncryptedMessageStorageProtocol_12-6-2023.pdf

Messenger End-to-End Encryption Overview 21

Calling
In order to end-to-end encrypt call content, each participant in the call establishes a pairwise

crypto session with every other call participant. These sessions are distinct from the sessions

established for sending end-to-end encryptedmessages, are ephemeral, and their lifecycle is

closely tied to the lifecycle of the call (i.e. the sessions are only stored in memory and are purged

at the end of the call).

The crypto sessions are negotiated using the Signal protocol mentioned above. However, one

major distinction to mention is that sharing the Identity Key, Signed Pre Key, and

One-Time Pre Key does not rely on server storage. Instead the keys, packaged as what we call

a Pre Key Bundle, are distributed as part of the payloads exchange to establish the webRTC

connections. These ephemeral crypto sessions are then used to exchange shared secrets from

which keys to encrypt the media content are derived. The use of ephemeral Signal sessions,

instead of integrating with those used for chat, is intended to improve reliability and

performance; as it avoids the possibility of attempting a call on an older corrupted session that

will result in a failed connection.

1. One-to-One Calling

For one-to-one calls the audio and video streams are transmitted over a webRTC connection

established between the two end-user devices. As such, Messenger achieves end-to-end

encryption for call media by using a key, known only to the 2 devices participating in the call, to

encrypt the SRTP packets.

The flow to establish the secure encryption sessions and transmit the shared secret is depicted

below:

Definitions:

cpk -- callee key pair (identity key and ephemeral key)

pkb -- pre-key bundle

UserA (caller) UserB (callee)

| |

| |

| (user initiates call) |

Messenger End-to-End Encryption Overview 22

| |

| generateRandomData() -> nonce |

| generatePkb() -> (pkb_A_priv, pkb_A_pub, nonce) |

| |

| |

|--------------------> Offer SDP, contains pkb_A_pub ------------------->|

| |

| |

| (answer call) |

| |

| establishSession(cpk_B_priv, pkb_A_pub) -> session |

| generateSharedSecret() -> ss |

| encrypt(session, ss) -> (ciphertext, cpkB_pub) |

| |

| |

|<------------- Answer SDP, contains cpkB_pub, ciphertext <--------------|

| |

| |

| establishSession(cpk_B_pub, pkb_A_priv) -> session |

| decrypt(session, ciphertext) -> ss |

| |

| |

Both participants then use HKDF to derive the SRTPmaster encryption keys from the

shared_secret, the nonce, as well as the public Identity Keys and user ids of both call

participants.

2. Group Calling

Data Encryption

For group calls, audio and video streams are routed through a selective forwarding unit (SFU).

Each participant opens a webRTC connection with the SFU server. This means that SRTP

encryption keys are negotiated between the user device and the server. Therefore, SRTP

encryption is not sufficient to provide end-to-end encryption for group calls.

For group calls, Messenger employs a second layer of encryption to provide end-to-end

encryption. The app implements the Secure Frame (SFrame) encryption and authentication

mechanism1, to end-to-end encrypt the content of the audio and video frames while still

1 https://datatracker.ietf.org/doc/html/draft-omara-sframe-00

https://datatracker.ietf.org/doc/html/draft-omara-sframe-00

Messenger End-to-End Encryption Overview 23

allowing the SFU access to the unencryptedmedia frame headers. Messenger uses

authenticated symmetric encryption with the AES128_GCM64_HKDFSHA256 algorithm for

SFrame encryption.

The diagram below presents a high level breakdown of the data blocks and their encryption and

authentication properties for an SRTP packet with an SFrame payload:

Encrypting the audio and video frames is achieved by leveraging the webRTC APIs

(SetFrameEncrytor, SetFrameDecryptor) that allowsMessenger to inject frame encryptors and

frame decryptors into the frame processing pipeline. The following diagram depicts the client

frame processing pipeline with encryptors and decryptors:

https://webrtc.googlesource.com/src/+/refs/heads/main/api/rtp_sender_interface.h#95
https://webrtc.googlesource.com/src/+/refs/heads/main/api/rtp_receiver_interface.h#103

Messenger End-to-End Encryption Overview 24

KeyManagement

Messenger uses the ‘sender key’ protocol to derive the keys used to end-to-end encrypt the

audio and video stream. Each call participant generates a 128-bit key on call start and configures

the frame encryptor attached to the rtp_sender(s) with that key. It then distributes this key to

each call participant using the Signal session it established with them. Each participant sends

out n-1 key messages if n is the total number of call participants. In turn as it receives key

messages from other participants it configures the frame decryptor attached to the

rtp_receiver(s) processing the media streams from that participant with the received key.

When a new participant joins the call each existing participant `ratchets` all encryption keys (the

key they use to encrypt their local media stream and the keys they received from the other

participants) by performing a non-reversible HKDF operation. Each participant then establishes

a pairwise Signal session with the new participant, and sends it the newly ratcheted key they are

using to encrypt their local media stream. This mechanism provides forward secrecy for the call,

ensuring that the new participant will not be able to decrypt any media frames that were sent

before it joined the call. .

When a participant leaves the call each remaining participant generates a new `sender key` and

distributes it to the other call participants using the pairwise Signal session. This mechanism

maintains secrecy for the call ensuring that the former participant will not be able to decrypt any

media frames that are sent after they left the call.

Messenger End-to-End Encryption Overview 25

Verifying Keys
Messenger users additionally have the option to verify the keys of their devices and the devices

of the users with which they are communicating in end-to-end encrypted chats, so that they are

able to confirm that an unauthorized third party (or Messenger) has not initiated a middleperson

or split-view attack. Each device's sessions are independent from one another, and as a result all

devices of the same user must be verified independently. Verification can be done by comparing

the list of devices present on each account, and the Identity key associated with them.

Users can also enable alerts on added, removed, or changed keys for themselves and for their

chat-partners in settings.

Transport Security
Communication betweenMessenger clients andMessenger’s backend and chat servers uses

Transport Security. Much of this communication uses standards such as TLS and QUIC. Some

communication to Messenger’s chat servers is layered within a separate encrypted channel

using Noise Pipes with Curve25519, AES-GCM, and SHA-256 from the Noise Protocol

Framework for long running interactive connections.

Displaying End-to-End Encryption Status
Across all our services, Messenger makes the end-to-end encryption status of a chat clear.

The user can also double check the encryption status within the thread details for a chat thread

or the call details for a call. This section also allows the user to verify the device keys of the other

participants in a chat. Users may also enable security alerts for their contacts’ key changes from

their Privacy & Security Settings.

Furthermore, Messenger uses additional UI elements to improve the security of voice and video

calls. The app displays a notification to alert the user when a participant in the call is using a

device for the first time when communicating with the user. The user is also able to pull up and

review the identity keys for each participant present in the call from the call UI.

