Temporal Logic [Syntax and Semantics]

Michael Fisher

Department of Computer Science, University of Liverpool, UK

[MFisher@liverpool.ac.uk]

An Introduction to Practical Formal Methods Using Temporal Logic

© Michael Fisher An Introduction to Practical Formal Methods Using Temporal Logic [TEMPORAL LOGIC: SEMANTICS] – 1/20

PTL Syntax

Syntax

- Semantic Structures
- Semantics
- Interactions

Formulae in PTL are constructed from the following.

- A finite set of propositional symbols, PROP, such as *p*, *q*, *r*, *trigger*, *terminate_condition2*, *lunch*, ...
- Propositional connectives: **true**, **false**, \neg , \lor , \land , \Rightarrow .
- Temporal connectives: \bigcirc , \diamondsuit , \Box , **start**, *U*, and *W*.
- Parentheses, '(' and ')', used to avoid ambiguity.

The set of well-formed formulae of PTL, denoted by WFF, is now inductively defined as follows.

- PROP \subseteq WFF, and **true**, **false** and **start** are in WFF.
- If φ and ψ are in WFF, then so are

Examples of Syntax

Semantic Structures (1)

Syntax

Semantic Structures

Semantics

Interactions

Models of PTL are formally

Model =
$$\langle S, R, \pi \rangle$$

where

- S is the set of *moments* in time (accessible worlds),
- *R* is the *temporal accessibility relation* (linear, discrete, finite past), and
- $\pi: S \mapsto \mathbb{P}PROP$, a *propositional valuation*, mapping each moment/world to a set of propositions (i.e. those that are true in that moment/world).

Syntax

Semantic Structures

Semantics

Interactions

A linear, discrete relation, such as R, is isomorphic to \mathbb{N} . So, this is often reduced to

Model = $\langle \mathbb{N}, \pi \rangle$

where

• $\pi: \mathbb{N} \mapsto \mathbb{P}PROP$ maps each moment in time to a set of propositions .

And, still further to

Model =
$$s_0, s_1, s_2, s_3, \ldots$$

where each s_i is a set of propositions. But: We will generally use the *Model* = $\langle \mathbb{N}, \pi \rangle$ variety.

©Michael Fisher

An Introduction to Practical Formal Methods Using Temporal Logic [TEMPORAL LOGIC: SEMANTICS] – 5 / 20

Semantic Structures (3)

Syntax

Semantic Structures

Semantics

Interactions

We will use the

$$\mathcal{M} = \langle \mathbb{N}, \pi \rangle$$

semantic basis, which can be viewed as

Formal Semantics

Syntax

Semantic Structures

Semantics

Interactions

The semantics of a temporal formula is provided by an interpretation relation

$$\models: (\mathit{Model} \times \mathbb{N}) \to \mathbb{B}$$

For a model, *M*, temporal index, *i*, and formula, φ , then

 $\langle M, i \rangle \models \varphi$

is true if φ is satisfied at moment *i* within model *M*.

The way the interpretation relation is defined provides the semantics for the logic.

Semantics of Propositions

Syntax

Semantic Structures

Semantics

Interactions

We begin with the semantics of basic propositions: $\langle M, i \rangle \models p \quad \text{iff} \quad p \in \pi(i) \quad \text{(for } p \in \text{PROP)}$

i.e. look up the proposition in the model provided to see whether it is satisfied or not.

Recall:

An Introduction to Practical Formal Methods Using Temporal Logic [TEMPORAL LOGIC: SEMANTICS] – 8 / 20

Semantics of Classical Operators

Syntax

Semantic Structures

Semantics

Interactions

Next we consider the standard classical operators.

$$\langle M, i \rangle \models \neg \varphi$$
 iff it is not the case that $\langle M, i \rangle \models \varphi$

 $\langle M, i \rangle \models \varphi \land \psi \quad \text{iff} \quad \langle M, i \rangle \models \varphi \text{ and } \langle M, i \rangle \models \psi$

 $\langle M, i \rangle \models \varphi \lor \psi$ iff $\langle M, i \rangle \models \varphi$ or $\langle M, i \rangle \models \psi$

And so on....

Temporal Operators: Start

Syntax

Semantic Structures

Semantics

Interactions

$$\langle M, i \rangle \models \text{start} \quad \text{iff} \quad (i = 0)$$

Only ever satisfied at the "beginning of time".

Temporal Operators: Next

Syntax

Semantic Structures

Semantics

Interactions

Provides a constraint on the *next* moment in time.

$$\langle M, i \rangle \models \bigcirc \varphi \quad \text{iff} \quad \langle M, i+1 \rangle \models \varphi$$

Examples

- - $(x_equals_1 \land added_3) \Rightarrow \bigcirc (x_equals_4)$

© Michael Fisher An Introduction to Practical Formal Methods Using Temporal Logic [TEMPORAL LOGIC: SEMANTICS] – 11 / 20

Temporal Operators: Sometime

Syntax

Semantic Structures

Semantics

Interactions

Provides a constraint on the future — we can not be sure when φ will be true, only that it *will* eventually occur.

