
Plumo: An Ultralight Blockchain Client

Psi Vesely1,2, Kobi Gurkan2,3, Michael Straka2, Ariel Gabizon4, Philipp
Jovanovic2,5,

Georgios Konstantopoulos6, Asa Oines2, Marek Olszewski2, and Eran
Tromer2,7,8

Abstract. Syncing the latest state of a blockchain can be a resource-
intensive task, driving (especially mobile) end users towards centralized
services offering instant access. To expand full decentralized access to
anyone with a mobile phone, we introduce a consensus-agnostic compiler
for constructing ultralight clients, providing secure and highly efficient
blockchain syncing via a sequence of SNARK-based state transition
proofs, and prove its security formally. Instantiating this, we present
Plumo, an ultralight client for the Celo blockchain capable of syncing the
latest network state summary in just a few seconds even on a low-end
mobile phone. In Plumo, each transition proof covers four months of
blockchain history and can be produced for just $25 USD of compute.
Plumo achieves this level of efficiency thanks to two new SNARK-friendly
constructions, which may also be of independent interest: a new BLS-
based offline aggregate multisignature scheme in which signers do not
have to know the members of their multisignature group in advance, and
a new composite algebraic-symmetric cryptographic hash function.

1UCSD psi@ucsd.edu 2cLabs {kobi,a,m,mstraka}@clabs.co 3Ethereum Foun-
dation 4AZTEC Protocol ariel@aztecprotocol.com 5University College Lon-
don p.jovanovic@ucl.ac.uk 6Independent Researcher me@gakonst.com 7Columbia
University 8Tel Aviv University tromer@cs.tau.ac.il

1 Introduction

Among numerous obstacles to widespread adoption of blockchain technologies,
scalability has been identified as a major hurdle [Mei18]. Recent years have
seen major improvements to throughput and latency via new proof-of-stake
(PoS) protocols [Amo+18; Yin+19], sharding [KK+18; Al-+18], and payment
channels [Mal+17; Gud+19]. This work tackles another scalability challenge: high
participation costs for end users.

In order to securely interact with a blockchain without trusting a centralized
party, a node must first download and verify the blockchain. The requisite data,
storage, and computation resources are unavailable to many potential participants.
For example, as of August 2021, the Ethereum blockchain is over 900GB (in
non-archival mode). Even in light sync mode, 6.5GB of header metadata must
be downloaded and verified, exceeding the bandwidth and storage available to
many mobile users. Participation cost concerns for end users also apply in the
context of cross-blockchain interoperability protocols, where smart contract code
running on one chain (with high storage and computation costs) needs to verify
the state of another chain.

High participation costs motivate the need for ultralight clients (UCs), which
verify succinct proofs of valid blockchain data leading up to the current state. Prior
attempts [Nik+17; Bon+20; Bün+20b; Che+20] have various restrictions and
drawbacks, including specificity to Proof-of-Work (PoW), implementation com-
plexity, unsuitability for smart contract blockchains, and significant blockchain
performance hits outside the UC context. Some of these relative drawbacks are
outlined in Table 1.

We introduce the Plumo system, an efficient UC protocol, which overcomes
these drawbacks and achieves nearly-instant ultralight client synchronization. It is
based on succinct transition proofs, using two new SNARK-friendly constructions.

A brief history of ultralight clients. To contextualize, we first describe
previous works in more detail, and then describe how our techniques overcome
prior drawbacks.
Kiayias et al. introduced NIPoWPoWs in [KMZ20], a PoW-specific proof of SPV
that relies on statistical properties of hashes to make probabilistic guarantees
about the amount of work a chain contains. Bünz et al. extended this result in
Flyclient [Bün+20b], the first NIPoPoW-based UC, guaranteeing unconditional
succinctness with O(log2 n) sized proofs1 and supporting variable mining diffi-
culty. It is integrated into chains by adding Merkle Mountain Range (MMR)
commitment to the transaction roots of the entire blockchain to each header.
Given the latest block header containing a MMR commitment, the verifier hashes
it to obtain challenge block heights pseudorandomly; they accept if also provided
MMR-inclusion and subtree equality-proofs that verify with respect to those
challenges and the MMR commitment. Smart contracts are supported, since
miners are trusted to have verified all consensus rules. However, this approach

1 The NIPowPow protocol of Kiayias et al. is forced to revert to the SPV light client
protocol in the presence of bribing and selfish mining attacks.

2

UC
proof
type

consensus SA
programma-

bility
trusted
setup

app/prover
curve bits

proof sizes (days) verifier
time347 694 1,736

Plumo transition BFT X X X 377→ 761 1.2KB 2.5KB 6.4KB o(n)

Flyclient NIPoPoW PoW X X χ 256 135KB 163KB 204KB O(log2 n)
[Che+20] transition PoW χ χ X 753 � 753 7.4KB 10KB 18KB o(n)
[Che+20] PCD PoW χ χ X 753 � 753 0.4KB O(1)

Mina PCD Ouroboros χ χ X 753 � 753 7.1KB O(1)
Halo 2/Pickles PCD PoW/Ouroboros χ χ 255 � 255 O(1) O(1)

Table 1: Comparison of UCs. App curve bits denotes the size of the curve used for
most network activity including making transactions; prover curve bits refers to the
curve used to produce and verify UC proofs. Estimates for both [Che+20] and Flyclient
proof sizes are taken from [Che+20] and are for a “barebones” (scriptless) Bitcoin. The
Flyclient paper reports slightly larger proof sizes for Ethereum due to the difference
in header size. Since block times for Celo are about 120× shorter than for Bitcoin,
we compare UC proof sizes by time since the genesis block. Halo 2 and Pickles are
both proposed network upgrades to ZCash and Mina, resp., exact proof sizes are not
yet available. NIPoWPoWs are resticted to PoW networks and in particular SPV;
recursive composition based PCD as used by Mina and [Che+20] requires a trusted
setup; otherwise consensus, SA, programmabaility, and trusted setup should be seen as
implementation choices rather than limitations of a proof type. Some proof types also
impose curve requirements (see below).

does not extend to PoS blockchains, or to full verification of a PoW blockchain,
since these require checking every pertinent state transition.

Chiesa and Tromer proposed PCD, a primitive permitting distributed compu-
tations between mutually distrustful parties that run indefinitely [CT10]. Its first
practical construction by Ben-Sasson et al. used recursive composition of fully
succinct SNARKs over cycles of elliptic curves in [Ben+14]. Building on this PCD
construction, Bonneau et al. proposed Mina (formerly known as Coda) [Bon+20],
the first fully succinct (i.e., constant-sized) blockchain whose state at any time
can be verified in constant time. While this results in an ideal situation for the
UC verifier, these techniques impose a large performance overhead on the part of
the protocol being proved (all of consensus in the case of Mina) and the heavy
cryptographic machinery required imposes high development costs.

Foremost, both the UC prover and verifier, and all of the consensus verified
by the UC protocol must be set over a cycle of quite inefficient pairing-friendly
curves at 753 bits2 where, e.g., it was found Groth16 verification takes roughly
15× longer than on BLS12-381 [Che+20]. Additionally, a trusted setup is required
for each curve and these setups must be computed sequentially3.

Recent developments in PCD constructions allow compatibility with transpar-
ent SNARKs and cycles of non-pairing friendly curves, which can provide 100-bits
security at just 255 bits . Bowe et al. introduced Halo [BGH19], later formalized
as an atomic accumulation scheme by Bünz et al. in [Bün+20a]. Halo amortizes

2 MNT4-753/MNT6-753 is the most efficient known pairing-friendly cycle at 128-bits
security. Evidence suggests the nonexistence of significantly better options [CCW19].

3 Subsequent work introducing fully succinct SNARKs with universal SRSs [Mal+19]
allow parallel setups, but perforance lags behind circuit-specific SNARKs [Chi+20].

3

the cost of IOP [BSCS16] and AHP-based [Chi+20] proof system verification via
lazy batch verification of polynomial commitment openings, recursively verifying
just the comparatively cheap arithmetic checks on the evaluations. ZCash is
currently working on a refinement of these techniques with “Halo 2,” and Mina is
introducing a “Pickles” network upgrade that will also use atomic accumulation
based PCD. These advantages come at the loss of pairing-based cryptography,
which powers efficiency and non-interactivity otherwise not afforded4.

Simplifying assumptions. Using SAs provides weaker security guarantees for
light clients than proving consensus in full. Adversarial control of the majority
of mining power or a dishonest supermajority on a BFT committee can result
in a light client being convinced of an invalid state. Under these conditions full
nodes can still be convinced of an alternate history, though transactions in the
malicious fork have to follow consensus rules, which can still enable a great deal
of fraud and theft. The violation of such assumptions, however, would still render
the blockchain insecure for full nodes, despite enabling even worse attacks for
light clients. This justifies their use in practice.

Proving a light client protocol has several advantages over proving all of
consensus. First, there’s simply much less to prove, especially so for networks of-
fering programmability; indeed, only Flyclient and Plumo support programmable
blockchains. Even without programmability, a single prover cannot keep up with
the 1tx/s Mina blockchain, and to deal with this they incentivize “SNARK
workers” to compete to provide proofs for different parts of a PCD recursion
tree (allowing parallelization of prover work). Second, to efficiently prove all
of consensus, all of consensus must be optimized to this end. However, opti-
mizing for SNARK arithmetization can negatively impact performance outside
the context of the SNARK prover, e.g., while the BHP-BLAKE2s cryptographic
hash we introduce in Section 5 is SNARK-efficient, it is much less efficient than
symmetric-flavor hashes like SHA3 on conventional von Neumann computer
architecture.

Transition proofs. Plumo is the first UC to use transition proofs, allowing a
client hardcoded with the genesis state s0 to sync to some later state sn via a
chain of sequential intermediate SNARKs. We believe the use of a SA is not just

4 E.g., non-interactive multisignatures, used often in BFT consensus and multisignature
wallets, are only possible with pairings; for consensus naive O(n2) communication
can be avoided with CoSi [KK+16], but higher latency persists, and multisignature
wallet spends would require participants to all be online concurrently. Pairing-based
cryptography will also power Celo’s forthcoming ARKE private contact discovery
system (see https://celo.org/papers/future-of-digital-currencies).

4

https://celo.org/papers/future-of-digital-currencies

justified, but essential to our approach 5 ; together with heavy optimization of
just the small part of consensus our light client protocol encapsulates, our SA
allows each SNARK to attest to four months of blockchain history.

Our design also allows us to keep the full Celo consensus on the efficient pairing-
friendly BLS12-377 curve. To get around the problem that proving signatures
over the same curve they were created on is not possible without highly expensive
non-native arithmetic, we borrow the approach of using a two-chain of elliptic
curves introduced by Bowe et al. in Zexe [Bow+20], thus avoiding the need to
run consensus over a costly pairing-friendly cycle.

Contributions. This paper presents the following contributions:

– A formal model of UCs general enough to capture all aforementioned UCs,
while at the same time remaining quite simple.

– A compiler theorem capturing our simple and efficient approach to building
secure UCs with transition proofs.

– BBSGLRY, a new BLS-based aggregate multisignature scheme that improves
on state-of-the-art AMSP-PoP [BDN18] by removing the need to know and
append the aggregate public key of one’s multisignature group before signing.

– A framework for building composite algebraic-symmetric cryptographic hashes,
which improve on the SNARK-efficiency of symmetric hash functions while
maintaining their more well-established security guarantees, and our proposed
instantiation BHP-BLAKE2s.

– A Rust implementation of Plumo showing that for $25/day USD of compute
on modern cloud infrastructure an untrusted prover can provide proofs for the
whole Celo network, and that a Plumo client can sync and verify a summary
of the latest blockchain state in seconds even on a low-end mobile phone.

