Asynchronous Distributed Key Generation for Computationally- Secure
Randomness, Consensus, and Threshold Signatures.

ELEFTHERIOS KOKORIS-KOG*A&aceook Novi & IST Austria
DAHLIA MALKHI,Faceook Novi
ALEXANDER SPIEGELMAR,ceook Novi

In this paper, we present the IrsAsynchronous Distributed Key Generafil@®@KG) algorithm which is also the !rst distributed key
generation algorithm that can generate cryptographic keys with a d{fal2f + 1)! threshold (where is the number of faulty parties).

As a result, using our ADKG we remove the trusted setup assumption that the most scalable consensus algorithms make. In order to
create a DKG with a dugf , 2f + 1)! threshold we Irst answer in the a"rmative the open question posed by Cachin et &l.¢n how

to create an Asynchronous Verilable Secret Sharing (AVSS) protocol with a reconstruction threshéle df< k " 2f + 1, which

is of independent interest. Oudigh-threshold-AVSEAVSS) uses an asymmetric bivariate polynomial to encode the secret. This
enables the reconstruction of the secret only if a sekafiodes contribute while allowing an honest node that did not participate in

the sharing phase to recover his share with the helpfof 1 honest parties.

Once we have HAVSS we can use it to bootstrap scalable partially synchronous consensus protocols, but the question on how to get
a DKG in asynchrony remains as we need a way to produce common randomness. The solution comes fromBEveovedlly Perfect
Common CoifEPCC) abstraction that enables the generation of a common coin frarncurrent HAVSS invocations. EPCCOs key
property is that it is eventually reliable, as it might fail to agree at mdstimes (even if invoked a polynomial number of times). Using
EPCGwe implement arEventually E!cient Asynchronous Binary Agreem@EABA) which is optimal when the EPCC agrees and
protects safety when EPCC fails.

Finally, using EEABA we construct the !rst ADKG which has the same overhead and expected runtime as the best partially-
synchronous DKG@®(n*) words,O(f ) rounds). As a corollary of our ADKG, we can also create the !rst Validated Asynchronous
Byzantine Agreement (VABA) that does not need a trusted dealer to setup threshold signatures of degfeeOur VABA has an
overhead of expecte®(n?) words andO(1) time per instance, after an initiaD (n*) words andO(f ) time bootstrap via ADKG.

1 INTRODUCTION

A common assumption made by many modern Byzantine fault tolerant distributed algorithms is the existence of a trusted
dealer that generates and distributes cryptographic keys at the beginning of every execution. For example, e"cient
asynchronous Byzantine agreement protocals3, 9, 17, 29 use a shared coin scheme to produce randomn@&s [
e'cient state machine replication protocolsZ0 35 use a threshold signature scheme to reduce communication
complexity, and e"cient secure multiparty computation protocol22 23 use threshold encryption2§ to reduce the
communication complexity for sharing secret inputs. All these schemes require a trusted dealer, which is a single point
of failure and a potential weakness for secure decentralized systems.

It is therefore natural to ask under what network assumptions and at what cost the requirement of a trusted dealer
can be substituted with a distributed key generation (DKG) protocol. A DKG protocol allows a group of parties to
distribute private shares of a cryptographic key and later use them to compute a common value such that an adversary
controlling a threshold of the parties cannot predict the value. Thereby, this value can be used to produce unpredictable
randomness or as a OprivateO key.

"¢orresponding Author.

AuthorsO addresses: Eleftherios Kokoris-KogiasFaceook Novi & IST Austria, lefteris2k@gmail.com; Dahlia MalkhiFaceook Novi, dahliamalkhi@gmail.com;
Alexander SpiegelmanFaceook Novi, sasha.spiegelman@gmail.com.



In synchronous communication settings, a DKG protocol can be realized via a combination of two building blocks,
secret sharing and consensu3 (or a broadcast channel such as a blockchatn1§). In a nutshell, all parties
simultaneously choose and share a secret and then use a Byzantine agreement instance for each secret in order to
agree if it should be part of the key. The key is the sum of all valid secrets and the share of each party is the sum of
the corresponding shares. To the best of our knowledge, no asynchronous DKG (ADKG) protocol has been previously
proposed. We focus on protocols with= 3f + 1 parties that assume no trusted setup except for public key infrastructure
(PKI). We further explore protocols that support threshold recover2gf+ 1, which is required by e"cient Byzantine
agreement algorithms that use threshold signatures to reduce the size of the messages from linear in the number of
parties to constant [1, 20, 35].

A naive approach for ADKG is to apply the ideas i87 to the asynchronous settings. For example, it is possible to
use the AVSS scheme of Cachin et#l4nd n independent parallel instances of a binary agreement protbdik [4, 6].
However, the resulting algorithm has three drawbacks: First, the secret sharing]ihds a reconstruction threshold of
f + 1land thus the resulting ADKG cannot have the desir2fl+ 1 threshold. Second, running binary agreements
does not guarantee a successful protocol execution, since they can all terminat@witiich means that the key will
include no secrets. Finally, even if we could guarantee that more tfianstances terminate successfullythe resulting
protocol would be ine"cient with a communication complexity ob(n%logn).

In this paper we present the Irst ADKG protocol with a recovery threshold2f + 1 and low communication cost.
Formally, the main theorem we prove in this paper is following:

TaeEOREM 1.1. There exists a protocol amonparties that solves Asynchronous Distributed Key Generation (ADKG)
with reconstruction threshold" n! f and is secure against an adaptive adversary that controlsfug to/ 3 parties,
with expected(n?) communication complexity and expeat&d) running time.

In a nutshell, our protocol follows the idea of concurrently sharingecrets and then agree which to consider for the
key. However, instead of using a costly Byzantine agreement instance for each secret, we use the secrets as the driving
randomness source to build an e"cient common coin which in turn we use for an e"cient Byzantine agreement. In
particular, we observe that to build a common coin from the secrets we can use a slightly weaker agreement notion
which is not subject to the FLP impossibility result. To this end, we !rst improve the asynchronous secret sharing
scheme in 7] to support2f + 1 reconstruction threshold. Then, we rely on the completeness property of our secret
sharing scheme and guarantee that eventually all honest parties get shares for the same secrets. As a result, we know
that all parties eventually agree on the set of secrets and ,hence, could use it for a shared coin. Unfortunately, the parties
do not know when this happens (in contrast to the agreement problem) and cannot ever terminate.

To circumvent this non-termination problem, our idea is to let the parties optimistically think that every received
share is the last one (i.e., all correct AVSS instance have terminated and all other instances are faulty) and try to
terminate. Each time a new share is receivedry f parties, they generate new key shares and initiate a shared
coin protocol (produce a threshold signature and hash it to get unpredictable randomness). This shared coin #ip is in
turn used in some e"cient binary agreement protocol (these keys replace the ones produced by the trusted dealer).
If the parties happen to agree on the key (their sets of shares correspond to the same secrets), then the Byzantine
agreement protocol terminates successfully. Otherwise, some parties received shares that others have not yet received
and they will try again to terminate when the next (additional) secret is recoverable by all honest parties. We call our

1Each instance agrees on whether an AVSS secret is correctly shared.
230 that the adversary does not know all the secrets that are included in the key.



coin Eventually Perfect Common Coin (EP&®) the resulting Byzantine agreemeBventually E!cient Asynchronous
Binary Agreement (EE-ABApecause eventually (after at mogtfailed tries) the protocols converge to the optimal
solutions.

Finally, once we have an EE-ABA, we runinstances that share the same EPCC and use it in order to decide on the
Inal set of shares, which terminates the ADKG protocol. In order to guarantee that the !'nal key is unpredictable, the
parties refrain from voting0in the binary agreement instances that they consider faulty until they witngss 1 binary
agreements terminating withl (which is guaranteed to happen due to the strong termination of the HAVSS). Next we
explain the algorithms in more detail and prove that parties cannot disagree on the set of shares mor¢ tiraes.

1.1 Technical contribution

We break the ADKG construction in a bottom-up manner, starting with a building block (Section 3) weélggii-threshold
Asynchronous Veri"able Secret Sha(ifgVSS). HAVSS is an extension of Cachin et g AVSS protocol that answers

in the a"rmative the open question they posed on the existence of an AVSS protocol that has a reconstruction threshold
of f+1< k" 2f + 1 To achieve this, we separate the reconstruction threshold (which we increagfitom the
recovery threshold (which is stilf + 1). In order to encode this change, we useasymmetridivariate polynomial

where each dimension plays a di$erent role (recovery, reconstruction) and we defend against an adaptive adversary
with a reliable broadcast step before terminating the sharing. More formally HAVSS satis!es the following lemma.

LemMma 1.2. There exists a protocol amangarties that solves Asynchronous Veri"able Secret Sharing (AVSS) for
reconstruction threshoft+ 1 < k " n! f, with no trusted setup, and is secure against an adaptive adversary that controls
up tof < n/ 3 parties, witho(n3) word communication.

The Osecret saucBid second (intermediate) building block is theak Distributed Key Generati@®ection 4). It
builds on top ofn parallel HAVSS invocations and uses the fact that all honest nodes eventually terminate all correct
HAVSS to deliver a prediction on what the DKG should output. The wDKG is weaker than consensus because it refrains
from outputting a !nal decision. Instead, it acts as an eventually perfect agreement detector. Any protocol that uses the
wDKG gets the guarantee that eventually all parties will output the same key, but the specilc time when the detector
becomes perfect cannot be determined. One key property of wDKG is that every prediction is a superset of all prior
predictions, hence there can only be a limited, totally-ordered number of predictions.

Our third building block (Section 5) is calldgventually Perfect Common C@EPCC). It relies on the wDKG to detect
the points of agreement and on adaptively secure deterministic threshold signat@&s$d produce the randomness.

The key property of the EPCC is that the adversary can only force it to disagree a !nfi)enumber of times. This
happens because a point of disagreement occurs onfy+if1 honest parties are slower than the rest and the adversary
brings them up to speed after they have invoked the EPCC but before they deliver the result. Due to the way the wDKG
is constructed this can happen for at mogtdi$erent keys and for each candidate key it may happen at most once.

Once we have the EPCC we can use the protocol of Moustefaoui e2gltg create our fourth building block:
an e"cient Asynchronous Binary Agreement protocol that does not assume a trusted setup (Section 6.1). We call it
Eventually Elcient ABA (EEABAJs it might havef failed runs before converging, but once it converges it is optimal
(with communication complexity of(r?) and constant expected round complexity). Formally EEABA achieves the
following:



LemMma 1.3. There exists a protocol amonpgarties that solves Asynchronous Binary Agreement (ABA) without a trusted
dealer in the authenticated setting and is secure against an adaptive adversary that contrpls up3parties, with
O(n*) one-shot@(n2) amortized) word communication and expecgf) one-shot@(1) amortized) running time.

