
Fast Anonymous Consensus and Private
Authentication in Large Distributed Systems

Vivek Nair, University of California, Berkeley
Bolton Bailey, University of Illinois at Urbana-Champaign

Abstract—We present a simple decentralized protocol for
achieving all-to-all broadcast consensus in large permissioned
distributed systems while providing strong privacy for every
participant. Our method is optimized for real-world performance
by limiting the use of anonymous broadcasting to only an initial
input phase and then allowing the entire agreement phase to take
place over fast open networks. We demonstrate an important
application of our protocol in establishing a pseudonymized
(or “shadow”) public key infrastructure in any authenticated
setting. We performed a large-scale demonstration with 1024
AWS t2.nano EC2 instances and found that 128 parties can
achieve consensus on 128 anonymous inputs in about 43 seconds
and can construct a shadow PKI in about 46.5 seconds. In a
simulated private group chat application with 256 users sending
128 messages each, the shadow PKI provided over 36 times
better performance than ring signatures alone with over 99.99%
probabilistic security and privacy against a 65% adversary.

I. INTRODUCTION

A. Overview

The design of current broadcast consensus (reliable broad-
cast) protocols for authenticated settings seems to be funda-
mentally at odds with notions of privacy and anonymity. They
require participants to communicate over an open network
and attach digital signatures to their messages, and need the
identity of a fixed sender to be known to all participants
ahead of time. In this paper, we explore why anonymous
consensus is a harder problem than it might initially seem,
and why simple solutions for anonymizing existing consensus
algorithms fail to produce efficient anonymous protocols. We
propose a two-phase approach to anonymous consensus and
demonstrate its performance and privacy benefits. We then
explore an important application of anonymous consensus in
pseudonymizing public key infrastructures.

B. Shadow PKIs

Distributed systems are traditionally divided into authenti-
cated and unauthenticated (or permissioned and permission-
less) settings. In an authenticated setting, an established PKI
is present such that all parties are known to each other
and can validate messages from other parties via the use of
cryptographic signatures. In an unauthenticated setting, parties

are not known to each other, and have a degree of privacy,
but at the cost of message authentication and Sybil resistance
mechanisms not being available (typically giving rise to proof-
of-work based mechanisms for consensus).

In this paper, we propose a third, pseudonymously au-
thenticated setting, made possible by fast anonymous consen-
sus. In this setting, parties reach consensus on a “shadow”
(pseudonymized) PKI, whereby messages can be verified as
belonging to one of the parties in the shadow PKI without
being traceable to a specific process1 while maintaining Sybil
resistance. We accomplish this by providing a mechanism for
transforming any PKI into a shadow PKI while preserving
critical security properties. Using this transformation, any
distributed system designed for an authenticated setting can be
run in a pseudonymously authenticated setting, providing the
benefits of message authentication and Sybil resistance with
the privacy of an unauthenticated system.

C. Applications

The core technique of our paper is the anonymization
of existing consensus protocols. Consensus protocols are an
essential part of distributed systems which allow parties to
reach consensus on the state of a system. Various consensus
protocols exist, each adapted to a particular setting [6], [9], [2].
Our paper allows these protocols to be executed anonymously.
An important application of anonymous consensus is PKI
pseudonymization, which itself has important implications for
security and privacy.

While any authenticated distributed system can be
anonymized using our techniques, the most interesting appli-
cations of this technology involve decentralized systems where
security and privacy are both critical. Anonymous payments
systems where the participants belong to a set of autho-
rized users are another use case. Anonymous communication
systems allowing parties to anonymously message a set of
trusted users are a third example, which we will follow closely
throughout this paper. In general, our anonymous PKI system
enables applications that require a group of authorized users
to be able to interact anonymously within the group while
excluding unauthorized external users.

Further applications of this technique involve improving the
privacy and anonymity of participants in a secure multiparty

1In this paper, we use the terms nodes, parties and processes synonymously
to describe a participant in a distributed system. We similarly use the terms
Byzantine, faulty, malicious, and dishonest synonymously to describe nodes
which deviate from a protocol.

Network and Distributed Systems Security (NDSS) Symposium 2022
23-26 February 2022, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2022.23xxx
www.ndss-symposium.org

computation scheme. We discuss this application further in the
future work section.

Another potential application of PKI anonymization is e-
voting. The possibility of allowing voting to be carried out
between computers has been studied by the cryptography
community [15]. With a shadow PKI, parties can carry out a
vote anonymously by signing their votes with a pseudonymous
key.

D. Related Works

Our protocol works on the basis of an anonymous broadcast
system. Our implementation uses a Dandelion-based broadcast
[23], but in principle any synchronous broadcast protocol with
privacy preserving properties could be used. To this point, a
variety of mix network architectures [24] could serve as drop-
in replacements.

Another potential design to accomplish the distribution of a
shadow PKI is to use a blockchain-based method. This method
would work by having the participants instantiate a blockchain,
represent keys as tokens on the chain, then transfer tokens to
other accounts they control in an anonymous way. To preserve
anonymity, this transfer could use a protocol such as [25]. Our
approach avoids the overhead of a blockchain by reaching
consensus on a new PKI directly. Another benefit of avoiding
blockchain-based methods is to sidestep constraints on the
resistance to Byzantine attacks. In principle, our protocol can
tolerate any number of Byzantine nodes, as long as it is
instantiated with a suitably strong consensus protocol. Our
protocol does not rely, for example, on assumptions about the
computational work available to an adversary [26].

Several other works have studied the idea of “anonymous
distributed systems” under different security models than ours:

Ciaraldi et al. [18] describe risks that arise in the practical
application of anonymous distributed systems including the
possibilities of corrupted data and malicious code. We deal
with the risks that this paper proposes by basing our protocols
on cryptographic constructions, which we assume are correctly
implemented.

Hendrickx and Tsitsiklis [8] explore the limitations of a
certain class of anonymous system. In contrast to our work,
this paper focuses on a form on anonymity where nodes
are unaware of their place in the network and only have
a broadcast protocol to communicate with their neighbors.
Instead, we assume that there are a fixed set of participants in
our protocols, and that all processes are connected by channels
that allow them to broadcast anonymously to everyone.

Haenni and Spycher [27], Kaufmann [28], Critchlow and
Zhang [4], Choi et al. [3] and Wang et al. [14], study systems
for the anonymous distribution of certificates. These works
deal with systems having a certificate authority to assist in
the distribution of these certificates. By contrast, our work
deals with permissioned, but decentralized protocols for key
distribution, which we use newer cryptographic protocols to
achieve.

E. Contributions

In this paper, we offer a few contributions to the practice
of anonymous distributed systems. Our primary contribution
comes in the form of an anonymous multi-value all-To-all
broadcast consensus protocol. This protocol allows a group
of parties, using a ring signature scheme, to distribute to each
other a list of values without identifying which values originate
with which party or allowing malicious parties to introduce
more values than the protocol specifies. This protocol is
designed to minimize the use of covert broadcasts and ring
signatures - to accomplish this, we adopt a two phase protocol
with an initial covert broadcast (“input”) phase, followed by
an agreement phase.

We also introduce protocols for transforming PKIs: A
PKI Reconstitution Protocol which allows parties to switch
signature schemes, and a Shadow PKI Protocol, which uses
the reconstitution protocol in conjunction with the anonymous
multi-value all-To-all broadcast consensus to obtain a PKI
where individuals identities cannot be associated with their
public keys.

We provide a systematization of the definitions of security
behind all of these protocols, and make rigorous proofs for
these properties in the appendix.

Finally, we justify our constructions by creating a demon-
stration of their performance. We run our demonstration on
AWS and relay the results of this experiment, which show
speed improvements over a naive approach on a simulated
anonymous chat application. The code for our implementation
is open source and can be found on GitHub (link to be
provided in the published manuscript).

II. ANONYMOUS BROADCAST CONSENSUS

A. Overview

Consider a distributed system with n parties, of which f <
n may be faulty (Byzantine) and the remaining parties are
honest. In a single instantiation of the broadcast consensus
problem, one of these parties is designated the “sender”. The
known sender inputs a chosen value which is to be received by
the honest parties. The broadcast consensus problem requires
that:

1) Liveness: all honest parties eventually output a value
2) Validity: if the sender is honest, its value is the decision

value
3) Agreement: all honest parties decide the same value
Broadcast consensus algorithms, per their present defini-

tion, are useful for a variety of important applications in
the distributed systems space. They are not, however, useful
for applications requiring privacy or anonymity, due to the
requirement for the identity of the sender to be known to all
other parties, and for the sender to directly communicate its
input value to one or more other parties. Both requirements
necessarily make the sender’s input directly linkable to their
identity, providing no feasible means of anonymity. In an
Anonymous Broadcast Consensus protocol, we seek to add
a fourth requirement:

2

4) Anonymity: the identity of the sender is not revealed to
any other party

Of course, given the closed nature of a permissioned dis-
tributed system, parties must still be able to verify that the
sender is indeed an authorized member of the system, without
learning anything further about their identity. The difficulty of
achieving anonymity in current broadcast consensus protocols
is exemplified by Dolev-Strong [6].

B. Dolev-Strong

Dolev-Strong is perhaps the most famous authenticated
broadcast consensus protocol of all time. It provides a solution
to the broadcast consensus problem satisfying properties 1-3
above with perfect provable security. The authors demonstrate
a theoretical minimum of f + 1 rounds and O(n2f) words
for solving the broadcast problem in a synchronous network
against any adversary controlling f out of n parties. They
further show that at least O(n2f) signatures and O(n3f)
signature verifications are required to achieve broadcast con-
sensus in a permissioned environment.

Dolev-Strong assumes that parties will agree on the identity
of a fixed sender prior to the execution of a protocol instance,
making the notion of “privacy” in this protocol somewhat
meaningless. Even setting this aside, Dolev-Strong’s layered
signature system makes it perfectly clear to any message
recipient whether a value is being received directly by a sender
or is simply being forwarded by another party. The point-to-
point networking used by the scheme will therefore reveal the
identity of the sender to all other parties during the protocol’s
first phase. Further, by requiring senders to directly sign their
input, the scheme not only removes any notion of privacy, but
further makes exculpability and repudiation impossible.

It is clear that the anonymization of broadcast consensus
requires us to shift our premise from recognizing a fixed sender
to allowing the sender to be any one of the recognized parties.
Care must then be taken to anonymize both the networking
component of the protocol, as well as the digital signatures.
While well-known techniques exist for solving both of these
problems, a naive application of these solutions to existing
consensus protocols is significantly problematic.

C. Straw Man Solution

We will begin by considering what we believe to be the most
obvious solutions to the two anonymity problems in Dolev-
Strong.

1) Network Anonymity: With respect to communications,
packet networking necessarily reveals identifying information
(e.g. IP address) of a message sender and recipient in all
commonly used network architectures. Anonymous communi-
cation systems like Tor are specifically designed to circumvent
this limitation. We may naively consider replacing all point-
to-point communications in Dolev-Strong with Tor messages.

2) Signature Anonymity: We consider now the issue of
authenticating a sender without revealing their identity. Ring
signatures are a cryptographic primitive intended to allow any
member of a group to sign a message without revealing their

identity within the group. On their own, ring signatures do
not even allow it to be known whether two separate signatures
came from the same party, a functionality required by Dolev-
Strong. So-called “linkable” ring signatures aim to solve this
problem by retaining pseudonymity but allowing any pair
of signatures from the same party to be linked. We would
therefore naively consider replacing all digital signatures in
Dolev-Strong with linkable ring signatures.

3) Performance Considerations: It is argued that the two
aforementioned substitutions produce a technically correct
solution to the anonymous broadcast consensus problem.
However, the proposed naive solution is so unperformant
as to be totally impractical for large distributed systems.
Consider even a relatively small network of n = 64 nodes
and f = 32 Byzantine nodes. We know that a total of
n2f = 131, 072 signatures, n3f = 8, 388, 608 verifications,
and n2f = 131, 072 messages would be required in this
scenario. We measured the time to compute a single 2048-
bit RSA signature and verification, as well as the time to
compute a single and verification in the Tsang & Wei [20]
traceable ring signature scheme, and found that RSA was 106x
faster at signing and 6,780x faster at verifying. We further
measured the latency for a point-to-point message versus a
message over the Tor network and found that Tor was 4200x
slower than point-to-point communications. More details about
the precise experimental setup used to obtain these numbers
are provided in the Experimental Evaluation section. Together
with the number of operations needed for Dolev-Strong and
our straw man protocol, we obtained estimated computational
time for each algorithm to execute one full iteration. The
results are shown in Table I.

