You sank my battleship!
A case study to evaluate state channels as a
scaling solution for cryptocurrencies

Patrick McCorry!, Chris Buckland®, Surya Bakshi?, Karl Wiist?, and Andrew
Miller?

! King’s College London UK
patrick.mccorry,chris.buckland@kcl.ac.uk
2 University of Illinois at Urbana Champaign
sbakshi3,so0c1024@illinois.edu
ETH Zurich
karl.wuest@inf.ethz.ch

Abstract. Off-chain protocols (or so-called Layer 2) are heralded as a
scaling solution for cryptocurrencies. One prominent approach is called
a state channel which allows a group of parties to transact amongst
themselves and the global blockchain is only used as a last resort to self-
enforce any disputed transactions. To evaluate state channels as a scaling
solution, we provide a proof of concept implementation for a two-player
battleship game. We built battleship as it fits the category of applications
(i-e. chess, tic tac toe, poker, etc) that are not reasonable to execute on
the blockchain directly, but it is perceived as an ideal application for a
state channel. We explore the minimal modifications required to deploy
the battleship game as a state channel and propose a new state channel
construction, Kitsune, which combines features from existing construc-
tions. While in the optimistic case we demonstrate the battleship game
can be played efficiently in a state channel, the requirement for all parties
to collectively authorise new transactions in the state channel introduces
new economic and time-based attacks that if exploited renders the game
as unreasonable to play.

1 Introduction

Since 2009, we have witnessed the rise of cryptocurrencies as the market capi-
talisation for all cryptocurrencies peaked to $1 trillion US dollars in December
2017. While Bitcoin was the first cryptocurrency designed to support financial
transactions, another promiment cryptocurrency called Ethereum has emerged
for executing programs called smart contracts. The promise of smart contracts
is to support the execution of applications without human oversight or a central
operator. Some applications proposed include decentralised (and non-custodial)
token exchanges, publicly verifiable gambling games without dealers, auctions for
digital goods without auctioneers, boardroom electronic voting wthout tallying
authorities, etc.

Cryptocurrencies do not yet scale. Bitcoin can support approximately 7 trans-
actions per second and Ethereum can support around 13 transactions per second.
The lack of scalability is one of the primary hurdles preventing global adoption
of cryptocurrencies as the network’s transaction fee typically become unafford-
able for most users whenever the transaction throughput ceiling is reached (i.e.
the average fee in Bitcoin reached $20 in December 2017). The community is
pursuing three approaches to scale the network which include new blockchain
protocols, sharding the blockchain and off-chain protocols. New blockchain pro-
tocols can strictly increase the network’s throughput [26/13127], whereas sharding
can be used to distribute transactions into processing areas such that peers only
validate transactions that interest them [I8II20]. However there is a tradeoff
between increasing the network’s transaction throughput to support a larger
userbase in terms of affordable fees, and the number of validators with the nec-
essary computational resources to validate every transaction [16].

An alternative scaling approach consists of off-chain solutions to reduce the
number of transactions processed by the blockchain. It lets a group of parties de-
posit coins in the blockchain for use within an off-chain application. Afterwards
all parties can transact amongst themselves without interacting with the global
network and the deposited coins are re-distributed depending on the applica-
tion’s outcome. Two proposals include an alternative blockchain (i.e. a sidechain)
or a channel. A sidechain has block producers (i.e. miners or a single operator)
for deciding the order of transactions and users who publish transactions for in-
clusion. There are several sidechain protocols [2/9] which bootstrap from Bitcoin
(including a live network by RSK), whereas Plasma[23] and NOCUST[I7] are
non-custodial sidechains which bootstrap from Ethereum for financial transac-
tions. While sidechains are a promising off-chain solution, they still require a
blockchain protocol which has a transaction throughput ceiling.

On the other hand, a channel can be considered an n of n consensus pro-
tocol as all parties collectively authorise the state of an application amongst
themselves. There is no blockchain protocol and all parties only store the most
recently authorised state of the application. Channels first emerged in Bitcoin to
support one-way payments between two parties [28/8], but has since evolved in
Bitcoin towards the development of an off-chain payment network [24] by several
companies including Blockstream, LND and ACINQ. At the same time, several
proposals [222TUTOTTISITIM] collectively extend the capability of a channel to
support a group of parties to execute a smart contract (i.e. a program) amongst
themselves as opposed to simply payments. A state channel promises instant
finality for every transaction and no transaction fees as there is no operator to
reward. Channels are also self-enforcing as each party is protected against a full
collusion of all other parties and in terms of scalability the throughput is only re-
stricted by the network latency between the parties. The Ethereum Foundation
has donated over $2.7m [14] and the Ethereum Community Fund has donated
$275k [15] to further explore state channels as a scaling solution.

In this paper, we present an empirical evaluation in the form of a case study
for a single-application state channel which must be a viable scaling option

before a network of state channels is conceivable. To aid this evaluation we have
designed a two-player battleship game as a smart contract. An application like
battleship is not typically considered viable to execute via the blockchain due
to the quantity of transactions required and in our experiment we confirm this
perception as the financial cost is between $16.27 and $24.05. However, state
channels are perceived as a potential scaling solution to allow applications like
battleship to be executed over the blockchain. Our contributions are as follows:

— We explore the minimal modifications required to deploy a single-application
smart contract as a state channel and propose a template of modifications
that can be adopted by others deploying state channels.

— We present a new state channel construction, Kitsune, which is application-
agonostic, supports n parties and allows the channel to be turned off such
that the application’s progress can continue via the blockchain. This com-
bines the constructions from [22], [21], [10], [€].

— We provide a proof of concept implementation to evaluate deploying appli-
cations within a state channel. This experiment highlights the worst-case
scenario of state channels and how it potentially renders applications like
battleship as unreasonable to deploy within a state channel.

2 Background

In this section, we provide background information about smart contracts and
how the concept of a channel has evolved.

2.1 Smart contracts

A smart contract can be viewed as a trusted third party with public state. It has
a unique address on the network, it is instantiated based on the code supplied at
the time of its creation, and all execution can be modelled as a state machine.
Every transaction executes a command and this transitions the state machine
state; 1 = transition(state;, cmd). All parties must replicate the program’s entire
execution in order to verify the blockchain and join the network. This mass-
replication self-enforces a smart contract’s correct execution and also implies
that all data for the smart contract must be publicly accessible. Finally all
computation by a smart contract is measured using a metric called gas and the
sender of a transaction sets a desired gas price. The amount of gas used by
a contract invocation multiplied by the gas price sets the transaction fee for
incentivising a miner to include this transaction in their block.

2.2 Evolution of channel constructions

We present a high-level overview of a channel before exploring the evolution of
channel constructions from Bitcoin for financial transactions to Ethereum for
executing arbitary smart contracts.

High level overview A channel lets n parties agree, via unanimous consent, to
new states that could be published to the blockchain. As a result parties can
transact amongst themselves instead of interacting via the global network. To
set up, each party in the group must lock coins in the underlying blockchain
for the channel. Afterwards all parties collectively execute state transitions and
exchange signatures to authorise every new state (i.e. the balance of all parties,
the state of a smart contract, etc). If a single party does not co-operate to
authorise a valid state transition, then the underlying blockchain is trusted to
resolve disputed transactions and self-enforce the state transition. In the case
of Bitcoin, the blockchain gurantees the safety of coins for the online parties,
whereas in the case of a smart contract in Ethereum it also guarantees liveness
such that an application will always progress and eventually terminate.