Finally, in Section 6.2 we invoke concurrent and correlated EEABASs (one for every HAVSS) to agree on the set of
shares that construct the key and complete the ADKG protocol (Theorem 1).

Corollaries Since solving DKG implies a solution for consensus (if the secret value is public then it can be used as
the consensus decision), a corollary of our main theorem is:

CoroLLARY 1.4. There exists a protocol amangarties that solves Validated Asynchronous Byzantine Agreement
without a trusted dealer in the authenticated setting and is secure against an adaptive adversary that confrelsuip to
parties, with expecte®(n®) word communication and expecte(f) running time.

And through the combination of our ADKG with the optimal validated asynchronous Byzantine agreement (VABA)
of [1] a second corollary is:

CoroLrary 1.5. There exists a protocol amangarties that solves Validated Asynchronous Byzantine Agreement
without a trusted dealer in the authenticated setting and is secure against an adaptive adversary that confrelsup to
parties, with expecte@(nz) amortized word communication and expected constant amortized running time.

Contributions.ln summary our contributions are:

¥ We answer the open problem of a high-threshold AVSS posed by Cachin ef|a." [matively. HAVSS in
combination with Hybrid-DKG P4 removes the setup requirement of e"cient partially synchronous consensus
protocols [20, 35].

¥ We introduce a novel EPCC construction that disagrees at nfosimes but can be used polynomially many
times.

¥ Using our EPCC inside the protocol of Moustefauoi et 29[we create EEABA protocol that needs no trusted
setup. EEABA is optimal if amortized. It terminates@(f) one-shot O(1) amortized) expected rounds and has
O(n*) for one-shot, ((n?) amortized) word complexity.

¥ Usingn parallel invocation of Binary Agreement (all sharing the same EPCC), we construct a computationally-
secure, e"cient, leaderless ADKG. Once the ADKG terminates, we can use the resulting key as a perfect common
coin and as the key used in the threshold signature scheme, which are the building blocks of VABA. The ADKG
hasO(n*) word complexity and terminates in an expectéif) rounds. Hence, the combination of ADKG and
VABA results in the Irst trustless VABA solution, which is also optimal if amortized.

1.2 Related work

Consensus is one of the most well studied distributed systems problem, Irst introduced by Pease&& altiich has

become once again relevant due to the interest in blockchain proto@#s7. The problem can be stated informally

as: how to ensure that a set of distributed processes achieve agreement on a value despite a fraction of the processes
being faulty. From a theoretical point of view, the relevance of the consensus problem derives from several other
distributed systems problems being reducible or equivalent to it. Examples are atomic broadtiasir[state machine
replication [33. Algorithms that solve consensus vary much depending on the system model. This paper considers a



message-passing setting for systems that may experience Byzantine (or arbitrary) faults in asynchronous settings (i.e.,
without timing assumptions).

In this paper, we focus on 3 interconnected variants: Asynchronous Binary Agreement (ABA), Distributed Key
Generation (DKG), and Validated Asynchronous Byzantine Agreement (VABA). Furthremore, we survey Asynchronous
Secure Multiparty Computation (AMPC) that could provide a generic solution to our problem.

ABA:. The Irst optimally resilient (f < n/ 3) ABA was introduced by Brachd]. It is based on locally drawn random
coins used to defend against a network controlling adversary. As the protocol uses local randomization it can only
terminate when all correct processes happen to propose the s@me 1) value which has an expectad(2") number
of rounds with every round costingd(n3) messages. Canetti and Rabiri] where the !rst to propose an ABA that
has polynomial total communication complexity, however, the protocol is far from practically e"cient with a cost of
O(n8logn) bits. Advancements in the information-theoretic secure model have lowered the cost dow@(r®) [4].

In order to reduce the communication complexity, Cachin et @l demonstrated how to achieve consensus against a
computationally-bounded adversary using cryptography. Trying to achieve this, however, introduced a new assumption
of a trusted dealer that deals a perfect common-coin. Mostefaoui e28l dlightly weakened the assumption of Cachin
et al. by assuming a weak common-coin. Nevertheless, it remains an open problem on how to get such a coin e"ciently.
This is the core of our work, we build an eventually perfect common coin without the need of a trusted dealer. Our coin
is also in the computationally-bounded adversary and falls in-between the weak coin and the perfect coin and as a
result, can power MostefaouiOs protocol.

DKG:.A distributed key generation is a protocol that is executed once by a set of parties in order to achieve consensus
on a shared secret key. The core idea is that each party uses secret sharing to disperse some secret value and then the
parties reach consensus on which secret values have been correctly shared. In the end, these values are combined and
the !nal result is a threshold private-public key-pair that can be used for e"cient AB8][and VABA [1]. The !rst DKG
was proposed by Pederse87 and is fully synchronous. Gennaro et all§] showed that PedersenOs scheme is secure if
used for threshold signatures, but does not produce uniformly random keys. Hence they also proposed a scheme that
produces such keys, which is not of interest to our protocols. Later, Kate eRd] rgalized that synchronous protocols
are not suitable for large scale deployment over the Internet and proposed a patrtially-synchronous DKG instead. Their
protocol has a worst-cas@(n*) bit complexity and produces keys with a threshold b f + 1.

Our contribution to the DKG space is two-fold. First, we show how to generate keys with threshold reconstruction
k = 2f + 1, which as we already mentioned can be used to power scalable partially synchronous BFT pro@@ds| |
Second, we create the Irst asynchronous DKG witlfn?) word complexity making it practical to generate distributed
keys with no timing assumptions.

VABA:.The VABA problem was introduced by Cachin et 8] ivhich generalizes ABA, by allowing any externally
valid value to be eligible for consensus. In this model, Abraham etldhfve provided an optimal solutionf{ < n/ 3)
for VABA that has an expected complexity 6f(n%) messages and terminates with probabilityn an expected constant
number of rounds. Both these protocols assume a perfect-coin, hence require a trusted setup. Our contribution in
this model is also two-fold. First we show how we can implement a VABA protocol with no trusted setup and second
we show how to bootstrap the more e"cient protocolsl| 8] with our ADKG in order to get an optimal VABA if we
amortize the cost of the ADKG oveD(nZ) runs.



Secure Multiparty Computatio@n a !rst glance our protocol can be categorised as a special case of Asynchronous
Secure Multiparty Computationd], however with further inspection it actually provides a foundation for increasing
the e"ciency [5, 14 15 22 23 30 and removing the trusted setup assumptiofti4 22 23 of existing multiparty
computation protocols.

More specilcally, existing MPC protocols assume access to a Byzantine Agreement black box which they need
to reach agreement on the inputs by deploying n parallel BAs. However this black box deployment of BA leads to
ine"ciencies leading to an expected(nlogn) world complexity in the cryptographically secure setting. Using our
protocol which opens the black boxes and reuses the common coin, we can agree on the same inputs@grily

Furthermore, MPC protocols either assume a trusted setup of threshold signatures and threshold encrigt2in 23
or employ a special type of AVSS called ACSE fhich guarantees that all honest parties (insteadfof 1) get a share.

Our HAVSS provides the same guarantees, making it a cryptographically secure ACSS protocol. Choudry and®atra [
have created a framework where an MPC protocol can be constructed using BA and ACSS, as a result if we plug in our
HAVSS and couple it with error-corrected reliable broadcaij jwe could get the most e"cient AMPC with complexity

of O(n3logn) per multiplication gate. This improvement comes at the cost of sacrilcing unconditional security since the
state of the art has a®(n®logn) cos€. However, the most natural use of ADKG would be to bootstrap the threshold
encryption and threshold signing protocols 02§ and then run atO(n?) cost per multiplication gate. If the AMPC
protocol has more thaid(n?) gates, then we can get an amortized cosOff?) per gate.

In summary, this paper provides practical improvements on the foundation protocols of AMPC which could result
through composition to practically e"cient protocols. However, we leave the actual secure implementation and proofs
to future work.

2 MODEL AND DEFINITIONS

In order to reason about distributed algorithms in cryptographic settings we adopt the model de!neflifFpr space
limitation and better readability we de!ne here a simpliled version and the full formal model can be foundLir8[ 9]

and in Appendix A. We consider an asynchronous message passing system consisting @f afseparties and an
adaptive adversary. The adversary may control upfte< n/ 3 parties during an execution. An adaptive adversary is not
restricted to choose which parties to corrupt at the beginning of an execution, but is free to corrupt (yp)tparties on

the #y. Note that once a party is corrupted, it remains corrupted, and we call it faulty. A party that is never corrupted is
calledhonest

CommunicationWe assume asynchronous authenticated links controlled by the adversary, that is, the adversary
can see all messages and decide when and what messages to deliver but cannot deliver a message from an honest
party that was not generated by it. In order to be able to use cryptographic tools in asynchronous settings, the model
delned in [1, 8, 9] restricts the adversary to perform no more than a polynomial in the security parameter number of
computation steps during the time a message between two honest parties is sent and delivered. For completeness, in
Appendix A, we give the formal de!nition of the assumption on message delivery and the termination requirement
in asynchronous protocols with computationally bounded adversaries. However, in order to be able to focus on the
distributed computing aspect of our work, we assume throughout the paper perfect cryptographic tools, standard
delivery assumptions and termination requirement. That is, we assume every message between two honest parties is
eventually delivered.

3Concurrent non peer-reviewed works claims reduction@n“ogn) [12]



Complexity.Following [1], our basic communication unit isvord which may contain a constant number of values of
some domairVV and cryptographic signatures. We de!ne the totebmmunication cosif our protocol to be the number
of words sent among honest parties. One word is a signature that is linear in the size of the security parameter.

Cryptographic Abstraction§iven that our protocols use cryptographic constructions as black boxes, we assume
perfect cryptographic tools and present simpli'ed educational examples that use the multiplicative notation and simple
computationally hiding commitments. Furthermore, in order to still have a correct protocol we employ the Di"e-
Hellman Based Threshold Coin-Tossing Scheme of Cachin e®alThis way the reader can focus on the distributed
aspect of the protocol which is the novelty. However, in order to be adaptively-secure, the actual implementation of our
consensus algorithm requires pairing-based threshold cryptography, as shown by Libert &8alMore specilcally,
Libert et al. runs a classic synchronous DK&, but we can instead use our ADKG (Section 6.2) to terminate their
protocol in asynchrony and generate the consistent secret shares.