Organization. The rest of the paper is organized as follows. Section 2 gives
an overview of the Plumo architecture. Section 3 describes our threat model.
Section 4 presents a formalization of ultralight clients, our compiler, and then
Plumo as an instantiation. Section 5 presents our aggregate multisignature
scheme and framework for composite algebraic-symmetric SNARK-friendly hashes,
which we instantiate with Bowe-Hopwood-Pedersen and BLAKE2s. Section 6
presents benchmarks for our Plumo Rust implementation and details numerous
optimizations.

We refer the reader to the appendices for additional supplemental material.
Appendix A covers additional related work. Appendix B covers notation, a
formal blockchain model, background on PoS and IBFT as used by Celo, and
cryptographic assumptions and definitions. Appendix C describes our trusted

5 We believe the estimates of subsequent work [Che+20] for a transition-based UC
proving full consensus of a barebones Bitcoin network to be off by an order of magni-
tude even assuming a circuit an order of magnitude greater than Plumo’s (which
required coordinating a historically large 228 powers-of-τ trusted setup ceremony),
and hashing with SNARK-optimized Poseidon [Gra+19]. Such circumstances would
allow proofs to cover about a week, but Flyclient would offer much faster verifier
time with only slightly larger proofs given the relative costs of SNARK verification
and hashing.

5

setup ceremony and several optimizations that have enabled faster execution
and verification than previous ceremonies. Appendix D includes several proofs
deferred from earlier sections. Appendix E presents a Plumo specification with
details and optimizations that we omitted earlier for clarity and abstraction.

2 Overview

The Celo blockchain uses the Istanbul BFT consensus [Mon20] (see Appendix B.3).
We observe that in order to verify the latest block header in BFT networks a client
only needs the public keys of the current committee. As long as no committee has
had a dishonest supermajority, a client who verifies a chain of committee hand-off
messages certifying the PoS election results, known as epoch messages, does not
need to check each block or even the headers of each block. Instead, to make (or
verify a recent) transaction, the client simply asks for the latest (or otherwise
relevant) block header, and verifies that it has been signed by a supermajority of
the current committee. This constitutes the simplifying assumption (SA) and
light client protocol proved by Plumo (formally, Assumption 1).

Fig. 2.1: Plumo architecture overview. In practice, our proofs cover 120 epochs.

Since Celo has 5s block times, this means transition proofs skip 17,280 blocks for
every epoch message they verify. Further, it reduces the task of optimizing the
transition proof SNARK circuit to just optimizing the epoch messages and their
associated signatures.

In our circuit, we verify 120 sequential epoch messages, each signed by a
potentially different group of roughly 67–100 validators. A multisignature is
already computed over each epoch message as part of our light client protocol;
compounding this efficiency, the Plumo prover aggregates these multisignatures
into a single aggregate multisignature, which costs half the constraints to verify
for our BBSGLRY signature scheme. To further reduce the circuit size, instead
of passing in the list of public keys that signed each epoch message, we pass
in a bitmap indicating who signed, where the canonical ordering is given by
the preceeding epoch message listing the committee public keys. The Hamming

6

weight is first verified to be sufficient, and then the bitmap is used to compute
the aggregate public key corresponding to each epoch message.

As cryptographic hashes that perform many bitwise operations are partic-
ularly expensive inside SNARKs, for epoch messages we instantiate BBSGLRY
with a new composite cryptographic hash built from the collision-resistant Bowe-
Hopwood-Pedersen hash [Hop+21] and the symmetric-flavor BLAKE2s crypto-
graphic hash [Aum+13]. While lookup tables make it possible to at least avoid
scalar multiplications, Bowe-Hopwood-Pedersen still requires many group ad-
ditions, and while efficient in SNARKs is slow on conventional von Neumann
computer architecture. By instantiating BBSGLRY with BLAKE2s for signing
block headers, the vast majority of consensus is unaffected by this inefficiency, si-
multaneously ensuring ultralight clients (UCs) can efficiently verify block headers
after syncing the current committee’s public keys.

Aggregate multisignatures. For a longer history of BLS-based signatures,
see Appendix A. The BBSGLRY aggregate multisignature scheme takes the
Boneh-Lynn-Shacham (BLS) signature [BLS01] as its starting point and combines
various extensions from [Bon+03; Bol03; RY07]. Its most similar to the AMSP-
PoP aggregate multisignature scheme presented by Boneh et al. in [BDN18].
AMSP-PoP requires signers who create a multisignature know the group of signers
in advance. In particular, signers must compute the aggregate public key apk of
the signer group and then prepend it to the message before hashing and signing
in the normal way: Sign(sk, apk,m) = Hs(apk‖m)sk. For one, this expands the size
of our circuit by adding more data to hash. Further, this forces BFT consensus
to restart if a node who participates honestly in earlier rounds goes Byzantine
and fails to produce their contribution to the multisignature.

BBSGLRY overcomes these limitations as follows. We observe that in the
definitions used by [BDN18] that proofs-of-possession are checked by the key
aggregation algorithm KeyAgg. The adversary is permitted to output both a
set of aggregate public keys and a set of pairs of public keys and PoPs. Since
KeyAgg is not run on the aggregate public keys, an aggregate public key must be
prepended when signing to prevent rogue key attacks. We believe their definitions
do not reflect the usage of PoPs in production systems, including Celo, and
have thus provided new definitions in Appendix B.4, where every public key the
adversary outputs must be accompanied by a valid PoP. Working from these
definitions, we are able to prove security of BBSGLRY, where signing is identical
to BLS: Sign(sk,m) = Hs(m)sk.

SNARK-friendly hashing. When representing an arithmetic circuit in R1CS,
addition gates are essentially free, while multiplication gates are not. Only recently
have we seen the introduction of low-multiplication cryptographic hash functions,
such as MiMC [Alb+16] and Poseidon [Gra+19]. While such hash functions
are a promising development, we believe there has so far been insufficient time
for cryptanalysis of these designs. As an alternative, we formalize a folklore
technique of first “shrinking” a long message with an algebraic collision-resistant
hash (CRH) requiring far fewer constraints per message bit, and then call the
compression function of a “symmetric-flavor” cryptographic hash function on

7

its output. Our compiler in Section 5.2 formalizes this approach and provides a
security reduction appropriate for use when instantiating a random oracle (as in
necessary for BBSGLRY). We instantiate our compiler with the Bowe-Hopwood-
Pedersen hash and with the BLAKE2s compression function to produce the
BHP-BLAKE2s cryptographic hash we use for epoch messages.

A two-chain of elliptic curves. For background on cycles and two-chains
see Appendix B.4. A SNARK arithmetic circuit is defined in the scalar field
Fp of an elliptic curve. This presents a problem when verifying authenticated
data computed over that same field, where verification (such as of BBSGLRY
signatures) generally involves Fq operations. To avoid performing costly non-
native arithmetic, which blows up circuit size, or moving to an expensive pairing-
friendly cycle, we use a two-chain of elliptic curves, where the scalar field of the
second curve is the same size as the base field of the first. In particular, we use
the BLS12-377/BW6-761 two-chain, where the first (inner) curve is the same as
in the original two-chain by Bowe et al [Bow+20], and the second (outer) was
introduced by Housni and Guillevic [EHG20] as more efficient replacement for
the outer curve of Bowe et al.. This allows all of consensus to be carried out
over an efficient pairing-friendly curve, while only the UC prover and UC verifier
when syncing use the slower second curve.

3 Threat model

In addition to a number of cryptographic hardness assumptions, Plumo makes
the following security assumptions with respect to network participants:

Assumption 1. For each epoch it holds n > d3f/2e, where n and f are the
number of total and dishonest validators.

Assumption 2. There is at least a single honest participant in the multi-party
computation (MPC) for the SNARK trusted setup.

We refer the reader to Appendix B.3 for background on proof-of-stake and
the Istanbul byzantine fault tolerant consensus Celo uses. There we discuss
the impacts of long-range attacks and future committee attacks, a new related
attack on PoS consensus that we identify and propose a simple defense for, on
the Celo light client protocol our work builds on. For more information on the
multiparty computation used for our SNARK trusted setup ceremony, including
optimizations that have made it faster to carry out and verify than past public
ceremonies Appendix C.

4 Ultralight clients

In Appendix B.2 we present a formal model of blockchain systems, including
more explicit definitions of the building blocks which we describe below. To recap,
we distinguish between full nodes, which use a state transition function S to

8

incrementally compute the full state s corresponding to a blockchain b = [bi]
n
i=1 as

new blocks bn+1, bn+2, . . . arrive, and light clients, which use the summary update
function Ŝ to incrementally compute a summary ŝ of the blockchain as they
receive new trimmings b̂n+1, b̂n+2, A trimming is a chunk of blockchain data
(e.g., block headers for PoW blockchains or epoch messages for BFT consensus)
belonging to a trimming language LĈ representing local checks such as syntax and
signature verifications. A blockchain summary belongs to the summary language
Lŝ and is a commitment to the full state of the blockchain, enabling verification
of specific transactions and full state values via succinct inclusion proofs.

Ultralight clients. Informally, we define an ultralight client (UC) to be one
that receives succinct arguments of knowledge (AoKs) of trimmings. For n ∈ Z+

and b̂ of length n, an UC receives proofs of the summary relation:

R(n)
ŝ =

{
(ŝ ∈ Lŝ; b̂ ∈ LĈ) : ŝ = Ŝ(ŝg, b̂)

}
.

An UC starts with a hardcoded genesis summary ŝg. It can verify ŝ is the valid
summary of the blockchain n trimmings later by verifying a succinct proof of

R(n)
ŝ . The argument of knowledge property guarantees that a valid trimmed

blockchain b̂ ∈ LĈ corresponding to ŝ can always be extracted from the proofs a
client accepts.

Incremental provers. Since prover resources are finite, for sufficiently high n

it becomes impractical to prove R(n)
ŝ . An UC prover thus needs to be able to

create such proofs incrementally and re-use work in some way. We model this
by incrementally giving the prover one or more new trimmings each time it is
invoked to create a new proof for the latest summary. The prover locally stores
an auxiliary state ω to help it create the new proof. The growth of ω necessarily
must be significantly sublinear in the size of the trimmed blockchain for this
approach to remain concretely efficient long-term.

PCD based UCs address this by recursively verifying the previous state
transition proof together with the new blocks or trimmings. Avoiding various
drawbacks of this approach elaborated on in Section 1, we opt for the simpler

approach of transition proofs, i.e., prove R(n)
ŝ for any n by producing dn/me

SNARK proofs of

R(m)
ŝ =

{
(ŝi−1, ŝi ∈ Lŝ; b̂ ∈ Lmb̂) : ŝi = Ŝ(ŝi−1, b̂)

}
, (1)

for i ∈ dn/me. For sufficiently large n (e.g., 4 months in the case of Plumo), the
concrete proof length and verification time of this sublinear approach can be on
par with asymptotically better (but more complex) approaches for years out, as
illustrated by our results Table 1.

Extraction in the presence of oracles. A summary relation often must
some authenticated data (e.g., validator signatures). Unfortunately, standard
AoK definitions fail to guarantee extraction when the adversary is granted access
to additional oracles such as signature oracles. This problem has been first and

9

foremost studied by Fiore and Nitulescu, who developed the notion of an O-
SNARK and produced the first results regarding their existence [FN16]. We
adapt their knowledge soundness definition to our UC interface.

4.1 Ultralight clients

An ultralight client (UC) ΠUC is defined by a triple of efficient non-interactive
algorithms (Setup,ProveUpdate,VerifyUpdate) working as follows

– Setup(1λ)→ pp: a randomized setup algorithm run by one or more parties that,
input a security parameter λ (in unary), outputs a set of public parameters pp.

– ProveUpdate(pp, ŝ, ω, ŝ′, b̂) → (π′, ω′): an untrusted light client acts as the
prover that, input public parameters pp, previous summary ŝ ∈ Lŝ with
auxiliary state ω, and current summary ŝ′ with corresponding new trimmings
b̂ ∈ Ln

b̂
, outputs a new proof π and auxiliary state ω′.