TABLE I
PROJECTED RELATIVE PERFORMANCE OF STRAW MAN SOLUTION

Signatures Messages
RSA Signature Ring Signature
Sign Verify Sign Verify Direct Tor

Time
/ Node

Time
(One Operation) 5.0ms 5.0ms 530ms 33.9s 0.5ms 2.1s

Count
(Dolev-Strong) 131k 8.4M 0 0 131k 0

Time
(Dolev-Strong) 10.9m 11.7h 0 0 65.5s 0 11.1m

Count
(Straw Man) 0 0 131k 8.4M 0 131k

Time
(Straw Man) 0 0 19.3h 9.0y 0 3.2d 51.5d

We estimate that while the network using Dolev-Strong
would take 11.1 minutes to reach consensus, the naive ap-
proach for anonymous consensus would take over 51.5 days
to reach the same result, or over 6680x longer. The data we
provide exemplifies the true difficulty of anonymizing standard
consensus algorithms. While ring signatures and anonymous
communication protocols are useful and necessary tools, they
carry an overwhelming performance impact, and do not consti-
tute a “find and replace” solution if performance is a concern.
A significant goal of this paper was therefore not only to

3

provide a technique for anonymous consensus, but to do so in
an efficient and practical manner, by reducing our reliance on
ring signatures and covert channels to the minimum possible
usage. As a preview of the fruits of this effort, our final
system achieves one-to-all anonymous broadcast consensus for
n = 64 nodes in just 11.7 minutes with guaranteed security, or
to as little as 11.3 seconds for all-to-all anonymous broadcast
with probabilistic (> 99.99%) security.

D. Two-Phase Approach

To address the performance impact of anonymous net-
working and signatures, we suggest splitting the anonymous
broadcast consensus protocol into two phases: an anonymous
input phase, and an open agreement phase. This 2-phase tech-
nique is based on the observation that in a typical broadcast
consensus protocol, only in the early stages of the protocol
does a sender exhibit different behaviour to any other node.
In later rounds, senders may behave identically to all other
honest participants, and thereby do not risk compromising their
privacy. This means that anonymization techniques such as
ring signatures and covert broadcasts are only required when
the sender initially provides their input, after which fast point-
to-point communications and normal digital signatures may
safely be used with no loss of anonymity. Since the agreement
phase constitutes the vast majority of the computational cost
incurred by a consensus algorithm, the two-phase approach
provides a significant performance advantage. The phases are
specifically broken down as follows:

1. Input (Anonymous):
1.1. Sender generates linkable ring signature for their input

value (e.g. using the Tsang-Wei [20] LRS scheme)
1.2. Sender anonymously sends input to all other parties

(e.g. using Tor)
2. Agreement (Open): All parties execute broadcast consen-

sus (e.g. Dolev-Strong) on the received anonymous input
(equivalent to starting Dolev-Strong after the 1st round)

It is important to node that Tsang-Wei is not the only
suitable ring signature scheme, nor is Tor the only suitable
anonymous communication protocol. In fact, Dolev-Strong is
just one of many broadcast consensus protocols that could
be used in the agreement phase of the proposed anonymous
broadcast consensus system. We therefore consider all of these
primitives or (“building blocks”) of our anonymous broad-
cast scheme to be modular and replacable according to the
implementor’s needs. In fact, in our Experimental Evaluation
section, choose different protocols for all three primitives and
discuss our reasons for doing so. Furthermore, we claim, and
later demonstrate, that the technique presented here will never
be less secure than the chosen primitives. For example, it
provides guaranteed security if Dolev-Strong is used, while
guaranteeing 99.5% probabilistic security if a gossip protocol
with 99.5% security is used.

Considering the n = 64 nodes and f = 32 Byzantine
nodes use case, reducing linkable ring signature and covert
channel usage to the input stage allows only the first round

to require the use of these techniques, while the remaining
32 rounds can still take place over open channels and with
fast signatures. This improvement is critical for bringing
anonymous consensus into the realm of practicability.

E. Magnitudes of Consensus

While we have now presented a practical one-to-all broad-
cast consensus scheme, this is actually the bare minimum for
what we consider useful for most real-world applications. In
reality, there are many orders of scale for broadcast consensus.
Although no standardization was readily available, we would
charactarize the degrees of anonymous broadcast consensus as
follows:

1. One-to-All Broadcast Consensus ← We are here
2. Single-Value All-to-All Broadcast Consensus
3. Multi-Value All-to-All Broadcast Consensus
1) Single-Value All-to-All Broadcast Consensus: In fully

decentralized systems with no specially privileged nodes,
’degree 2’ (all-to-all broadcast) consensus is usually what is
required for practical use cases. In such systems, most parties
will require the chance to provide input, whereas one-to-all
broadcast consensus makes more sense in the context of a
single privileged sender. For example, in an electronic voting
application where each node in a distributed system has an
anonymous vote that must be visible to all other nodes, all-to-
all broadcast consensus is required. This particular example
illustrates the need for another important property in all-to-
all broadcast consensus: Sybil resistance. Specifically, for an
anonymous single-value all-to-all broadcast consensus algo-
rithm, it is imperative that no party should be allowed to
have more than one input recognized by the network (thereby
allowing them to vote more than once).

2) Multi-Value All-to-All Broadcast Consensus: Continuing
now with the example of voting, we observed that most voting
scenarios will involve multiple independent selections (e.g.
multiple offices in an election, or multiple proposals in a board
meeting). This can of course be accomplished by including all
of one’s selections in a single message using a single value
all-to-all consensus protocol, but this will have the effects of
linking their votes. A multi-value consensus protocol extends
a single value all-to-all anonymous broadcast by allowing each
party to provide multiple values (but still no more than one per
“issue” at hand), with those values being not only anonymous
but also unlinkable to each other.

F. Protocol Reductions

Once again, trivial (but non-optimal) solutions exist that
could allow one to simply reduce each protocol to a simpler
variant of itself. An all-to-all protocol could conceivably be
constructed by invoking a one-to-all broadcast n times, with
each party having one chance to be the designated sender. A
multi-value all-to-all protocol can similarly be constructed by
invoking a single-value all-to-all protocol m times for the m
separate issues at hand. If a multi-value all-to-all Anonymous
Consensus Protocol were indeed constructed this way, it would
require n ∗ m separate invocations of both the input and

4

agreement phases of the one-to-all consensus protocol. As
we saw earlier with our straw man one-to-all anonymous
solution, these are “solutions” only in technicality, and provide
no meaningful performance improvement over the one-to-all
consensus protocol.

We note, however, that because agreement is fundamentally
required on just the end result of the consensus protocol, we
can get away with repeating only the input phase n ∗m times
for multi-value all-to-all consensus, with still just a single
invocation of the agreement phase (on the entire result of the
input phase) regardless of the number of senders or the number
of independent values.

What follows is the efficient extension of the previously
presented fast one-to-all anonymous broadcast consensus pro-
tocol into a fast multi-value all-to-all anonymous broadcast
consensus protocol.

G. Multi-Value All-To-All Anonymous Consensus Protocol

We now outline the functioning of the multi-value all-to-all
anonymous broadcast consensus protocol.

As we have mentioned this protocol works in two phases. In
this initial phase, processes receive a list of input values and
generate a ring signature for each element of the list. Each
signature is generated with respect to a tag corresponding
to the index of the input, so that honest signatures cannot
be linked to each other, but separate signatures in the same
tag from the same key can be linked. These signed values
are then sent through an anonymous broadcast system to
all other processes in the network, which, together with the
properties of the ring signature, prevents nodes from learning
the identities of the sent messages.

When these values are received, we enter an agreement
phase where all processes broadcast all values they received
in the previous phase to all other nodes over a publicly visible
network. This guarantees that all nodes reach consensus on
the set of all values that were sent in the first phase, which
provides consistency in the outputs of the nodes.

Having a set of all values with their linkable ring signatures,
nodes then use the cryptographic checks to remove any values
that have evidence of misbehavior. In particular, they remove
any invalidly signed messages and any messages which link
to other messages, which guarantees that malicious processes
cannot introduce more values than if they behaved honestly.
The ability for honest nodes to always have their values
included is protected by the tamper resistance properties of
the ring signature. Finally, nodes output the remaining values.

We consider the protocol described in this section to be the
most significant and fundamental presentation of our broadcast
consensus algorithm. We note that although presented as a
multi-value all-to-all constriction, it can be reduced back to a
single-value all-to-all construction simply by setting M = 1,
and can be further reduced to a one-to-all construction by
having only one node provide non-null input in the input
phase. In each case, the “simpler” version is executed with
no worse performance than a dedicated implementation for
that purpose alone. Because this protocol can be efficiently

utilized to provide one-to-all, all-to-all, or multi-value all-to-
all consensus, we consider it the only fundamental protocol
necessary for all meaningful application scenarios.

We hope this outline provides an intuitive understanding
of the claimed properties of our consensus protocol and why
they should be upheld provided valid underlying primatives.
Far more rigorous specifications and proofs of the claimed
properties of this protocol are provided in this paper’s appen-
dices.

Armed with the versatility of an efficient multi-value all-to-
all anonymous broadcast consensus protocol, we now present
an important application of this method.

III. SHADOW PKIS

We now shift our focus to the discussion of a practical
application scenario: a pseudonymous group messaging appli-
cation consisting of a closed (authenticated) set of members
who wish to communicate internally under a pseudonym
without revealing their identity. Suppose the parties intending
to construct such a chat room have already established a
permissioned distributed system with point-to-point commu-
nications between all nodes.

A. Straw Man Solution

A simple approach to solving the problem of a pseudony-
mous group chat would be for participants to use a linkable
ring signature for all chat messages. This would protect a
participant’s anonymity within the group while still ensuring
that multiple messages from the same participant are linkable
to their pseudonymous identity. If a PKI does not exist with
respect to an LRS scheme, the Reconstituion Protocol in part
B could be used to transform the PKI. In part C, we present the
“shadow PKI” approach for solving the pseudonomous mes-
saging problem, and in part E, we compare the performance
of that approach to the naive approach described here.

B. Reconstitution Protocol

A nuance of the way we define the Shadow PKI Protocol
in our formalization (see Appendix A) is that the initial
and resultant PKIs are defined with respect to the same
digital signature scheme (for example, from nonymous 2048-
bit RSA keys to pseudonymous 2048-bit RSA keys). This
presents a challenge for the use of our consensus protocol,
which specifically requires a linkable ring signature scheme,
as part of the Shadow PKI Protocol. We therefore present a
reconstitution protocol for use as a component of the Shadow
PKI Protocol. The protocol is as follows:

1) Generate a key pair with respect to the desired output
PKI

2) Sign the output public key with your input private key
3) Execute an all-to-all broadcast consensus algorithm on

the signed output public keys
The PKI Reconstitution Protocol we outline here is also

useful in some standalone applications. For example, the
straw man solution for pseudonymous group messaging could
utilize the reconstitution protocol to establish the linkable ring

5

Fig. 1. Shadow PKI Protocol visualization

signature keys it uses for signing and validating the chat
messages, if it is assumed that the initial PKI is established
with respect to a standard digital signature scheme. It could
also be used, for example, to implement periodic key rotation
in a decentralized system.

C. Shadow PKI Protocol

The Shadow PKI Protocol makes use of the anonymous
broadcast protocol to establish a pseudonymous PKI. The first
step of the protocol is the previously described reconstitution
protocol, where nodes use their existing PKI to establish a
PKI in the linkable ring signature scheme. This reconstitution
is done by the processes generating and sending ring signature
keys and reaching consensus on them.

The next step is each process to generate keys for the
shadow PKI. The processes can then use the anonymous
broadcast protocol with the generated ring signatures to send
their generated shadow public keys. These keys then become
their own PKI, with all honest processes having a key present
and with identities disassociated from the keys though the
anonymity guarantee of the broadcast protocol.

We consider the PKI resulting from this process to be a
“Shadow PKI,” and the process itself to be a “Shadow PKI
Protocol,” because the process is analogous to the original PKI
casting a dark shadow which consists of the same elements but
where the precise mapping between keys in the source and
Shadow PKI are lost in the transformation. An illustration is
provided in Figure 1.

As with the consensus protocol, this outline hopefully serves
to provide an intuitive understanding of the steps and claimed
properties of the Shadow PKI Protocol, with more detailed
specifications and proofs of the claimed properties being
provided in this paper’s appendices.

D. Multiple Shadow PKI Protocol

Consider, now, a pseudonymous chat application with mul-
tiple group chat rooms or “threads,” in which the same group

Fig. 2. Multiple Shadow PKI Protocol visualization

of users wishes to remain independently pseudonymous within
each thread (such that their messages are unlinkable across
separate chat rooms). What we need to do in this case is
to establish multiple separate pseudonymous Shadow PKIs
with linkability neither between keys in Shadow PKIs nor
back to their owners’ identities. We have previously introduced
precisely the tool necessary to do this: anonymous multi-value
all-to-all broadcast consensus. By generating multiple keys per
node, and supplying them as separate inputs to our multi-
value consensus algorithm, we obtain a multiple Shadow PKI
Protocol which outputs several independent shadow PKIs from
the same source PKI. We consider this analogous to multiple
light sources causing a single object to cast multiple shadows
(illustrated in Figure 2). Using exactly one of the resulting
PKIs for each chat room achieves the desired effect of creating
multiple pseudonymous keys for each user. The use of our
efficient multi-value consensus protocol makes this process
significantly more efficient than simply performing multiple
independent iterations of the Shadow PKI Protocol.

E. Performance

We argue that the Shadow PKI Protocol constitutes a
critical application of our Anonymous Consensus Protocol for
performance reasons as well as for its unique applications.
While considerable effort has been put into optimizing the
performance of our consensus protocols, we remain limited by
the fundamental fact that linkable ring signatures are far less
efficient than standard digital signatures. The ability to apply
the Anonymous Consensus Protocol a single time to obtain
a pseudonymized “Shadow PKI,” which can be used with
standard digital signatures on an ongoing basis, makes possible
a number of real-time applications that would otherwise have
been infeasible.