Payment channels Spilman proposed replace by incentive which is the first state
replacement technique for a channel. It is designed for one-way payments from
a sender to receiver [28] and the receiver is responsible for publishing the state
that pays them the most coins. To support bi-directional payments, Decker pro-
posed replace by time lock which decrements the channel’s expiry time whenever
the payment direction changes [8]. However both state replacement techniques
require an expiry time which restricts the total number of transactions that
can occur. Poon and Dryja proposed a third state replacement technique called
replace by revocation for Lightning Channels [24]. It requires both parties to
authorise each other’s copy of the new state before sharing secrets to revoke
the previously authorised state. Crucially, it introduced the concept of a dispute
process where one party publishes an authorised state to close the channel and
the blockchain provides a fixed dispute period for the counterparty to prove the
published state is invalid. Raiden proposed the first payment channel construc-
tion for Ethereum which is effectively a pair of replace by incentive channels [25].
Unlike in Bitcoin, this construction has no expiry time and does not restrict the
total number of payments within the channel, but it is still restricted to two
parties and the channel’s state only considers the balance of both parties.

State channels Both Sprites and Perun independently proposed a new state
replacement technique called replace-by-version [22/10], but there is a subtle dif-
ference. Sprites introduced a command transition state channel which supports
n parties and it always remains open. Its dispute process lets one party trigger
a dispute by submitting a state, its version and a list of signatures to prove this
state was authorised by every party. All parties are provided a fixed time pe-
riod to submit commands and every accepted command is simply executed via
the blockchain after the dispute process has expired. Perun introduced a closure
state channel which supports 2 parties. It lets the channel close and for the ap-
plication’s execution to continue via the blockchain. Its dispute process can be
triggered if one party submits a fully authorised state. All parties are provided
a fixed time period to submit states with larger versions and after the dispute
process the state with the largest version is considered the final off-chain agreed
state. Pisa modified the Sprites construction such that a commitment (i.e. hash)

of the new state is signed instead of the plaintext state, but the state channel is
still responsible for accepting commands in plaintext. Perun and Counterfactual
extend the concept of a state channel in two ways [10/5] First, they proposed
the state within a channel can be organised in a hierarchy to support multiple-
applications and the dispute process for one application does not impact other
applications in the channel. Second, they proposed virtual channels which allow
two parties without a direct and established channel to connect with each other
using a network of channels. This requires all channels along the route to lock
up collateral while the virtual channel is open.

3 Kitsune State Channel Construction

We propose, Kitsune, the first application-agnostic state channel construction
SC. Kitsune focuses on the dispute process and it only considers the list of parties,
signatures, a hash of the final state, and the version number. Like Sprites, it is
designed to support n parties and follows the same dispute model of triggering a
dispute, submitting evidence and then finally resolving the dispute. Like Perun,
it simply focuses on deciding the final agreed off-chain state to close the channel.
Finally we also propose an application template AC which will lock and unlock
an application into a state channel upon the approval of all parties.

3.1 Overview of Kitsune

An overview of the state channel contract is presented in Figure [2| and the ap-
plication template is presented in Figure [I] Briefly, all parties must approve to
lock the application using AC.lock which disables all functionality and instanti-
ates the state channel contract. All parties continue the application’s execution
off-chain by collectively signing the hash of every new state alongside an incre-
mented version. The channel can be co-operatively turned off using SC.close, or
any party can trigger the dispute process using SC.trigger. If triggered, all parties
have a fixed time period to publish the state hash with the largest version using
SC.setstatehash. After the dispute process has expired, any party can resolve the
dispute using SC.resolve which stores the final state hash with the largest version.
Any party can unlock the application by submitting the entire state in plaintext
using AC.unlock. The application will hash the enite state, fetch the final state
hash from the state channel contract using SC.getstatehash, and compares both
hashes. If satisified, the full state is stored and all functionality in the application
contract is re-enabled to permit executing it via the blockchain.

3.2 Kitsune state channel contract

We provide an overview of the state channel contract for Kitsune before discussing
how to instantiate it, how parties collectively authorise new states off-chain and
how the dispute process is used to confirm the final state hash.

Overview of the state channel contract The state channel can be in one of three
states which are status := {ON,DISPUTE, OFF}. All parties can collectively
authorise new states for the application when the state channel is set as status :=
ON. Any party can trigger a dispute which sets the state as status := DISPUTE
and this provides a fixed time period for all parties to submit an authorised
state hash (and its corresponding version). Once the dispute is resolved or if the
channel is closed co-operatively, then the state is set to status := OFF and this
determines the final state hash for the application. If the channel is closed due to
the dispute process, then a dispute record is stored which includes the starting
time and finishing time for the dispute tsiart, tend and the final version i.

Creating the channel The application contract AC is responsible for instantiating
the state channel contract with the list of participants P, ..., P,, and the dispute
timer Agispute- The state channel is set as status := ON and the application
contract’s functionality is disabled.

Authorising off-chain state hashes A command cmd is a function call within the
application contract. Any party P can select a command cmd and propose a new
state transition state;y; := transition(state;, cmd). The new state is hashed with a
blinding noncdﬂ hstate; 1 := H(statej;1, riy1) and signed op := Sign(hstate; 1, i+
1). To complete the state transition, the party sends cmd, hstate;;1, state;y1, ri41
and op to all other parties for their approval. All other parties in the channel
verify the state transition before authorising it. To verify, each party re-computes
the transition state/ ; := transition(statej,cmd) and state hash hstate;,, :=
H(state] 1, riy1). Then each party verifies the signature VerifySig(P, (hstatei/_H, i+
1),0p) and that the version is the largest received so far. If satisfied, each party
signs the state hash oy, := Sign(hstate;;1,i + 1,5C, AC) and sends this signature
to all other parties. A new state hash is only considered valid when each party
has received a signature from every other party. If one party does not receive all
signatures by a local time-out, then this party can trigger the dispute process to
turn off the channel, unlock the application and continue its execution via the
blockchain.

Dispute process Any party can trigger the dispute process using SC.trigger. This
self-enforces the dispute time period tstart := thows tend := tnow + Adispute and sets
status := DISPUTE. All parties can submit the latest state hash, its version and
the list of signatures to prove it was authorised using SC.setstatehash. The state
channel contract SC only stores hstate; if it is signed by all parties and it has the
largest version i received so far. After the dispute period has expired, any party
can resolve it using SC.resolve. This sets status := OFF, stores a dispute record
(tstarts tend, 1) and allows the application contract AC to fetch the final state hash
hstate;.

4 The blinding nonce is used for state privacy if resolving disputes is outsourced to an
accountable third party as proposed by Pisa [21]

Co-operative close All parties can sign op := Signp('close’, hstate;, i,SC) and
submit it to the state channel using SC.close. This stores the state hash hstate;,
its version i and sets status := OFF. No dispute is recorded in the contract.