– VerifyUpdate(pp, ŝ, π) → {0, 1}: an UC verifier that, given a summary ŝ and
proof π, outputs 0 (reject) or 1 (accept).

and satisfying succinctness, perfect completeness, and adaptive security, as defined
below. Assuming a strict total order ≤ on summaries, if presented with more
than one valid (ŝ, π) pair, an UC can efficiently determine and accept the greater
as the current summary.

Succinctness. Let ‖b̂‖ be the length of the description of b̂ (as opposed to
the number of trimmings |b̂|). Succinctness is captured by the following set of
properties:

– |π| grows sublinearly in ||b̂||.
– VerifyUpdate runs in time sublinear in ||b̂||.
– |ω| grows sublinearly in ||b̂||.

Completeness. An UC ΠUC = (Setup,ProveUpdate,VerifyUpdate) is perfectly
complete if for every adversary A it holds that

Pr


b̂1‖ · · · ‖b̂m ∈ LĈ

∧
∃i ∈ [m] :

VerifyUpdate(pp, ŝi, πi) 6= 1

∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ)

[b̂i]
m
i=1 ← A(pp)

For i ∈ [m] :

ŝi ← Ŝ(ŝi−1, b̂i)

(πi, ωi)← ProveUpdate(pp, ŝi−1, ωi−1, ŝi, b̂)

 = 0,

where ŝ0 ← ŝg, π0 ←⊥, and ω0 ←⊥, and the probability is taken over choice
of pp and any random coins used by A. Adaptive security. An UC is

adaptively secure if it satisfies Definition 5 for R = R(∗)
ŝ and the appropriate

auxiliary input generator and oracle families, and where (x,w) = (ŝ, b̂) and
Verify = VerifyUpdate.

Flexibility of our definition. We illustrate the flexibility of our definitions
by showing how they can capture PCD and NIPoWPoW based UCs as well. A
trimmed blockchain can be modeled as a DAG where the current summary is

10

the sink. Starting with the edge leaving the sole source, labeled ŝg, each edge

e = (ŝ, ŝ′) is labeled with a consecutive trimming b̂ taking the state from ŝ to

ŝ′ = Ŝ(ŝ, b̂). Then depending on the construction of PCD used, we have ω = (π, x)
where x is additional auxiliary information such as state tree roots and π is the
proof generated by a S/NARK and/or succinct accumulator.

Next consider Flyclient [Bün+20b], where the summary is a Merkle Mountain
Range commitment to the block headers, which themselves form the trimmed
blockchain. Here the UC prover must store the entire trimmed blockchain on
disk, but only needs to open the commitment by reading from disk block headers
at a logarithmic number of heights; thus we define |ω| to be logarithmic. Here
proofs, composed of leaf inclusion and subtree equality proofs, are distinct from
auxiliary state, but also logarithmic in |b̂|.

4.2 An ultralight client compiler

We introduce a compiler that outputs a secure UC given a summary relation

R(m)
ŝ for a fixed m ∈ Z+ and O-SNARK ΠOS for the oracles corresponding to

the authenticated data in verified Rŝ6.

Construction 1. Given a Z-auxiliary input O-SNARK ΠOS = (Gen,Prove,Verify)

for R(m)
ŝ and for the oracle families corresponding to all data computed using

a secret state verified in R(m)
ŝ , we construct an ultralight client ΠUC = (Setup,

ProveUpdate,VerifyUpdate) as follows:

Setup(1λ)→ pp :

1. Output pp← Gen(1λ)

VerifyUpdate(pp, ŝ, π) :

1. Parse ([ŝ]k−1i=1 , [πi]
k
i=1)← π

2. Set ŝ0 ← ŝg and ŝk ← ŝ.
3. Output b← ∧ki=1Verify(crs, ŝi−1, ŝi, πi)

6 We note that proofs of R(m′)
ŝ for 1 ≤ m′ ≤ m are called for by our construction as

well. With transparent and universal setup SNARKs this can be achieved just by
making m circuits, but for SNARKs with circuit-specific setups adding support for
padding in R(m)

ŝ can avoid the need for m distinct trusted setups.

11

ProveUpdate(pp, ŝ, ω, ŝ′, b̂)
1. If ŝ corresponds to a trimmed blockchain of n trimmings, then ω will

contain r ≡ n mod n “remainder” trimmings b̂r, k = dn/me SNARK
proofs π = [π]ki=1, and k − 1 intermediate summaries ŝ = [ŝi]

k−1
i=1 .

2. If r = 0 reset ŝ ← ŝ‖ŝ, else reset π ← [πi]
k−1
i=1 as the last proof covers

only r < m trimmings.
3. Set b̂′1‖ · · · ‖b̂′t ← b̂r‖b̂ where partitions [b̂′i]

t−1
i=1 each contain m trimmings

and
|b̂′t| = r′ = n+ |b̂| (mod m) ∨ m .

4. If r′ < m then set b̂r′ ← b̂′t, else set b̂r′ ←⊥.
5. Generate new intermediate states and proofs for i ∈ [t]:

ŝ′i ← Ŝ(ŝ′i−1, b̂
′
i) π̂i ← Prove(crs, ŝ′i−1, ŝ

′
i; b̂

′
i)

where ŝ′0 is the last intermediate summary in ŝ.
6. Let π′ ← π‖π′, ŝ′ ← ŝ‖[ŝ′i]

t−1
i=1, and ω′ ← (b̂r′ , π

′, ŝ′). Output (π′, ω′).

In Appendix D we prove the following adaptive security theorem.

Theorem 1. If ΠOS = (Gen,Prove,Verify) is an adaptively secure SNARK for
relation Rŝ, auxiliary input generator Z, and oracle family O, then the UC ΠUC

output by Construction 1 is adaptively secure (Section 4.1) for Rŝ, Z, and O.

4.3 The Plumo ultralight client

We make a few simplifications for clarity of exposition in this section; a full
specification of our circuit is present in Appendix E. Celo uses the Istanbul BFT
consensus algorithm [Mon20]. We observe that by taking Assumption 1 as our
simplifying assumption (SA), a light client only needs verify a valid chain of
epoch messages delegating authority from committee to the next in order to
learn the current committee public key set. From there, they can download the
most recent block header, verify its multisignature, and learn the latest state
roots (and also easily check their balance, make a transaction, etc.).

The most recent Celo epoch message is the current summary. In addition to
the current committee public key set, the summary contains the epoch index,
the current and parent entropy (see future committee attacks Appendix B.3),
and the signer threshold7. The standard operator ≤ over the epoch index of each
summary defines the required total order ≤ over summaries (a strict total order
under our simplifying assumption).

The summary update relation checks there exists a sequence of epoch messages
where each successive message (1) is signed by at least the signer threshold
number of validators, (2) increases the epoch index by 1, and (3) has parent
entropy matching the previous current entropy. Then it verifies an aggregate
multisignature over the result.

7 Our PoS election occasionally elects n<100 committee members. Rather than compute
d2n/3e+1 in the circuit, we piggyback on our SA, including it in the epoch message.

12

Plumo instantiates the compiler from the previous section using the Groth16
proof system, which was proven to be knowledge sound in the AGM under
the q-DLOG assumption in [FKL18]. For Plumo, we must additionally require
Groth16 is an O-SNARK with respect to BBSGLRY signing oracles . We also
assume that the auxiliary input our adversary receives is “benign”8. We note here
that there have been few prior results on extraction in the presence of auxiliary
inputs and/or oracles [Bit+16; FN16], none of which apply to our construction9.

Theorem 2. Let H : {0, 1}∗ → G1 be a hash family modeled as a random oracle
and let BBSGLRYH be the BBSGLRY signature scheme (Section 5.1) instantiated
with H, and let Z be a benign auxiliary input generator. Assume the Groth16
SNARK is an adaptive argument of knowledge (Definition 5) for (OH,OBBSGLRYH)
and Z. Then Plumo is an adaptively secure UC for Rŝ, Z, OH, and OBBSGLRYH .

Proof. This follows directly from the compiler Theorem 1.

5 SNARK-friendly signatures and hashing

5.1 BBSGLRY: non-interactive aggregate multisignatures

BBSGLRY is an offline aggregate multisignature scheme providing non-interactive
key and signature aggregation, and not requiring signers know the multisignature
group in advance.

Construction 2 (BBSGLRY aggregate multisignature scheme). Given a type
3 bilinear group sampler SampleGrp3 and two hash families Hs : {0, 1}∗ → G1

and Hp : G2 → G1, our aggregate multisignature scheme BBSGLRY is defined by
an 8-tuple of efficient algorithms (Setup,KeyGen,VPoP,Sign,KeyAgg,MultiSign,
AggSign,Verify), working as follows:

– Setup(1λ) → pp: sample a type 3 bilinear group 〈group〉 ← SampleGrp3(1λ)

and two hash functions (Hp,Hs)
$←− Hλ. Return pp← (〈group〉,Hp,Hs).

– KeyGen(pp) → (pk, sk, π): choose a secret key sk
$←− F and set the public key

pk← Gsk
2 ∈ G2. Create the PoP π ← Hp(pk)sk ∈ G1. Return (pk, sk, π).

– VPoP(pp, pk, π): given public key pk ∈ G2 and PoP π ∈ G1, return 1 if
e(π, G2) = e(Hp(pk), pk), else 0.

– Sign(pp, sk,m)→ σ: given a secret key sk ∈ F and message m ∈ {0, 1}∗, return
a signature σ ← Hs(m)sk ∈ G1.

– KeyAgg(pp, {pki}
n
i=1) → apk: given n distinct public keys {pki}

n
i=1 ∈ Gn2 ,

return aggregrate public key apk←
∏n
i=1 pki ∈ G2.

– MultiSign(pp, {σi}ni=1) → σ: given n signatures {σi}ni=1 ∈ Gn1 under distinct
public keys for the same message, return multisignature σ ←

∏n
i=1 σi ∈ G1.

8 A benign distribution supplies negligible advantage to any adversary against any
construction (e.g., the uniform distribution is conjectured benign [Bit+13]).

9 Results for hash-then-sign signatures in [FN16] require modifying the signer to sample
and prepend a random nonce to each message they sign—currently no UCs which
prove verification of signatures are doing this.

13

– AggSign(pp, [σi]
n
i=1) → Σ : given a list of n multisignatures [σi]

n
i=1 ∈ Gn1 ,

return aggregate multisignature Σ ←
∏
i∈[n] σi ∈ G1.

– Verify(pp, [(apki,mi)]
n
i=1, Σ) → {0, 1} : given a list of n aggregate public key

and message pairs [(apki,mi)]
n
i=1 and an aggregate multisignature Σ, return 1

if e(Σ, G2) =
∏n
i=1 e(Hs(mi), apki); else return 0.

In Appendix D we prove the following unforgeability theorem.

Theorem 3. BBSGLRY is a computationally unforgeable aggregate multisigna-
ture (Definition 4) under ψ-co-CDH (Definition 3) when instantiated with random
oracles Hs,Hp.

5.2 Composite algebraic-symmetric hash functions

BHP-BLAKE2s is a cryptographic hash function that first “shrinks” its input
using the SNARK-optimized Bowe-Hopwood-Pedersen (BHP) collision-resistant
hash [Hop+21], then runs the BLAKE2s compression function [Aum+13] on the
result. We prove security via instantiating the following construction.

Construction 3. Given collision-resistant hash CRH : {0, 1}∗ → B , injective
encoding Encode : B → {0, 1}b−t, and random oracle O : {0, 1}b → {0, 1}c for
positive integers ` and t ≥ dlog2(d`/ce + 1)e, we construct a composite hash
function H : {0, 1}∗ → {0, 1}` as follows. Let k ← d`/ce, and for integers
0 ≤ x ≤ 2t − 1 denote by xut the t-bit unsigned binary representation of x. On
input m ∈M:

1. Shrink the message to obtain the intermediate hash h′ ← CRH(m).
2. Compute the binary encoding of the intermediate hash h′enc ← Encode(h′).
3. Output the first ` bits of O(0ut‖h′enc)‖O(1ut‖h′enc)‖ . . . ‖O(kut‖h′enc).