In the naive implementation of an anonymous communica-
tion system described above, a new ring signature is made for
every message sent within the system. Thus, if we say that m
messages are sent in total among all n parties using the system,
the total number of ring signatures that must be computed is

6

O(m), and the number of ring signature verifications that take
place is O(nm), assuming every party receives every message.

On the other hand, our anonymization scheme allows parties
to distribute keys in any signature algorithm and use them
thereafter without giving away their identity. Thus, the number
of ring signatures does not scale with the number of messages
sent within the system. In particular, the number of ring
signatures is only O(n), one for each individual to sign their
new key, the number of ring signature verifications is O(n3),
(in the worst case, each of O(n) Byzantine nodes can send
different signatures to O(n) honest nodes, resulting in a total
of O(n2) verifications by each honest node), and the number
of linking operations is O(n3) (with O(n2) messages to test
for links, a node can maintain a list of pairwise-unlinked
signatures and only test against those).

Thus, our scheme is ideally suited to application where a
large number of messages are sent, relative to the number of
participants. In the next section of this paper, the magnitude
of the performance advantage provided by the Shadow PKI
Protocol, as opposed to linkable ring signatures alone, will be
demonstrated experimentally.

IV. EXPERIMENTAL EVALUATION

A. Logistics

We used the Amazon Web Services (AWS) platform to
construct several large-scale experimental distributed systems
to evaluate the performance of proof-of-concept implementa-
tions of our anonymous consensus and Shadow PKI Protocols.
Each system consisted of a variable number of t2.nano EC2
instances, each with 512MiB of DDR4 ECC RAM and a single
3.3 GHz vCPU core [33]. Ten such systems were constructed
in total corresponding to network sizes of between 2 (21)
and 1024 (210) instances (while “privacy” does not make
much sense in a network of two parties, the performance
data from the smallest network of n = 2 nodes is still
potentially valuable). Each system was wholly located within
a single availability zone (AZ) in the us-east-2 (Ohio) region,
resulting in a mean observed network latency of 0.42 ms and
bandwidth of 505 Mbps between any two instances over the
local network. Our protocols were implemented in JavaScript
and run using NodeJS 14.17.3 LTS on Ubuntu Server 20.04
LTS with uncompressed WebSockets for networking.

We ran a number of performance benchmarks on each
distributed system to collect baseline metrics on the underlying
networking and compute operations. We then ran multiple full
executions of our reconstitution and consensus protocols on
each system while measuring the execution time of every step
of each protocol and testing the correctness of all intermediate
and final values. Finally, we ran simulated application sce-
narios on each network. We chose to simulate a basic group
messaging application where a closed group of authenticated
participants could pseudonymously send messages to the entire
group.

Fig. 3. Verification time for linkable ring signature schemes

B. Primitives

To maximize the versatility of our protocols, our specifi-
cations leave four choices of primative operations open to
implementer preference: a digital signature scheme, a linkable
ring signature scheme, a reliable broadcast protocol, and a
covert broadcast protocol.

TABLE II
VERIFICATION TIME FOR DIGITAL SIGNATURE SCHEMES

Scheme Time
2048-bit RSA 5 ms
4096-bit RSA 5 ms
8192-bit RSA 6 ms

p256 6 ms
brainpoolP256r1 6 ms

secp256k1 6 ms
p384 7 ms

brainpoolP384r1 7 ms
brainpoolP512r1 9 ms

p521 11 ms
curve25519 25 ms

1) Digital Signature Scheme: After evaluating 11 widely-
available digital signature schemes, we decided to use 2048-bit
RSA. We optimized for fastest verification time, noting that
in both the PKI reconstitution and private chat application
test cases, nodes are required to construct only a single
signature but need to perform n signature verifications. The
observed time (in ms) for a single signature verification in our
environment for the 11 schemes we considered is shown in
Table II.

2) Linkable Ring Signature Scheme: We considered several
existing JavaScript linkable ring signature implementations but
found that none of them were sufficiently performant for our
use case, and therefore decided to proceed with our own
implementation based on a JavaScript port of the Fujisaki
traceable ring signature scheme [19]. The relative performance
of our scheme versus existing schemes for various ring sizes
is shown in Figure 3. While limited by fundamental truths
about the asymptotic performance of linkable ring signatures,
our implementation performs nearly 10x better than the others
in absolute terms due to the use of Web Assembly rather than
native JavaScript for heavy cryptographic operations.

3) Reliable Broadcast Protocol: We chose to use a gossip
protocol for reliable broadcasting. While this approach reduces
the consensus properties to only a probabilistic guarantee, the
security for any given message remains extremely high with
well-chosen network parameters [34] while still providing a
significant performance improvement. In our tests, a network

7

of 64 nodes took 8.9s to achieve all-to-all broadcast consensus
on 128 1kB values using Dolev-Strong [6], while the same
configuration took just 1.2s using a gossip protocol with a
degree of 8, a 7.4x performance improvement, while still pro-
viding 99.6% probabilistic security against a 50% adversary.

4) Covert Broadcast Protocol: We chose to use the Dande-
lion protocol [23] for covert broadcasting. This was a natural
fit for our network architecture as it behaves like an internal
mix network during the “stem” phase while being nearly
identical to our normal gossip broadcast method during the
“fluff” phase. While hard to measure precisely, we estimate
this method to be at least 100x more efficient than building a
covert broadcast protocol on top of a point-to-point wide-area
anonymity-preserving network like Tor [5].

C. Architecture

The use of a gossip protocol for reliable broadcast and
the Dandelion protocol for covert broadcast requires careful
selection of network parameters; namely, degree (neighbors
per node) and Dandelion stem length. To avoid these pa-
rameters becoming confounding factors in our performance
results, we chose to use a fixed stem size and gossip degree
of 32 for all networks of at least 32 nodes, with this value
providing the best balance of performance and security in our
estimation. For networks smaller than 32 nodes, a complete
(fully-connected) graph was used. The security characteristics
for this architecture across various network sizes and various
adversarial percentages are shown in Table III.

TABLE III
SECURITY PROBABILITIES OF CHOSEN NETWORK ARCHITECTURE

Adversarial %
N 10% 25% 40% 50% 60% 75% 90%
2 99.0% 93.8% 84.0% 75.0% 64.0% 43.8% 19.0%
4 100% 99.6% 97.4% 93.8% 87.0% 68.4% 34.4%
8 100% 100% 99.9% 99.6% 98.3% 90.0% 57.0%
16 100% 100% 100% 100% 100% 99.0% 81.5%
32 100% 100% 100% 100% 100% 100% 96.6%
64 100% 100% 100% 100% 100% 100% 96.6%
128 100% 100% 100% 100% 100% 100% 96.6%
256 100% 100% 100% 100% 100% 100% 96.6%
512 100% 100% 100% 100% 100% 100% 96.6%
1024 100% 100% 100% 100% 100% 100% 96.6%

In addition to the (up to 1,024) t2.nano “primary” instances,
each network contained a single t2.medium “core” instance
which played no active role in protocol execution and served
solely as a bridge to connect each primary instance to 32
randomly chosen neighbors and to collect performance results
after protocol termination. An offsite “remote” process com-
municated asynchronously with the core instance via HTTP
to schedule experiments as well as to download, store, and
aggregate the results.

D. Optimizations

Thus far, we have discussed a major optimization in the
design of our protocol to minimize use of anonymous broad-
casting. We have also discussed the optimal choice of digital

signature scheme, linkable ring signature scheme, reliable
broadcast protocol, and covert broadcast protocol for our setup.
What follows is several more optimization considerations for
the Anonymous Consensus Protocol implementation. Where
relevant, we chose to optimize for the performance of a
network with all non-faulty nodes as this was the scenario
tested in our final demonstration.

1) Three-Phase Gossip: A significant potential bottleneck
in our Anonymous Consensus Protocol is the agreement phase,
in which every node rebroadcasts the set of inputs received in
the input phase, requiring a network bandwidth utilization of
O(n3). However, in a network with no faulty nodes, every
node should receive the same set of messages in the anony-
mous input phase, and should therefore broadcast an identical
message in the agreement phase. A three-phase gossip protocol
reduces the bandwidth utilization of this stage to O(n2) by
eliminating the need to broadcast redundant messages.

In the three-phase protocol, a node first gossips the hash
of a message it intends to broadcast. If any node has not
seen a message with that hash, it responds by requesting the
full message. The first node then gossips the full message
as normal. While increasing the latency of each message by
at least threefold, this technique significantly reduces overall
bandwidth utilization if many identical messages are expected,
as is the case in our consensus stage. In our tests, this
optimization reduced the time for 48 honest nodes to reach
consensus on 48 random 1kB values from 112.8s to 9.7s, an
11.6x performance improvement. As such, we implemented
this optimization in our final evaluation.

2) Reduced Linking: Another potential bottleneck is the
need to perform n2 link operations on the n received linkable
ring signatures. There are a variety of optimizations one can
make to the Anonymous Consensus Protocol to reduce the
number of linking operations nodes need to perform. The first
optimization relies on the observation that an honest node will
always receive its own value in the input phase, and will thus
always include its own input in the set it broadcasts during
the agreement phase. If n parties all broadcast the same set
in the agreement phase, it is guaranteed that the set contains
at least n unlinked signatures. It is therefore safe to stop
checking links when only n unique signatures remain. If only
n unique signatures are present in the n broadcasted sets, as
is the case when all n parties are non-faulty, there is no need
to check signature links at all. In our tests, this optimization
reduced the time for 32 honest nodes to reach consensus on
32 random values by 85%, a 6.7x performance improvement.
There is no scenario in which this optimization would result
in worse performance or security than the baseline. As such,
we implemented this optimization in our final evaluation.

3) Optimized Linking: While checking for linked signa-
tures, our baseline protocol specifies that signatures should
not be removed until all links are checked (so that if many
signatures are linked to the same party, they will all be
detected). However, an important observation is that it is not
necessary to keep more than one linked signature from any
given party; when two signatures from the same party are

8

found, one can immediately be discarded (and does not need
to be checked against any other signatures).

Another observation is that in the sets of ring signatures
that the protocols maintain over the course of the protocol, it
is generally unnecessary for nodes to ever hold more than two
linked signatures from any party in these sets at any time. This
is due to the fact that two signatures which are linked to each
other are sufficient to prove that the entity that made those
signatures is malicious. Thus, if this set is later broadcast, it
is not necessary to include a third or fourth signature which
links to this same address. Nodes can avoid holding more
than 2N signatures in a set by checking links for incoming
set elements against each of the existing members in the set
(though checking for links with both members of a linked pair
is unnecessary) and discarding the element if it would be the
third signature linked to an existing signature in the set.

While both of the above optimizations could provide per-
formance improvements in the case where a small number
of malicious parties attempt to include many values each, no
performance improvement is realized for a network without
Byzantine parties. We therefore did not include these opti-
mizations in our evaluation.

4) Coordinated Linking: In the case where lots of links
must be checked, a further performance benefit could be
realized by distributing the workload across all of the honest
nodes. A simple way to accomplish this would be for each
node to check links starting from a random element in the set,
and immediately broadcast information about a link if one has
been discovered. This could theoretically reduce the number
of links that need to be checked by any given node by 1/N .
Once again, because no performance improvement is realized
for a network without malicious parties, we did not include
this optimizations in our evaluation.

5) One-Time Ring Signatures: One-time Ring Signatures
[29], [30] provide as a primitive a ring signature for which
any key that produces a signature necessarily also produces
a deterministic function of the private key. This provides a
similar feature to linkable ring signatures in that any reuse
of the key will allow the signature to be linked to any other
signature with the same key.

The performance benefits of using one-time ring signatures
over linkable ring signatures are twofold. The first is the
reduction in linking time for n signatures from O(n2) to
O(n log n) by the construction of an index of all key images.
The performance gains are effectively even better than this due
to the link operation itself being much simpler. This benefit
is not realized in the network without Byzantine parties due
to the Reduced Linking operation eliminating the need to
check links entirely in that scenario. The second benefit is the
ability to support a more efficient (non-linkable) underlying
ring signature scheme. According to some estimates [31], the
use of Arcturus [32] ring signatures could reduce verification
times by as much as 96% from our current scheme (Fujisaki-
Suzuki [19]).

Although this performance improvement is potentially very
promising, we decided against implementing it for a few rea-

Fig. 4. Stepwise performance of PKI Reconstitution Protocol

sons. The simplest reason is the lack of any efficient JavaScript
implementation of one-time ring signatures and the difficulty
of producing such an implementation from scratch. Another
reason is the difficulty of recovering from consensus failures
without having to repeat the entire reconstitution phase; in
the Fujisaki-Suzuki scheme, by contrast, this is as simple as
choosing another ‘issue’ value and trying again. Lastly, it is
not clear whether one-time ring signatures are compatible with
our proofs for the consensus security and privacy properties,
whereas the oracle construction of the Fujisaki-Suzuki scheme
can be used to produce relatively straightforward proofs (see
Appendix D-A).