3.3 Application Contract Template

We present an application template that can be applied to easily add state
channel support to an existing smart contract. It demonstrates how to lock all
functionality in the application for use in the state channel and how to unlock all
functionality to permit the application’s execution to continue via the blockchain.

Overview of template. After modifications, the application contract must ex-
plicitly record a list of participants P, ..., Py, a dispute timer Agispyte, whether
the state channel has been instantiated instantiated := {YES,NO} and if so it
also stores the state channel’s address SC. All functions within the application
require a new pre-condition to check whether the state channel is instantiated
and should only permit execution if instantiated = NO. Finally the application
must include two new functions AC.lock that instantiates the state channel upon
approval of all parties and AC.unlock that verifies a copy of the full state before
re-enabling the application.

Lock application contract All parties must agree to create the state channel
by signing (ON, AC, Agispute, lockno), where ON signals turning on the channel,
lockno is an incremented counter to ensure freshness of the signed message and
Agispute is the fixed time period for the dispute process. Any party can call AC.lock
with the list of signatures X'p, Agispute and lockno to turn on the state channel.
The application contract AC verifies all signatures and that lockno represents
the largest counter received so far. If satisfied, AC sets instantiated := YES and
this disables all functionality within the application. Next AC creates the state
channel contract SC which sets the list of participants Py, ..., P, and the dispute
timer Agispute- Finally AC stores the state channel address SC.

Unlock application contract After the dispute process has concluded in SC, one
party must send state/,r/ using AC.unlock before the functionality can be re-
enabled. The application contract verifies that state/ indeed represents the final
state by computing hstate] := H(state/,r/), fetching the final state hash hstate;
from SC using SC.getstatehash and checking hstate] = hstate;. If satisfied, AC
stores state] and re-enables all functionality by setting instantiated := NO. Of
course, if there is no activity within the state channel, then the state channel
contract’s dispute process can expiry without a submitted hstate;. In this case,
the application contract verifies the state channel returns () and re-enables all

functionality without modifying the existing state.

4 Applying the Application Template for Battleship

We explore how to apply the application template from Section to a contract
like battleship (in Appendix |[A.2)) such that it can be deployed within a state

channel. Next we discuss workarounds (and pitfalls) discovered while building
our proof of concept.

4.1 Minimal modifications for a State Channel

We present how to modify the battleship contract before deployment in order to
support state channels. This tracks whether a state channel was instantiated, the
lock/unlock functionality to instantiate the state channel, a new pre-condition
for every function in the game and how to handle functionality with side-effects
in the off-chain contract.

Applying the application template The application contract stores the dispute
timer and a counter instance to track the number of times the state channel
is turned on. It sets instantiated := NO and both players P;, Py for use by
the state channel. The pre-condition discard if instantiated = YES is included
in every function except BS.unlock. If the pre-condition is satisfied, then all
future transactions that interact with this function will fail. This disables all
functionality within the application contract if it is locked and the state channel
is turned on.

Lock and unlock functions The lock function BS.lock requires a signature from
both parties P;, P2 to authorise creating the state channel which is denoted as
0¥k .= Signp('lock’, chany, round, BS). Once the state channel is turned on,
the battleship contract sets instantiated := YES, it creates a new state channel
contract SC with the list of participants P;, P2 and the dispute timer Agispute-
The unlock function BS.unlock allows any party to submit the final game state;
alongside the nonce r after the dispute proces is resolved in the state channel
contract. The battleship contract verifies if it corresponds to the final state hash
accepted by the state channel contract using H (state,r) == SC.getstatehash. If
successful, the full state is stored and the flag instantiated is set as NO. This
re-enables all functionality in the battleship contract.

4.2 'Workarounds for State Channel

Off-chain contract Our proof of concept requires each player to deploy an off-
chain version of the battleship contract to a local blockchain to replicate (and ver-
ify) the execution of all state transitions. Without modifying the local blockchain
instance, both the off-chain and on-chain battleship contracts have different ad-
dresses. This poses problems for our fraud proofs if a message is signed for the
off-chain contract address as it will not be valid when the on-chain contract is
re-activated. To alleviate this issue, we sign two messages for the on-chain and
off-chain contract. However there is an upcoming new consensus rule [3] to deter-
ministically derive the contract’s address which simplifies deploying an off-chain
contract with the same address.

Loss of a global clock Both parties no longer share a global clock within the
channel to self-enforce time-based events. We propose two approaches to handle
time-dependent events. First, the time tchalienge can be set by the player proposing
a new state and the counterparty must verify the proposed time is within a range
(i.e. a few minutes, or n blocks) before mutually authorising it. It must take into
account the time required to turn off the channel via the dispute process and
the time to initiate/settle the dispute such that tchalenge = tnow + Achallenge +
Adispute + Aextra- An alternative approach is to set tchalienge as L for all updates
within the state channel. Instead the time tchalienge is set by battleship contract
when it is re-activated in the blockchain using BS.unlock and if the game is in a
relevant phase.

No external interaction or side-effects We define a side-effect as a state update
that relies on an environmental variable or external interaction with another
contract. This is because the side-effects will not persist when the application
is re-activated on the blockchain. Some examples in Ethereum include the envi-
ronment variables msg, block, tx, and transfering coins to another contract. All
functions with side-effects should be deleted or disabled in the off-chain contract
which for battleship includes the auxillery functions BS.deposit and BS.withdraw.

Authenticating transaction signer and replay protection The battleship contract
relies on msg.sender to authenticate the immediate caller as the transaction
signer. This requires the party to sign a transaction for execution in the coun-
terparty’s local blockchain. Ethereum transactions have a chain_id to prevent
transactions signed for one blockchain being replayed to another blockchain.
The counterparty can verify the transaction has set chain_id and it is destined
for the off-chain contract address before executing it in their local blockchain.
Finally the off-chain contract can also include a new BS.getstate to return the
full state and the corresponding hstate, i.

Persistent race conditions The gameplay for battleship is turn-based and it
is clear which player is responsible for proposing every new state. Setting up
the game using BS.select or BS.begingame has no order and both players may
concurrently propose a state transition for the same version. In our case, both
players can use a deterministic rule to resolve the race condition (i.e. P; proposed
state has priority) as the order of execution has no impact on the game’s outcome.
This highlights that race conditions in the underlying application are reflected
in the state channel and can result in the state channel being turned off if the
order of execution has an impact on the application’s outcome.

Limitations due to the EVM The mapping data structure in Solidity for the
Ethereum contract environment poses problems for the state channel as it cannot
simply delete all key-value pairs. If a key-value pair is set to 1 within the state
channel, then this over-write must also occur when the full state is sent to the
contract. Otherwise, the key-value pair will persist in the application contract
after the state channel is turned off. For example, if a party’s balance is set to

L off-chain, but this isn’t reflected in the on-chain contract, then this party can
withdraw more coins than they deserve.