In Appendix D we prove the following indistinguishability theorem.

Theorem 4. If CRH is computationally collision-resistant (Definition 6), Encode
is injective, and O is a random oracle, then the hash function H is computationally
indistinguishable from a random oracle.

In BHP, presented below, input messages are split into segments mi, then further
divided into 3-bit chunks mi,j . The maximum number of chunks in a segment,
denoted Cmax, depends on the curve. A formula to derive it is given in [Hop+21].

BHP.Setup(1λ, s)→ pp

(G, q)← SampleGroup(1λ)
[gi]

s
i=1 ← Gs

pp← (G, q, [gi]si=1)

BHP.Eval(pp,m ∈ {0, 1}n)→ h

Divide m into segments mi of size Cmax

Divide each mi into 3-bit chunks mi,j

h←
∑
i,j g

24i(1+mi,j [0]+2·mi,j [1])(1−2·mi,j [2])
i

We refer the reader to [Aum+13] for a description of the BLAKE2s.

14

6 Implementation

Plumo was implemented in Rust10 using the arkworks libraries.

6.1 Optimizations

Try-and-increment hashing. Since constant-time hashing is not important to
the security of Plumo, we opt for a more efficient hash-to-group by using a variant
of “try-and-increment” [BLS01]. For a Weierstrass form curve, let q be the order
of the base field and ` = dlog2(q)e. Given a hash function H : {0, 1} → {0, 1}`+1

and input m, we can hash to G1 using rejection sampling as follows. Try each
sequential nonce η in 0, . . . , 2c − 1 encoded as c-bit string (for some completeness
parameter c) until the first ` bits of h ← H(η‖m) is less than q. To obtain a
prime-order group point from h, clear the cofactors from the first ` bits of h to
obtain an x-coordinate. If the last bit of h is 0 (1) choose the smaller (larger)
corresponding y-coordinate.

We crucially observe that it is not necessary to increment inside the SNARK,
and that the nonce can be included as a private input. Indeed, if we write the
message of any signature scheme as M = {0, 1}c ×M′, where M′ is considered
the meaningful part, then the unforgeability of a signature on any message in M
implies the unforgeability of a signature on any message in M′.

In the ROM, the probability of succeeding on each try is q/2`, and thus an
expected 2`/q tries will be required to hash each message. The chance a given
message cannot be hashed is given by (1− q/2`)c. For our concrete parameters,
BLS12-377 and c = 8, this gives an exceedingly small 2−677 probability a message
cannot be hashed.

Computing BHP over a birationally equivalent curve. Following [Hop+21],
we compute the Bowe-Hopwood-Pedersen hash over the birationally equivalent
Montgomery form of the twisted Edwards curve EEd/BW6 curve (of equal order
to BW6-761) in a way that guarantees the incomplete addition formulas (which
cost 3 constraints instead of 6) are sufficient.

Reducing verifier time and proof sizes. Verification of Groth16 requires
computing a G1 multi-exponentiation of size ` = |x|. If the initial and m-
epochs-later epoch messages were directly encoded as the instance, ` would
be approaching 1,000. Instead, the verifier hashes the input and output epoch
messages using a hash-to-field built with BLAKE2s, producing an input and
output hash, which is the instance of size ` = 2 for the Groth16 verification circuit.
The circuit has to be modified to prove knowledge of openings of these two
hashes, and then the usual checks are made on these openings. This unfortunately
increases the size of the circuit, but at least this cost is constant in the number
of epochs being proved.

This optimization gives us another for free. The ultralight client (UC) only
needs to learn the most recent epoch message. When verifying multiple SNARK

10 Seehttps://github.com/celo-org/celo-bls-snark-rs and https://github.com/

celo-org/snark-setup.

15

https://github.com/celo-org/celo-bls-snark-rs
https://github.com/celo-org/snark-setup
https://github.com/celo-org/snark-setup

proofs the UC can simply download the intermediate summaries as hashes,
thereby significantly reducing proof sizes.

6.2 Evaluation

We benchmarked our prover on a Google Cloud machine with 4 Intel Xeon
E7-8880 v4 processors and 3, 844GB of DDR4 RAM, which rents for $25/h USD.
Fig. 6.1 shows the time and space efficiency of our prover, and Table 3 gives our
circuit size as a function of the committee size and number of epochs spanned.
Since proofs for 120 epochs are computable in less than an hour and epochs are
approximately one day, maintaining up-to-date UC proofs for Plumo is possible
for $25 worth of compute a day.

In contrast to our powerful prover, we evaluated the performance of our
verifier on a Motorola Moto X (2nd Gen), a 2014 mobile phone with 1GB RAM
and a 32-bit Quad-core 2.45 GHz Krait 400 processor. We used a directly cross-
compiled, unoptimized implementation. The results show it is possible to verify
such a proof in about 0.5 seconds.

Fig. 6.1: Proving time and peak memory consumption over BW6-761.

Epochs 10 validators 100 validators

32 2,787,485 20,465,083
64 4,753,568 34,097,470
128 8,685,734 61,362,244
256 16,550,063 115,891,789
512 32,278,721 224,950,879
1024 63,736,037 443,069,059

Table 3: Constraints for our summary update transition proof circuit.

16

References

[Al-+18] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis.
“Chainspace: A Sharded Smart Contracts Platform”. In: Procedings of
the 25th Network and Distributed System Security Symposium. NDSS ’18.
2018 (2).

[Alb+16] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. “MiMC:
Efficient encryption and cryptographic hashing with minimal multiplica-
tive complexity”. In: 22nd International Conference on the Theory and
Application of Cryptology and Information Security. 2016, pp. 191–219
(7).

[Amo+18] Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci
Piergiovanni. “Correctness of Tendermint-Core Blockchains”. In: 22nd
International Conference on Principles of Distributed Systems. Vol. 125.
OPODIS ’18. 2018, 16:1–16:16 (2, 21).

[Aum+13] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. “BLAKE2:
simpler, smaller, fast as MD5”. In: 11th International Conference of Ap-
plied Cryptography and Security. ACNS ’13. 2013 (7, 14).

[AVL62] G. Adelson-Velsky and E. Landis. “An algorithm for the organization of
information”. In: USSR Academy of Sciences. 1962 (20).

[BDN18] D. Boneh, M. Drijvers, and G. Neven. “Compact Multi-signatures for
Smaller Blockchains”. In: 24th International Conference on the Theory
and Application of Cryptology and Information Security. ASIACRYPT ’18.
2018, pp. 435–464 (5, 7, 21, 22, 26, 27).

[Ben+14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero
Knowledge via Cycles of Elliptic Curves”. In: 34th Annual International
Cryptology Conference. CRYPTO ’14. 2014, pp. 276–294 (3).

[BGH19] S. Bowe, J. Grigg, and D. Hopwood. Recursive Proof Composition without
a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021. 2019 (3).

[BGM17] S. Bowe, A. Gabizon, and I. Miers. Scalable Multi-party Computation for
zk-SNARK Parameters in the Random Beacon Model. Cryptology ePrint
Archive, Report 2017/1050. 2017 (29).

[BGR98] M. Bellare, J. A. Garay, and T. Rabin. “Fast Batch Verification for Modular
Exponentiation and Digital Signatures”. In: 17th Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
EUROCRYPT ’98. 1998, pp. 236–250 (30).

[Bit+13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive Com-
position and Bootstrapping for SNARKs and Proof-Carrying Data”. In:
45th ACM Symposium on the Theory of Computing. STOC ’13. 2013,
pp. 111–120 (13).

[Bit+16] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. “On the Existence of
Extractable One-Way Functions”. In: SIAM Journal on Computing 45.5
(2016). Preliminary version appeared in STOC ’14., pp. 1910–1952 (13).

[BLS01] D. Boneh, B. Lynn, and H. Shacham. “Short Signatures from the Weil
Pairing”. In: 7th International Conference on the Theory and Application
of Cryptology and Information Security. ASIACRYPT ’01. 2001, pp. 514–
532 (7, 15, 21).

[Bol03] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signa-
tures Based on the Gap-Diffie-Hellman-Group Signature Scheme”. In: 6th

17

https://arxiv.org/pdf/1708.03778.pdf
https://eprint.iacr.org/2016/492.pdf
https://eprint.iacr.org/2016/492.pdf
https://eprint.iacr.org/2016/492.pdf
https://eprint.iacr.org/2018/574.pdf
https://www.blake2.net/blake2_20130129.pdf
https://www.blake2.net/blake2_20130129.pdf
https://zhjwpku.com/assets/pdf/AED2-10-avl-paper.pdf
https://zhjwpku.com/assets/pdf/AED2-10-avl-paper.pdf
https://eprint.iacr.org/2018/483.pdf
https://eprint.iacr.org/2018/483.pdf
https://eprint.iacr.org/2014/595.pdf
https://eprint.iacr.org/2014/595.pdf
https://eprint.iacr.org/2019/1021.pdf
https://eprint.iacr.org/2019/1021.pdf
https://eprint.iacr.org/2017/1050.pdf
https://eprint.iacr.org/2017/1050.pdf
https://eprint.iacr.org/2012/095.pdf
https://eprint.iacr.org/2012/095.pdf
https://eprint.iacr.org/2014/402.pdf
https://eprint.iacr.org/2014/402.pdf
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bold.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bold.pdf

International Conference on Practice and Theory in Public Key Cryptog-
raphy. PKC ’03. 2003, pp. 31–46 (7, 21).

[Bon+03] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps”. In: 22nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
EUROCRYPT ’03. 2003, pp. 416–432 (7, 21).

[Bon+20] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro. Coda: Decentralized
Cryptocurrency at Scale. Cryptology ePrint Archive, Report 2020/352.
2020 (2, 3).

[Bow+20] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu. “Zexe:
Enabling Decentralized Private Computation”. In: 41st IEEE Symposium
on Security and Privacy. S&P ’20, 2020, pp. 947–964 (5, 8).

[Bra+20] S. Braithwaite et al. “A Tendermint Light Client”. In: (2020) (21).
[BSCS16] E. Ben-Sasson, A. Ciesa, and N. Spooner. “Interactive Oracle Proofs”. In:

14th Theory of Cryptography Conference. TCC ’16. 2016 (4).
[Bün+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.

“Bulletproofs: Short Proofs for Confidential Transactions and More”. In:
39th IEEE Symposium on Security and Privacy. S&P ’18. 2018, pp. 315–
334 (20).

[Bün+20a] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. “Recursive Proof Com-
position from Accumulation Schemes”. In: 18th Theory of Cryptography
Conference. Vol. 2. TCC ’20. 2020, pp. 1–18 (3).

[Bün+20b] B. Bünz, L. Kiffer, L. Luu, and M. Zamani. “FlyClient: Super-Light Clients
for Cryptocurrencies”. In: 41st IEEE Symposium on Security and Privacy.
S&P ’20. 2020, pp. 928–946 (2, 11, 23).

[CCW19] A. Chiesa, L. Chua, and M. Weidner. “On Cycles of Pairing-Friendly
Elliptic Curves”. In: SIAM Journal on Applied Algebra and Geometry 3.2
(2019), pp. 175–192 (3).

[CGR11] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and
Secure Distributed Programming. 2nd ed. Springer, 2011 (24).

[Che10] J. H. Cheon. “Discrete Logarithm Problems with Auxiliary Inputs”. In:
Journal of Cryptology 23.3 (2010), pp. 457–476 (31).

[Che+20] W. Chen, A. Chiesa, E. Dauterman, and N. P. Ward. Reducing Participa-
tion Costs via Incremental Verification for Ledger Systems. Cryptology
ePrint Archive, Report 2020/1522. 2020 (2, 3, 5).

[Chi+20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. Ward. “Mar-
lin: Preprocessing zkSNARKS with Universal and Updatable SRS”. In:
39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 738–768 (3, 4).

[CKK20] S. Cao, S. Kadhe, and R. Kannan. CoVer: Collaborative Light-Node-Only
Verification and Data Availability for Blockchains. ArXiv abs/2010.07031.
2020 (21).