Dile-Hellman Based Coinln order to follow our protocols, we need to present the coin-tossing protocol of Cachin
et al. [9]. We work with a groupG of large prime order g. At a high level, the value of a cdins obtained by !rst
hashingC to obtaing# G, then raisinggto a secret exponentp # Zq to obtaingg # G, and !nally hashinggg to obtain
the valueF(C) # {0, 1}.

In this paper, we distributively generate the secret exponepisuch that before the coin-toss is invoked every party
P; holds a share; of xp. The party uses this share to generate a share of the &) which is g'¢. For our purpose
we abstract the inner workings of the coin by exposing four functions:

generateshardx;, C), it uses the partial key; to generate a coin-share for coif.
verify-shardC, m, o) veriles that ¢ is a valid share of partyy,.
generatecoin(C, [oi ]) generates a coin given a threshold of valid sharegof

verify-coin(C, op), veriles that the given valuesp correspond to valid coin foc.

3 HIGH-THRESHOLD ASYNCHRONOUS VERIFIABLE SECRET SHARING

Existing AVSST, 11] schemes provide a reconstruction threshold uprid 2f shares. Intuitively this is because at
the sharing step the participating nodes can only wait fet f ready message from nodes, wheready con!rms

that a node has veriled its share. As a result in the reconstruction phase, there can be fidorrupt) nodes who
participated at the sharing but do not participate in the reconstruction, hence for the reconstruction to succeed the
recovery threshold should be! f! f=n! 2f.

In this section we present our HAVSS scheme that requires a high threshold of wd tg shares for the secret
reconstruction. Our scheme is an extension of the AVSS scheme by Cachin & alhre the dealer uses asymmetric
bivariate polynomial instead of a symmetric one. The key idea is that one dimension of the asymmetric bivariate
polynomial has an order of and is used for shares recovery, while the other dimension has an ord2f @ind is used
for the secret reconstruction.

3.1 Definition

Our protocol falls in the class adual-threshold sharinff], which are protocols that allow the reconstruction threshold
of a secret to be more thaiff + 1. Although in the original AVSST] paper the authors introduce the notion of a



dual-threshold secret sharing scheme with reconstruction threshold up tof, the AVSS described only works for
reconstruction threshold: ! 2f. In this work, we solve the open problem posed by the authors on creatingrak, 1)
dual-threshold AVSS wherg+ 1 < k" n! f. This is an important challenge since dfi,n! f)-AVSS can powér
e"cient Byzantine agreement 1, 35 and e"cient MPC [22 23 which currently require a trusted dealer during setup.

We follow the de!nitions of Cachin et al 7] and modify them for HAVSS: A protocol with a tafpD.d to share a
secrets # Zq consists of asharingstage and aeconstructiostage as follows.

Sharing stageThe sharing stage starts when the party initializes the protocol. In this case, we say the patiglizes
a sharing ID.dThere is a special part§y, called adealer which is activated additionally on an input message of the
form (ID.d,in, shares). If this occurs, we sayy shares usingID.d among the group. A party is said toomplete the
sharingID.d when it generates an output of the forqID.d, out, shared. An honest but slow party might not complete
the sharing if the dealer is malicious. In this case, it can still recover its share of the secret from the rest of the parties
that managed to terminate the sharing. Such a party is saithttirectly complete the shariri@.d.

Reconstruction stagafter a party has completed the sharing, it may be activated on a mesgdgé, in, reconstruc).

In this case, we say the partstarts the reconstruction fab.d. At the end of the reconstruction stage, every party

should output the shared secret. A parfy terminates the reconstruction stage by generating an output of the form

(ID.d, out, reconstructedz; ). In this case, we sa¥; reconstructs; for ID.d. This terminates the protocol.

Furthermore, the protocol should satisfy the following properties for our threat model, except with negligible
probability:

H(i) : Liveness. If the adversary initializes all honest parties on shariB.d, delivers all associated messages, and the
dealerPy is honest throughout the sharing stage, then all honest parties complete the sharing. Moreover, if all
honest parties subsequently start the reconstruction fdr.d, then every honest party; reconstructs some;
for ID.d.

H(ii) : Agreement. Provided the adversary initializes all honest parties on sharlitgd and delivers all associated
messages, the following holds: If some honest party completes the shanndy then all honest parties will
complete the sharing ofD.d.

H(iii) : Correctness. Oncek honest parties have completed the sharingl®f.d, there exists a !xed value such that
the following holds:

(2) If the dealer has share@D.d, in, share s) and is honest throughout the sharing stage ther s.
(2) If an honest partyP; reconstructzj for ID.d thenzj = z.

H(iv) : Privacy. If an honest dealer shareflD.d,in,shares) and less thark ! f honest parties have started the

reconstruction forID.d, then the adversary has no advantage when trying to guess the value

3.2 Implementation

The key mechanism of HAVSS (see Figure 1) is the use of an asymmetric bi-variate polyr{bmial f). The !Irst
dimension is used to protect the secret, which is reconstructddshares are combined, whereas the second dimension
is used to enable recovery of the shares of the secret from any group-ofl honest participants.

Letp andq be two large primes satisfying | (p! 1), andq > n. LetG denote a multiplicative subgroup of orderof
Zp and letg be a generators of.

4Coupled with a suitable DKG [24]



Any k give s

Yo Yai o Y3 Y4
Yia Y2 Y32 Y42
Yiz Y23 Y33 Y43
Yia Y24 Y34 Va4

'san8 A |4 ,(U\v>

Fig. 1. Intuition of HAVSSP; receives rowys ; which is used to compute the recovery polynomiaj(y) and columny; s which is
used to compute the share polynomial;(x) and recover its shar&; = a;(0). If a malicious dealer does not seri®),, its share,P,,
can still complete indirectly the sharing. This is possible becaRgethat completes the sharing directly, will sené,,, a message with
ym.j. Since there aré + 1available parties that should have shares in colummand complete the sharing directly,,, will get
enough points to recovea;(x), hence recoves,, = a,(0). As a result, eventuallk parties will have shares;, compute locally
u(0, x) and recover the secret = u(0, 0).

(1) The dealer computes a one-dimensional sharing of the secret and uses the second dimension of the bi-variate
polynomial to share the secret-shares. This is achieved by choosing a random bivariate polynotizy [x, y]
where the dimensiorix] is of degreet = k! 1and the dimensioriy] is of degreef with «(0,0) = s and it
commits tou(x, y) = Z}”If:o uj| xly' by computing a commitment matrixc = {Cj1 } with Cj; = g%t for j # [0, 1],

1 # [0, f]. The dealer sends each pat®y a message containing the commitment matfixas well as aecovery
polynomialg; (y) := u(i, y) of order f and ashare polynomiabj (x) := u(x, i) of ordert.

(2) When the parties receive theendmessage from the dealer, th@chothe points in which their share and
recovery polynomial overlap with each other. To this e$egf,sends arechomessage containing, ai (j), bi ()
to every partyP;.

(3) Upon receivingk echomessages that agree éghand contain valid points, every part interpolates its own
share and recovery polynomialg and# from the receiving points and veriles that they are the same as the
ones received by the dealer. Thé@nsends aeadymessage containing.

(4) Once the party receives a total af! f readymessages that agree @h it completethe sharing. Its share of the
secretissi = a(0). In order to guarantee that the rest of the parties also complete the sharing, it sends the set of
n! f readymessages (for the parties that send tteady message and will Inish withshared as well ag; (j) to
every partyP; (for the ones that are slow and will Inish indirectly).

(5) A party that has not sent aeady message yet, needs to consider the possibility that it is in the slow set. Hence,
if it receivesf + 1 consistentsharedmessages, it interpolates = 4(0) and !nishes the sharing indirectly.

As aresult, during reconstruction, every honest node eventually has a correct share of the secret. Hence eventually
k points that are consistent witlT become public. OncB receives them all, he can interpolat€0, y) and recover
s = u(0, 0). The protocol has communication complexity 6{n?), however, it can be optimized t6(1%) as shown in .



3.3 Protocols

Algorithm 1 and 2. In the protocol description, the following predicates are used:

verify-poly(C, i, a, b), wherea, b are polynomials of degre¢ andt respectively, i.e.,
f

t
a(y) = Z q yI and b(x) = Z bj X

=0 j=0
This predicate veriles that the given polynomials are share and recovery polynomial®faonsistent withC; it is
true if and only if for I # [0, f], it holdsg?! = nlfzo(c” ) and forj # [0,4], it holds ¢® = [T} _,(Cj )y

verify-point(C, i, m, a, ), veriles that the given values:, § correspond to pointg (m, i), f (i, m), respectively, committed

to C, which P; supposedly receives frothy; it is true if and only if g* = HJT 'lt:O(C“ )mjil andg” = I‘[JT 'It:O(C“ )ijml.

verify-shargC, m, o) veriles that o is a valid share oPm with respect toC; it is true if and only if g° = H}:O(Cj o)mj.
verify-sharedC, Sigc) veriles the set of signaturesigc .

The parties may need to interpolate a polynomiabf degreef or a polynomialb of degreet. This can be done using
standard Lagrange interpolation, we abbreviate this by saying a partgrpolates:.

In the protocol description the variables f, andr count the number oechq sharedandreadymessages. They are
instantiated separately only for values @fthat have actually been received in incoming messages.

Analysis.Proofs for the HAVSS properties mostly follow from [7] and for space limitation deferred to Appendix B.

3.4 HAVSS for Bootstrap of Hotstu!/SBFT

Although this paper focuses on fully asynchronous protocols, advancements in partially synchronous prot@eoBs[
have shown that the ability to generate distributively &if, 2f + 1)-threshold key is a useful primitive. HAVSS is the
Irst protocol that can power such e"cient DKGs, for example, if we combine HAVSS with Hybrid-DKX& jwe can
securely bootstrap Hotstu$ and SBFT without introducing any new assumptions.

4 WEAK DISTRIBUTED KEY GENERATION

This section describes an asynchronous protocol for detecting agreement on the generation of (fip tbandidate
shared keys without a trusted setup, which we use for building the eventually perfect coin in the next section. The key
idea of WDKG is that the protocol never terminates (e.g., never commits to a specilc key). Instead, each party outputs a
Inite sequence of candidate keys, and even though there is no explicit termination (otherwise, we would contradict the
FLP [Lg impossibility of asynchronous agreement), we guarantee that eventually all honest parties stop outputting new
candidate keys and the last candidate key output by all honest parties is the same. Moreover, to bound the complexity
of an higher-level protocol that uses our weak distributed key generation (WDKG), we guarantee that no honest party
outputs more thanf + 1 keys.