5 Proof of Concept Implementation

Step Purpose Gas Cost $$
Battleship Game

1 Create BattleshipCon without State Channel 10,020,170 7.97
2 Deposit (BS.deposit) 44,247 0.04
3 Place bet (BS.placebet) 34,687 0.03
4 Select counterparty’s ships (BS.select) 422,894 0.34
5a Ready to play (BS.begingame) 47,651 0.04
5b Do not play (BS.quitgame) 388,805 0.31
6 Attack (BS.attackeell) 69,260 0.06
7a Reveal cell (BS.opencell) 73,252 0.06
7b Reveal ship (BS.sunk) 111,372 0.09
8 Open ships (BS.openships) 159,748 0.13
9 Finish game (BS.finish) 275,521 0.22
10 Withdraw (BS.withdraw) 36,674 0.03
11 Fraud: Ships at same cell (BS.celltwoships) 280,766 0.22
12 Fraud: Declared not hit (BS.declarednothit) 284,261 0.23

13 Fraud: Declared not miss (BS.declarednothit) 284,654 0.23

14 Fraud: Declared not sunk (BS.declarednotsunk) 312,481 0.25

15 Fraud: Attack same cell (BS.attacksamecell) 100,861 0.08

16 Challenge period expired (BS.expiredchallenge) 75,349 0.06
State Channel

17 Create BattleshipCon with State Channel 13,607,0695 10.83

18 Lock (BS.lock) 991,617 0.79
19 Trigger dispute (SC.trigger) 84,106 0.07
20 Set state hash (SC.setstatehash) 70,035 0.06
21 Resolve (SC.resolve) 89,745 0.07
21 Co-operative turnoff (SC.close) 90,354 0.07
22a Unlock (BS.unlock) 725,508 0.6

22b Unlock (No Activity) (BS.unlock) 51,454 0.04

Aggregated Statistics

Turn state channel on and off 1,961,011 1.56
Average case for game 20,451,633 16.27
Worst case for game 30,237,372 24.05

Table 1: Costs of running the battleship game within the state channel. We have
approximated the cost in USD ($) using the conversion rate of 1 ether = $306
and the gas price of 2.6 Gwei which are the real world costs in September 2018.

Purpose Propose Verify Acknowledge

Place bet (BS.placebet) 232.18 212.23 0.44
Select counterparty’s ships (BS.select) 330.59 304.70 0.44
Ready to play (BS.begingame) 243.70 224.51 0.44
Attack (BS.attackcell) 267.09 243.69 0.35
Reveal cell (BS.opencell) 268.93 248.51 0.40
Reveal ship (BS.sunk) 291.25 276.97 0.38
Open ships (BS.openships) 288.75 258.70 0.35
Finish game (BS.finish) 376.05 349.20 0.30

Table 2: Time taken to propose, verify and acknowledge new state transitions,
measured in milliseconds (ms) and calculated as an average over 100 runs.

We present a proof of concept implementation for our battleship game within
a state channeﬂ The experiment was performed using a Dell XPS 13 with
Intel Core i5-7200U CPU @ 2.50GHz processor and 8GB LPDDR3 on a private
Ethereum node using Ganache. In the following we discuss Table[[] which outlines
the gas costs for our proposed modifications and Table[2] which presents a timing
analysis to propose, verify and acknowledge a state transition within the channel.

Our experiment involves three contracts which includes the unmodified bat-
tleship contract (Step 1), the battleship contract after applying the application
template (Step 15) and the state channel contract (Step 16). Deploying both the
modified and unmodified battleship contract highlights the cost for modifying an
application contract to support a state channel is approximately 1 million gas.
A single game of battleship (Steps 4-9) via the blockchain costs $16.27 (approx
20 million gas) where each player takes 65 shotﬁﬂ In the worst case, the game
requires one player to take 99 shots, and the counterparty to take 100 shots.
This worst-case costs $24.05 (approx 30 million gas) to finish the game. Locking
the battleship game, creating the state channel, performing the dispute process
costs and unlocking the battleship game costs $1.56 (approx 1 million gas). The
cost for each fraud proof is presented in Steps 11-14 and only one fraud proof is
required per game to prove the counterparty has cheated.

All timings in Table [2] are approximations. We focus on the time taken to
propose a new state transition, the time required for the counterparty to verify a
state transition and for the initial proposer to verify the signed new state which is
an acknowledgement from the counterparty that the state transition is complete.
Proposing a new state takes between 232-376ms. This includes creating and
signing a transaction at 12ms, executing the transaction within a local blockchain
which is between 35-179ms (i.e. it depends on the function executed), retrieving
the full new state from the local blockchain at 172ms, preparing a transaction for
the counterparty and signing the full state’s hash at 15ms. The state hash and
signature is sent to the counterparty which incurs typical network latency. The
counterparty takes between 212-349ms to verify a state transition which includes

® Anonymous code: https://www.dropbox.com/s/05s5k662h9lqlk4 /Battleship.zip?dl=0
5 This number of shots is based on the better than random algorithm in. [7]

verifying the received transaction’s signature (and checking it is destined for the
off-chain contract) at 8 ms, executing the received transaction within the local
blockchain which is between 34-163ms, retrieving the full new state from the
local blockchain at 171ms, verifying the signature for the received state hash and
verifying it matches the newly computed state hash at 0.4ms, and finally signing
the new state hash at 4ms. The counterparty sends the corresponding signature
for the new state hash back to the proposer which incurs typical network latency.
Finally the proposer must verify the signature from the counterparty which takes
0.4ms. Overall, while the timings are reasonable for real-world use, the most
expensive operations involve interacting with the Ganache client.

6 Discussion and Future Work

Supporting third party watching services To alleviate the security assumption
that all parties must remain online and synchronised with the blockchain to
watch for disputes, PISA [21] proposed that parties can hire an accountable third
party to watch the channel on their behalf. The application-agnostic design of the
new state channel construction Kitsune is beneficial to PISA as the accountable
third party is only required to verify the state channel contract’s bytecode (and
not the application) before accepting a job from the customer. The accountable
third party only requires a signature from every party in the channel Xp, the
state hash hstate and the version i to resolve disputes on the customer’s behalf.

Funfair dilemma There is a chicken-and-egg problem on whether state channels
should create and destroy applications off-chain, or if the state channel should
first require an application to already exist on the blockchain. Perun and Coun-
terfactual advocate for the former to minimise the up front cost of creating the
channel, whereas Funfair are pursing the latter to minimise cost of resolving
a dispute as only the application’s state is kept off-chain. Fundamentally both
approaches have a different trust assumption on the likelihood one party will
trigger a dispute and whether the financial cost to resolve a dispute can interfere
with the application. This dilemma can be summed up in a single question:

If the player is about to win a $10 bet, but the counterparty has stopped
responding in the channel, then is it worthwhile for the player to turn off the
channel, complete the dispute process, re-activate the application and win the

bet via the blockchain if this process costs $1007

To evaluate this dilemma, our case study highlights that it costs $1.56 to
resolve the dispute and submit the full game state to the contract which is an
affordable (and reasonable) cost. However it does not consider the cost to deploy
and instantiate the battleship game at $7.97, the continued cost for both players
to play battleship or the remaining time required to finish playing it.

Dominant strategy to force-close Let’s consider the worst-case for battleship.
Both players set up the game with an expectation to play it within the state
channel, but afterwards one player triggers a dispute to turn off the channel and
the game must be finished via the blockchain. To play the entire game costs
between $16.27 to $24.05 and every move requires a reasonable time period for
moves to be accepted into the blockchain. If it is set to 5 minutes per move
and the game requires 200 transactions, then the game may take several hours
(i.e. 16 hours) to complete. This can be considered a dominant strategy by an
adversarial player as it is likely rational players will simply forfeit their deposit
(and bet) to quit the game early.