[CT10] A. Chiesa and E. Tromer. “Proof-Carrying Data and Hearsay Arguments
from Signature Cards”. In: 1st Conference on Innovations in Computer
Science. ICS ’10. 2010, pp. 310–331 (3).

[EHG20] Y. El Housni and A. Guillevic. Optimized and secure pairing-friendly
elliptic curves suitable for one layer proof composition. Cryptology ePrint
Archive, Report 2020/351. 2020 (8).

18

https://crypto.stanford.edu/~dabo/pubs/papers/aggreg.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/aggreg.pdf
https://eprint.iacr.org/2020/352.pdf
https://eprint.iacr.org/2020/352.pdf
https://eprint.iacr.org/2018/962.pdf
https://eprint.iacr.org/2018/962.pdf
https://arxiv.org/pdf/2010.07031.pdf
https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://eprint.iacr.org/2020/499.pdf
https://eprint.iacr.org/2020/499.pdf
https://eprint.iacr.org/2019/226.pdf
https://eprint.iacr.org/2019/226.pdf
https://arxiv.org/pdf/1803.02067.pdf
https://arxiv.org/pdf/1803.02067.pdf
https://www.distributedprogramming.net/
https://www.distributedprogramming.net/
https://www.math.snu.ac.kr/~jhcheon/publications/2010/StrongDH_JoC_Final2.pdf
https://eprint.iacr.org/2020/1522.pdf
https://eprint.iacr.org/2020/1522.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1047.pdf
https://arxiv.org/pdf/2010.00217.pdf
https://arxiv.org/pdf/2010.00217.pdf
http://people.eecs.berkeley.edu/~alexch/docs/CT10.pdf
http://people.eecs.berkeley.edu/~alexch/docs/CT10.pdf

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. “The Algebraic Group Model and
its Applications”. In: 38th Annual International Cryptology Conference.
CRYPTO ’18. 2018, pp. 33–62 (13).

[FN16] D. Fiore and A. Nitulescu. “On the (In)Security of SNARKs in the
Presence of Oracles”. In: 14th International Conference on the Theory of
Cryptography. TCC ’16. 2016, pp. 108–138 (10, 13, 28).

[GPS08] S. D. Galbraith, K. G. Paterson, and N. P. Smart. “Pairings for cryptog-
raphers”. In: Discrete Applied Mathematics 156.16 (2008), pp. 3113–3121
(25).

[Gra+19] L. Grassi, D. Kales, D. Khovratovich, A. Roy, C. Rechberger, and M.
Schofnegger. “Starkad and Poseidon: New Hash Functions for Zero Knowl-
edge Proof Systems”. In: (2019) (5, 7).

[Gud+19] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais.
SoK: Off The Chain Transactions. Cryptology ePrint Archive, Report
2019/360. 2019 (2).

[Hop+21] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash Protocol Specifi-
cation [Overwinter+Sapling]. 2021 (7, 14, 15).

[KK+16] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford.
“Enhancing Bitcoin Security and Performance with Strong Consistency via
Collective Signing”. In: 25th USENIX Conference on Security Symposium.
USENIX Security ’16. 2016, pp. 279–296 (4).

[KK+18] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford.
“OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding”. In:
39th IEEE Symposium on Security and Privacy. S&P ’18. 2018, pp. 583–
598 (2).

[KMZ20] A. Kiayias, A. Miller, and D. Zindros. “Non-interactive Proofs of Proof-of-
Work”. In: 24th International Conference on Financial Cryptography and
Data Security. FC ’20. 2020, pp. 505–522 (2).

[Koh+21] M. Kohlweiss, M. Maller, J. Siim, and M. Volkhov. Snarky Ceremonies.
Cryptology ePrint Archive, Report 2021/219. 2021 (29, 30).

[Mal+17] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi. “Con-
currency and Privacy with Payment-Channel Networks”. In: 2017 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’17.
Association for Computing Machinery, 2017, pp. 455–471 (2).

[Mal+19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. “Sonic: Zero-
Knowledge SNARKs from Linear-Size Universal and Updateable Struc-
tured Reference Strings”. In: 26th ACM Conference on Computer and
Communications Security. CCS ’19. 2019, pp. 2111–2128 (3).

[Mei18] S. Meiklejohn. “Top Ten Obstacles along Distributed Ledgers Path to
Adoption”. In: IEEE Security and Privacy 16.4 (2018), pp. 13–19 (2).

[Mon20] H. Moniz. The Istanbul BFT Consensus Algorithm. ArXiv abs/2002.03613.
2020 (6, 12, 24).

[Nik+17] K. Nikitin et al. “CHAINIAC: Proactive Software-Update Transparency
via Collectively Signed Skipchains and Verified Builds”. In: 26th USENIX
Security Symposium. USENIX Security ’14. 2017, pp. 1271–1287 (2).

[PB17] J. Poon and V. Buterin. Plasma: Scalable Autonomous Smart Contracts.
2017 (21).

[RY07] T. Ristenpart and S. Yilek. “The Power of Proofs-of-Possession: Securing
Multiparty Signatures against Rogue-Key Attacks”. In: 26th Annual In-

19

https://eprint.iacr.org/2017/620.pdf
https://eprint.iacr.org/2017/620.pdf
https://eprint.iacr.org/2016/112.pdf
https://eprint.iacr.org/2016/112.pdf
https://eprint.iacr.org/2006/165.pdf
https://eprint.iacr.org/2006/165.pdf
https://eprint.iacr.org/2019/458.pdf
https://eprint.iacr.org/2019/458.pdf
https://eprint.iacr.org/2019/360.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/sapling.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/sapling.pdf
https://arxiv.org/pdf/1602.06997.pdf
https://arxiv.org/pdf/1602.06997.pdf
https://eprint.iacr.org/2017/406.pdf
https://eprint.iacr.org/2017/963.pdf
https://eprint.iacr.org/2017/963.pdf
https://eprint.iacr.org/2021/219.pdf
https://eprint.iacr.org/2017/820.pdf
https://eprint.iacr.org/2017/820.pdf
https://eprint.iacr.org/2019/099.pdf
https://eprint.iacr.org/2019/099.pdf
https://eprint.iacr.org/2019/099.pdf
https://discovery.ucl.ac.uk/id/eprint/10057035/1/accepted-topten.pdf
https://discovery.ucl.ac.uk/id/eprint/10057035/1/accepted-topten.pdf
https://arxiv.org/pdf/2002.03613.pdf
https://eprint.iacr.org/2017/648.pdf
https://eprint.iacr.org/2017/648.pdf
https://www.plasma.io/plasma.pdf
https://www.iacr.org/archive/eurocrypt2007/45150228/45150228.pdf
https://www.iacr.org/archive/eurocrypt2007/45150228/45150228.pdf

ternational Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’07. 2007, pp. 228–245 (7, 22, 27).

[Yin+19] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. “HotStuff:
BFT Consensus with Linearity and Responsiveness”. In: ACM Symposium
on Principles of Distributed Computing 2019. PODC ’19. 2019, pp. 347–356
(2).

[Zam+20] A. Zamyatin, Z. Avarikioti, D. Perez, and W. J. Knottenbelt. “TxChain: Ef-
ficient Cryptocurrency Light Clients via Contingent Transaction Aggrega-
tion”. In: 4th International Workshop on Cryptocurrencies and Blockchain
Technology. CBT ’20. 2020, pp. 269–286 (20).

[Zha+20] W. Zhang, J. Yu, Q. He, N. Zhang, and N. Guan. “TICK: Tiny Client
for Blockchains”. In: IEEE Internet of Things Journal. IOT-J ’20 (2020)
(20).

A Additional related work

Transaction inclusion. Flyclient [Bün+18] introduces a new mechanism for
efficient proofs of transaction inclusion. A new datastructure called a Merkle
Mountain Range (MMR) is added to the block header, whose leaves are se-
quentially updated with the transaction root of each new block. Then with just
the latest block header and a Merkle inclusion proof, an ultralight client can
efficiently confirm any transaction.

Recall that finality is not immediate on PoW blockchains, and it takes
approximately an hour to get a new transaction mined with an adequate number
of child blocks (confirmations) to be trustworthy. In the interim, a Flyclient client
would not have a trustworthy inclusion proofs, and would thus have to download
and verify every transaction starting from the oldest input to the present, which is
impractical. TICK [Zha+20] solves this problem by additionally adding a UTXO
tree to the block header as well. They observe using an AVL hash tree [AVL62]
the commitment can be efficiently updated in O(M · log(NU)) time, where M is
the total number of inputs and outputs in a block and NU is the total number of
UTXOs.

TxChain [Zam+20] introduces a protocol enabling greater efficiency for verify-
ing large numbers of transactions by introducing contingent transactions. Given
a list of transactions [ti]

n
i=1, a prover makes a new transaction ta that references

[ti]
n
i=1. By verifying ta an ultralight client is convinced of the validity of [ti]

n
i=1.

This approach may be particularly useful for cross-chain interoperability, as
verifying transactions in a smart contract can be especially costly.

While TICK is generally not applicable to PoS blockchains, which offer imme-
diate finality, all these techniques potentially offer complementary functionality
to an ultralight client built with our consensus-agnostic compiler.

Layer Two Scaling. Layer 1 (L1) solutions are baked into the blockchain’s
consensus rules, while layer 2 (L2) are built on top of the underlying protocol
(e.g., using its scripting/programmatic features) and so are easier to iterate on.
Several L2 solutions have been proposed which work across both PoW and PoS
protocols. Plasma and TrueBit both rely on fraud proofs, by which actors are

20

https://arxiv.org/pdf/1803.05069.pdf
https://arxiv.org/pdf/1803.05069.pdf
https://eprint.iacr.org/2020/580.pdf
https://eprint.iacr.org/2020/580.pdf
https://eprint.iacr.org/2020/580.pdf
https://eprint.iacr.org/2019/792.pdf
https://eprint.iacr.org/2019/792.pdf

normally assumed to be honest but with a mechanism to affect their punishment
through economic disincentives should they show malicious behavior [PB17]. The
approach most similar to ours is ZK Rollup, where every change to the state is
accompanied by a SNARK proof attesting to its validity, created by the block
proposer. Optimistic rollups11 are similar, but each new state is initially assumed
to be true with the caveat that fraud proofs can be submitted to slash the node
submitting the new state if it is false.

Other Light Client Approaches. Other approaches for blockchain scalability
have been proposed which do not fit into the above categories. The Tendermint
Light Client [Bra+20], built on Tendermint Core [Amo+18], is a BFT consensus
algorithm where at least 1/3rd of validators are assumed to be correct in “trusting
periods”—a limited time window after they sign. A light client observing that
a guaranteed correct validator by this assumption in a sufficiently recent block
n−m where m < n signed block n containing a commit for block n−1, may then
assume block n− 1 is correct and skip downloading it when verifying the chain.
This approach, however, is not necessarily compatible with verifying multiple
blocks in a single cryptographic proof as we describe in this work.

CoVeR [CKK20] describes a different protocol which enables light clients to
collaboratively validate blocks without assuming those blocks are validated by
full nodes. When a block is broadcast to the network, light clients query for
random portions of the block. Honest light clients then produce fraud proofs for
invalid block portions. A light client determines the validity of a block by the
presence or absence of such fraud proofs. Assuming a small minority of honest
light clients, this guarantees no required trust assumptions with respect to full
nodes, at the cost of increased light client computation and communication costs,
in addition to larger block sizes. By comparison, Plumo requires assuming the
existence of an honest minority of full nodes, but works to minimize light client
computation costs.

A history of BBSGLRY. The development of BBSGLRY starts with Boneh-
Lynn-Shacham (BLS) signatures [BLS01]. BLS was extended to support signature
aggregation by Boneh et al. in [Bon+03]. Their scheme only supports aggregate
signatures on distinct messages because otherwise a rogue key attack is possible.
The authors note that by prepending their own public key to each message signers
can ensure their messages are distinct, but extending this technique to aggregate
multisignatures (e.g., AMSP [BDN18]) requires signers know the multisignature
group in advance. This increases consensus complexity and requires hashing all
public key in the multisignature group, making computation inside a SNARK
impractical for large committees.