E. Results

1) PKI Reconstitution: We begin by discussing the results
of our evaluation of the PKI Reconstitution Protocol. Re-
constituting a PKI from a standard digital signature scheme
to a linkable ring signature scheme serves as an important
precursor to the Anonymous Consensus and Shadow PKI
Protocols as well as both of our tested application scenarios.
The time for n processes to achieve reconstitution from a
2048-bit RSA digital signature scheme to a Fujisaki-Suzuki
traceable ring signature scheme varied from 0.15s for n = 2 to
37.1s for n = 1024 according to a roughly linear relationship.

The PKI Reconstitution Protocol is divided into 7 major
stages, with the broadcast stage being further divided into
broadcast and receive stages. The time taken to execute each
stage of the protocol, along with the total execution time, is
shown in Figure 4. It is clear that the signature verification
stage (Stage A5) is by far the largest factor in the overall
performance of the PKI Reconstitution Protocol; for example,
when n = 1024, 30.8 seconds of the 37.1 second execution
time are spent verifying signatures, while just 6.3 seconds
are spent on all of the remaining 6 stages of the protocol
combined. Since each node must verify n signatures, and
signature verification is the dominant performance term, we
would expect the overall time complexity of the PKI Recon-
stitution Protocol to be O(n), which matches our observations.

Although our selection of 2048-bit RSA for signatures was
intended to minimize signature verification time, further opti-
mizations may exist in light of the ability to verify signatures
in batches. For instance, batch verification of EdDSA signa-

9

Fig. 5. Stepwise performance of Anonymous Consensus Protocol

tures is claimed to achieve up to 71,000 signature verifications
per second [35]. If the full benefit of this approach could
be realized, it might theoretically reduce the reconstitution
time for 1024 nodes from 37.1s to 6.4s, a 5.8x improvement.
Still, it’s worth emphasizing that PKI reconstitution is almost
always a single-use operation; after a single reconstitution into
a suitable linkable ring signature scheme, the reconstituted
PKI could be used for an unlimited number of subsequent
consensus iterations without requiring further reconstitution.
Thus, given the difficulty of coordinating communications in
a large distributed system and the one-time-use nature of the
PKI Reconstitution Protocol, we consider an end-to-end PKI
reconstitution time of under 1 minute for a huge system of
1,024 nodes to be an acceptable result.

2) Anonymous Consensus: Our evaluation of the Anony-
mous Consensus Protocol begins in the state following ex-
ecution of the PKI Reconstitution Protocol in the previous
experiment; namely, with a PKI fully reconstituted into a
traceable ring signature scheme. We then measure the time
for n processes to achieve consensus on n anonymous inputs
(one from each process). The consensus protocol took between
22 ms for n = 2 and 174s for n = 256 according to a roughly
quadratic relationship.

The Anonymous Consensus Protocol is divided into 6 major
stages, with the two broadcast stages (B3, covert/input and
B4, open/consensus) being further divided into broadcast and
receive stages. The time taken to execute each stage of the
protocol, along with the total execution time, is shown in
Figure 5. It is clear that the ring signature verification stage
(Stage B6) is by far the largest factor in overall performance;
for example, when n = 256, 166 seconds of the 174 second
execution time are spent verifying signatures, while just 8
seconds are spent on all of the other protocol stages. Since
each node must verify n ring signatures in this stage, and
ring signature verification is typically O(n) with respect to
the ring size, we would expect the overall time complexity
of the Anonymous Consensus Protocol to be O(n2), which
matches our observations.

Due to time and resource constraints, execution of the
anonymous consensus experiments was limited to 10 minutes
per system. Unfortunately, the networks of 512 and 1024 nodes

Fig. 6. Stepwise performance of Shadow PKI Protocol

did not finish executing in the allotted time. We have extrap-
olated the results from the remaining 8 networks, for which
exact data was available, to produce power-law estimations for
the networks of 512 and 1024 nodes. The portion of Figure
5 which refers to extrapolated data is shown in grey. This
extrapolation suggests that 1024 nodes would have taken about
44 minutes to reach consensus on 1024 anonymous inputs,
with 99% of this time being spent verifying signatures.

The computational difficulty of verifying a large number of
linkable ring signatures with large ring sizes makes our current
setup potentially infeasable for distributed systems with more
than 256 nodes (taking 174 seconds). However, in the next
sections, we will demonstrate that for many applications, link-
able ring signatures are themselves the only feasible alternative
to the use of a Shadow PKI Protocol via the Anonymous
Consensus algorithm. Thus, the one-time deployment of a
Shadow PKI Protocol using our anonymous consensus tech-
nique remains more efficient than ring signatures alone, and
its relative efficiency is, perhaps counterintuitively, actually
amplified for large networks rather than the effect being
diminished.

Nevertheless, more efficiently verifiable linkable ring signa-
ture schemes could have an outsized impact on the scalability
of our Anonymous Consensus Protocol. Our future work sec-
tion describes a number of potential approaches for improving
performance in this respect. If these approaches allowed O(n)
verification of linkable ring signatures, performance of the
anonymous consensus on 1024 nodes could be improved by
over 2.5x even if each signature took a full second to verify.
We therefore consider this a primary area of focus for future
study.

3) Shadow PKI: The PKI Reconstitution Protocol and
Anonymous Consensus Protocol are the components of our
Shadow PKI (PKI pseudonymization) protocol, which consists
fundamentally of applying the two protocols in series. The
final component of the Shadow PKI Protocol is simply gen-
erating a key pair; however, because this is a fixed-cost, non-
interactive computation, it can be pre-computed or computed
in parallel with network stages (e.g. A3, B3, B4) without
impacting total execution time. We therefore for performance
evaluation consider the Shadow PKI Protocol to be a simple
sequential execution of the PKI Reconstitution and Anony-

10

Fig. 7. Linkable Signature vs. Shadow PKI for a Private Chat Message

mous Consensus Protocol.
Figure 6 shows the PKI Reconstitution, Anonymous Con-

sensus, and PKI pseudonymization (Reconstitution + Con-
sensus) times for each system. Once again, a few of the
displayed values are extrapolations, and these are displayed
in lighter color on the figure. We observe that reconstitution
dominates the Shadow PKI performance for smaller networks,
representing 87% of the total execution time for n = 2.
Consensus overtakes reconstitution after n = 16, reaching
99% of total execution time for n = 1024. We believe this
is due to the fact that although linkable ring signatures have
worse asymptotic performance than normal ring signatures,
they typically have better absolute performance for small ring
sizes due to the use of much smaller security parameters.
The total time to execute the Shadow PKI algorithm varied
from 176ms for n = 2 to an observed maximum of 181s for
n = 256 or an estimated 45 minutes for n = 1024, with ring
signature verification remaining the predominant bottleneck
for larger networks.

4) Application Scenario: To understand the performance
impact of the Shadow PKI Protocol on realistic practical
application scenarios, we designed a simulation of a simple
pseudonymous group messaging application, whereby mem-
bers are admitted to a chat group based on a key linked to their
identity, and can then post chat messages pseudonymously
to the entire group (such that two messages from the same
user are still linked to eachother). This application can be ac-
complished using the Shadow PKI technique or with linkable
ring signatures alone, with both methods providing identical
functionality.

We constructed a basic simulation of the application using
both techniques, with every user in the group sending exactly
one message. The goal of these simulations are to understand
the ongoing performance benefits of using the Shadow PKI
scheme over ring signatures alone, so that it can be determined
how quickly the initial computational cost of the Shadow
PKI Protocol would be recouped by its long-term relative
performance advantage. As such, we assume that the initial
PKI transformations have already occured when running the
simulations. For the Shadow PKI version of the application,
we assume that the Shadow PKI Protocol has already been
executed and simply measure the time for every user to sign

and anonymously (Dandelion) broadcast a single message
using the Shadow PKI (2048-bit RSA) and to verify the
messages of all other users. Similarly, for the Linkable Ring
Signatures version of the application, we assume that the
PKI Reconstitution Protocol has already been executed and
a PKI with respect to a Linkable Ring Signature scheme is
available. We then measure the time for every user to sign and
anonymously (Dandelion) broadcast a single message using
a linkable ring signature and to verify the messages of all
other users. The results of this simulation are shown in Figure
7. Once again, some portions were extrapolated due to time
constraints, shown in lighter color.

As expected, the Shadow PKI approach is significantly more
efficient for sending a single message than ring signatures
alone for all networks greater than size n = 2 (the reason
for this anomaly is the same as the one discussed in the
previous section). For n = 256, corresponding to the chat
group of 256 users each sending a single message, the Shadow
PKI provided over 51 times better performance than ring
signatures. Extrapolating this to 1024 users, the Shadow PKI
could provide over 126 times better performance. While the
relative advantage of using normal signatures with a Shadow
PKI, so too does the initial cost of executing the Shadow
PKI (PKI pseudonymization) protocol. What remains is to
determine the relative efficiency of each approach, considering
the upfront cost of consensus and pseudonymization along side
the long-term benefit to determine which scenarios particularly
advantage the Shadow PKI technique.

Table IV, which shows how many times more efficient the
Shadow PKI approach is than linkable ring signatures alone for
a network of n users sending m messages each, now including
the upfront costs of each approach (PKI transformation) in
addition to the ongoing costs (generating and verifying sig-
natures). For example, in the case of 256 users ending 128
messages each, we have determined that the Shadow PKI
method performs over 36x better than linkable ring signatures.

TABLE IV
EFFICIENCY IMPROVEMENT PROVIDED BY SHADOW PKI

Messages per Node
N 1 2 4 8 16 32 64 128 256 512 1024
2 0.85 0.83 0.81 0.78 0.75 0.73 0.72 0.71 0.70 0.70 0.70
4 0.85 0.95 1.08 1.26 1.42 1.55 1.64 1.69 1.71 1.73 1.73
8 0.89 1.10 1.43 1.83 2.25 2.58 2.80 2.94 3.01 3.05 3.07
16 0.92 1.33 1.98 2.87 3.85 4.70 5.31 5.69 5.90 6.01 6.07
32 0.91 1.47 2.41 3.76 5.36 6.86 8.00 8.74 9.16 9.38 9.50
64 0.93 1.65 2.93 5.00 7.86 11.07 13.96 16.06 17.36 18.10 18.49
128 0.97 1.80 3.30 5.79 9.40 13.72 17.81 20.95 22.98 24.14 24.77
256 0.98 1.88 3.60 6.70 11.83 19.20 27.90 36.09 42.30 46.29 48.58
512 1.01 1.97 3.82 7.26 13.26 22.61 34.93 48.04 59.13 66.85 71.51
1024 1.03 2.03 3.99 7.71 14.53 26.06 43.20 64.39 85.32 101.88 112.82

As shown in Table IV, the shadow PKI approach is more
efficient than ring signatures alone for the group chat scenario
in any network with 4 or more participants sending 4 or
more messages each. At the extreme range of our tests,
groups of 1024 participants sending 512 or more messages
each experience over 100x better performance using the PKI

11

pseudonymization technique compared to using ring signatures
on every message. We have no reason to believe this trend
wouldn’t continue for even larger hypothetical networks. We
therefore consider the Shadow PKI approach highly successful
from a performance perspective, despite the seemingly large
upfront computational cost in absolute terms. Improvements to
the Anonymous Consensus Protocol brought by advancements
in linkable ring signature efficiency would serve only to further
magnify this performance advantage.

V. CONCLUSION

In this paper, we have demonstrated a collection of protocols
for the purpose of distributing a Shadow PKI. This includes
a basic PKI Reconstitution Protocol for switching between
cryptosystems, as well as an anonymous multi-value all-To-
all broadcast protocol for distributing keys or other values
anonymously.

We have furthermore provided a description of the proper-
ties that we need from ring signatures and network primitives
to make these protocols function securely. We have provided
intuition for the behavior of these protocols within the text
and provided rigor in the appendix.

Our experimental results have demonstrated that these pro-
tocols have applications in a number of useful scenarios, in
particular when the number of many-to-many messages that
anonymous system needs to support is large. The results that
have come out of our demonstration framework and the code
we have created to implement all of the proposed algorithms
are open source and publicly available for your consideration.

A. Future Work
Due to the modularity of the protocols we have presented,

we think there are fruitful directions for future work in terms of
examining different choices for instantiation of our protocols
is worthwhile to ask in what ways they could be instantiated.

One collection of ideas worth exploring are those from the
optimizations section. In particular, the linking operation can
be expensive for ring signatures, so ways of avoiding it (by
somehow distributing the checking of links, or adopting one
time ring signatures) could be beneficial.

Another potential optimization along these lines is in the
choice of cryptography behind the ring signature itself. In
particular, rather than the Diffie-Hellman based Fujisaki-
Suzuki ring signature presented here, one could instead use
a ring signature based on zk-SNARKs [12]. This would
provide anonymization of keys in a way functionally similar
to the blinding system of Zcash [36]. Constructions using this
approach would have various downside and upsides in terms
of the strength of their cryptographic assumptions, as well
as their compute and communication costs, depending on the
zk-SNARKs used. While we have sidestepped these issues
by focusing on simpler cryptographic primitives, zk-SNARKs
offer the opportunity of constant size signatures for less
network and verifier overhead, and they deserve consideration.