Inducing cooperative behaviour There is no mechanism to distinguish why a
channel broke down, i.e. a blockchain cannot distinguish if Alice refused to sign
and send Bob the latest state, or if Bob claims that he did not received a signed
update. This makes it non-trivial to build a reputation system as it is unclear
which party was at fault for the channel’s failure and if any reasonable action can
be taken to penalise the party at fault.To workaround the inability to identify
the misbehaving party, future work must focus on how to induce cooperative
behaviour amongst all parties in the channel. Any mechanism should not let
an adversarial player to force-close a channel to their advantage (i.e. expect-
ing rational players to simply give up). On the other hand, it must be careful
not to discourage honest parties from closing the channel and continuing the
application’s execution via the blockchain.

Self-inspection of blockchain congestion On 6th January 2018, we witnessed the
network’s transaction fee spike to 95,788,574,583 wei [12][] as the network became
congested due to a significant increase in transaction throughput. Congestion
impacts state channels as it increases the cost for resolving disputes (i.e. $57.58
for battleship) and continuing the application’s execution (between $599 and
$886 for battleship). If the increased transaction fees are not paid, then it is
probable that a transaction will not be accepted into the blockchain within the
dispute time period. Future work should focus on a new operation code (i.e.
CheckCongestion()) that can retrospectively self-inspect the previous k of n
blocks to determine if it was affordable for an honest party’s transaction to be
accepted into the blockchain. This could be used to extend the time period for
resolving disputes and let players wait until the network is no longer congested
before continuing the application’s execution.

What to consider before deploying a state channel State channels require unan-
imous consent for an application’s execution to progress off-chain. This implies
an all parties should be involved throughout the entire application’s execution or
permit parties to leave via the blockchain without closing the channel. The devel-
oper must take care to ensure the application can gracefully handle (or remove)
all race conditions. As well, they must be mindful the off-chain state size does

" The congestion was caused by a popular game called Cryptokitties.

not grow significantly which may prevent its publication to the blockchain. The
application should be self-contained, not rely on any side-effects, and explicitly
consider how to handle time-based events. Finally to guarantee liveness, it must
always be reasonable to continue an application’s execution via the blockchain.

Applicable Applications Our case study demonstrates that applications like bat-
tleship are not suitable for state channels due to the liveness requirement. Instead
it appears that state channels are only useful for applications that are already
suitable for execution via the blockchain and it only involves a small number of
parties who can remain online throughout the application’s life-time. It is also
beneficial if all parties want to repeat the application’s execution more than once
such that the additional overhead to set up the channel costs less than simply
executing it via the blockchain. Some potential applications include payments,
casino games, boardroom elections and auctions. We conclude that a state chan-
nel should be viewed as an optimistic scaling approach only if all parties are
willing to cooperate.

7 Acknowledgements

Patrick McCorry and Chris Buckland are supported by an Ethereum Foundation
scaling grant, Ethereum Community Fund grant and a Research Institute grant.
Andrew miller is supported by an NSF Grant 1801321. We thank the IC3-ETH
participants Frank Sauer, Matthew Salazar, Oded Naor, and Deepak Maram for
their support at kick-starting this project (and winning third prize). As well,
we thank Tom Close for discussions around how to mitigate disputes in state
channels. Finally we thank Master Workshop: Off the Chain for bringing together
state channel researchers which helped bootstrap this paper.

References

1. Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George
Danezis. Chainspace: A sharded smart contracts platform. arXiv preprint
arXiv:1708.03778, 2017.

2. Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,
Andrew Miller, Andrew Poelstra, Jorge Timén, and Pieter Wuille. Enabling
blockchain innovations with pegged sidechains. 2014.

3. Vitalik Buterin. Eip 1014: Skinny create2. Accessed 08/09/2018, https://
eips.ethereum.org/EIPS/eip-1014.

4. Tom Close and Andrew Stewart. Force move games. Accessed 08/09/2018, https:
//magmo.com/force-move-games.pdf.

5. Jeff Coleman, Liam Horne, and Li Xuanji. Counterfactual: Generalized state chan-
nels, 2018.

6. Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Giin Sirer, et al. On
scaling decentralized blockchains. In International Conference on Financial Cryp-
tography and Data Security, pages 106—125. Springer, 2016.

https://eips.ethereum.org/EIPS/eip-1014
https://eips.ethereum.org/EIPS/eip-1014
https://magmo.com/force-move-games.pdf
https://magmo.com/force-move-games.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

DataGenetics. Battleship. Accessed 08/09/2018, http://www.datagenetics.com/
blog/december32011/.

Christian Decker and Roger Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing
Systems, pages 3—18. Springer, 2015.

Johnny Dilley, Andrew Poelstra, Jonathan Wilkins, Marta Piekarska, Ben Gorlick,
and Mark Friedenbach. Strong federations: An interoperable blockchain solution
to centralized third-party risks. arXiv preprint arXiv:1612.05491, 2016.

Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun:
Virtual payment channels over cryptographic currencies. Technical report, TACR
Cryptology ePrint Archive, 2017: 635, 2017.

Stefan Dziembowski, Sebastian Faust, and Kristina Hostdkovd. General state
channel networks. Cryptology ePrint Archive, Report 2018/320, 2018. https:
//eprint.iacr.org/2018/320.

Etherscan. Ethereum gas price. Accessed 08/09/2018, https://etherscan.io/
chart/gasprice.

Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and Robbert Van Renesse. Bitcoin-
ng: A scalable blockchain protocol. In NSDI, pages 45-59, 2016.

Ethereum Foundation. Ethereum foundation grants update - wave iii. Accessed
08/09/2018, https://blog.ethereum.org/2018/08/17/ethereum-foundation-
grants-update-wave-3/.

Ethereum Community Fund. Meet the grantees ecf class of 2018 part ii. Ac-
cessed 08/09/2018, https://medium.com/ecf-review/meet-the-grantees-ecf-
class-0f-2018-part-ii-ff46a284a0bl.

Arthur Gervais, Ghassan O Karame, Karl Wiist, Vasileios Glykantzis, Hubert Ritz-
dorf, and Srdjan Capkun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 3—16. ACM, 2016.

Rami Khalil and Arthur Gervais. Nocust-a non-custodial 2 nd-layer financial
intermediary.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and Privacy (SP), pages 583-598.
IEEE, 2018.

ScaleSphere Foundation Ltd. Celer network: Bring internet scale to
every blockchain. Accessed 08/09/2018, https://www.celer.network/doc/
CelerNetwork-Whitepaper.pdfl

Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 17-30. ACM, 2016.

Patrick McCorry, Surya Bakshi, Iddo Bentov, Andrew Miller, and Sarah Meikle-
john. Pisa: Arbitration outsourcing for state channels. TACR Cryptology ePrint
Archive, 2018:582, 2018.

Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites:
Payment channels that go faster than lightning. CoRR abs/1702.05812, 2017.
Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts.
White paper, 2017.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-
chain instant payments. Draft version 0.5, 9:14, 2016.

http://www.datagenetics.com/blog/december32011/
http://www.datagenetics.com/blog/december32011/
https://eprint.iacr.org/2018/320
https://eprint.iacr.org/2018/320
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://blog.ethereum.org/2018/08/17/ethereum-foundation-grants-update-wave-3/
https://blog.ethereum.org/2018/08/17/ethereum-foundation-grants-update-wave-3/
https://medium.com/ecf-review/meet-the-grantees-ecf-class-of-2018-part-ii-ff46a284a0b1
https://medium.com/ecf-review/meet-the-grantees-ecf-class-of-2018-part-ii-ff46a284a0b1
https://www.celer.network/doc/CelerNetwork-Whitepaper.pdf
https://www.celer.network/doc/CelerNetwork-Whitepaper.pdf

25. Raiden. Raiden network. Accessed 08,/09/2018,
https://github.com/raiden-network/raiden-contracts/blob/
d3c30e6d081ac3ed8fbf3f16381889baa3963ea7/raiden_contracts/contracts/
TokenNetwork.sol.

26. Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and
scalable cryptocurrency protocol. IACR Cryptology ePrint Archive, 2016:1159,
2016.

27. Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in
bitcoin. In International Conference on Financial Cryptography and Data Security,
pages 507-527. Springer, 2015.

28. Jeremy Spilman. [bitcoin-development] anti dos for tx replacement. Ac-
cessed 08/09/2018, https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2013-April/002433.htmll

A Battleship Contract

We provide a high-level overview of the game battleship before proposing how
to implement it as a smart contract. A security analysis for the game is included
in Appendix [C] We present how to convert the battleship game to support state
channels using the template in Section [3.3

A.1 Overview of Battleship

Battleship is a two-player game where each player has a list of ships that are
placed on a 10x10 private board. Each ship must be marked in a straight line
either horizontally or vertically. Our protocol only relies on a commitment to
every player’s ship and the signed messages exchanged between both parties in
order to minimise long-term storage (and the associated gas-cost). An extension
to this game is presented in Appendix [B]which includes a commitment for every
cell on the board.

To set up the game, both parties exchange a commitment to their list of ships
and the counterparty must submit it using BS.select. Afterwards both players
can signal to begin the game using BS.begingame, otherwise they can quit using
BS.gameover. In the turn-based gameplay, the player selects a cell to shoot using
BS.attackcell and the counterparty must open the cell within a fixed challenge
period. To open, the counterparty reveals if the cell is occupied by water or a
ship piece using BS.opencell. If this shot sinks a full ship, then the counterparty
must reveal the full ship (i.e. instead of the cell’s opening) using BS.sunk. At
the end, the winner must reveal their board and every ship’s location to the
loser using BS.openships. The loser has a fixed challenge period to prove if the
winner’s board was incorrectly set up or if the winner cheated during the game
using a proof of fraud. A player can call BS.gameover after the challenge period
has expired to finish the game.

https://github.com/raiden-network/raiden-contracts/blob/d3c30e6d081ac3ed8fbf3f16381889baa3963ea7/raiden_contracts/contracts/TokenNetwork.sol
https://github.com/raiden-network/raiden-contracts/blob/d3c30e6d081ac3ed8fbf3f16381889baa3963ea7/raiden_contracts/contracts/TokenNetwork.sol
https://github.com/raiden-network/raiden-contracts/blob/d3c30e6d081ac3ed8fbf3f16381889baa3963ea7/raiden_contracts/contracts/TokenNetwork.sol
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html

A.2 Battleship Contract

We present each phase of the game, how to establish the contract, the turn-
based gameplay and finally how the loser is provided an opportunity to prove
the winner cheated.

Game Phases There are six phases SETUP, ATTACK, REVEAL, WIN, FRAUD,
GAMEOQOVER. The SETUP phase is responsible for ensuring both players select a
single list of ships to begin the game. Game play transitions between AT TACK
and REVEAL as both players take a turn at shooting the counterparty’s ships.
The game transitions to WIN when one player wins the game and it will transition
to FRAUD once the winner has opened all ship locations. This provides the loser
a fixed time period to submit a proof of fraud that the winner’s board is not
well-formed or that the winner did not honestly reveal a cell during the game.
Otherwise, the contract transitions to GAMEOVER and the winner can claim
their winnings.

Contract establishment The contract is established with the address of both
players Py, P2 and the challenge timer Acpalienge. Both parties can deposit coins
during SETUP phase before placing their bets.

Prepare list of ships A ship hash is denoted as hship := H(z,y, 2,3/, r, round, P, AC)
where z,y represents its starting co-ordinate, x’, 13’ represents its finishing co-
ordinate. Each party P computes and signs a list of ships:

YN := Signp (((k1, hshipy), ..., (kn, hship,,)), P, round, AC)

Each ship in the list is denoted as (k, hship), where k is the length for that par-
ticular ship. This is sent to the counterparty who must submit it using BS.select
and reserve the ships for the gameﬁ Both players can notify the contract to begin
the game using BS.begingame or one party can signal their desire to quit using
BS.gameover. Finally the game round is incremented regardless if it continues or
not.

Game-play The contract maintains a counter move which is incremented after
each player’s turn. In the ATTACK phase, the player P challenges the counter-
party to open a cell z,y by signing:

J%hot = Signp(x, Y, move, round,AC)

This message is submitted using BS.attackcell. It transitions the game phase
to REVEAL and sets a fixed challenge period tchallenge := thow 1 Achallenge for the
counterparty’s response. The counterparty signs one of two messages depending
on whether a ship was sunk:

8 In Appendix we present a cut-and-choose protocol to allow the counterparty
probabilistic verify the board is well-formed.

ohit .= Signp(,y, b, move, round, AC)

G%unk = Signp (x’ Y, ;17/’ y/’ T, hshlp7 move, round, AC)

The counterparty is responsible for submitting either signed message. The
first message declares if the cell is marked with water (b = 0) or a ship location
(b = 1). It is submitted using BS.opencell. The second message declares the
shot sank a ship and requires the counterparty to open the corresponding ship
commitment hship to BS.sunk. Each party must keep a copy of every signed
messagd’] as it can later be used to prove fraud which we discuss in Section
The game transitions to WIN if one player has declared all their ships sunk.

End of game After one player has lost the game (or if the contract has de-
tected cheating by the loser as illustrated in Section7 the winner must open
their remaining ship commitments using BS.openships. This contract transitions
to FRAUD which provides a fixed challenge period for the loser to submit a
proof of fraud. After this time period, the winner can redeem their reward using
BS.gameover and the game transitions to GAMEOVER. Of course, if both parties
have cheated, then the winnings are simply burnt.

A.3 Checking for Fraud

We present integrity checks the contract can perform throughout the game to
verify that either party has not cheated. These checks are performed whenever
a player calls BS.attackcell, BS.sunk, BS.opencell and BS.openships.

Ezxceeded mazimum number of moves The contract maintains three counters.
The first move keeps track of the number of actions taken by bother players. If
move exceeds the number of possible moves in the game for both players, then
the contract can confirm that both players have cheated as an honest player will
have declared all their ships as sunk before the limit for move is exceeded. In this
case, both players are set as cheating and the game transitions to GAMEOVER
without a winner. Both hits; and water; keeps track of each player’s attack on
the counterparty’s board. If hits; exceeds the number of ship positions on the
board or water; exceeds the possible number of water cells, then the counterparty
was dishonest about their cell opening. In this case, the counterparty is marked
as cheated, the game transitions to WIN and the winner must open their ships.