Multisignature support was added to BLS by Boldyreva in [Bol03]. Her scheme
was set in the knowledge-of-secret-key (KOSK) model, where the adversary must
output a corresponding secret key for each public key. This precludes rogue-key
attacks, allowing aggregate public keys and multisignatures to be computed as
simple products, and signers to sign simply the message alone without prepending
the multisignature group key set.

11 https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075

21

The KOSK abstracts the PoP as something proved sound independently, but
as shown by Ristenpart and Yilek it is necessary to prove joint security [RY07].
Our scheme incorporates the B-PoP protocol from [RY07].

Finally, the aggregate multisignature AMSP-PoP, introduced in [BDN18],
combines the above-mentioned works as well. Signatures for their scheme require
prepending the aggregate public key to the message. We show that this restriction
is unnecessary and signers can sign as in BLS. This is accomplished by changes
to the interface and definitions we believe better reflect real-world use, most
pertinently that the adversary in our definition must output a valid PoP for every
public key. This in particular prevents rogue-key attacks (see Appendix B.4 for
more details).

B Preliminaries

B.1 Notation

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a short-hand

for the vector (a1, . . . , an), and [ai]
n
i=1 = [[ai,j]

m
j=1]ni=1 as a short-hand for the

vector (a1,1, . . . , a1,m, . . . , an,1, . . . , an,m); |a| denotes the number of entries in a.
We analogously define {ai}ni=1 with respect to sets instead of vectors. If x is a

binary string then |x| denotes its bit length. For a finite set S, let x
$←− S denote

that x is an element sampled uniformly at random from S. We sometimes use
Python-like slicing where a[i : j] is the subvector containing (i+ 1)-th through
j-th entries of a, and a[i] denotes the (i+ 1)-th entry of a.

NP Relations. We write {(x;w) : p(x,w)} to describe a NP relation R ⊆
{0, 1}∗×{0, 1}∗ between instances x and witnesses w decided by the polynomial-
time predicate p(·, ·).
Security notions. We denote by λ ∈ N a security parameter. When we state
that n ∈ N for some variable n, we implicitly assume that n = poly(λ). We denote
by negl(λ) an unspecified function that is negligible in λ (namely, a function that
vanishes faster than the inverse of any polynomial in λ). When a function can be
expressed in the form 1 − negl(λ), we say that it is overwhelming in λ. When
we say that algorithm A is an efficient we mean that A is a family {Aλ}λ∈N of
non-uniform polynomial-size circuits. If the algorithm consists of multiple circuit
families A1, . . . ,An, then we write A = (A1, . . . ,An).

B.2 Blockchain model

We present a formal model of blockchain systems, with a focus on the aspects
necessary to define ultralight clients in Section 4.1.

Consensus language. The consensus algorithms of a blockchain system define
a polynomial-time consensus language LC . If b ∈ LC , then we say b is a valid
blockchain, where a blockchain is a finite vector of one or more blocks b =
(b1, b2, . . .). Consensus algorithms also imply a block language Lb, representing

22

local checks such as syntax and signature verifications. A block b is a valid block
if b ∈ Lb. A valid blockchain must contain only valid blocks, but the converse
may not hold, i.e., blocks in a blockchain may be individually valid but mutually
inconsistent.

Consensus algorithms also define an efficiently computable binary relation
≤ that is a strict total order be defined on the set LC , i.e., for every b, b′ ∈ LC
either b < b′, b > b′, or b = b. For example, for Bitcoin the chain with more
work is greater and for Celo the chain that is longer.

State transition function. As each new block that extends a blockchain is
incrementally proposed, it would be impractical to have to run a LC membership
predicate on the full blockchain. All practical blockchain systems thus implicitly
define a notion of a chain state s, that is sublinear in the length of the chain, but
contains all the necessary information to efficiently decide if each new block is
valid and then produce the next state of the chain.

We thus define the consensus language of a blockchain in terms of a state
transition function S : Lŝ ×Lb → Lŝ ∪ {⊥} that, given a state corresponding to
a blockchain it has already verified and a new block, outputs an updated state if
the new block is a valid extension to the blockchain, or ⊥ otherwise. Denote the
set of valid blockchains by LC = {b ∈ Lb | S(sg, b) 6=⊥}, where sg is the genesis
state and we use the syntactic sugar S(s, b) = S(· · ·S(S(s, b1), b2) · · · , bn). The
state language Lŝ is simply defined as all states reachable by valid blockchains.

Simplifying assumptions and summaries. Often by making certain reason-
able assumptions it is possible to compute the state of a blockchain (or just a
commitment to it) more efficiently. For example, the simplified payment verifi-
cation (SPV) assumption used by many PoW blockchain light clients assumes
“the chain with the most PoW solutions follows the rules of the network and will
eventually be accepted by the majority of miners” [Bün+20b].

We refer to the information a light client learns as a summary ŝ of the state
s. A summary may not always be enough to fully verify or interact with the
blockchain in every way, but it should be enough to facilitate access to most
functionality not immediately available through efficient interactions with helper
full nodes that may, e.g., provide succinct transaction inclusion proofs or act as
a server for PIR.

We formalize simplifying assumptions and summaries analogously to consensus
and state. We begin by introducing a trim function T that maps a blockchain b in
the consensus language to its trimmed blockchain counterpart b̂ in the simplified
consensus language LĈ . We first define a trim function T : Lb → Lb̂ that takes as

input a valid block and outputs a smaller trimming b̂ in the trimming language
Lb̂. The trimming language, like the block language represents local checks such
as syntax and signature verifications. Under a reasonable simplifying assumption,
a light client that verifies b̂ ∈ LĈ can have confidence there exists a b ∈ LC such

that b̂ = T (b). We write T (b) = (T (b1), T (b2), . . .). We require that when T is
applied to any valid blockchain, the resulting trimmed blockchain is accepted by
Ŝ, described below.

23

Analogous to the state transition function, the summary update function
Ŝ : Lŝ × Lb̂ → Lŝ ∪ {⊥} takes a summary ŝ corresponding to a trimmed

blockchain it has already verified and a new trimming b̂, and outputs an updated
summary ŝ′ if (under the simplifying assumption) b̂ corresponds to a block that
presents a valid extension to a blockchain that produced summary ŝ, or else

outputs ⊥. Hence, LĈ =
{
b̂ ∈ Lb̂ | Ŝ(ŝg, b̂) 6=⊥

}
. The state language Lŝ is simply

defined as all states reachable by valid blockchains.
Lastly, we require a strict total order ≤ on summaries such that ŝ ≤ ŝ′ implies

the existence of corresponding blockchains b ≤ b′.

B.3 Proof-of-stake consensus

Celo validators are elected by a proof-of-stake voting mechanism. Once elected,
they serve on a committee for one epoch, which is currently set to 24 hours worth
of blocks. Celo validators trade off proposing and confirming blocks using the
Istanbul Byzantine Fault Tolerant (IBFT) consensus algorithm [Mon20]. IBFT
is deterministic, assumes a partially synchronous communication model, and
guarantees safety independent of timing assumptions when n > d3f/2e, where n
and f are the number of total and byzantine nodes. BFT consensus protocols
provide the following guarantees [CGR11]:
– Termination: Every correct replica eventually decides some value v.
– Validity: If all replicas propose the same value v, then no replica decides a

value different from v; a correct replica may only decide a value that was
proposed by some correct replica or the special value ⊥ indicating that no
valid decision was found.

– Integrity: No correct replica decides twice.
– Agreement: No two correct replicas decide differently.
Compared to Nakamoto consensus, which is based on proof-of-work and the
heaviest-chain rule, proof-of-stake and BFT-based consensus is fork-free given
n > d3f/2e. In Nakamoto consensus, even with a honest majority, forks may
occur regularly as miners find blocks at the same time, or because of attacks
like selfish mining. With Bitcoin, this means it is common practice to require
6 confirmation blocks, waiting roughly an hour, to ensure the finality—that a
transaction has really once and for all been included in the blockchain.

Long range attacks. BFT blockchains must incentivize honesty and prevent
double-signing, the signing of two different blocks at the same height, in order
to have a single chain. Positive behavior is financially rewarded, while double
signing is punished with slashing, where a validator’s stake is taken. Since stake
is not locked forever, past validators who don’t have locked stake anymore, can
choose to collude and extend a chain built on top of an older block without fear
of losing their stake. We refer to such forks as long-range attacks, which can
cause light clients who only verify part of a blockchain to accept a fork that does
not follow consensus rules (whereas full nodes may accept a fork, but only one
that followed consensus rules). Celo employs a combination of incentives (e.g.,
maintaining a reputation as an honest validator and continuing to earn block

24

rewards) and security protocols (e.g., key rotation, checkpointing) as a defense
against such attacks.

Future committee attacks. Consider a scenario where at some point an
adversary A obtains signing oracle access to a number of validators (during
possibly disjoint periods), who later form the supermajority of some committee.
When blocks are predictable, the adversary can use each validator key it gains
access to sign blocks for an adversarial public key set and for every index out
to decades in the future. So even if the adversary no longer has oracle access to
any of the validators for that epoch, they will be able to create a fork. We call
this a future committee attack (although it applies to non-commitee based PoS
networks as well), which to the best of our knowledge has not been described in
the prior literature.

Two possible defenses against such an attack include a high water mark for
block number implemented in trusted hardware (which could alert the validator
to their compromise) and regularly enforced key rotations. Plumo has opted for
another solution that doesn’t rely on trusted hardware or place additional burden
on validators: we have included the verifiable randomness value from the last
block of the current (“current entropy”) and previous epoch (“parent entropy”)
in each epoch message. This makes the epoch messages unpredictable and thus
not signable in advance, as an adversary would have to guess the randomness
from the epoch before the epoch they would otherwise be able to fork from.

B.4 Cryptographic assumptions

Bilinear groups The cryptographic primitives that we construct in this paper
rely on cryptographic assumptions about bilinear groups. We formalize these
via a bilinear group sampler, which is an efficient algorithm SampleGrp that
given a security parameter λ (represented in unary), outputs a tuple 〈group〉 =
(G1,G2,GT , q, G1, G2, e) where G1,G2,GT are groups with order divisible by the
prime q ∈ N, G1 generates G1, G2 generates G2, and e : G1 × G2 → GT is a
(non-degenerate) bilinear map.

Following [GPS08], we distinguish between three types of bilinear group
samplers. Type I groups have G1 = G2 and are known as symmetric bilinear
groups. Types II and III are asymmetric bilinear groups, where G1 6= G2. Type
II groups have an efficiently computable homomorphism ψ : G2 → G1, while
Type III groups do not have an efficiently computable homomorphism in either
direction. Certain assumptions are provably false w.r.t. certain group types (e.g.,
ψ-co-CDH only holds for Type III groups), and in general in this work we assume
we are working with Type III groups.

Chains of elliptic curves Let E be an elliptic curve over a finite field Fq,
where q is a prime. We denote this by E/Fq, and we denote by E(Fq) the group
of points of E over Fq, with order n = #E(Fq). We say that an elliptic curve
E/Fq is pairing-friendly if E(Fq) has a large prime-order subgroup, and if the
embedding degree (i.e., the smallest integer k such that n divides qk−1) is small.

25

Definition 1 (Two-chain of elliptic curves). A two-chain of elliptic curves
is a pair of distinct elliptic curves E1/Fq1 , E2/Fq2 , where q1, q2 are prime, such
that #E1(Fq1) = q2.

We say an elliptic curve is ordinary if E[q] ≡ Z/qZ, where [q] is the multiplication-
by-p map.

Definition 2 (Pairing-friendly two-chain). A (k1, k2)-chain is a two-chain
of distinct ordinary elliptic curves E1/Fq1 , E2/Fq2 with respective embedding
degrees k1, k2. A (k1, k2)-chain is pairing-friendly if k1 and k2 are small.