Algorithm 1 ProtocolHAVSSor party P; and tagID.d (sharing stage)

1: upon initialization do
2: succes$b false

3 for all C do
4: ec % 0;rc % 0
5 Ac % &; Bc % & Sige % &
6: upon receiving @D .d, in, sharg sOdo ! only P4
7: choose a random asymmetric bivariate polynomialsf
degree (t, f) withu (0, 0) = ugp = s, i.e.,
Lf
ux y) = ) uxly’

Jj,1=0
8 C% {Cj}, whereC;; = g*it forj #[0 t] andl #[0 f]
9: forj #[1 n] do
10: a;(y) % u(j, v);b;(x) % u(x, j)
11: send®D.d, send C, a;, b;Oto P;

12: upon receiving @D .d, send C, a, bO fromP, for the Irst time do
13: if verify! poly(C, i, a, b) then
14: for j #[1 n] do senddD.d, echq C, a(j), b(j)Oto P;

15: upon receiving @D .d, echq C, &, fOfrom P,,, for the !rst time do
16: if verify ! point(C, i, m, a, f) then

17: Ac % Ac U{(m, a)};Bc % Bc U{(m, )}

18: ec%ec+1

19: if ec = k then

20: interpolatea@ ¥ from Bc, Ac, respectively

21: for j #[1 n] do send®D.d, ready, C, &(j), ¥j), sig:Oto P;

22: upon receiving OD.d, ready, C, a, f, Sigm,Ofrom P,,, for the !rst time do
23: if verify ! point(C, i, m, a, ) then

24; Sige % Sige U{(M, Sigm)}

25: rc%re+l

26: ifrc=n! f andez ' k then

27 €% C;s; % &0); succes$h true

28: for j #[1 n] do send®D.d, shared C, Sigc, ¥j)Cto P;
29: output (1D .d, out, shared

30: upon receiving @D .d, shared C, SigZ, fOfrom P, for the Irst time do
31: if verify! sharedC, Sig[’) then

32: ifec ' k then I Can fully terminate
33: €% C;s; % &0); succes$ho true

34: for j #[1 n] do send®D.d, shared C, Sigc, #j)Oto P;

35: output (1D .d, out, shared

36: else if verify! point(C, i, m, g) then ! Can only recover share
37: Bc % Bc U{(m, )}

38: rc%rec+1

39: ifrc =f + 1then

40: @% C

41: interpolateafrom B¢,

42: s; % a&(0)

43: output (1D .d, out, shared




Algorithm 2 ProtocolHAVSSfor party P; and tagID.d (reconstruction stage)

1: upon receiving Q@D .d, in, reconstrucdo
2: c% 0;S% &
3: forj #[1 n] dosend®D.d, reconstruct-shares;" to P;

4: upon receiving QD .d, reconstruct-shargsOfrom P,,, do
5. if verify! shard@ m, o) then
6: S% SU{(m,o)};c% c+1
7: if ¢ =k then
8: interpolateap from S
9: output (1D .d, out, reconstructedag(0))
10: halt
4.1 Definition

A weak Distributed Key Generation is a helper protocol that is implemented on top BfAVSS instances where each
party P; acts as the dealer of HAVSS instanc&Ve denote the share that part§ receives in HAVSS instangeby sij ,
and de!ne apredictionof a candidate distributed key to be a set of shares. During a wDKG each Fantyight output a
sequence of predictions, and we say that an output predicfignimate is lastif P; does not output a prediction after
Pultimate - FOr each party?;, there is a one-to-one mapping between a set of HAVSS dealers and the predictions induced
by the HAVSS instances of these dealers. That is, given & séparties, the predictiorshareg(S) = {sij | Pj # S}, and
given a predictionP of P;, sourc€P) = {P; | sij # P}. Note thatsourcésharedS)) = S. We say that two predictions
P1, P, of di$erent parties arenatchingif sourcéP;) = sourcéPs).

The wDKG protocol provides the following properties.

W(i): Inclusion. For every predictior? an honest party outputs|sourcé?)| ' 2f + 1.

W(ii): Containment. For each honest party;, predictions are ordered by strict containment. This means that for
any two predictions output by, in timesk < j : Py ( Pj.

W(iii): Eventual Agreement. Every honest party eventually outputs an ultimate prediction, and all ultimate predic-
tions are matching.

W(iv): Privacy. If no honest party reveals its private share for a predictipthen the adversary can neither compute
the predictionp nor the shared secret s. This is equivalent to the HAVSS privacy property de!ned before.

4.2 Technical Overview

The wDKG protocol uses instances of HAVSS as sub-protocols. Each p&rtinvokes HAVSS instancED.i as a dealer
and participates in the sharing phases of all HAVSS instances as a receiver. Upon initialization, each pastantiates
its HAVSS with a random secret and colleet$ f shares from di$erent HAVSS instances (including its own) into a
predictionH. Note that since:! f instances have honest leaders, then all honest parties eventually cailedt shares.
Then, it starts the eventual agreement phase by broadcastiogralidatekey message that includesourcéH). Later,
any time P; delivers another HAVSS share, it inserts the share iftand broadcasts the nesourc@{) in another
candidatekey message.

When a partyp; receive2f + 1 candidatekey messages with the same source (set of parties) (1) waits until
H ) sharegS) or in other words untilp; gets all the HAVSS shares from instances with parties fre@cting as dealers;
and then (2) outputs the predictioshareq(S) provided it did not output a predictior? ¢ shareg(S) before to make sure



parties output increasing predictions by containment. Note that by the containment property and since predictions by
honest parties consists of at lea®f + 1 shares, we get that each party outputs at mgst 1 predictions.

Although the above protocol has an e"cientd(n%)) as we will see later) word complexity, it needs one further
check in order to avoid exponential computation and storage. The challenge is that every time a party receives a new
candidatekey it needs to search its local memory to increase the counter of how many matchmgcér) it has
received. Honest parties broadcast upffo- 1 candidatekey messages, but a Byzantine party might broadcast an
exponential number of such messages, causing the local memory and the cost of searching it to become exponential.
Therefore, in order to avoid this attack we ignomandidatekey messages from parties that do not satisfy containment
(i.e., a partyp; ignores acandidatekey message with source sétfrom party p; if it previously received fronp; a
candidatekey message with source s&t ¢ ). The pseudocode appears in Algorithm 3.

Algorithm 3 ProtocolwDKG for party P,

1: upon initialization do
2: foreveryj #{1,...,n} do

3 S; % {} ! The source (set of partieg); received fronp;

4: H % {} ! The set of HAVSS sharegg outputs

5: S % {} I The source set of the current prediction
6 C[1% 0 ! A counter for every possible source
7 select randomr ;

8 invoke (i, in, sharer;) ! Every party starts an HAVSS as a dealer

©

upon (ID.]j, out, shared do
10: H % H +{s/}
11 if [H|' n! f then

12: send @andidate-keysourcéH)O to all parties

13: upon receiving @andidate-key SO from partyp; do I'Handle these messages one after the other
14: if S, S;+Sp then

15: Sj % S

16: C[S]% C[S] +1

17: if C[S]=n! f then

18: S %S

19: wait until H ) shareg(S)

20: output (out, key, shareg(S))

4.3 Analysis

In this Section we prove that the protocol in Figure 3 implements wDKG. The !rst two proofs follow directly from the
code. For the eventual agreement we !rst need to show that no honest party will get stuck at a prediction that is not
the best possible. Then we show that parties will keep delivering predictions that include more shares until they deliver
a prediction with the maximum number of shares (all the shares that were generated by good dealers). Since no party
gets stuck at a suboptimal prediction and there exists a maximum prediction, all parties will eventually deliver that
prediction and stop delivering anything new, hence they eventually agree. Of course the parties will not be aware that
the prediction they delivered is the maximum, which is the reason they cannot explicitly terminate. Specilcally, we
prove the following lemmas:



4.3.1 Correctness prodf. this section we prove that the protocol in Figure 3 implements wDKG, i.e., satisles
containment, inclusion, and eventual agreement

Lemma 4.1. The protocol in Algorithm 3 satis"es W(ii) (Containment).

Proor. By line 14, honest parties ignoreandidate-keySO messages wheémp Sp. By the codesp stores the source
set of the last prediction. The lemma follows from the fact th@ndidate-keymessages never handled in parallel.
i

Lemma 4.2. The protocol in Algorithm 3 satis"es W(i) (Inclusion).

Proor. LetP be a prediction some honest parfy outputs. By line 17P; gets atleast! f @andidate-keysourc€P)O
messages. Thus, at least one honest party sendaaditate-keysourc)O message. Therefore, by line|sburcép)| =

[P]" n! f.

Lemma 4.3. An honest party is never stuck.

Proor. The only possible place for an honest party to stuck is in Line 19. Consider an honest pathat gets to
Line 19 and waits until it§7 ) sharegS) whereS is the source set it received in theandidate-keymessage. By Line 17,
P getsn! f @andidate-keySO messages, and thus at least one honest arggnt ©andidate-keySO message. By
the code P delivers a share for every HAVSS instancesiniThus, by property H(ii) P will eventually deliver a share
for every HAVSS instance i as well. Meaning that eventuallf ) sharedS), and thusP; will eventually end the
waiting in Line 19.

Lemma 4.4. The protocol in Algorithm 3 satis"es W(iii) (Eventual Agreement).

Proor. Note that the size off is bounded by, so for every honest party there is a point after whidhis never
changing and includes all HAVSS shares it will ever deliver. By H(ii), all honest parties will eventually reach the same
sourcéH), which we denote bysy .

We now show that an honest party; does not ignore a
@andidate-keySy O message from an honest paPy In other words, the if statement in Line 14 is always true when
Pj receives such message. We need to show two conditions:

¥ First,Sy , Sj. Since by the codej only sends the
@andidate-key" with sourcéH), we get by the de!nition ofSy that Pj never sends@ndidate-keys*O message
with S* ¢ Sy .

¥ SecondSy , Sp. Assume by a way of contradiction that at some poifitsetsSp % S*s.t.5* ¢ Sy. By the code,
Pi gets Gandidate-keys"O message from at least one honest p&ty Therefore, thesourcéH) of party Pj was
equal toS™ at some point. A contradiction to the de!nition ofy .