Players only play using valid cells All cells must be within the permitted range
0 <=2 <10 and 0 <=y < 10 for any signed message received.

A ship was not placed horizontally or vertically The contract can check whether
an opened ship was placed on the board horizontally or vertically. To verify, it
checks that every location for a ship either has the same x or y co-ordinate,
and that = or y is incremented (or decremented) strictly by one for every ship
location. It also checks the ship’s length which is established during set up.

9 Every signed message is emitted by the contract and thus it is easily fetchable.

A.4 Proof of Fraud

To alleviate the need to validate the entire game within the smart contract
environment (and incurring unreasonable gas costs), the protocol is designed to
let each player validate the game and submit a proof of fraud if the counterparty
has cheated. In the following we present the fraud proofs that can be verified by
the contract.

Player has shot the same cell twice The contract cannot independently verify
if a player has shot the same cell twice as it does not store the opening of
cells. Instead the counterparty can submit the two signed shots J%h‘)t, a%h(’t/, the
corresponding move, move’ counters and the cell z,y using BS.attacksamecell.
The contract verifies if the signatures are valid (and from the same party), both
shots are for the same cell, and move # move’. This proof of fraud can be
submitted to the contract at any point during the game.

Counterparty was dishonest about a cell opening The counterparty has marked
a cell (z,y) as water, but an opened hship states it is a ship location. To prove
fraud, the player submits the ship identifier hship, the disputed cell x,y and the
signed opening of the cell 07}1,” using BS.declarednothit. The contract can verify
if this cell opening was signed by the counterparty as b = 0 and the ship hship
claims to be at x,y. On the other hand, the counterparty may also mark a cell as
a ship location, but no ships are at that location. This proof of fraud is similar
as the player submits the disputed cell location x, y alongside its signed opening
07@“ using BS.declarednotwater. The contract is satisified if it cannot find a ship

at that location. Both proofs can only be submitted during FRAUD.

Two ships claim to be at the same cell The cheater has used the same cell for
two or more ships. The index for both ships and the cell x,y must be submitted
to the contract using BS.celltwoships. The contract looks up the co-ordinates for
each ship and checks if it claims to be at the same location z,y. This proof is
applicable during FRAUD after all ships are opened by the winner.

Ship was not declared as sunk The counterparty did not declare a ship as sunk.
All signed cell openings O’%Zlfl, e oé’fﬁv and the ship identifier hship must be sub-
mitted to the contract using BS.declarednotsunk. This allows the contract to
verify that every ship location was opened and this implies the counterparty did
not declare the ship as sunk as the final opening should be ai,“"k. This proof is
applicable during FRAUD after all ships are opened by the winner.

Challenge period has expired The contract relies on a global clock (i.e. block
timestamp or block height) for the challenge period Achalienge- If @ player does
not respond within this time period, then the counterparty can notify the con-
tract using BS.expiredchallenge and the counterparty is set as the winner if the
challenge period has expired.

B Full Board Extension

We present an extension to our battleship game which requires a commitment
for every cell of the board in addition to the ship commitments. For each cell,
the commitment consists of a flag b indicating if it is occupied by water b := 0 or
a ship b := 1, and a randon nonce r. Assuming the selected board is well-formed,
then it can prevent each player lying about their cell opening during the game,
but it also increases the game state and the gas requirement for each move in
the game.

B.1 Modifications to the Battleship Contract

We present how to modify the battleship contract to support the full board
extension. This requires modifying how the game is prepared, how a cell opening
during the game play is verified by the contract and how the full board is opened
at the game’s end.

Prepare boards Our extension requires each party to compute an entire board
to accompany a list of ships. The board is a list of cell hashes such that hcell; ;,
..., heell,, , where n, n is the final grid co-ordinate. A cell hash is H(b, r, round, P, AC),
where b is a flag indicating if it is occupied by water b := 0 or a ship location
b:=1, and r is the nonce. The party signs the list of ships and the board cells:

o = Signp (((k1, hshipy), ..., (kn, hship,,)), (hcelly, ..., heell,), P, round, AC)

The contract stores every cell hash in the contract for future use. Each party
is responsible for reserving the list of ships and the board on behalf of their
counterparty using BS.select. All remaining N — 1 list of ships and their corre-
sponding boards must be opened and reviewed by the counterparty. If satisified,
each party notifies the contract to begin the game using BS.begingame or they
can quit using BS.gameover.

Game-play Our extension requires modifying how a player responds to an at-
tacked cell:

ot .= Signp(,y, b, Teer, move, round, AC)
O_7s)unk = Signp(x, v, I/, y/, Tcells V'ships hShIp, move, I’OUﬂd, AC)

Both the hit and sunk messages include the nonce r;;. This lets the contract
open hcell, , and confirm that the supplied b matches the commitment during
the setup. The opening can be stored by the contract, otherwise each party must
keep a copy of every signed messagﬂ for future fraud proofs as presented in

Section [A4]

10 Every signed message is emitted by the contract and thus it is easily fetchable.

B.2 Changes to Fraud Detection

We present the additional fraud detection that is performed by the contract and
the player due to the extension.

Cut-and-choose protocol To set up the game, both parties participate in a cut-
and-choose protocol to provide a probabilistic guarantee that the counterparty’s
board is well-formed. Each player commits, signs and sends the counterparty
N boards (i.e. list of ship and cell commitments). The counterparty reserves
one board for the game using BS.select. Once selected, each player reveals the
remaining N — 1 boards to the counterparty who verifies the boards are well-
formed. If both parties are satisified, then they can signal to begin the game using
BS.begingame, otherwise they can quit using BS.gameover. While this provides a
probabilistic guarantee the board is correctly set up, it does not let each player
place the ships on their board which may remove an element of the game.

Integrity checks As presented in Section the contract checks all signed mes-
sages received to self-enforce the game’s correct execution. Our extension requires
the contract to check every cell opening with the stored cell hash hcell.

Proof of fraud If we assume the board is well-formed upon set up, then the party
cannot be dishonest about their cell opening during the game. The fraud proofs
BS.declarednothit or BS.declarednotwater are still required as the board used in
the game can be invalid and the contract must verify that the cell opening
does not correspond to a ship opening. There is no change to the fraud proof
except that the cell nonces are submitted to the contract alongside the signed
cell openings.

C Security Analysis for Battleship Game

We provide a brief security analysis for the battleship game and demonstrate
how the fraud proofs can be used to self-enforce the game’s correct execution.
This includes how the contract can detect if a board is not well-formed, how it
self-enforces a player to attack a valid cell and how to ensure the corresponding
cell is honestly opened. Finally we highlight the contract forfeits any payout if
both players are caught cheating.

C.1 Detecting an Invalid Board

A cut-and-choose protocol lets each player select one of the counterparty’s com-
mitted boards at random for use in the game and afterwards review the remain-
ing N —1 boards before deciding to play the game. This provides a probabilistic
guarantee the selected board is well-formed, but it is not a mandatory step the
contract can self-enforce. Both players may decide to only send a single board
commitment to each other so they can manually place the ships. This provides
an opportunity for one (or both) players to construct an invalid board and we
highlight how the contract can detect it.