A 2-chain of elliptic curves E1/Fq1 , E2/Fq2 where #E1(Fq1) = q2 is useful
as it allows for the computation of elliptic curve operations and pairings for E2

inside of an arithmetic circuit defined over the scalar field Fq2 of E1.

Cryptographic assumptions The computational ψ-co-Diffie-Hellman assump-
tion was introduced in [BDN18]. For type 1 and 2 pairings it is equivalent to
co-CDH, and it is assumed to hold whenever co-CDH does.

Definition 3 (Computational ψ-co-Diffie-Hellman (ψ-co-CDH) [BDN18]).
For a bilinear group sampler SampleGrp, let ψ(·) be an oracle that on input
Gγ2 ∈ G2 outputs Gγ1 ∈ G1. We say ψ-co-CDH holds with respect to SampleGrp if
for all efficient adversaries A it holds that

Pr
[
y = Gαβ1

∣∣∣ 〈group〉 ← SampleGrp(1λ); α, β
$←− F; y ← Aψ(〈group〉, Gα1 , G

β
1 , G

β
2)
]
≤ negl(λ) .

Aggregate multisignatures Our definition of an aggregate multisignature
scheme is based on [BDN18], but we make several changes. First, since the
BLS-based scheme we use in Plumo has a non-interactive signing process, we
have simplified the interface of the Sign algorithm accordingly. Further, we
define only a single verification algorithm, noting that (multi)signatures are
just aggregate (multi)signatures with a single message, and that signatures are
just multisignatures with signer group size one. Lastly, since we want to prove
joint security in the plain public key model, we include a proof-of-possession
(PoP) scheme as part of the interface, where PoP generation is folded into
KeyGen and PoP verification is handled by a new algorithm VPoP. An aggregate
multisignature scheme then consists of a 8-tuple of efficient algorithms (Setup,
KeyGen,VPoP,Sign,KeyAgg,MultiSign,AggSign,Verify) that behave as follows:

– Setup(1λ)→ pp : a setup algorithm that, given a security parameter λ (repre-
sented in unary), outputs a set of public parameters pp.

– KeyGen(pp)→ (pk, sk, π) : a key generation algorithm that outputs a public-
secret key pair (pk, sk) and a PoP π.

– VPoP(pp, pk, π) → {0, 1}: a PoP verification algorithm that, given a public
key pk and a corresponding PoP π, returns 1 or 0 to accept or reject the proof,
respectively.

26

– Sign(pp, sk,m) → σ : a signing algorithm that, given a secret key sk and
message m ∈ {0, 1}∗, returns a signature σ.

– KeyAgg(pp, {pki}
n
i=1)→ apk : a key aggregation algorithm that, given a set of

n public keys {pki}
n
i=1, returns an aggregate public key apk.

– MultiSign(pp, {σi}ni=1)→ σ : a non-interactive multisignature algorithm that,
given n signatures {σi}ni=1) (on the same message under distinct keys), returns
a multisignature σ.

– AggSign(pp, [σi]
n
i=1) → Σ : a non-interactive aggregate multisignature algo-

rithm that, given a list of n (multi)signatures, outputs an aggregate signature
Σ.

– Verify(pp, [(apki,mi)]
n
i=1, Σ) → {0, 1} : an aggregate multisignature verifica-

tion algorithm that, given a list of public key and message pairs [(pki,mi)]
n
i=1

and an aggregate multisignature Σ, returns 1 or 0 to accept or reject the
signature, respectively.

We require that an aggregate multisignature scheme satisfies unforgeability.
Our unforgeability definition is based on [BDN18], but deviates in an important
way: namely, for every public key the adversary outputs, they must also output a
corresponding valid PoP. We believe this to be a practical and widely standard-
in-practice assumption for a system using PoPs. Further, it allows us to prove
unforgeability of our aggregate multisignature scheme BBSGLRY in Section 5.1
under the same assumptions as AMSP-PoP from [BDN18].

BBSGLRY is nearly identical to AMSP-PoP (including in their mutual use of
the PoP B-PoP from [RY07]), but unlike AMSP-PoP does not require signers
prepend the aggregate public key of thes multisignature to their messages and thus
know the multisignature group before signing. Appending the aggregate public
key is unnecessary in practice for their scheme, but forced by their definitions and
interface. PoPs are not checked by the unforgeability challenger, but instead by
the KeyAgg algorithm of AMSP-PoP. Their adversary also outputs the aggregate
public keys which do not need to contain the challenge public key directly, instead
of outputting them as public key sets as in our definition. This means KeyAgg is
never run on them and hence if the aggregate public key was not prepended to
the message when signing rogue-key attacks would be possible.

Changing their definition to just check PoPs on the aggregate public keys
output by the adversary would not capture the same guarantee, since this would
preclude the possibility of an adversary who can only produce a forgery that
is checked against one or more aggregate public keys (in addition to the one
that must contain the challenge public key) that they cannot produce PoPs for
directly, but for which they can produce PoPs for corresponding sets of public
keys which when passed to KeyAgg result in those aggregate public keys.

We can see their unforgeability definition as a subcase of our own, where the
adversary outputs public key sets [PKi]ni=1 of size one, and where VPoP is set
to the constant 1 function. Further, since signatures and multisignatures can be
seen as subcases of aggregate multisignatures as noted above, our unforgeability
definition covers all three.

27

Definition 4 (Unforgeable aggregate multisignature). For an aggregate
multisignature scheme (Setup,KeyGen,VPoP,Sign,KeyAgg,MultiSign,AggSign,Verify)
we define the advantage of an adversary against unforgeability to be defined by

AdvforgeA (1λ) = Pr
[
GameforgeA (1λ) = 1

]
where the game GameforgeA is defined as

follows for n ∈ N.

GameforgeA (1λ)

pp← Setup(1λ)
(pk∗, sk∗, π∗)← KeyGen(pp)
Q← ∅
({(PKi,mi)}ni=1, {Πi}ni=1, PK, Π∗, m∗, Σ)← ASign(pp, pk∗, π∗)
If pk∗ /∈ PK∗ ∨ m∗ ∈ Q then return 0
For i ∈ [n] :

For (pk, π) ∈ PKi ×Πi :
If VPoP(pp, pk, π) = 0 then return 0

apki ← KeyAgg(pp,PKi)
For (pk, π) ∈ PK∗ ×Π∗ :

If VPoP(pp, pk, π) = 0 then return 0
apk∗ ← KeyAgg(pp,PK∗)
Return Verify(pp, [(apki,mi)]

n
i=1‖(apk

∗,m∗)], Σ)

Sign(m)

σ ← Sign(pp, sk∗,m)
Q← Q ∪ {m}
Return σ

We say an aggregate multisignature scheme is unforgeable if for all efficient
adversaries A it holds that AdvforgeA (1λ) ≤ negl(λ).

O-SNARKs: SNARKs in the presence of oracles In this section we in-
troduce the notion of an O-SNARK [FN16], which is a SNARK that allows for
knowledge extraction in the presence of oracles.

Definition 5 (Z-auxiliary input O-SNARK for O). A Z-auxiliary input
succinct non-interactive argument of knowledge for the oracle family O and the
relation R is a triple of efficient algorithms Π = (Setup,Prove,Verify) working
as follows

– Setup(1λ) → crs: on input of a security parameter λ (expressed in unary),
outputs a common reference string crs.

– Prove(crs,x,w)→ π: given a common reference string crs, an instance x, and
a witness w such that (x,w) ∈ R, this algorithm produces a proof π.

– Verify(crs,x, π) → {0, 1}: on input of a common reference string crs, an in-
stance x, and a proof π, the verifier algorithm outputs 0 (reject) or 1 (accept).

and satisfying perfect completeness, succinctness, and adaptive argument of knowl-
edge specified as follows:

– Completeness: For every (x,w) ∈ R it holds that:

Pr

[
Verify(crs,x, π) = 1

∣∣∣∣ crs← Setup(1λ)
(x, π)← Prove(crs,x,w)

]
= 1 .

– Succinctness: For every crs← Setup(1λ) and (x,w) ∈ R it holds that:

28

• |π| = poly(λ), where π ← Prove(crs,x,w) (i.e., proof size is defined by a
universal polynomial in the security parameter λ), and
• Verify runs in time poly(λ+ |x|).

– Adaptive argument of knowledge: Π satisfies adaptive argument of knowledge
for O and Z if for every efficient oracle prover AO who makes at most
Q(λ) = poly(λ) queries there exists an efficient extractor EA with black box
access to A including any random coins such that:

Pr

Verify(crs,x, π) = 1
∧

(x,w) /∈ R

∣∣∣∣∣∣
aux← Z; O ← O; crs← Setup(1λ)

(x, π)← AO(crs, aux)
w← EA(crs, aux, qt)

 ≤ negl(λ) ,

where qt = {qi,O(qi)} is the query transcript of all queries and answers made
and received by AO.

Hash functions Below we give a definition of a collision-resistant hash family
with a key space K, message space M, and codomain Y . We note that elsewhere
in this work we often omit discussion of key sampling for simplicity, and since
for functions like BLAKE2s that has already been done and fixed in advanced.

Definition 6 (Collision-resistance). Let Hλ : Kλ × M → Yλ be a hash
function family. We say H is computationally collision-resistant if for all efficient
adversaries A

Pr [k ← Kλ; (m0,m1)← A(k) | m0 6= m1 ∧ Hk(m0) = Hk(m1)] ≤ negl(λ) .

C Trusted setup

Fully succinct SNARKs, including the Groth16 SNARK used by Plumo require
a trusted party to compute a structured reference string (SRS) used for both
proof generation and verification. To avoid centralizing trust, we use secure multi-
party computation (MPC) to perform a distributed online trusted setup where
participants from around the world are encouraged to contribute. During such
a ceremony multiple participants individually generate pieces of randomness—
sometimes called toxic waste—which they use to perform their part of the MPC
and then delete afterwards. This process has the strong security guarantee that
only one honest participant needs to delete their toxic waste after finishing their
contribution . Each participant generates proofs to show they performed their part
of the MPC correctly, which can also be used to verify their contribution is part
of the final SRS. Our trusted setup ceremony builds on the “MMORPG” protocol
introduced by Bowe et al. and used by Zcash [BGM17] and “Snarky Ceremonies”
protocol by Kohlweiss et al. [Koh+21]. We augment these ceremonies with an
“optimistic setup,” allowing more efficient contribution by a set of participants
who can be added on a rolling basis to an ongoing ceremony, and a combination of
batch verification techniques reducing MPC verification time to a small fraction
of the time it takes naively.

29

Optimistic setup. Consider generating two pieces of randomness α = α0 ·
α1 · α2 · ... · αn and β = β0 · ... · βn, where each αi and βi is generated by some
participant i in a trusted setup ceremony. The most direct way to achieve this
is to have participant i − 1 pass its resulting contributions α′i−1 = α0 · ...αi−1
and β′i−1 computed analogously on to participant i, who will then compute
α′i = α′i−1 · αi and similarly β′i, before then giving both to participant i+ 1 who
will then iteratively repeat the same process.

This approach, while valid, carries with it two distinct problems. First, it
requires for maximum efficiency that participant i is available immediately after
participant i− 1. Secondly, it is inefficient, even when run with a minimum of
downtime.

A solution to both of these problems, which we have implemented 12, is
known as optimistic out-of-order execution13. Consider the above example where
each α and β represent vectors of some large size n of random elements, so that
computing one vector takes several hours. Observe that when participant i is
computing vector αi, no progress is being made on the β vector. We could instead
have two different participants work on each vector simultaneously. In fact, if
we have n participants, we could split each vector into m ≥ n chunks, so that
each participant can each work on a chunk simultaneously, before giving it back
to some untrusted server which will then give it to another participant after it
has finished contributing to its chunk. In addition to the gains from parallelism,
this has the benefit that the setup can be split into rounds in which a subset of
participants only need to be online together for a relatively short period of time,
after which a new round of a distinct subset of participants can contribute to the
previous round’s output pending an arbitrary duration between them. This has
the added benefit of making it easy to add new participants to the setup in a
rolling basis.