We also wish to examine the applicability of our Shadow
PKI protocol to secure multiparty computation. While tech-
niques for anonymizing MPC protocols have been proposed,

they involve significant computational overhead that could
potentially be minimized by operating the entire MPC scheme
under a Shadow PKI.

Another dimension for examination is in the broadcast
protocols used in the consensus steps of our algorithms. In
particular, our constructions have the nice property that they
inherit the security properties of the protocols they are instan-
tiated with. In a setting with a large number of participants,
a protocol with strong security guarantees like Dolev-Strong
[6] might be compute intensive, but would result in a very
robust protocol. Future work could examine better in which
situations this trade-off and other like it are worth making.

ACKNOWLEDGMENT

The authors would like to thank the various individuals
who provided feedback on this project, as well as funding
agencies that provided support. Full details to be released in
the published form of this manuscript.

REFERENCES

[1] Blum, Manuel and Feldman, Paul and Micali, Silvio, Non-Interactive
Zero-Knowledge and its Applications, Proceedings of the twentieth
annual ACM symposium on Theory of computing - STOC 88, 1988.

[2] Castro, Miguel and Liskov, Barbara, Practical Byzantine Fault Tolerance
and Proactive Recovery, ACM Transactions on Computer Systems,
2002.

[3] Choi, Byeong-Cheol and Park, Sohee and Kim, Jungnyea and Ryou, Je-
icheoul, Anonymous PKI Framework for Privacy-Guaranteed e-Services,
2007 International Conference on Convergence Information Technology
(ICCIT 2007), 2007.

[4] Critchlow, D. and Zhang, N., Security Enhanced Accountable Anonymous
PKI Certificates for Mobile e-Commerce, Computer Networks, 2004.

[5] Dingledine, Roger and Mathewson, Nick and Syverson, Paul, Tor: The
Second-Generation Onion Router, USENIX Security Symposium, 2004.

[6] Dolev, D. and Strong, H. R., Authenticated Algorithms for Byzantine
Agreement, SIAM Journal on Computing, 1983.

[7] Groth, Jens, On the Size of Pairing-Based Non-interactive Arguments,
Advances in Cryptology – EUROCRYPT 2016 Lecture Notes in Com-
puter Science, 2016.

[8] Hendrickx, Julien M. and Tsitsiklis, John N., Fundamental Limitations
for Anonymous Distributed Systems with Broadcast Communications,
2015 53rd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), 2015.

[9] Lamport, Leslie, The Part-Time Parliament, ACM Transactions on
Computer Systems, 1998.

[10] Magnani, Antonio and Dangelo, Gabriele and Ferretti, Stefano and
Marzolla, Moreno, Anonymity and Confidentiality in Secure Distributed
Simulation, 2018 IEEE/ACM 22nd International Symposium on
Distributed Simulation and Real Time Applications (DS-RT), 2018.

[11] Mccoy, Damon and Bauer, Kevin and Grunwald, Dirk and Kohno,
Tadayoshi and Sicker, Douglas, Shining Light in Dark Places: Under-
standing the Tor Network, Privacy Enhancing Technologies Lecture
Notes in Computer Science, 2008.

[12] Parno, B. and Howell, J. and Gentry, C. and Raykova, M., Pinocchio:
Nearly Practical Verifiable Computation, 2013 IEEE Symposium on
Security and Privacy, 2013.

[13] Rivest, Ronald L. and Shamir, Adi and Tauman, Yael, How to Leak a
Secret, Advances in Cryptology — ASIACRYPT 2001 Lecture Notes
in Computer Science, 2001.

[14] Wang, Chuan-Jun and Niu, Xia-Mu and Zhang, Yong, Anonymity in PKI
Environment, Third International Conference on Intelligent Information
Hiding and Multimedia Signal Processing (IIH-MSP 2007), 2007.

[15] Benaloh, Josh, Simple Verifiable Elections, Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2006 on
Electronic Voting Technology Workshop, 2006.

[16] Nicolosi, Antonio R., Authentication Mechanisms for Open Distributed
Systems, New York University, 2007.

12

[17] Tang, Jian and Larrea, Mikel and Arevalo, Sergio and Jimenez, Ernesto,
Implementing Uniform Reliable Broadcast in Anonymous Distributed
Systems with Fair Lossy Channels, 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop, 2015.

[18] Ciaraldi, Michael and Finkel, David and Wills, Craig, Risks in anony-
mous distributed computing systems, International Network Conference
2000, 2000.

[19] Fujisaki, Eiichiro and Suzuki, Koutarou, Traceable Ring Signature,
Public Key Cryptography – PKC 2007 Lecture Notes in Computer
Science, 2007.

[20] Tsang, Patrick P. and Wei, Victor K., Short Linkable Ring Signatures for
E-Voting, E-Cash and Attestation, Information Security Practice and
Experience Lecture Notes in Computer Science, 2005.

[21] Camenisch, Jan and Lysyanskaya, Anna, An Efficient System for Non-
transferable Anonymous Credentials with Optional Anonymity Revoca-
tion, Lecture Notes in Computer Science Advances in Cryptology —
EUROCRYPT 2001, 2001.

[22] Garman, Christina and Green, Matthew and Miers, Ian, Decentralized
Anonymous Credentials, Proceedings 2014 Network and Distributed
System Security Symposium, 2014.

[23] Giulia C. Fanti, Shaileshh Bojja Venkatakrishnan, Surya Bakshi, Bradley
Denby, Shruti Bhargava, Andrew Miller and Pramod Viswanath, Dande-
lion++: Lightweight Cryptocurrency Networking with Formal Anonymity
Guarantees, CoRR, 2018.

[24] Chaum, David L., Untraceable Electronic Mail, Return Addresses, and
Digital Pseudonyms, Commun. ACM, 1981.

[25] Tim Ruffing, Pedro Moreno-Sanchez, Aniket Kate, P2P Mixing and
Unlinkable Bitcoin Transactions, NDSS Symposium, 2017.

[26] James Aspnes, Collin Jackson, Arvind Krishnamurthy, Exposing
Computationally-Challenged Byzantine Impostors, Technical Report
YALEUDCSTR-1332, 2004.

[27] Haenni, Rolf and Spycher, Oliver, Secure Internet Voting on Limited
Devices with Anonymized DSA Public Keys, EVT/WOTE, 2011.

[28] Stefan Kaufmann, Implementation and Adaptation of the Pseudonymous
PKI for Ubiquitous Computing for Car-2-Car Communication, Auto-
motive Safety and Security, 2014.

[29] Nicolas van Saberhagen, CryptoNote v 2.0, Bytecoin.org, 2013.
[30] Wang X., Chen Y., Ma X., Adding Linkability to Ring Signatures with

One-Time Signatures, Information Security, 2019.
[31] IBurnMyCD, Ring Signature Performance Metrics, TurtleCoin, 2021.
[32] Sarang Noether, Arcturus: Efficient Proofs for Confidential Transactions,

Monero Research Lab, 2020.
[33] Amazon Web Services Inc., Amazon EC2 Instance Types,

https://aws.amazon.com/ec2/instance-types/, 2020.
[34] Demers, Alan; Greene, Dan; Hauser, Carl; Irish, Wes; Larson, John;

Shenker, Scott; Sturgis, Howard; Swinehart, Dan; Terry, Doug, Epidemic
Algorithms for Replicated Database Maintenance, Association for
Computing Machinery, 1987.

[35] Bernstein, D.J., Duif, N., Lange, T. et al., High-speed High-security
Signatures., J Cryptogr Eng, 2012.

[36] Banerjee, Aritra, Michael Clear, and Hitesh Tewari. Demystifying the
Role of zk-SNARKs in Zcash. IEEE Conference on Application,
Information and Network Security (AINS). 2020.

13

APPENDIX A
FORMALIZATION

A. Public Key Enablement

Definition 1. A public key cryptography system

Σ = (Gen,Sig,Ver[, Link][,Trace][, Enc,Dec][, . . .])

is a tuple of algorithms minimally enabling digital signatures
(and optionally enabling additional functionality). We expect
Gen, Sig, and Ver to nominally behave according to definition
135.1 of Pass and Shelat.

Remark 1. Asymmetric encryption (Enc and Dec) is not used
in any of the protocols presented in this paper, but is required
for many practical applications of public key cryptography.

Definition 2. A linkable ring signature scheme

L = (Gen,Sig,Ver, Link)

is a public key cryptography scheme satisfying unforgeabil-
ity, L-anonymity, and linkability, nominally according to the
definitions of Tsang and Wei.

Public key cryptography takes place in the context of a
public key enablement containing identities. A correspondence
exists between identities and public keys. Let ID(pk) = id
denote the identity associated with public key pk (i.e., the
identity knowing the secret key sk corresponding to the
public key pk), and PKS(id) = {pk1,pk2, . . .pkn} denote
the set of public keys associated with identity id, whereby
∀pk ∈ PKS(id), ID(pk) = id.

Definition 3. An identity partition

P〈Σ〉 = ({pk1,pk2, . . .pkn}, {sk1, sk2, . . . skn})

with respect to a public key cryptography scheme Σ is a pair
containing a set of identities and a set of public keys in the
output space of the Gen algorithm of Σ: pki ∈ {pk |(pk, sk) ∈
Σ.Gen→}, each of the public keys belonging to an identity in
P〈Σ〉: ∀pk ∈ P〈Σ〉, ID(pk) ∈ P〈Σ〉.

Property 1. An identity partition P〈Σ〉 is Sybil resistant if at
most one public key is associated with each identity in P〈Σ〉:
∀id ∈ P〈Σ〉, |PKS(id)| ≤ 1.

Remark 2. If an identity partition

P〈Σ〉 = ({pk1,pk2, . . .pkn}, {sk1, sk2, . . . skn})

is Sybil resistant the number of identities in P〈Σ〉 is at least
as large as the number of public keys in P〈Σ〉: m ≥ n.

Property 2. An identity partition P〈Σ〉 is anonymous if a
PPT adversary knowing ID(pk1), ID(pk2), . . . ID(pkf) for
f < n public keys in P〈Σ〉 and having query access to a
message oracle containing all prior public broadcasts will
not be able to guess ID(pk) for any other public key pk ∈
pkf+1, pkf+2, . . .pkn with greater than 1/(n − f) + negl
probability.

Definition 4. A partitioned public key infrastructure PPKI〈Σ〉
is Sybil resistant if each of its identity partitions are
Sybil resistant and identities exist in at most one partition:
∀P〈Σ〉,a, P〈Σ〉,b ∈ PPKI〈Σ〉 s.t.a 6= b,∀ida ∈ P〈Σ〉,a, idb ∈
P〈Σ〉,b, ida 6= idb.

Definition 5. An onymous public key infrastructure

PPKI(O)〈Σ〉

= {({id1}, {pk1}), ({id2}, {pk2}), . . . ({idn}, {pkn})}

is a partitioned public key infrastructure where every parti-
tion P〈Σ〉,i in PPKI(O)〈Σ〉 contains a single identity and
corresponding public key: ∀P〈Σ〉 ∈ PPKI(O)〈Σ〉, P〈Σ〉 =
({ID(pk)}, {pk}).

Remark 3. An onymous public key infrastructure that is Sybil-
resistant mirrors the conventional understanding of a PKI
— there is a one-to-one correspondence between identities
and public keys with the number of partitions being equal
to the number of identities in the PKI — thus, the identity
corresponding to a given public key (and vice-versa) is obvious
given PPKI(O)〈Σ〉.

Definition 6. A semi-anonymous public key infrastructure

PPKI(S)〈Σ〉 = {P〈Σ〉,1, P〈Σ〉,2, . . . P〈Σ〉,n}

is a partitioned public key infrastructure with multiple parti-
tions: |PPKI(S)〈Σ〉| ≥ 2, and at least one partition with
multiple identities: ∃P〈Σ〉 ∈ PPKI(S)〈Σ〉, |idsP〈Σ〉| ≥ 2,
whereby each partition in PPKI(S)〈Σ〉 is anonymous.

Remark 4. Given a semi-anonymous public key infrastructure
PPKI(S)〈Σ〉, one can easily identify the partition that a
public key belongs to, but not which identity within that
partition it corresponds to.

We call this PKI “semi-anonymous” because keys within
the PKI are identifiable to a subset of the identities in the
PKI. For instance, if partitions in a semi-anonymous PKI
represent institutions and identities represent members of those
institutions, one might be able to identify the institution to
which a public key belongs but not the individual member.

Definition 7. An anonymous public key infrastructure

PPKI(A)〈Σ〉 = {({id1, id2, . . . idn}, {pk1, pk2, . . .pkn})}

is a partitioned public key infrastructure with a single partition
|PPKI(A)〈Σ〉| = 1, and multiple identities in that partition:
PPKI(A)〈Σ〉 = {P〈Σ〉}, |ids ∈ P〈Σ〉| ≥ 2, whereby the
partition P〈Σ〉 in PPKI(A)〈Σ〉 is anonymous.

Remark 5. Given an anonymous public key infrastructure
PPKI(A)〈Σ〉, one cannot easily identity ID(pk) given a
random pk ∈ PPKI(A)〈Σ〉 beyond the knowledge that
ID(pk) ∈ PPKI(A)〈Σ〉.