Overlapping ships The board is invalid if one cell is used for more than one ship.
The fraud proof BS.celltwoships can be used to prove that ships are overlapping,
but it requires the ship openings to be revealed. There is no guarantee the
counterparty will reveal both ship openings during the game, but the winner
is always required to open all ships and thus the loser is always provided an
opportunity to provide this fraud proof to the contract.

Ship is mot horizontal or vertical All ships must be placed horizontally or verti-
cally on the board, and it must be in a straight line. No fraud proof is required as
the contract is responsible for checking every ship opening. We outline in Section
how the contract checks that a ship was placed on a list of valid cells and
how it can check if the ship is placed horizontally or vertically.

Placed ships are not the correct size The board is invalid if a ship does not
occupy the correct number of cells on the board. The contract stores a list of
sizes for each ship. Each ship is represented as (k, hship) and the contract checks
that k corresponds to the expected size for the ship at this position in the list.
When the opening of hship is revealed to the contract it will check the number
of cells used by the ship corresponds to k.

Not placing a ship on the board The board is invalid if a ship is not placed on the
board. The contract requries a commitment hship for every ship before the game
can begin. If the commitment’s pre-image is not well-formed (i.e. it is L or the
ships location is not occupying valid cells), then the contract will not accept the
ship opening. Thus after the challenge period tchallenge, the contract will assume
the player has not responded with a ship opening. On the other hand, if the
ship’s location is not well-formed then the fraud proofs highlighted above can
be used.

Placing extra ships on the board The contract only accepts a fixed number of ship
commitments and thus the contract self-enforces that only the correct number
of ships are placed on the board.

C.2 Attacker during Game Play

The contract self-enforces the turn-based game play and whose turn it is to
attack. We consider how a cheater can manipulate the attack message a‘;ph"t

that is supplied to BS.attackcell.

Preventing replay attacks The contract is responsible for tracking (and incre-
menting) two counters. The counter round is incremented for every new battle-
ship game in this contract (incuding if the game set-up is restarted) and move
is incremented for every new move within a single game. Both counters are used
to prevent replay attacks from previous battleship game or moves within this
game. All messages also include the battleship contract address BS.

Attacking an invalid cell The player must select a single cell to attack and as
outlined in Section [A-3] the battleship contract verifies the proposed cell is valid.

Attacking same cell twice In order to reduce storage, the battleship contract
does not keep track of all prevously attacked cells. In Section [A74] we present
how the counterparty can submit two signed attack messages O'%hOt, ag’wt to the
contract using BS.attacksamecell to demonstrate the party has tried to attack
the same cell twice.

Not attacking any cell The player can abort and not attack any cell. After the
challenge time tchallenge has expired, the contract assumes the player has aborted
and sets the counterparty as the winner.

C.3 Revealer during Game Play

After a cell is attacked, the contract requires the counterparty to open the cell

with 07’3” or declare a ship as sunk with J%“"k.

Opening a different cell The battleship contract stores the co-ordinates x,y for
the attacked cell and it will only accept a cell (or ship) opening if it is for the
stored co-ordinate.

Dishonest about cell opening If the counterparty is not honest about the cell
opening, then the fraud proofs outlined in Section (i.e. BS.declarednothit or
BS.declarednotwater) can be used after the cheater has won and revealed the
opening of all their ships. This is comparable to playing the game in-person as
the counterparty is not forced to reveal all ships until the game’s end. We provide
an extension in Appendix [B] that requires each party to provide a commitment
for every cell on the board to prevents this issue (i.e. if the board is set up
correctly), but it increases the cost to play the game. As well, we highlight in
Section [AZ3] the contract keeps tracks on the number of moves played and the
game will always finish when this limit is exceeded.

Not declaring a ship as sunk If the final ship location is hit, the counterparty can
simply not declare the ship as sunk. Instead, the counterparty has to open the
attacked cell as water or a ship location. No more cells for this ship can be hit and
thus the ship cannot be opened during the game play. This requires the players
to wait until the game has finished and the cheater to be set as the winner. The
loser can provide a proof of fraud as presented in Section [AZ4] to prove the ship
was never declared as sunk. We highlight the extension presented in Appendx [B]
cannot prevent this issue as it is not straight-forward to distinguish several cell
openings as being a single ship or several adjacent ships. While the cheater can
never win the game, they can force the counterparty to play until the game’s
end.

Not opening any cell or ship The counterparty can decide not to open any
cells (or ships) in response to an attacked cell. If there is no response by the
challenge time tchailenge; then the contract will assume the counterparty is no
longer responding and the counterparty is set as the winner.

C.4 Both players are cheating

The battleship contract should not issue any payout if it is discovered that both
players have cheated. After the contract has detected cheating by one player, it
always transitions to WIN and sets the counterparty as the winner. This requires
the counterparty to open all ships and a fixed challenge period is provided for
the cheater to submit a proof of fraud. If both players are caught as cheating,
then the contract transitions to GAMEOVER and forfeits the payout.

Template for application contract

instantiated := | state := L
P = 0, Adispute = 0,
SC:= 1,lockno :=0

constructor (P’):

set P =P’
set instantiated := NO

function example():

discard if instantiated = YES

=)
function lock(Ajgpute; 2P):

discard if instantiated = YES

if VerifySig(P, (“instantiate”, AC, lockno), Xp)
set instantiated := YES
set lockno := lockno + 1
set SC := StateChannel(P, Adgispute, this)

function unlock(state’,r'):

discard if instantiated = NO

if H(state’,r') = SC.getstatehash()
instantiated := NO
state := state’

else if | = SC.getstatehash()
instantiated := NO

Fig. 1: The application contract template. The above modifications must be in-
cluded to support a state channel. It allows all functionality to be disabled when
the channel is created and re-enables all functionality after the dispute process
when provided with the full state.

State channel contract

status := L

P:=0,AC:= L,

hstate := 1,i:=0

Adispute =0, thow 1= 07 tend =0

constructor (P, Aygpue, AC):

set P:=P’
set Adispute = Aéjispute
set AC := AC’

set status := ON
function triggerdispute(ok):

discard if status # ON

discard if P ¢ Py

if VerifySig(Px, (SC, AC, “dispute”), o)
set status := DISPUTE
set tstart 1= thow
set thow + Adispute = tstart + Adispute

function setstatehash(hstate’,i’, ¥p):

discard if status = OFF

discard if i’ <i

if VerifySig(P, (hstate’,i’,SC,AC), Xp)
set hstate := hstate’
seti:=i

function resolve():

discard if status # DISPUTE
discard if tnow < tend
set status := OFF

function getstatehash():

discard if status # OFF
return hstate;

function getdispute():

discard if status # OFF
return (tnow, tend, 1)

Fig. 2: The state channel contract for Kitsune. It is responsible for managing the
dispute process and determining the final state hash. Discard fails the transaction
execution if the pre-condition is satisfied.

	You sank my battleship! A case study to evaluate state channels as a scaling solution for cryptocurrencies
	Patrick McCorry, Chris Buckland, Surya Bakshi, Karl Wüst, and Andrew Miller