 $\langle M, i \rangle \models \Diamond \varphi$ iff there exists $j \ge i$ such that $\langle M, j \rangle \models \varphi$

Temporal Operators: Sometime⁺

Syntax

Semantic Structures

Semantics

Interactions

There is a choice in the semantics of 'sometime' about whether to take $j \ge i$ or j > i; an alternative operator can be defined as follows:

 $\langle M, i \rangle \models \Diamond^+ \varphi$ iff there exists j > i such that $\langle M, j \rangle \models \varphi$

Clearly: $\Diamond \varphi \Leftrightarrow (\varphi \lor \Diamond^+ \varphi)$

Examples:

 $(\neg resigned \land sad) \Rightarrow \Diamond famous$ $(\Diamond accident) \Rightarrow (\bigcirc buy_insurance)$ $sad \Rightarrow \Diamond happy$ $is_monday \Rightarrow \Diamond^+ is_friday$

Temporal Operators: Always

Syntax

Semantic Structures

Semantics

Interactions

Provides *invariant* properties (c.f. safety properties). $\langle M, i \rangle \models \Box \varphi$ iff for all *j*. if $(j \ge i)$ then $\langle M, j \rangle \models \varphi$

 \bigcirc Michael Fisher

An Introduction to Practical Formal Methods Using Temporal Logic [TEMPORAL LOGIC: SEMANTICS] – 14/20

Example

Syntax

Semantic Structures

Semantics

Interactions

Why do we term $\Box \Diamond p$, "infinitely often *P*"?

Let us take the semantics of $\Box \Diamond p$ at a particular moment *i* in model *M*:

 $\langle M, i \rangle \models \Box \Diamond p$ iff for all *j*. if $(j \ge i)$ then $\langle M, j \rangle \models \Diamond p$

iff for all *j*. if $(j \ge i)$ then there exists *k*. $(k \ge j) \land \langle M, k \rangle \models \varphi$

Now, choose a *j*, and a $k \ge j$ where $\langle M, k \rangle \models \varphi$

As we quantify over all *j*'s, then we can now choose another *j*, such that j > k, which requires us to satisfy φ again in the future, and so on....

Aside: No Future

Rather than using \mathbb{N} as our underlying model of time, what if we use a linear, discrete sequence, but with a *finite* length:

Semantics of the temporal operators must be modified.

For example, the ' \bigcirc ' operator typically defaults to **true** if there is no 'next' moment. So, ' \bigcirc **false**' is actually only satisfied at the last state in a finite sequence!

See also: bounded approximations and related techniques.

 \bigcirc Michael Fisher

An Introduction to Practical Formal Methods Using Temporal Logic [TEMPORAL LOGIC: SEMANTICS] – 16 / 20

Temporal Operators: Until

Syntax

Semantic Structures

Semantics

Interactions

A property persists until a point occurs (which is guaranteed to occur) where another property becomes true.

 $\langle M, i \rangle \models \varphi U \psi$ iff there exists *j*. $(j \ge i)$ and $\langle M, j \rangle \models \psi$ and for all *k*. if $(j > k \ge i)$ then $\langle M, k \rangle \models \varphi$

Examples:

- start_lecture \Rightarrow talkUend_lecture
 - born \Rightarrow livingUdead

©Michael Fisher

An Introduction to Practical Formal Methods Using Temporal Logic [TEMPORAL LOGIC: SEMANTICS] – 17 / 20

Temporal Operators: Unless (1)

Syntax

Semantic Structures

Semantics

Interactions

Unless: as until, except that the ' ψ ' point is not *guaranteed* potentially to occur and so the persistent property can persist forever.

$$\langle M, i \rangle \models \varphi W \psi$$
 iff $\langle M, i \rangle \models \varphi U \psi$ or $\langle M, i \rangle \models \Box \varphi$

Examples:

stay_in_roomWfire_alarm

 $\textit{commence} \ \Rightarrow \ (\textit{executingWstop_msg})$

Temporal Operators: Unless (2)

Useful Interactions

Syntax

Semantic Structures

Semantics

Interactions

By their semantic definitions:

```
aUb \Leftrightarrow ((aWb) \land \diamondsuit b)cWd \Leftrightarrow ((cUd) \lor \Box c)
```

Of course:

 $\neg \Box r \Leftrightarrow \Diamond \neg r$

Less obviously:

$$\neg (eUf) \Leftrightarrow (\neg f)W(\neg f \land \neg e) \\ \neg (pWq) \Leftrightarrow (\neg q)U(\neg p \land \neg q)$$

But, happily, at least in infinite and linear models, $\neg \bigcirc w \Leftrightarrow \bigcirc \neg w$