The C standard library is the standard library for the C programming language, as specified in the ANSI C standard. It was developed at the same time as the C POSIX library, which is a superset of it. Since ANSI C was adopted by the International Organization for Standardization, the C standard library is also called the ISO C library.
The C standard library provides macros, type definitions, and functions for tasks like string handling, mathematical computations, input/output processing, memory management and several other operating system services.
The application programming interface (API) of the C standard library is declared in a number of header files. Each header file contains one or more function declarations, data type definitions, and macros.
After a long period of stability, three new header files (iso646.h
, wchar.h
, and wctype.h
) were added with Normative Addendum 1 (NA1), an addition to the C Standard ratified in 1995. Six more header files (complex.h
, fenv.h
, inttypes.h
, stdbool.h
, stdint.h
, and tgmath.h
) were added with C99, a revision to the C Standard published in 1999, and five more files (stdalign.h
, stdatomic.h
, stdnoreturn.h
, threads.h
, and uchar.h
) with C11 in 2011. In total, there are now 29 header files:
In the C++ programming language, the C++ Standard Library is a collection of classes and functions, which are written in the core language and part of the C++ ISO Standard itself. The C++ Standard Library provides several generic containers, functions to utilize and manipulate these containers, function objects, generic strings and streams (including interactive and file I/O), support for some language features, and everyday functions for tasks such as finding the square root of a number. The C++ Standard Library also incorporates 18 headers of the ISO C90 C standard library ending with ".h", but their use is deprecated. No other headers in the C++ Standard Library end in ".h". Features of the C++ Standard Library are declared within the std
namespace.
The C++ Standard Library is based upon conventions introduced by the Standard Template Library (STL), and has been influenced by research in generic programming and developers of the STL such as Alexander Stepanov and Meng Lee. Although the C++ Standard Library and the STL share many features, neither is a strict superset of the other.
C99 (previously known as C9X) is an informal name for ISO/IEC 9899:1999, a past version of the C programming language standard. It extends the previous version (C90) with new features for the language and the standard library, and helps implementations make better use of available computer hardware, such as the IEEE 754-1985 arithmetic, and compiler technology.
The C11 version of the C programming language standard, published in 2011, replaces C99.
After ANSI produced the official standard for the C programming language in 1989, which became an international standard in 1990, the C language specification remained relatively static for some time, while C++ continued to evolve, largely during its own standardization effort. Normative Amendment 1 created a new standard for C in 1995, but only to correct some details of the 1989 standard and to add more extensive support for international character sets. The standard underwent further revision in the late 1990s, leading to the publication of ISO/IEC 9899:1999 in 1999, which was adopted as an ANSI standard in May 2000. The language defined by that version of the standard is commonly referred to as "C99". The international C standard is maintained by the working group ISO/IEC JTC1/SC22/WG14.
C standard may refer to:
C++ (pronounced as cee plus plus, /ˈsiː plʌs plʌs/) is a general-purpose programming language. It has imperative, object-oriented and generic programming features, while also providing facilities for low-level memory manipulation.
It was designed with a bias toward system programming and embedded, resource-constrained and large systems, with performance, efficiency and flexibility of use as its design highlights. C++ has also been found useful in many other contexts, with key strengths being software infrastructure and resource-constrained applications, including desktop applications, servers (e.g. e-commerce, web search or SQL servers), and performance-critical applications (e.g. telephone switches or space probes). C++ is a compiled language, with implementations of it available on many platforms and provided by various organizations, including the FSF, LLVM, Microsoft, Intel and IBM.
C++ is standardized by the International Organization for Standardization (ISO), with the latest (and current) standard version ratified and published by ISO in December 2014 as ISO/IEC 14882:2014 (informally known as C++14). The C++ programming language was initially standardized in 1998 as ISO/IEC 14882:1998, which was then amended by the C++03, ISO/IEC 14882:2003, standard. The current C++14 standard supersedes these and C++11, with new features and an enlarged standard library. Before the initial standardization in 1998, C++ was developed by Bjarne Stroustrup at Bell Labs since 1979, as an extension of the C language as he wanted an efficient and flexible language similar to C, which also provided high-level features for program organization.
A standard library in computer programming is the library made available across implementations of a programming language. These libraries are conventionally described in programming language specifications; however, contents of a language's associated library may also be determined (in part or whole) by more informal practices of a language's community.
A language's standard library is often treated as part of the language by its users, although the designers may have treated it as a separate entity. Many language specifications define a core set that must be made available in all implementations, in addition to other portions which may be optionally implemented. The line between a language and its libraries therefore differs from language to language. Indeed, some languages are designed so that the meanings of certain syntactic constructs cannot even be described without referring to the core library. For example, in Java, a string literal is defined as an instance of the java.lang.String class; similarly, in Smalltalk, an anonymous function expression (a "block") constructs an instance of the library's BlockContext class. Conversely, Scheme contains multiple coherent subsets that suffice to construct the rest of the language as library macros, and so the language designers do not even bother to say which portions of the language must be implemented as language constructs, and which must be implemented as parts of a library.