By property H(i), and since we have at least f honest parties, we getthdsy | ' n! f. Thus, by the code, all
honest parties will eventually sencc@ndidate-keySy O message to all other honest parties. Therefore, by Lemma 4.3
and from the above, every honest parfy will eventually process: ! f @andidate-keySy O message, pass the if
statement in Line 17, and outpwharegSH ).



Itis left to show that no honest party will ever output a prediction afteshares(Sy ). Assume by a way of contradiction
that some party?; outputsS” after it outputsshares(Sw ). By property W(ii) (Containment)s™ , Sy . Thus, by de!nition
of Sy, $” contains a party that acts as a dealer in a HAVSS instance in which no honest party delivers a share. Therefore,
no honest party ever sends a&hdidate-keys O message. Hendg,never getn ! f Gandidate-keys O messages, and
thus by the code never outpu™. A contradiction.

Lemma 4.5. The protocol in Algorithm 3 satis"es W(iv) (Privacy).

Proor. Follows directly from the W(i) (inclusion) and H(iv) (privacy).
|

Complexity.By the code, each party sends at mgst 1 candidate-keymessages, each of which of si@é¢n), to all
other parties. Therefore, the bit complexity of each part)O$n3) words, and the total bit complexity i9(n?) words.

5 FROM WEAK DKG TO EVENTUALLY PERFECT COMMON COIN

In this section, we use wDKG as the backbone ofeaentually-perfect common coin (EP@®)ch is a perfect-common
coin that fails a !nite number of times (at mosf in our case). As a result, we can use it as a perfect-coin as long as we
make sure to handle the small number of disagreements.

5.1 Definition

The EPCC is a long-lived task, which can be invoked many times by each partyoiatosgsq) invocation. Each
invocation is associated with a unique sequence numizeand returns a value. We assume well-formed executions in
which honest parties block any subsequent EPCC invocations until the invoked EPCC returns a value. This is crucial for
the Eventual Agreement property because disagreement on the EPCC output in one instance must advance at least one
wDKG key toward the following instance. For notational convenience, we assume that if a party invakiesosgsq)
and later invokecoin-tosgsqQ, thensq” > sq.

An EPCC implementation must satisfy the following properties:

E(i): Unpredictability. For everysq, the probability that the adversary predicts the return value adin-tosqsg)
invocation by an honest party before at least one honest party invokétrtosqsq) is at mostl/ 2 + e(k), where
e(k) is a negligible function.

E(ii): Termination: If n! f honest parties invokeoin-tosgsq), then allcoin-tosgsq) invocations by honest parties
eventually return.

E(iii): Eventual Agreement: There are at mosf sequence numbersy for which two invocations ofcoin-tosqsg)
by honest parties return di$erent coins.

5.2 Technical Overview

Our EPCC protocol is built on top of HAVSS instances and uses the wDKG algorithm as a sub-protocol. Recall that
the wDKG algorithm outputs a sequence of at mgst 1 predictions (sets of HAVSS sharég), . . ., P;. Whenever, the
WDKG sub-protocol outputs a predictioj we use it to derive a tupleKp,, Vp,., whereKp, is thekey, andVp, is the a

bit vectorindicating the HAVSS instances included sourcéP; ) (seeget-key below). The-K, V. variables store the last
derived key, and the bit vector, respectively, and are updated whenever the wDKG outputs a new prediction.



Upon acointosgsg) invocation by an honest party;, it enters a protocol to construct a common coin. The protocol
loops using the outputs from wDKG until for some ke, Pi succeeds in collecting! f shares corresponding t& and
the sequence numbag. More specilcally, each party; uses the latest kex, V output from wDKG and the sequence
numbersgq to generate its share of the common-coin, and sen@®in-sharemessage with the share together with the
bit vector V to all other parties. Whenever the wDKG outputs a hew predictiénupdates the K, V. variables, and
broadcasts a new share.

A cointosgsq) invocation by an honest party; returns when it collect2f + 1 coin-sharemessages from di$erent
parties with valid coin-shares and the same bit vector. Note thatV” can be di$erent from any bit vector party
P; previously sent in acoin-sharemessage. To validate the coin-shar@s,needs to generate aommitmentC,
that is associated to the bit vectdf* by combining all the commitments of HAVSS instances included/in(see
getcommitmentbelow). Note that in order to be able to do & !rst needs to complete the sharing phases of all
HAVSS instances included . Then, after; successfully veriles thef + 1 signatures (seeerify-sharebelow), it
uses them to produce a coin (sgeneratecoin below), sends it in @oin message together with the bit vector to all
other parties, and outputs it.

Upon receiving a&oinmessaged; !rst checks that the bit vector includes at leagyf + 1 ones in order make sure
randomness from honest parties were included in the associated key generations.ANgenerates @ommitment
associated with the bit vector and then uses it to verify the coin (sedfy-coin below). If the verilcation passes
forwards thecoin message to all parties and output the coin.

Note that since EPCC is a long lived object some honest parties may comptatie-tosgsq) for somesq before
another honest party invokedoin-tosqsq). To handle this, honest parties maintain two mapsnd Coinsthat map
tuples of bit-vectors andgq to set of coin-shares and coins, respectively. These maps are updated every time a share-coin
or coin message is received regardless if there ¢@m-tosgsg) operation in progress. In addition, when@in-tosqsq)
operation invoked by an honest parth , it !Irst checks these maps to see if it already received enough messages to
return a coin. The pseudocode is given below (Algorithm 4) and the omitted proofs are given in Appendix C. In the
pseudocode we use the following functions:

get-key(P) gets a prediction outpuP from a wDKG sub-protocol, and outputkp, Vp. that are computed as follows:

Kp= Z s and ! pj # sourc€p), Vp[i] = 1
SHP

In other words,Kp is the sum of all shares i® and Vp indicates the HAVSS instances these shares came from.

getcommitmen{Vp) gets a bit vector that was generated from a predict®nand returns a commitmenty that is
used to verify signatures associated wikip (share and coin). In order to be able to compudig parties !rst have to
complete the sharing phases of all the HAVSS instance indicatet:lip order to get their commitment, and then
multiply them to getCp. More speci'cally,

Vi# {1...,n},if ¥p[i] = 1, then wait for commitmentC;

from Ps HAVSS instance

ce = [ | welila
i=1



In Algorithm 4, an invocation ofget-commitmentcan block forever if send by a bad party that lies about what
HAVSS instances have terminated. We do not need to handle this as we only care to return one random vakge of a
To this end, we handle all events concurrently and abort all outstanding procedures associatesyveéftter we output
a coin forsgq.

Note that for every predictiorP? an honest party gets from the wDKG protocol, the bit vectidr delnes a unique
private K]iP for every partyP;, and a unique global commitmendtp. Together, they form the setup required for the
Di"e-Hellman based threshold coin-tossing scheme that is given 8}, which yields a common coin #ip for eacly
input. In our educational example, we use Pedersg? PKG, which does not produce uniformly random key$g,
but as shown by Libert et al 4§ it is su"cient for the adaptively secure threshold signatures, which we will use for the
real-world deployment. Hence we assume that the key generated by the DKG is su"ciently random for our proofs
and only focus on proving that it remains unpredictable and private. Below we brie#y describe the functionality this
scheme provides, and more details and formal proofs can be found in [9]. Note that the wDKG might output di$erent
sequences of predictions when invoked by di$erent parties, so the challenge that we overcome in Algorithm 4 is how
to eventually agree on the same key.

generateshardCp, Kp, sq) uses the keyKp derived from predictionP to sign the sequence numbeay in order to
generate a share for a coin delned l&j andsg.

verify-shareCp, sq, j, o), veriles that the given valuer is a valid coin share fron®; for the coin de!ned byCp andsq.
generatecoin(Cp, X, sq) uses a Sek of 2f + 1 valid shares de!ned by’p andsq in order to generates the coin.

verify-coin(Cp, o, sq), veriles that the given values is a valid coin de!ned byCp andsgq.

5.3 Analysis

5.3.1 Correctness prodf.this section we showinpredictability, termination, and eventual agreenwfrdaur EPCC.

The Irst two properties can easily be deduced from the code. For eventual agreement we !rst need to show that (due to
WDKGOs containment property) if a party uses a certain set of shgrasproduce randomness then it will only use
supersets o¥ in future invocations. This creates a total ordering of predictions. The second part of the proof relies on
the well-formed nature of EPCC and shows that if di$erent sets of shares where used to generate randomness for a
certain invocationsq then only the largest set of shares will be used for any subsequent invocation. Given that there
can only bef + 1 di$erent valid and totally ordered sets, the adversary can only cause the generation of inconsistent
randomness at mosf times. Specilcally, we prove in Appendix C the following Lemmas:

Lemma 5.1. If a valid coin for somey is generated, then at le&ft + 1 valid share-coins associated with some bit vector
V for sq were previously generatgti+ 1 of which by honest parties.

Lemma 5.2. The protocol in Algorithm 4 satis"es E(i) (Unpredictability).

LemmMA 5.3. For everyg, if an invocation ofointosqsg) by an honest part returns, then altoin-tosgsq) invocations
by honest parties eventually return.

LemMmaA 5.4. The protocol in Algorithm 4 satis"es E(ii) (Termination).



Algorithm 4 ProtocolEPCCfor party P; . All events must be handled in parallel peg. Upon !rst output message for
sq all other invocations are aborted.