14

B. PKI Transformation

Definition 8. In the following protocols, let process refer to a
node in a computer network belonging to an identity id where
id = ID(pk) for some pk in the partitioned PKI PPKIIN .
Let P (id) = p denote the process belonging to id. Processes
in a partitioned PKI PPKI〈Σ〉 with respect to Σ are assumed
to have access to the algorithms within Σ.

Definition 9. A PKI transformation protocol allows processes
in a partitioned PKI PPKIIN to achieve consensus on a
second partitioned PKI PPKIOUT .

Property 3. A PKI transformation protocol is decentralized if
each non-faulty process executes an identical algorithm and no
single non-faulty process or group of non-faulty processes has
a special role or function distinct from the roles and functions
of the other non-faulty processes.

Property 4. A PKI transformation protocol is synchronous if
upon initiating the protocol at time t one can determine the
time t′ by which the protocol has terminated at all non-faulty
processes.

Property 5. A PKI transformation protocol is live if all
non-faulty processes terminate and output a partitioned PKI
PPKIOUT upon termination.

Property 6. A PKI transformation protocol is safe if the
partitioned PKI PPKIOUT output by any non-faulty processes
is the same as the partitioned PKI PPKIOUT output by all
other non-faulty processes.

Property 7. A PKI transformation protocol is Sybil-resistant
if PPKIIN being Sybil-resistant implies that the partitioned
PKI output by any non-faulty processes PPKIOUT will also
be Sybil-resistant.

Property 8. A PKI transformation protocol is integrous if
all identities in PPKIOUT are present in PPKIIN : id ∈
PPKIOUT =⇒ id ∈ PPKIIN .

Property 9. A PKI transformation protocol is
inclusive if all identities in PPKIIN controlled
by non-faulty processes are present in PPKIOUT :
id ∈ PPKIIN ∧P (id) is not faulty =⇒ id ∈ PPKIOUT .

Definition 10. A complete PKI transformation protocol satis-
fies the properties of safety, liveness, validity, Sybil-resistance,
integrity, inclusivity, synchrony, and decentralization.

Definition 11. A PKI Reconstitution Protocol is a PKI trans-
formation protocol that allows processes in a partitioned
PKI PPKIIN〈Σ1〉 with respect to public key cryptography
scheme Σ1 to achieve consensus on a second partitioned
PPKIOUT〈Σ2〉 with respect to a second public key cryptog-
raphy scheme Σ2.

Property 10. A PKI Reconstitution Protocol is valid if all
processes output a valid partitioned public key infrastructure
PPKIOUT〈Σ2〉 with respect to Σ2.

Definition 12. A Shadow PKI Protocol is a PKI transfor-
mation protocol that allows processes in a partitioned PKI
PPKIIN〈Σ〉 to achieve consensus on an anonymous PKI
PPKI(A)OUT〈Σ〉 .

Property 11. A Shadow PKI Protocol is valid if all pro-
cesses output a valid anonymous public key infrastructure
PPKI(A)OUT〈Σ〉 .

APPENDIX B
PROTOCOLS

A. Requirements

Definition 13. A broadcast protocol allows a message m
broadcast by a sender to be received by all non-faulty pro-
cesses.

Property 12. A broadcast protocol is live if all non-faulty
processes output a value.

Property 13. A broadcast protocol is safe if no non-faulty
processes output different values.

Property 14. A broadcast protocol is valid if all non-faulty
processes output the sender’s value if the sender is non-faulty.

Property 15. A broadcast protocol is synchronous if upon
initiating the protocol at time t one can determine the time
t′ by which the protocol has terminated at all non-faulty
processes.

Property 16. A broadcast protocol is decentralized if each
non-faulty process executes an identical algorithm and no
single non-faulty process or group of non-faulty processes has
a special role or function distinct from the roles and functions
of the other non-faulty processes.

Definition 14. A reliable broadcast protocol is a broadcast
protocol satisfying the properties of safety, liveness, validity,
synchrony, and decentralization.

Remark 6. An example of a reliable broadcast protocol in
an authenticated setting with synchronous unicasts is Dolev-
Strong.

Property 17. A broadcast protocol is anonymous if a PPT
adversary knowing the identity of senders for messages sent
by f < n processes and having query access to a message
oracle containing all prior public broadcasts will not be able
to identify the sender of a message with greater than 1/(n−
f) + negl. probability.

Definition 15. A covert broadcast protocol is a broadcast pro-
tocol satisfying the properties of synchrony, decentralization,
and anonymity.

Remark 7. A covert broadcast protocol can be constructed in
any authenticated setting with synchronous unicasts. Providing
this construction may be the focus of future work. For the sake
of this paper, covert broadcasts can also be constructed via a
series of anonymous unicasts over the Tor network [5].

15

B. PKI Reconstitution
1) Protocol: A complete PKI Reconstitution Protocol given

a reliable broadcast protocol.

Algorithm 1 PKI Reconstitution Algorithm
(pkOUT,i, skOUT,i)← Σ2.Gen
σ ← Σ1.SigskIN,i

(pkOUT,i)
BroadcastSendi((pkIN,i,pkOUT,i, σi))
for all 1 ≤ j ≤ n do
mj ← BroadcastReceivej
M ←M ∪ {mj}

end for
for all 1 ≤ j ≤ n do

if pkIN,j 6∈ PPKIIN〈Σ1〉 then
M ←M \ {mj}

end if
end for
for all 1 ≤ j ≤ n do

if Σ1.VerpkIN,j
(pkOUT,j , σj) = 0 then

M ←M \ {mj}
end if

end for
for all 1 ≤ a ≤ n do

for all 1 ≤ b < a do
if pkIN,a = pkIN,b then
R← R ∪ {ma,mb}

end if
end for

end for
M ←M \R
PPKIOUT ← PPKIIN
for all pkIN ∈ PPKIIN do

if (pkIN ,pkOUT , σj) ∈M then
PPKIOUT [pkIN]← pkOUT

end if
end for
return PPKIOUT

To summarize:
1) Each process generates a key pair to output
2) Each process signs their output public key with their input

secret key
3) Each process invokes the reliable broadcast protocol,

sending their signed output key
4) Each process removes messages from keys not in the

input PKI
5) Each process removes messages with signatures that do

not verify.
6) Each process removes messages from public keys that

sent multiple messages.
7) Each process replaces the old keys with the new keys in

the PKI, and outputs the new PKI.

C. PKI Anonymization
1) Anonymous Multi-Value All-To-All Broadcast Consen-

sus: We now specify our Anonymous Multi-Value All-To-All

Broadcast Consensus protocol. In the following
• Let vi,j be the jth input value of process pi.
• Let (pkRING,i, skRING,j) be the key pair of process i

with respect to PPKIRING〈I〉.
• Let pksRING = {pkRING,1,pkRING,2, . . . ,pkRING,n}

be the set of public keys in PPKIRING〈I〉.
• Let rn be a unique identifier for one protocol instance

(e.g. “ACv1 round15”).
• Let H be a cryptographic hash function.

Algorithm 2 Anonymous Multi-Value All-To-All Broadcast
Consensus Algorithm

for all 0 ≤ j ≤ m do
issuej ← H(rn||j||pksRING)
tagj ← (issuej ,pksRING)
rsi,j ← L.SigskRING,i

(tagj ,pkOUT,i)
end for
CovertBroadcastSendi(sspki,j := (issuej , vi,j , rsi,j)
while CovertBroadcastReceive do

sspk← CovertBroadcastReceive
j ← sspk.j
sspksi,j ← sspksi,j ∪{sspk}

end while
BroadcastSendi({sspksi,j}mj=0)
for all 1 ≤ i′ ≤ n do

sspksi ← BroadcastReceivei′
sspkssj ← sspkssj ∪{sspksi,j}

end for
for all 0 ≤ j ≤ m do

sspksuj ←
⋃n

i=1 sspkssi,j
end for
for all 0 ≤ j ≤ m do

for all sspk = (pkOUT,i, rsi,j) ∈ sspksuj do
if L.Ver(tagj ,pkOUT,j , σj) = 0 then

sspksuj ← sspksuj \{sspki}
end if

end for
end for
for all 0 ≤ j ≤ m do

for all 1 ≤ a ≤ n′j do
for all 1 ≤ b < a do

if pkIN,a = pkIN,b then
R← R ∪ {ma,mb}

end if
if L.Link(rsa, rsb) then
R← R ∪ {ma,mb}

end if
end for

end for
sspksuj ← sspksuj \R

end for
return {sspksu1, sspksu2, . . . , sspksum}

To summarize:
1) Processes sign their values with respect to the ring and

the current issue.

16

2) Processes anonymously broadcast their value.
3) Each process reliably broadcasts their value set.
4) Processes compute the union of the value sets.
5) Processes remove messages from the union that fail

signature verification.
6) Processes identify messages which are linked to other

messages in the union and remove them.
7) Processes output the remaining values.
2) Shadow PKI Protocol: We now combine the two pre-

viously defined protocols to create a complete Shadow PKI
Protocol. given a linkable ring signature scheme L.

Algorithm 3 Shadow PKI Algorithm
PPKIL ← Algorithm1(L)
pk1, . . . ,pkm ← KeyGen
sspks1, . . . , sspksm ← Algorithm2PPKIL

(pk1, . . . ,pkm)
for all 1 ≤ j ≤ m do

PPKIOUT,i ← PPKIIN
PPKIOUT,i[pk]← sspksi

end for
return PPKIOUT

To summarize:
1) The PKI Reconstitution Protocol is used to initialize keys

of all other honest processes in the ring signature PKI.
2) Processes generate keys to anonymously publish in the

broadcast.
3) Processes apply the Anonymous Multi-Value All-To-All

Broadcast Consensus protocol to distribute their gener-
ated keys.

Remark 8. Critical to this protocol is the linkable ring
signature primitive [20]. This primitive allows for a ring
signature [13] where messages have metadata that prevents
members from signing messages more than once. A more
powerful primitive that may be substituted is the recently
described traceable ring signature [19] the benefit of the
traceable ring signature is that it allows for the identification
of misbehaving parties, so that in future applications of the
protocol, those parties may be ignored.

APPENDIX C
PROOFS OF PROPERTIES OF PKI RECONSTITUTION

SCHEME

A. PKI Reconstitution Scheme Liveness

Theorem 1. The PKI Reconstitution Protocol is live

Proof. We follow the execution of a non-faulty process
through the steps of the protocol:

1) The process generates an output key pair
2) The process signs its key pairs
3) The process participates in reliable broadcasts for all key

pair. Since we assume that this broadcast protocol is live,
these broadcasts terminate.

4) The process removes messages from public keys not in
the input PKI.

5) The process removes messages that fail signature verifi-
cation.

6) The process identifies messages which are signed by
the same key as other messages to other messages and
removes them.

7) The process creates a new PKI by substituting the new
keys for the old.

8) The process outputs the PKI
Thus, the protocol finishes with an output, so it is live.

B. PKI Reconstitution Scheme Safety

Theorem 2. The PKI Reconstitution Protocol is safe

Proof. We go through the steps of the non-faulty processes
through the protocol, reasoning about the execution state of
each process at each step.

1) The process generates an output key pair
2) The process signs its key pairs.
3) The process broadcasts its signed key. Since we assume

that this broadcast protocol is safe, each non-faulty node
receives the same set of signed public keys.

4) The process removes messages from public keys not in
the input PKI. Since each process starts with the same
PKI all non-faulty processes remove the same values, and
have a consistent set at the end of this step.

5) The process removes messages that fail signature verifica-
tion. Since the verification is deterministic, all non-faulty
processes remove the same values, and have a consistent
set at the end of this step.

6) The process identifies messages which are signed by
the same key as other messages to other messages and
removes them. Since the these duplicate checks are
deterministic, all non-faulty processes remove the same
values, and have a consistent set at the end of this step.

7) The process creates a new PKI by substituting the new
keys for the old. Since we are left with the same values
on each non-faulty node, this results in the same PKI

8) The process outputs the PKI.
Thus, the protocol is live.

C. PKI Reconstitution Scheme Validity

Theorem 3. The PKI Reconstitution Protocol is valid.

Proof. Suppose process i is non-faulty. We show that process
i’s generated key is output in the returned PKI.

We go through the steps of the protocol.
1) Process i generates an output key pair
2) Process i signs its key pairs
3) Process i broadcasts its signed key. Thus, all non-faulty

nodes now contain i’s key.
4) A non faulty process removes messages from public keys

not in the input PKI. Since i is in the input PKI, its key
is not removed.

5) A non faulty process removes messages that fail signature
verification. Since i is non faulty, it has made a valid
signature, and its key is not removed.

17

6) A non faulty process identifies messages which are signed
by the same key as other messages to other messages
and removes them. Since i does not sign more than one
message, its key is not removed.

7) A non faulty process creates a new PKI by substituting
the new keys for the old. Since i’s new key has survived,
it is included.

8) A non faulty process outputs the PKI, including i’s new
key. Thus, the protocol is valid.

D. PKI Reconstitution Scheme Integrity

Theorem 4. The PKI Reconstitution Protocol has the integrity
property.