To show security of such a scheme over the base MMORPG scheme, it suffices
to show that the proof of knowledge of exponent used in the protocol is secure in
the face of certain auxiliary inputs, in particular the CRS elements computed
by and received from other participants. This is in fact shown by [Koh+21], in
which they prove security of the proof of exponent protocol against an adversary
able to make oracle queries to obtain random evaluations on arbitrary Laurent
polynomials, effectively simulating being able to see partially computed elements
of the CRS.

Batch verification. We use a combination of the bucket and small exponent
test as described by Bellare et al. in [BGR98] to significantly reduce the number of
pairings needed to verify our trusted setup ceremony. Benchmarks confirm these
techniques provide almost a 50× speedup in verification over a naive approach.

Security. Cheon showed that when given G1, Gα1 , Gα
i

1 for any power
i | q − 1, where q is the prime order of G1, it is possible to find the DL α in time

12 See our open-source implementation: https://github.com/celo-org/

snark-setup-operator.
13 https://ethresear.ch/t/accelerating-powers-of-tau-ceremonies-with-optimistic-pipelining/

6870

30

https://github.com/celo-org/snark-setup-operator
https://github.com/celo-org/snark-setup-operator
https://ethresear.ch/t/accelerating-powers-of-tau-ceremonies-with-optimistic-pipelining/6870
https://ethresear.ch/t/accelerating-powers-of-tau-ceremonies-with-optimistic-pipelining/6870

O(
√
q/i+

√
i) [Che10]. Using the Pollard-Rho variant14 of Cheon’s attack (which

is even faster than the original baby-step giant-step based variant) we can lower
bound the number of G1 exponentiations an adversary would have to perform to
1.25(

√
q/i−

√
i). Therefore, despite the very large 228 size of our trusted setup,

we estimate the security over BW6-761 to be at least 175 bits.

D Deferred proofs

Proof of Theorem 1.

Proof. For every efficient oracle adversary AO that on input (pp, aux), with non-
negligible probability outputs (ŝ, π = ([ŝ]c−1i=1 , [πi]

c
i=1)) such that the VerifyUpdate

algorithm of ΠUC accepts. We define an efficient extractor EA with negligible
knowledge soundness error κ(λ) that, on input (pp, aux, qt) and the random coins
of A, outputs b such that Ŝ(ŝg, b) = ŝ.

Assume A produces an accepting summary-proof pair. Then

∧ci=1Verify(crs, ŝi−1, ŝi, πi) ,

where ŝ0 ← ŝg and ŝc ← ŝ. Let BOi be the O-SNARK oracle adversary that on
input (crs, aux) runs A on (crs, aux) and its own local random tape, relaying the
oracle queries of A to its own oracle(s), and outputs ((ŝi−1, ŝi), πi) taken from
the output of A. By assumption of the adaptive security of ΠOS, there exists
an efficient extractor EBi

with negligible knowledge error κ′(λ) that, on input
(crs, aux, qt) and the random coins of Bi, with non-neglible probability outputs
b̂i such that Ŝ(ŝi−1, b̂i) = ŝi.

By running extractors EB1
, . . . , EBc

on its own inputs (pp, aux, qt), the ex-
tractor EA obtains b̂ ← b̂1‖ · · · ‖b̂c. It follows from the union bound that the
knowledge soundness of the ultralight client is κ(λ) = c · κ′(λ), where the negli-
gible function κ′(λ) gives the knowledge soundness of ΠOS. Since A is efficient,
c = poly(λ), implying both that κ(λ) is negligible and that EA, which runs in c
calls to EBi

, is efficient, as required.

Proof of Theorem 3.

Proof. Given a (τ, qS, qHs , ε) forger F against BBSGLRY, we build a co-CDH al-

gorithm A as follows. On input (〈group〉, A = Gα1 , B1 = Gβ1 , B2 = Gβ2), algorithm

A samples r
$←− F and pk∗ ← B2, π

∗ ← Br1 , and Hp(B2)← Gr1. Next, A samples
k ∈ {1, . . . , qS + qHs} and runs F on input (pp, pk∗, π∗) simulating its oracles as
follows:

– Hs(m): if this is the k-th query to this oracle, add (m,⊥) to Ls and return A.

Else, sample ρ
$←− F, add (m, ρ) to Ls, and return Gρ1.

14 https://ethresear.ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups/

6692

31

https://ethresear.ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups/6692
https://ethresear.ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups/6692

– Hp(pk): sample ξ
$←− F, add (m, ξ) to Lp, and return Aξ.

– Sign(m): simulate an internal query Hs(m) and lookup m in Ls. If the corre-
sponding ρ =⊥ abort, else return Bρ1 .

If A doesn’t abort and F succeeds, then with probability 1
qS+qHs

we have Hs(m
∗) =

A. If this is not the case, A aborts. Otherwise, it holds that

Σ = A

∑
j∈PK∗ (logPK

∗
j)+

∑
i∈I∗,
j∈PKi

logPKi,j

·
∏

i∈[n]\I∗
h

∑
j∈PKi

logPKi,j

i ,

where I∗ ⊆ [n] is the list of indices for which mi = m∗. Then hi = Gρi1 for some
ρi ∈ Ls.

Observe that for each (pk, π) pair that π = Aξ log pk for some ξ ∈ Lp, so A can

compute πξ
−1

= Alog pk. For every pk, A can also query ψ(pk) = Glog pk
1 . Hence,

A can compute the ψ-co-CDH solution

Σ ·
∏

j∈PK∗,
j 6=pk∗

π
−ξ−1

j

j ·
∏
i∈I∗,
j∈PKi

π
−ξ−1

i,j

j ·
∏

i∈[n]\I∗,
j∈PKi

ψ(pki,j)
−ρi .

Proof of Theorem 4.

Proof. As noted in Appendix B.4 we simplified our exposition in Section 5.2 by
considering CRH a collision-resistant hash—treating it as if were already picked
from a CRH family by sampling and fixing a key. We now consider a CRH family
CRH : K × {0, 1}∗ → B, as well as an injective encoding Encode : B → {0, 1}b−t.
We show that given an efficient distinguisher D that makes at most Q(λ) queries
such that∣∣∣Pr

[
DO(·)(1λ) = 1

]
− Pr

[
k ← K

∣∣∣ DH(k,·)(1λ) = 1
]∣∣∣ = µ(λ) > negl(λ) ,

where H(k, ·) is built with CRH(k, ·), Encode, and a RO O′ : {0, 1}b → {0, 1}c
as in Construction 3, and where O : {0, 1}∗ → {0, 1}` is a RO, we can build an
adversary A that breaks the collision-resistance of CRH.

On input k ← K, A runs D, simulating its oracle by running H(k, ·) on its
queries. Let qt = {qi,H(k, qi)}i∈[Q] be the query transcript between D and A
(where wlog we assume queries unique). Let {h′i}i∈[Q] = {CRH(k, qi)}i∈[Q] be the
intermediate hash values computed by A while simulating D’s oracle. Let coll be
the event that for i 6= j there exists h′i = h′j . If coll happens, then A outputs the
first colliding query pair (qi, qj); else A outputs two random messages.

Since O and O′ are ROs and Encode is injective, it follows when ¬coll that the
distributions qt and {qi,O(qi)}i∈[Q] are identical. Therefore, event coll (coinciding

with A’s success) must happen with probability at least µ(λ) > negl(λ). Since D
runs in time poly(λ), it is easy to see A does as well.

32

E The Plumo specification

We present a procedural description of our main circuit that implements our
summary relation over BW6-761 described in Section 4.3. Here we take n to be
the number of validators and N the number of epochs to be proved, where N > 1.
For simplicity we will not cover epoch padding if the number of epochs to be
proven is less than N , although we note that it is simple in practice to hard-code
trivially satisfying the relevant circuit logic for dummy epochs.

We assume here the existence of a bilinear group, presented according to the
notation in Appendix B.4. We also assume the circuit is implemented over a field
F.

When not dealing with subroutines, we use the notation Circuit(x : w) to
indicate that Circuit implements an NP-relation with public inputs x and private
inputs w. We will also denote by b a bitmap of length n.

Main circuit

We first define the following helper methods:

– EncodeEpochToBits(i, r, δ, δ′, t, apk, {pki}ni=1) :
1. Encode i, the epoch index, as a 16-bit integer.
2. Encode r, the consensus round number, as an 8-bit integer.
3. Encode t, the maximum number of non-signers, as a 32-bit integer.
4. Encode δ, the current epoch entropy, in 128 bits.
5. Encode δ′, the parent epoch entropy, in 128 bits.
6. Encode each public key in {pki}ni=1 as a G2 compressed point. If

there are fewer public keys than the maximum defined in the system
parameters, pad with G2 until the maximum number of public keys is
reached.

– EncodeEpochToBitsEdges(i, δ, δ′, t, apk, {pki}ni=1) :
1. Encode i, the epoch index, as a 16-bit integer.
2. If this is the first epoch, encode δ′, the parent epoch entropy in 128

bits. If this is the last epoch, encode δ, the current epoch entropy in
128 bits.

3. Encode t, the required signer threshold, as a 32-bit integer.
4. If this is the last epoch, encode apk, the aggregated public key of this

validator set, as a compressed G2 point.
5. Encode each public key in {pki}ni=1 as a G2 compressed point. If

there are fewer public keys than the maximum defined in the system
parameters, pad with G2 until the maximum number of public keys is
reached.

Next we describe the main circuit. In the following let

Ej = {ij , rj , δj , δ′j , tj , apkj , {pkj,k}nk=1}

33

A subroutine taking as input some Ej is assumed to discard those elements
included in it which are not a part of the subroutine’s input.

– MainCircuit(H ′(e1), H ′(eN) : σagg, {H(ej)}Nj=2, {bj}
N−1
j=1 , {Ej}Nj=1):

1. For each j = 2...N perform:
(a) Check that apkj−1 =?

∑n
i=1 bi · pkj−1,i where bi is the i-th bit of

bj−1.
(b) Check that δj−1 =? δ′j
(c) Check that ij−1 =? ij + 1
(d) Encode Ej as ej using EncodeEpochToBits and hash it using

BHPedersenHash. Then, run Blake2Xs on the intermediate result to
obtain the final result of the composite hash. Finally, complete the
hash following the hash-to-group method described in Sections 5
and 6.1. Check that the result is equal to H(ej).

2. Check that apkN =?
∑n
i=1 pkN,i.

3. Check that e(σagg, G
−1
2) · e(H(e2), apk1) · ... · e(H(en), apkn−1) =? 1GT

4. Encode E1 as e1 and EN as eN each using EncodeEpochToBitsEdges.
Hash individually both e1 and eN directly with Blake2s. Tightly pack,
individually, the first and last epoch resulting hash bits into elements
of F. Check that the results of this packing are equal to H ′(e1), H ′(eN)
respectively.

34

	Abstract
	1 Introduction
	2 Overview
	3 Threat model
	4 Ultralight clients
	4.1 Ultralight clients
	4.2 An ultralight client compiler
	4.3 The Plumo ultralight client

	5 SNARK-friendly signatures and hashing
	5.1 BBSGLRY: non-interactive aggregate multisignatures
	5.2 Composite algebraic-symmetric hash functions

	6 Implementation
	6.1 Optimizations
	6.2 Evaluation

	References
	A Additional related work
	B Preliminaries
	B.1 Notation
	B.2 Blockchain model
	B.3 Proof-of-stake consensus
	B.4 Cryptographic assumptions
	Bilinear groups
	Chains of elliptic curves
	Cryptographic assumptions
	Aggregate multisignatures
	O-SNARKs: SNARKs in the presence of oracles
	Hash functions

	C Trusted setup
	D Deferred proofs
	E The Plumo specification