1: upon initialization do
2 invoke wDKG

3: K%/ ;V %I/ I'last derived key and bit vector, respectively

4: currentSQ%/ !/ indicates that there is not coin-toss in progress

5: S[:] % {} ! A mapping from tuples of bit vector and sq to sets of shares
6: Coing:] % / ' A mapping from tuples of bit vector and sq to coins

7: upon (out, key, P) do ! prediction output form the wDKG sub-protocol

8: -K, V. % getkey(P)
9: if currentSQ #/ then
10: BroadcastShare()

11: upon coin-tosgsg) do

12: currentSQ% sq ! Avoid races during concurrent invocations
13:  if "V's.t.Coing-V", sq.] #/ then I Already saw the coin
14: ForwardCoinAndReturn( ", sq)

15:  if "V's.t.|S[-V", sq.]| ' 2f + 1then I Enough shares
16: BroadcastCoinAndReturk(’, sq)

17: if V #/ then

18: BroadcastShare()

19: upon receiving @oin-sharesq, o, VjO message from parB; for the Irst time do
20:  C % get-commitmentV;)
21: if verify-shargC, sq, j, ¢) 0 X7_,V;[k] " 2f + 1then

22: S[-V;,80.]% S[-Vj,sq.]+{ o}
23: if sq=currentSQ 0 |S[-V;,sq.]| ' 2f + 1then
24: BroadcastCoinAndReturkf, sq)

25: upon receiving @oin sg, p, V;0 message from parB; for the Irst time do
26: C % getcommitmeni(V;)
27: if verify-coin(C, p,sq) 0 X7_,V;[k] ' 2f + 1then

28: Coing-V;,sq.]% p
29: if sq = currentSQ then
30: ForwardCoinAndReturn(;, sq)

31: procedure BROADCASTSHARE()

32:  C % getcommitmentV)

33: o % generateshardC, K, currentSQ)

34:  send @oin-sharecurrentSQ, o, VO to all parties

35: procedure BROADCASTCOINANDRETURN(V ¥, SQ)
36 C % getcommitmeni(V")

37 p % generatecoin(C, S[-V", sq.], sq)

38:  send €oin sq, p, V'O to all parties

39: currentSQ%/

40: output (out, coin, sq, p)

41: procedure FORWARDCOINANDRETURN(V ", SQ)

42:  send €oin sq, Coing-V", sq.], V'O to all parties
43: currentSQ%/

44: output (out, coin, sg, Coing-V", sq.])




LemmaA 5.5. If an honest party generates a share-coin associated ytfthn it will never generate a share-coin associated
withv 2 V.

Lemma 5.6. If for somesq, twocoin-tosgsq) invocations by two honest parties return di#erent valid gains p2, then
there are two bit vectofg, V2 s.t. (1)1 ( V2; and (2)f + 1 honest parties generated valid share-coins associateid with
for sq and f + 1 honest parties generated valid share-coins associateip \iottsq.

LemMma 5.7. Foreverl " k" f + 1, if there arek sequence numbexgfor which two invocations abin-tosqsd) by
honest parties output di#erent coins, then there is a bit iéabsize at leas2f + 1+ k such thatf + 1 honest parties
generated valid share-coins associatedWvith

Lemma 5.8. The protocol in Algorithm 4 satis"es E(iii) (Eventual Agreement).

5.3.2 ComplexityBy W(i) and W(ii), each party outputs at mogt+ 1 predictions from the wDKG sub-protocol. For
each predictions, each party sends at most a constant number of word®émysized bit-vector to every party. Hence
the worst-case complexity of a consistent coin #ipping is€)(bits + O¢3) words.

6 ACHIEVING CONSENSUS
6.1 Eventually Elicient Asynchronous Binary Agreement

Once we have our EPCC, we can use it in any Binary Agreement protocol that uses a weakéc@8. [The most
e"cient asynchronous BA solution is from Moustefaoui®s et al [29] and hag )it complexity®.

Since our coin has at mogt bad #ips, when we plug it in29 we know that if we invoken instances of ABA in
succession with the same coin, then the overall number of bad #ips remgiinsthe entire succession. Hence, the
overall complexity remain®(n3) bit complexity and expected(f) rounds. We refer to an ABA that has this succession
property as eventually e"cient ABA (EEABA).

We refrain from reintroducing the full protocol as we only need to plug in ocointosgsg and make sure that a
party which has already seen a safe value continuesd-tosgsg) in order for EPCC to be live, but ignores the output
of EPCC (as it already knows the safe value). The total bit complexity of our EEABA has two parts. First, there is the
needed HAVSS for EPCC to work, which has a ta#éh*) words ¢ concurrent instances of HAVSS). Then, we can
start running the ABA of P9 which (as mentioned above) has an overall complexity remaixs®) bit complexity
and expected(f) rounds. Hence the total complexity of EEABAGn*) bit complexity and expected(f) rounds.
Nevertheless, if we run this protocol for (@)) sequential decisions it will amortize t9(n2) communication complexity
and O(1) termination because the coin will be perfect for most of the EEABA instances (at rfidatlures due to
asynchrony) which means that the? ! f instances will terminate in an expected number®founds. Hence, we can
get the ABA with the properties delned in Lemma 1.3.

6.2 Asynchronous Distributed Key Generation

We build our ADKG protocol on top of EEABA by explicitly terminating the wDKG and agreeing on what HAVSS
instances contribute to the scheme. We can achieve this by extendind\lyachronous Common Subset (A@8ocol
introduced by Ben-or et ald]. In an ACS protocoln processors have some initial value and they need to agree on a

5They do not give an implementation for their weak coin assumption, but instead use an external oracle.



Algorithm 5 ProtocolADKG for party P

1: upon initialization do

2: 1% II | A set of parties, initially all

3: K % {} ! The set of HAVSS shares that corresponds the the agreed instances
4: c% 0 I A counter for the number of ABAs in whichP; decided

5 select randomr ;

6 invoke (i, in, sharer;) | Every party starts an HAVSS as a dealer

7: upon (ID.j, out, shared do ! The sharing phase d?;Os HAVSS completed

8: if P; # | then

9: invoke ABA.j with 1

10: 1% I\{P;} I Remove instances already voted on

11: upon (ABA.j, deliver, 1) do

12: K% K + {s{} I This might block until the HAVSS delivers, but it will eventually terminate.
133 c%c+1l

14: ifc=n! f then

15: forall P; #1 do

16: invoke ABA.| with 0

17: 1% I\ {P;} I Remove instances already voted on
18: if ¢ = n then

19: output K

20: upon (ABA.j, deliver, 0) do
21: c%c+1l

22: if ¢ = n then

23: output K

subset of values to be adopted. Our Asynchronous Distributed Key Generation is similar, with the added restriction that
the values we agree on need to remain private (secret-shared), hence parties output the same set opartieé/and
maintain a private shares setlocally. For simplicity, we do not deal in this section with the speci!c details of how to a
generate a secret-key, public-key, and the commitments for verilcation, which is fairly straightforward after we agree
on the set of HAVSS instances.

6.2.1 DefinitionMore formally, an Asynchronous Distributed Key Generation protocol is a one-shot consensus variant.
Each party is initialized with arfD.i of the HAVSS instance it should act as a dealer, as well as théfullector of

the HAVSS instances it should be a part of. For every partythe protocol outputs a private set of sharess.t. the
following is satis!ed except with negligible probability:

A(i): Validity. If an honest party outputs a set of sharesthen|v| ' n! f andov includes only valid shares.

A(ii): Agreement. For every two honest parties;, Pj, if P; and Pj output sets of shares; andvj, respectively, then
sourcj ) =sourcé;).

A(iii): Liveness. If n! f correct parties start dealing shares and the adversary delivers all messages, then all correct
parties output a set of shares.

A(iv): Privacy. If an honest partyp; outputs a set of shareg and no honest party has revealed its output shares and
the secret it shared, then the adversary cannot compute the sum of secrets shared by pag@s iy ).



6.2.2 Technical Overviewe follow the ACS solution of Ben-Or et ab], which consists of starting: parallel reliable
broadcasts, one for each party to act as the sender, where for each broadcast instance, they use a single ABA to agree
whether its value should be included in the set. In their protocol, parties invoke wlitsuccess) every ABA that
corresponds to a reliable broadcast instance in which they deliver a value, and refraining from invokingOveitty
ABA instance untiln! f ABA instances have decided 1. Then, they invoke with O all other ABA instance and terminate
the ACS protocol once they decided in all ABA instances.

Our ADKG protocol is similar but instead of reliable broadcasts, we uses HAVSS instances. By the agreement and
liveness properties of the HAVSS, eventually there are f ABA instances which all honest parties invoke with 1 and
thus eventuallyn ! f instances agree on 1 (all honest parties decide 1). Note that the properties of the binary ABA
guarantee that if all honest parties invoke it with 1, then they all eventually decide 1 (same for 0). This protocol has an
expected running time ob(log(n)). Additionally EEABA has an expected running time ©{1) when the network is
synchronized and an expected running time@f) when the adversary is manipulating the message ordering hence the
full ADKG protocol has an expected(logn) running time without a network level adversary and ad(f + logn) = O(f)
running time under asynchrony. On a high-level the ADKG works as follows:

When a party is initialized for ADKG it also initializes parallel ABA instances of Section 6.1 $\BA.j will be
used to decide if HAVSHD.j terminated successfully (all honest parties delivered a share that corresponds to the same
secret), and proceeds as follows:

(1) Once player?; delivers an HAVSS share f@ Os instance he inputsn ABA.j.

(2) OnceP; decides 1 im-f ABA instances, it input® in every ABA instance it have not invoked yet.

(3) When P; decides in allh ABA instancesp; outputs the subsek of shares that corresponds to ABA instance in
which it decidedl.

A detailed description of the protocol is given in Algorithm 5 and the proof is given in Appendix D.

Analysis.The cost ofn parallel instances (where each instance costs a worst casio¥) and has an expected
O(n) running time) isO(n?) the same as the HAVSS step. Once the ADKG terminates the system can use the strong
common-coin generated to run VABAL] and amortize the costs td)(nz). We know thatvalidity, agreemenandliveness
hold from ACS. Privacy holds frormclusionand privacy of the wDKG. With this we prove our main Theorem.

7 CONCLUSION

In this paper, we show a protocol that implements the !rst asynchronous Distributed Key Generation protocol. To
achieve this we show how to get the Irst AVSS protocol that supports threshgfdsl < k " 2f + 1, the Irst Eventually
E"cient ABA which does not need a trusted setup and can also be amortized to the optimal cost ibuR) times in
sequence, and the Irst VABA that does not require a trusted setup.

ACKNOWLEDGEMENTS

We would like to thank Ittai Abraham for the discussions and guidance during the initial conception of the project,
especially for HAVSS. Furthermore, we would like to thank the anonymous reviewers for pointing out the relevance of
this work to MPC protocols.



REFERENCES
L

Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated asynchronous byzantine agreenfertcérdings of

the 2019 ACM Symposium on Principles of Distributed Comppiiggs 3379346, 2019.

Abhinav Aggarwal, Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Bootstrapping public blockchains without a trusted sBragebdings of

the 2019 ACM Symposium on Principles of Distributed Comppiiggs 3660368, 2019.

Georgia Avarikioti, Eleftherios Kokoris Kogias, and Roger Wattenhofer. Brick: Asynchronous state chaanéie preprint arXiv:1905.113@D19.

Laasya Bangalore, Ashish Choudhury, and Arpita Patra. Almost-surely terminating asynchronous byzantine agreement revisttedebdings of

the 2018 ACM Symposium on Principles of Distributed Comppiiggs 2950304. ACM, 2018.

Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal resiliefrecéredings of the thirteenth annual

ACM symposium on Principles of distributed compupages 1839192. ACM, 1994,

Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocdPraceedings of the third annual ACM symposium on Principles of distributed

computing pages 154D162. ACM, 1984.

Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous verilable secret sharing and proactive cryptosystems. In

Proceedings of the 9th ACM conference on Computer and communications gagesity8b97. ACM, 2002.

Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and e"cient asynchronous broadcast prototmtsialinternational

Cryptology Conferencpages 524D541. Springer, 2001.

Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical asynchronous byzantine agreement using

cryptography. Journal of Cryptologyl8(3):219D246, 2005.

[10] Christian Cachin and Stefano Tessaro. Asynchronous verilable information dispers&4tn IEEE Symposium on Reliable Distributed Systems
(SRDSO0Bages 191D201. IEEE, 2005.

[11] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilien88Q@volume 93, pages 42D51. Citeseer, 1993.

[12] Ashish Choudhury. Optimally-resilient unconditionally-secure asynchronous multi-party computation revisited. Cryptology ePrint Archive, Report
2020/906, 2020. https://eprint.iacr.org/2020/906.

[13] Ashish Choudhury and Arpita Patra. An e"cient framework for unconditionally secure multiparty computatidBEE Transactions on Information
Theory 63(1):428D468, 2016.

[14] Ran Cohen. Asynchronous secure multiparty computation in constant timeRublic-Key CryptographyDPKC 2Qd#&ges 183D207. Springer, 2016.

[15] Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas. Constant-round asynchronous multi-party computation based on one-way functions. In
International Conference on the Theory and Application of Cryptology and Information Spage/998D1021. Springer, 2016.

[16] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty paC&4s1985.

[17] Bryan Ford, Philipp Jovanovic, and Ewa Syta. Que sera consensus: Simple asynchronous agreement with private coins and threshold logical clocks.
arXiv preprint arXiv:2003.02220D20.

[18] Juan A Garay, Aggelos Kiayias, Nikos Leonardos, and Giorgos Panagiotakos. Bootstrapping the blockchain, with applications to consensus and fast
pki setup. InIACR International Workshop on Public Key Cryptograpages 465D495. Springer, 2018.

[19] Rosario Gennaro, Stanis%aw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation for discrete-log based cryptosystems. In
International Conference on the Theory and Applications of Cryptographic Teclpages295D310. Springer, 1999.

[20] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin
Tomescu. Sbft: a scalable and decentralized trust infrastructur@0lr® 49th Annual IEEE/IFIP international conference on dependable systems and
networks (DSNpages 568D580. IEEE, 2019.

[21] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and related problems. Technical report, Cornell University, 1994.

[22] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous multi-party computation with optimal resilieAceuld
International Conference on the Theory and Applications of Cryptographic Teclpagess322D340. Springer, 2005.

[23] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party computation with quadratic communicatioterivational
Colloguium on Automata, Languages, and Programmiages 473D485. Springer, 2008.

[24] Aniket Kate, Yizhou Huang, and lan Goldberg. Distributed key generation in the WA€R Cryptology ePrint Archiv2012:377, 2012.

[25] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Kho", Linus Gasser, and Bryan Ford. Enhancing bitcoin security and performance
with strong consistency via collective signing. Bbth{useni®} security symposiun{(iseni} security 16)pages 2799296, 2016.

[26] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas Gailly, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford.
Calypso: Auditable sharing of private data over blockchai®CR Cryptol. ePrint Arch., Tech. R2@0:2018, 2018.

[27] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized
ledger via sharding. 112018 IEEE Symposium on Security and Privacyp@fes 583D598. IEEE, 2018.

[28] Beno"t Libert, Marc Joye, and Moti Yung. Born and raised distributively: Fully distributed non-interactive adaptively-secure threshold signatures
with short shares.Theoretical Computer Scieng45:1924, 2016.

[29] Achour MostZfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous binary byzantine consensus with t< n/3, o (n2) messages,

and o (1) expected timelournal of the ACM (JACM$2(4):31, 2015.

2

3
4

5

6

7

8

[9



[30] Arpita Patra, Ashish Choudhary, and C Pandu Rangan. E"cient statistical asynchronous verilable secret sharing with optimal resilience. In
International Conference on Information Theoretic Secpaiges 74D92. Springer, 2009.

[31] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence dftfauritd.of the ACM (JACMR7(2):228D234, 1980.

[32] Torben Pryds Pedersen. A threshold cryptosystem without a trusted partyvamkshop on the Theory and Application of of Cryptographic Techniques
pages 522D526. Springer, 1991.

[33] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A tutgisl. Computing Surveys (CSUR)(4):299D319,
1990.

[34] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail Kho", Michael J Fischer, and Bryan Ford. Scalable
bias-resistant distributed randomness. 2017 IEEE Symposium on Security and Privacypi@fes 444D460. leee, 2017.

[35] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstu$: Bft consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Cqormppgéa@®47b356, 2019.

A FULL COMPUTATIONAL MODEL

Following [1, 8, 9], we use standard modern cryptographic assumptions and de!nitions. We model the computations
made by all system components as probabilistic Turing machines, and bound the number of computational basic steps
allowed by the adversary by a polynomial insecurity parameter.lA function e(k) is negligiblein k if for all ¢ > 0

there exists &g s.t.e(k) < 1/kC for all k > ko. A computational problem is callemhfeasibldf any polynomial time
probabilistic algorithm solves it only with negligible probability. Note that by the de!nition of infeasible problems, the
probability to solve at least one such problem out of a polynomiakinumber of problems is negligible. Intuitively,

this means that for any protocaP that uses a polynomial itk number of infeasible problems, if is correct provided

that the adversary does not solve one of its infeasible problems, then the protocol is correct except with negligible
probability. We assume that the number of partiess bounded by a polynomial itk.

CommunicationWe assume asynchronous links controlled by the adversary, that is, the adversary can see all
messages and decide when and what messages to deliver. In order to 't the communication model with the computational
assumptions, we restrict the adversary to perform no more than a polynomialirumber of computation steps between
the time a message from an honest party; is sent to an honest party; and the timem is delivered byp; 6. In addition,
for simplicity, we assume that messages arghenticatedn a sense that if an honest parfy receives a message
indicating thatm was sent by an honest party;, thenm was indeed generated lp and sent top; at some prior
time. This assumption is reasonable since it can be easily implemented with standard symmetric-key cryptographic
techniques in our model.

Termination.Note that the traditional de!nition of the liveness property in distributed system, which requires that
all correct (honest) partiesventuallyterminate provided that all messages between correct (honest) parties eventually
arrive, does not make sense in this model. This is because the traditional de!nition allows the following:

¥ Unbounded delivery time between honest parties, which potentially gives the adversary unbounded time to
solve infeasible problems.

¥ Unbounded runs that potentially may consist of an unbounded number of infeasible problems, and thus the
probability that the adversary manages to solve one is not negligible.

Following Cachin et al.8, 9], we address the !rst concern by restricting the number of computation steps the adversary
makes during message transmission among honest parties. So as long as the total number of messages in the protocol is
polynomial ink, the error probability remains negligible. To deal with the second concern, we do not use a standard

6Note that although this restriction gives some upper bound on the communication in terms of the adversary local speed, the model is still asynchronous
since speeds of di$erent parties are completely unrelated.



liveness property in this paper, but instead we reason about the total number of messages required for all honest parties
to terminate. We adopt the following de!nition from [8, 9]:

De"nition A.1 (Uniformly Bounded Statistid)et X be a random variable. We say th&tis probabilistically uniformly
boundedf there exist a 'xed polynomialT (k) and a !xed negligible functions(l) ande(k) such that for alll, k' 0,

PriX > IT(K)] " 8(1) + e(k)

With the above de!nition Cachin et al.§, 9] delne a progress property that makes sense in the cryptographic settings:
¥ Elciency: The number of messages generated by the honest parties is probabilistically uniformly bounded

The e"ciency property implies that the probability of the adversary to solve an infeasible problem is negligible, which
makes it possible to reason about the correctness of the primitivesO properties. However, note that this property can
be trivially satis!ed by a protocol that never terminates but also never sends any messages. Therefore, in order for a
primitive to be meaningful in this model, Cachin et al. [8, 9] require another property:

¥ Termination If all messages sent by honest parties have been delivered, then all honest parties terminated.

B HAVSS PROOFS

Lemma B.1. The protocol in Algorithms 1 and 2 satisfy H(i) (Liveness).

Proor. If the dealerpy is honest, it follows directly by inspection of the protocol that all honest parties complete the
sharingID.d, provided all parties initialize the sharingD.d and the adversary delivers all associated messages.
i

Lemma B.2. The protocol in Algorithms 1 and 2 satisfy H(ii) (Agreement).

Proor. We show that if some honest partyi completes the sharing dfD.d, then all honest parties will complete
the sharing ofID.d, provided all parties initialize the sharingD.d and the adversary delivers all associated messages.
Consider two cases:

¥ First,pi completes the sharing directly (line 29 or line 35 in Algorithm 1). Then it has receivédf valid ready
messages that agree on sorldrom a set of at least ! f partiesS. Since we have at mogt Byzantine parties,
we get thatS contains at leask ! 2f honest parties who have witnesséddvalid echomessages and thus each
such party will also complete the sharing upon receptionmff f readymessages. By the algorithm in step 4
(line 28 or 34), after receiving! f (signed) validceadymessageg; sends them to all other parties. Therefore,
every honest party inS eventually receivea ! f valid readymessages and thus eventually outputs shared. It is
left to show that honest parties not i§ will terminate as well. Consider such parpy that never sent aeady
message. We already showed that eventudlly 1 honest parties ir§ output shared, which means that they had
a correctb(j) polynomial and they will eventually sent aharedmessage with a valid point tp; . Therefore p;
eventually gets at leasf + 1 consistent shared messages, recovers its share in step 5 and terminates as well (line
36-43).

¥ Secondp; complete the sharing indirectly (line 36-43). Then we know thagets at leasyf + 1 consistentshared
messages, meaning that gets at least one such message from an honest pgrtBy step 4p; was part of S
and terminated (line 29 or 35). Therefore, by the !rst case, we get that all honest eventually ostared



Lemma B.3. Suppose an honest paRysends sharednessage containir®@ and a distinct honest par§j sends a
sharednessage containir®g . ThenC; = Cj.