Proof. To see this, we consider the final two steps of the PKI
Reconstitution Protocol. In the penultimate step, we replace
keys on the existing identities in the input PKI. Since no new
identities are added here, the protocol is integrous.

E. PKI Reconstitution Scheme Inclusion

Theorem 5. The PKI Reconstitution Protocol has the inclu-
sion property.

Proof. To see this, again consider the final two steps of
the PKI Reconstitution Protocol. In the penultimate step, we
replace keys on the identities in the input PKI. Since no
identities are removed here, the protocol is inclusive.

F. PKI Reconstitution Scheme Decentralization

Theorem 6. The PKI Reconstitution Protocol has the decen-
tralization property.

Proof. Note that the PKI Reconstitution Protocol is described
as a single algorithm which all processes run simultaneously.
While some nodes take a leader role in the broadcast sub-
protocol to broadcast data, ultimately, the input data for each
node consists only of the PKI and the individual’s private key
- there is no input data distinguishing a particular node as a
leader.

G. PKI Reconstitution Scheme Synchrony

Theorem 7. The PKI Reconstitution Protocol has the syn-
chrony property.

Proof. We follow the execution of a non-faulty process
through the steps of the protocol, showing from the synchrony
of the subprotocol that each step of the algorithm can be
predetermined to finish at some fixed time.

1) The process generates an output key pair. This step
requires a fixed amount of computation and no network
use, so we can specify that this step takes fixed time ∆1,
and finishes at time t1 = t+ ∆1.

2) The process signs its key pairs. This step requires a fixed
amount of computation and no network use, so we can
specify that this step takes fixed time ∆2, and finishes at
time t2 = t1 + ∆2.

3) The process broadcasts its signed key. Since the reliable
broadcast protocol is synchronous and initiated at the
fixed time t2, again, the node will finish this step in
a fixed amount of time ∆3 and move on. We also
assume a finite cap on the number and size of messages
adversaries can send, so the processing of these messages
will terminate in time ∆′3. Thus, this step takes fixed time
∆3 + ∆′3, and finishes at time t3 = t2 + ∆3 + ∆′3.

4) The process removes messages from public keys not
in the input PKI. This step requires a fixed amount of
computation and no network use, so we can specify
that this step takes fixed time ∆4, and finishes at time
t4 = t3 + ∆4.

5) The process removes messages that fail signature verifi-
cation. This step requires a fixed amount of computation
and no network use, so we can specify that this step takes
fixed time ∆5, and finishes at time t5 = t4 + ∆5.

6) The process identifies messages which are signed by
the same key as other messages to other messages and
removes them. This step requires a fixed amount of
computation and no network use, so we can specify
that this step takes fixed time ∆6, and finishes at time
t6 = t5 + ∆6.

7) The process creates a new PKI by substituting the new
keys for the old. This step requires a fixed amount of
computation and no network use, so we can specify that
this step takes fixed time ∆7, and finishes at time t7 =
t6 + ∆7.

8) The process outputs the PKI. Since the node has not
crashed, the protocol outputs. We can specify that this
step takes fixed time ∆8, and finishes at time t′ = t8 =
t7 + ∆8.

Thus, from this analysis, there is a fixed time t′ at which
the protocol outputs for any non-faulty process.

H. PKI Reconstitution Scheme Sybil Resistance

Theorem 8. The PKI Reconstitution Protocol has the Sybil-
resistance property.

Proof. This follows from the previous proofs of integrity and
inclusivity. Again consider the final two steps of the PKI
Reconstitution Protocol. In the penultimate step, we replace
keys on the identities in the input PKI. Since no identities are
changed, there is no possibility of a Sybil attack

APPENDIX D
PROOFS OF PROPERTIES OF THE ANONYMOUS

MULTI-VALUE ALL-TO-ALL BROADCAST CONSENSUS
SCHEME

A. Cryptographic Properties

In order for the Anonymous Broadcast scheme we have
described to be secure, the ring signature scheme which it
uses must satisfy cryptographic properties. In principle, it is
possible to implement our scheme using either a linkable ring
signature or a traceable ring signature. The latter has the

18

additional benefit that it can improve the resilience of the
Anonymization protocol by allowing honest parties to trace
the identities of malicious processes that submit more than one
signature, and potentially remove them from later instantia-
tions of the protocol. For reference, we include here definitions
of properties, based on those in [19], which are sufficient to
guarantee the formal security of our anonymization protocol.

Definition 16. We define a linkability game as follows: An
adversary A must supply a ring of n public keys, and a specific
tag, along with n + 1 signatures for that tag, all of which
pass verification, and no two of which return unlinked when
passed to the tracing function. A Traceable Ring Signature
scheme is linkable if no PPT avdersary wins this game with
non-negligible probability.

This definition is equivalent to that given in Fujisaki and
Suzuki

Definition 17. We define an exculpability game as follows:
An adversary A is given access to a target public key pk,
as well as a signing oracle that produces signatures from
pk on any message with any tag. The adversary must supply
two signatures that verify correctly and trace to pk, and for
which one does not trace to pk with any of the signature
provided by the oracle. A Traceable Ring Signature scheme
is exculpable if no PPT avdersary wins this game with non-
negligible probability.

This definition is equivalent to that given in Fujisaki and
Suzuki.

Definition 18. We define an anonymity game as follows: An
adversary A is given access to target public keys pk0 and
pk1, as well as a pair of signatures, one from each key, in
random order, for a ring of the adversaries choosing. The
adversary must identify which is which. A Traceable Ring
Signature scheme is anonymous if no PPT adversary wins this
game with probability non-negligibly greater than 1/2.

This definition is not quite equivalent to that given in
Fujisaki and Suzuki. In this definition, the adversary has access
to two signatures, one from each unknown party, whereas
in the definition of Fujisaki and Suzuki, the adversary has
access to only one signing oracle from a random one of the
adversaries. To see how this definition reduces to the other,
consider the following reduction:

Proof. Suppose an adversary A in our definition is given
two targets and two signed messages, and can guess which
signature comes from which target with prob 1/2 + ε.

Now consider an adversary A′ to the Fujisaki Suzuki game
which works as follows:

Simulate A. For one signature, generate it from the Sigskb

oracle for the target signature, and for one key, use a random
public key pkr from the two targets For the other Signa-
ture/Key pair, flip a coin. If heads, generate an adversary key
and sign a message with it, and let those be the signature/key.
If tails, generate two adversary keys. Sign a message with one

and use that as the signature, and use the other as the public
key.

If A links the Sigskb
oracle signature to the pkr, then output

b = r. Otherwise output b = r.
Crucial here is considering what A does in the scenario

where it is passed one Associated pk/sig and another disasso-
ciated pk/sig. Let p be the probability that A returns that the
associated pk/sig pair are associated.

• If r = b and the simulator flips heads, then A receives
two associated pk/sig pairs. A′ has probability 1/2+ ε of
success.

• If r = b and the simulator flips tails, then A receives one
associated pk/sig pair, one disassociated pk/sig pair. A′
has probability p of success.

• If r = b and the simulator flips heads, then A receives
one associated pk/sig pair, one disassociated pk/sig pair.
A′ has probability 1 − p of success. (Because if it
associates the adversaries key to the adversaries signature,
it associated the Sigskb

oracle signature to the pkr, which
is wrong.)

• If r = b and the simulator flips tails, then A receives two
associated pk/sig pairs. A′ has probability 1/2 of success.
(Because the distributions are identical)

Since these four outcomes are equally likely, the advantage
of A′ is the average of all these success probabilities, which
is 1/2 + ε/4. This proves that the advantage of A′ is non-
negligibly greater than 1/2.

B. Anonymous Multi-Value All-To-All Broadcast Consensus
Liveness

Theorem 9. The Anonymous Multi-Value All-To-All Broadcast
Consensus Protocol is live

Proof. We follow the execution of a non-faulty process
through the steps of the protocol:

1) The process signs its value.
2) The process anonymously broadcasts its value. Note that

since the anonymous broadcast protocol is synchronous,
the node will finish this step in a finite amount of time and
move on. We also assume a finite cap on the number and
size of messages adversaries can send, so the processing
of these messages will terminate.

3) The process broadcasts its value set. Since the reliable
broadcast protocol is synchronous, again, we assume that
we assume this process happens synchronously, so the
node will finish this step in a finite amount of time, and
the processing of the adversarial messages is finite and
will terminate.

4) The process computes the union. Since each set in the
union has an upper bound on size, this takes finite time.

5) The process removes messages that fail signature verifica-
tion. Since we only do one verification for each member
of the set, this takes finite time.

6) The process identifies messages which are linked to
other messages and removes them. Since we only do

19

comparisons for at most each pair in the union, this takes
finite time.

7) Since the node has not crashed, the protocol outputs.

C. Anonymous Multi-Value All-To-All Broadcast Consensus
Protocol Safety

Theorem 10. The Anonymous Multi-Value All-To-All Broad-
cast Consensus Protocol is safe

Proof. We go through the steps of the non-faulty processes
through the protocol, reasoning about the execution state of
each process at each step.

1) The non-faulty processes sign their value.
2) The non-faulty processes anonymously broadcast their

value. Note that faulty processes may send different keys
to different non-faulty nodes, or multiple keys or no keys.
However, at the end of this step, each honest node i will
have some set of keys sspksi.

3) Each process reliably broadcasts a value set. Since we
assume that the reliable broadcast primitive we are using
is safe, the non-faulty processes agree on a particular
value set for each process. We can term sspksi to be
the agreed upon value for i, even if i is faulty, (in which
case sspksi may be empty or nonempty). Thus, sspksi is
the same for all non-faulty processes.

4) The non-faulty processes compute the union of the
sspksi. Since the inputs to the union are the same for
each, all compute the same sspksu.

5) The non-faulty processes remove messages that fail sig-
nature verification. Since the signature verification is
deterministic, all non-faulty processes remove the same
messages in this step, and are left with the same result.

6) The non-faulty processes identify messages which are
linked to other messages and removes them. Since the
signature linking is deterministic, all non-faulty processes
remove the same messages in this step, and are left with
the same result.

7) The non-faulty processes output. Since each of them
maintained the same set through the removal process, they
ultimately output the same value.

D. Anonymous Multi-Value All-To-All Broadcast Consensus
Protocol Validity

Theorem 11. The Anonymous Multi-Value All-To-All Broad-
cast Consensus Protocol is valid.

To show this, we first prove a lemma about the inability of
the adversary to attack the signature of any of the non-faulty
processes

Lemma 1. Let A be any PPT adversary. The proba-
bility that the adversary generates a signature such that
Link(L, (pki, σi), (pkj , σj)) = linked from information
gained in the execution of the protocol, for any honest process
i, is negligible.

Proof. This follows by reduction to the exculpability property
of the linkable ring signature scheme. In particular, suppose
there were an adversary A that created a link with non-
negligible probability. Note that A receives, in the course of
the protocol, signatures from non-faulty processes for only a
single value for each tag, since non-faulty processes only make
a single signature in each iteration of the loop in step 1, and
that signature has a different issue and tag in all iterations of
the loop (assuming there are no hash collisions on H). But
then we could construct an adversary A′ which violates the
exculpability property of the ring signature: A′ simulates the
Shadow PKI Protocol, with A acting as the faulty nodes. To
simulate signatures by non-faulty nodes, A queries an oracle
provided for signatures from honest ring signature users. Since
A finds a link with non-negligible probability, A′ can return
these linked signatures if it finds them, and it will also succeed
with non-negligible probability.

We now prove the theorem

Proof. Suppose process i is non-faulty. We show that process
i outputs its own generated public key with overwhelming
probability, and therefore, by safety, all honest nodes will do
the same.

We go through the steps of the protocol.

1) The non-faulty processes sign their values.
2) Process i anonymously broadcasts its signed key sspki

to all nodes. By the validity of the anonymous broadcast
protocol, all non-faulty processes (including i itself) will
correctly receive this message and add sspki to its set.

3) Process i broadcasts sspksi. By the validity of reliable
broadcast primitive, the honest nodes agree on the sspksi
transmitted by i, containing sspki.

4) Each non-faulty process computes the union sspksu.
Since sspki ∈ sspksi and sspksi ⊆ sspksu, we have
sspki in the union.

5) The non-faulty processes remove messages that do not
have verifiable signatures. Since sspki was signed by a
non-faulty process, by the verification correctness of the
linkable ring signature scheme, sspki will not be removed
in this step.

6) The non-faulty processes remove linked messages. By our
lemma, the probability of the Trace function returning
other than ”indep” for any pair of signed messages
including sspki is negligible. Thus, the probability sspki

is removed in this step is negligible.
7) The value is returned.

Since sspki is in the union in step 5, and the probability
of it being removed afterward is negligible, it will be output
with overwhelming probability.

E. Anonymous Multi-Value All-To-All Broadcast Consensus
Protocol Integrity

Theorem 12. The Anonymous Multi-Value All-To-All Broad-
cast Consensus Protocol has the integrity property.

20

Proof. To see this, we consider the final step of the Shadow
PKI Protocol, which returns PPKI(A)OUT 〈Σ〉 consisting of
only identities from the input PPKI .

F. Anonymous Multi-Value All-To-All Broadcast Consensus
Protocol Inclusion

Theorem 13. The Anonymous Multi-Value All-To-All Broad-
cast Consensus Protocol has the inclusion property.

Proof. To see this, we consider the final step of the Shadow
PKI Protocol, which returns PPKI(A)OUT 〈Σ〉 consisting of
all identities from the input PPKI . Thus, every identity
controlled by a non-faulty process is present in the output.

G. Anonymous Multi-Value All-To-All Broadcast Consensus
Protocol Decentralization

Theorem 14. The Anonymous Multi-Value All-To-All Broad-
cast Consensus Protocol has the decentralization property.

Proof. Note that the Anonymous Multi-Value All-To-All
Broadcast Consensus Protocol is described as a single algo-
rithm which all processes run simultaneously. While some
nodes take a leader role in subprotocols to broadcast data,
ultimately, the input data for each node consists only of the
PPKI and the individual’s private key - there is no input data
distinguishing a particular node as a leader.

H. Anonymous Multi-Value All-To-All Broadcast Consensus
Protocol Synchrony

Theorem 15. The Anonymous Multi-Value All-To-All Broad-
cast Consensus Protocol has the synchrony property.

Proof. We follow the execution of a non-faulty process
through the steps of the protocol, showing from the synchrony
of the subprotocols that each step of the algorithm can be
predetermined to finish at some fixed time.

1) Processes start at time t1
2) The process signs its value. This step requires a fixed

amount of computation and no network use, so we can
specify that this step takes fixed time ∆3, and finishes at
time t3 = t2 + ∆3.

3) The process anonymously broadcasts its value. Since
the anonymous broadcast protocol is synchronous, and
initiated at the fixed time t3 at which the previous step
finishes, the node will finish this step in a fixed amount
of time ∆4 and move on. We also assume a finite cap on
the number and size of messages adversaries can send, so
the processing of these messages will terminate in time
∆′4. Thus, this step takes fixed time ∆4+∆′4, and finishes
at time t4 = t3 + ∆4 + ∆′4.

4) The process broadcasts its value set. Since the reliable
broadcast protocol is synchronous and initiated at the
fixed time t4, again, the node will finish this step in
a fixed amount of time ∆5 and move on. We also
assume a finite cap on the number and size of messages
adversaries can send, so the processing of these messages
will terminate in time ∆′5. Thus, this step takes fixed time
∆5 + ∆′5, and finishes at time t5 = t4 + ∆5 + ∆′5.

5) The process computes the union. Since each set in the
union has an upper bound on size, this takes finite time,
so we can specify that this step takes fixed time ∆6, and
finishes at time t6 = t5 + ∆6.

6) The process removes messages that fail signature ver-
ification. Since we only do one verification for each
member of the set, this takes finite time, so we can specify
that this step takes fixed time ∆7, and finishes at time
t7 = t6 + ∆7.

7) The process identifies messages which are linked to
other messages and removes them. Since we only do
comparisons for at most each pair in the union, this takes
finite time, so we can specify that this step takes fixed
time ∆8, and finishes at time t8 = t7 + ∆8.

8) Since the node has not crashed, the protocol outputs. We
can specify that this step takes fixed time ∆9, and finishes
at time t′ = t9 = t8 + ∆9.

Thus, from this analysis, there is a fixed time t′ at which the
protocol outputs for any non-faulty process.

I. Anonymous Multi-Value All-To-All Broadcast Consensus
Protocol Sybil Resistance

Theorem 16. The Anonymous Multi-Value All-To-All Broad-
cast Consensus Protocol has the Sybil-resistance property.

To show this, we first prove a lemma about the inability
of the adversary to attack the linkability of the ring signature
scheme.

Lemma 2. Let the actions of f faulty processes be controlled
by a PPT algorithm A. Define the advantage of A to be the
probability that A outputs a set {(pki, σi)}1≤i≤f+1 of f + 1
public keys and signatures not generated by an honest node,
for which any pair do not link

AdvSybil[A]

= Pr[∀i, j, Link(L, (pki, σi), (pkj , σj)) = unlinked]

Then AdvSybil[A] is negligible in the security parameter.

Proof. This follows from the linkability property of the ring
signature scheme. To see this, suppose the advantage was non-
negligible for adversary A. Consider an adversary A′ against
the linkability of the ring signature scheme which behaves
as follows: It simulates the protocol using A for the faulty
nodes. To simulate signatures by non-faulty nodes, A queries
an oracle provided for signatures from honest ring signature
users. If A finds a set of unlinked signatures not from non-
faulty public keys, A′ can return these linked signatures, and
so it will also succeed with non-negligible probability.

We now prove the Sybil-resistance property

Proof. We go through the steps of the protocol.
1) The non-faulty processes sign their values.
2) Non-faulty processes anonymously broadcast signed keys

sspki to all nodes. Non-faulty nodes now have between
them the non-faulty signed keys, and some set of signed
keys from faulty nodes

21

3) Non-faulty process i broadcasts sspksi. Non faulty nodes
now have between them the non-faulty signed keys, some
set of signed keys from faulty nodes (potentially including
those not sent in the previous step, but broadcast now).

4) Each non-faulty process computes the union sspksu.
Since sspki ∈ sspksi and sspksi ⊆ sspksu, we have
sspki in the union. Call F = sspksu \ {sspki}i∈non-faulty
the set of signed keys in this union originating from faulty
nodes.

5) The non-faulty processes remove messages that do not
have verifiable signatures. Call F ′ the set of values in F
remaining after this removal.

6) The non-faulty processes remove linked messages. Call
F ′′ the set of values in F ′ remaining after this removal.
We claim the probability of |F ′′| > f is negligible. To
see this, note that if it were not, the faulty nodes would
have generated a set of f + 1 values, and no pair these
return unlinked from the Link function, or else they
would have been removed in the previous step.

7) Since there are n − f signatures from non-faulty nodes,
and at most f signatures from faulty nodes, the returned
PKI has no more public keys than identities.

J. Anonymous Multi-Value All-To-All Broadcast Consensus
Protocol Anonymity

Theorem 17. The Anonymous Multi-Value All-To-All Broad-
cast Consensus Protocol is anonymous.

We base the anonymity property of the Shadow PKI Proto-
col on the anonymity property of the linkable ring signature
scheme.

Lemma 3. Let the actions of f faulty processes be controlled
by a PPT algorithm A, which is given access to an unordered
set of signed spk values {spki, σi}. Define the advantage of
A to be the probability that A outputs

set i, spki for some non-faulty i, minus 1
n−f

AdvSybil[A] = Pr[i ∈ non-faulty ∧ spk = spki]−
1

n− f

Then AdvSybil[A] is negligible.

Proof. This follows from the anonymity property of the ring
signature scheme. To see this, suppose the advantage was
non-negligible for adversary A. Consider an adversary A′
against the anonymity of the ring signature scheme which
behaves as follows: It generates n − f shadow public keys
{spki}1≤i≤n−f , and obtains n−f signatures {sspki}1≤i≤n−f
of arbitrary values by querying a signing oracle. It then
responds to a query to identify the signature associated with a
particular i value by running A and returning the spki value
if is matches, otherwise it chooses some spkj at random.
From the performance of A, A′ has a non-negligibly-greater-
than-chance probability of answering correctly, which would
contradict the anonymity of the signature scheme

We now prove the anonymity property

Proof. Suppose we could violate anonymity by constructing
PPT A with oracle access to the data sent in this protocol
execution. We can construct PPT A′ to win the game described
in the lemma: Let A′ receive a set of n − f signed keys. It
now simulates the oracle access to the faulty nodes view of the
protocol. To see this is possible, we go through the steps of the
protocol and demonstrate that all values will be that A receives
can be computed from the unordered list {sspki}1≤i≤n−f of
non-faulty signed messages sspki:

1) The non-faulty processes sign their values. No commu-
nication happens in this step, so there is no value for the
oracle to show.

2) Non-faulty processes anonymously broadcast their signed
keys sspki to all nodes. A′ can simulate the faulty process
view in this round by concatenating the unordered set of
non-faulty signed shadow public keys {sspki}1≤i≤n−f
to whatever values the faulty nodes broadcast.

3) Non-faulty process i broadcasts sspksi. A′ can simulate
the faulty process in the ith protocol in this round
by using whatever faulty values were sent to each
non-faulty process i in the previous concatenated with
{sspki}1≤i≤n−f as leader i’s value.

4) Each non-faulty process computes the union sspksu. No
communication happens in this step, so there is no value
for the oracle to show.

5) The non-faulty processes remove messages that do not
have verifiable signatures. No communication happens in
this step, so there is no value for the oracle to show.

6) The non-faulty processes remove linked messages. No
communication happens in this step, so there is no value
for the oracle to show.

7) Processes return a PKI. No communication happens in
this step, so there is no value for the oracle to show.

APPENDIX E
PROOFS OF PROPERTIES OF THE SHADOW PKI PROTOCOL

The proofs of the properties of the PKI Anonymization now
follow in a routine way from the corresponding proofs for the
subprotocols that comprise it.

A. Shadow PKI Protocol Liveness

Theorem 18. The Shadow PKI Protocol is live

Proof. This follows from the safety of the Reconstitution Pro-
tocol and the Anonymous Multi-Value All-To-All Broadcast
Consensus, as both the reconstitution and broadcast steps must
terminate.

B. Shadow PKI Protocol Safety

Theorem 19. The Shadow PKI Protocol is safe

Proof. We follow the steps of the protocol:
1) All processes agree on the output of the reconstitution by

the safety of that protocol.
2) Processes generate keys to publish in the broadcast

22

3) Since all honest processes are running the same broadcast
protocol with the same PKI, they agree on the same
output.

C. Shadow PKI Protocol Validity

Theorem 20. The Shadow PKI Protocol is valid.

Proof. We follow the steps of the protocol:

1) From the validity of the reconstitution protocol, all honest
processes initialize keys of all other honest processes in
ring signatures PKI.

2) Processes generate keys to publish in the broadcast
3) Since any honest process with a key in the ring signature

obtains a key in the shadow PKI through the broadcast
protocol with high probability, and all honest nodes share
the same set of outputs, the Shadow PKI Protocol is valid.

D. Shadow PKI Protocol Integrity

Theorem 21. The Shadow PKI Protocol has the integrity
property.

Proof. This follows from the integrity of the reconstitution
and broadcast: All identities in the output are present in the
ring signature PKI and therefore in the input PKI.

E. Shadow PKI Protocol Inclusion

Theorem 22. The Shadow PKI Protocol has the inclusion
property.

Proof. We follow the steps of the protocol:

1) From the inclusion of the reconstitution protocol, all
honest processes are included in the ring signature PKI

2) Processes generate keys to publish in the broadcast
3) Since any honest process with a key in the ring signature

obtains a key in the shadow PKI through the broadcast
protocol with high probability, the Shadow PKI Protocol
has the inclusion property.

F. Shadow PKI Protocol Decentralization

Theorem 23. The Shadow PKI Protocol has the decentraliza-
tion property.

Proof. Note that the Shadow PKI Protocol is described as a
single algorithm which all processes run simultaneously. While
some nodes take a leader role in subprotocols to broadcast
data, ultimately, the input data for each node consists only of
the PPKI and the individual’s private key - there is no input
data distinguishing a particular node as a leader.

G. Shadow PKI Protocol Synchrony

Theorem 24. The Shadow PKI Protocol has the synchrony
property.

Proof. We follow the execution of a non-faulty process
through the steps of the protocol, showing from the synchrony
of the subprotocols that each step of the algorithm can be
predetermined to finish at some fixed time.

1) Processes start at time t1
2) The processes run the reconstitution protocol. By the

synchrony of this protocol, this step requires a fixed
amount of computation and no network use, so we can
specify that this step takes fixed time ∆1, and finishes at
time t2 = t1 + ∆1.

3) Processes generate keys to publish in the broadcast. This
step requires a fixed amount of computation and no
network use, so we can specify that this step takes fixed
time ∆2, and finishes at time t3 = t2 + ∆2.

4) The processes run the broadcast protocol. By the syn-
chrony of this protocol, this step requires a fixed amount
of computation and no network use, so we can specify
that this step takes fixed time ∆3, and finishes at time
t4 = t3 + ∆3.

5) Since the node has not crashed, the protocol outputs. We
can specify that this step takes fixed time ∆4, and finishes
at time t′ = t5 = t4 + ∆4.

Thus, from this analysis, there is a fixed time t′ at which the
protocol outputs for any non-faulty process.

H. Shadow PKI Protocol Sybil Resistance

Theorem 25. The Shadow PKI Protocol has the Sybil-
resistance property.

Proof. This follows from the Sybil-resistance of the subpro-
tocols

1) Since the reconstitution is Sybil resistant, the ring signa-
ture PKI has Sybil resistance.

2) Processes generate keys to publish in the broadcast
3) Since the broadcast protocol is Sybil-resistant and oper-

ates on a Sybil-resistant input PKI, its output is Sybil
resistant.

I. Shadow PKI Protocol Anonymity

Theorem 26. The Shadow PKI Protocol is anonymous.

Proof. This follows from the anonymity of the broadcast step:
Since it is impossible to identify nodes to keys in this step,
the output PKI is anonymized.

23