Proor. We prove the lemma by contradiction. SuppoSe# Cj. Pi outputs thesharedfor C; only if it has received
atleastn! f readymessages fof; or veriled Sigc that containsn! f signedreadymessages fof; . Pj outputs the
sharedfor Cj only if it has received at leasi! f readymessage fo€; or veriled Sigc that contains the om! f signed
readymessages fofj. Fromthen! f readymessages fof; at leastn! 2f are generated by honest parties. From the
n! freadymessages fofj atleastn! 2f are generated by honest parties. Since there are at nfasialicious parties
andn > 3f this is only possible if an honest party signed two contradictiready messages. A contradiction to the
code of the protocol.

Lemma B.4. The protocol in Algorithms 1 and 2 satisfy H(iii) (Correctness).

Proor. LetJbe the index set of thé honest parties that have completed the sharing ands|ebe the shares of. To
prove the Irst part, suppose the dealer has shareahd is honest throughout the sharing stage. Towards a contradiction
assume: # s.

Because the dealer is honest, it is easy to see that eeehp message sent from an honeBt to Pj contains
C,u(i, ), u(j, i), as computed by the dealer. Furthermore, if the partiegicomputed their shares only from these echo
messages, thesj = 4j(0) = u(j, 0). But sincez # s, at least one honest part§i computed a polynomiad; (y) # u(i, y);
this must be becausB accepted an echo or ready message from some corruptedontainingam # u(m, i). Sincep;
has evaluated verify-point to true, we havg = H{:O(Cﬂ )ij On the other hand, the dealer has sent polynomiais

to Py satisfyingg®m = H}ZO(@” )ij. However, from Lemma B.3 and the fact that the dealer is honest we know that
@ = C. HencePy, knows anam # a such thatg? = ¢g®=, however this is a collision to the commitment scheme which
should be hard (binding commitment). A contradiction.

To prove the second part, assume by a way of contradiction that two distinct honest paftiasd P; reconstruct
valueszj andzj such thatzj # zj . This means that they have received two distinct ssts= (I, sl(i)) Sip=(, sl(j))) and
of k shares each, which are valid with respect to the unique commitment mairixsed byp; andP; (the uniqueness
of C follows from Lemma B.3). According to the protocel,andz; are interpolated from the set§, Sj respectively.
Since the shares in are valid, it is easy to see thfat= Cop = g%/, however the commitment scheme is binding. A
contradiction.

Lemma B.5. The protocol in Algorithms 1 and 2 satisfy H(iV) (Privacy).

Proor. If the dealerpy is honest, it follows directly by inspection of the protocol that the dealer generated a
polynomial with degred(t, f) then no set off shares can reconstruct it. Furthermore, by inspection of the code, no
honest party reveals its shares and polynomials to any unauthorized party. Finally, the lemma follows from the hiding
property of the commitment scheme. That is, the adversary is unable to recover a share or points on the polynomial by
looking atC.



C EPCCPROOFS

Lemma 5.1. If a valid coin for somey is generated, then at le&st + 1 valid share-coins associated with some bit vector
V for sq were previously generategd+ 1 of which by honest parties.

Proor. By the codep; either gets2f + 1 share-coin messages with correct shares associated with some bit vector
V andsq or gets a coin message with valid coin associated with some bit veitandsq. In the second case, by the
generatecoin andverify-coin functions, we know that at leas2f + 1 valid share-coins associated withandsq are
needed to produce the valid coin. In addition, note that by the cdégldgnores bit vectors that include less tha&y + 1
ones. Therefore, we only need to show that the adversary cannot produce moreftheatid share-coins associated
with sq and some bit vecto¥ that includes at leas2f + 1 ones (before honest parties do it).

By the H(iv) property of HAVSSfivacy), the adversary cannot learn the shares of honest parties that were delivered
in HAVSS instances with honest dealers. Sintencludes at leas®f + 1 ones, we get that the associated keys of honest
parties include shares from HAVSS instances with honest dealers. Therefore, the adversary cannot learn the keys of
honest parties that are associated with and thus cannot produce more thafivalid share-coins associated with.

O

LemMma 5.2. The protocol in Algorithm 4 satis"es E(i) (Unpredictability).

Proor. First, due to W(i) (Inclusion), we know that any valid shared private-key has contribution of at I¢aistl
honest parties who never reveal them, hence the adversary does not know the shared private-key.

Second, consider an honest patywhoOsoin-tosgsg) invocation returns a coirp. By Lemma 5.1, at leagt+ 1
share-coins fosq were previously generated. By the code, an honest party does not generate a share-cejrbieiore
coin-tosgs) is invoked. Therefore, the adversary can neither know the private-key nor pregisefore at least one
honest party invokesoin-tosqsg).

m]

LemMA 5.3. For everygq, if an invocation o€ointosqsg) by an honest part; returns, then altoin-tosgsq) invocations
by honest parties eventually return.

Proor. Assume by a way of contradiction that some invocationagfin-tosgsg) by an honest party?; never returns.
By the code, befor@; returns, it forwards the coin to all other parties in @in message, and thus all other honest
parties eventually get this messages. In addition, sifices honest, we know that the coin is valid and associated with a
bit vector that includes at leas2f + 1 ones. Thereforelj will eventually get this coin, successfully verify it and return
it. A contradiction.

Lemma 5.4. The protocol in Algorithm 4 satis"es E(ii) (Termination).

Proor. Assume by a way of contradiction that some invocationagfin-tosgsg) by an honest partyP; never returns.
By Lemma 5.3, we get that no invocation adin-tosgsq) by an honest party returns. By the W(iii)(Eventual Agreement)
property of the wDKG sub-protocol, every part§ eventually outputs an ultimate prediction and never outputs a
prediction again. Moreover, by W(iii), we also know that all the ultimate predictions of honest parties are matching,
meaning that they are associated with the same bit vedtdr In addition, by property W(i), we get that " includes at
least2f + 1 ones.



Therefore, by the code, all honest parties eventually generate and send to all other parties a valid coin-share for
that is associated withv". Hence P; will eventually get2f + 1 valid coin shares fokq that are associated with a valid
bit vector (include2f + 1 ones), and thus eventually generate a coin and return. A contradiction.

a

Lemma 5.5. If an honest party generates a share-coin associated yifthn it will never generate a share-coin associated
with v 2 V.

Proor. By the code, at any point during the EPCC algorithm, an honest party generates share-coins that are
associated with the bit vector that were produced (gat-key) from the last prediction it received from the wDKG
sub-protocol. By property W(ii) (Containment) of the wDKG sub-protocol, we know that predictions outputted from
the wDKG are related by containment, and thus the lemma follows.

a

Lemma 5.6. If for somesq, twocoin-tosgsq) invocations by two honest parties return di#erent valid gains p2, then
there are two bit vectofg, V2 s.t. (1)1 ( V2; and (2)f + 1 honest parties generated valid share-coins associateid with
for sqg and f + 1 honest parties generated valid share-coins associateid \fothsg.

Proor. By Lemma 5.1p; implies that at leasRf + 1 valid share-coins associated with some bit vectarfor sq were
previously generatedf + 1 of which by honest parties; and implies that at leas2f + 1 valid share-coins associated
with some bit vectorV; for sq were previously generated; + 1 of which by honest parties. Therefore, there is at least
1 honest partyP; that generated a share-coin feg that is associated wittv; and another share-coin farg that is
associated with. Sincep1 # p2, we get by H(iii) (HAVSS correctness) thét # V,. Therefore, by Lemma 5.5; and
V» are related by containment.

a

LemMma 5.7. Foreverl " k" f + 1, if there areék sequence numbexgfor which two invocations abin-tosqsg) by
honest parties output di#erent coins, then there is a bit Viécibsize at leas2f + 1+ k such thatf + 1 honest parties
generated valid share-coins associatedWvith

Proor. We prove by induction ork.

Base: we show that if there is oneq for which two invocations ofcoin-tosgsq) by honest parties output di$erent
coins then there is some vectdf of size at leas2f + 2 such thatf + 1 honest parties generated valid share-coins
associated with. By the code, honest parties only generate share-coins that are associated with bit vectors that were
produced from wDKG prediction outputs. Thus, by property W(i) (Inclusion) of wDKG, honest parties only generate
share-coins that are associated with bit vectors of size at &5t 1. Therefore, the base case follows from Lemma 5.6.
Step: Assume the lemma holds for somde' k" f, we show that the lemma holds fdr + 1. First note that siné " f,
we get that the total number number of crytpographic signatures is polynomial in the security parameter, and thus all
previous lemmas hold except with negligible probability. Lset andskk*1 be thekth and(k + 1)!" sequence numbers
for which two invocations ofcoin-tossby honest parties output di$erent coins, respectively. By the well-formed nature
of EPCC we are guaranteed that any honest party invoke'mrtoss(sqk*l) only after COin—tOSE(sqk) returns. By the
induction assumption, there is a bit vector of size at leas®f + 1+ k such thatf + 1 honest parties generated valid
share-coins associated with¥ before theircoin—toss(sqk) invocation returns. So by Lemma 5.5 and by well-formance,
there aref + 1 honest parties that do generate share-coins associated with bit vectors with lessfianl + k entries



for sk**1, By Lemma 5.1, we ne&f + 1valid shares in order to generate a valid coin fekk* 1. Thus, since every bad
party can generate at most one valid share-coin, we get that only coins that are associated with bit vectors of size at
least2f + 1+ k can be generated fokX*1. Therefore, the lemma follows from lemma 5.6.

LemMma 5.8. The protocol in Algorithm 4 satis"es E(iii) (Eventual Agreement).

Proor. Assume by a way of contradiction that there afe+ 1 sequence numberg; for which two invocations of
coin-tosqsq) by honest parties return di$erent coins. By Lemma 5.7, then there is a bit vectof size at leas8f + 2
such thatf + 1 honest parties generated valid share-coins associated WitBince the number of parties is (and thus
HAVSS) instances 3f + 1, we get a contradiction to the bit vector de!nition.

D ADKG PROOFS

Lemma D.1. All honest parties deciden at leastn ! f ABA instances.

Proor. Consider two case:
¥ First, there is an honest party that inpuin some ABA instance. By the code, it decidem at leastn! f ABA
instances. Therefore, by the ABA Agreement property all honest parties detidet leastn! f ABA instances.
¥ Second, no honest party invoke an ABA with By the H(i) (Liveness) property of HAVSS, there are f HAVSS
instance for which all honest parties deliver a share, and thus input 1 in the corresponding ABA instances.
Therefore, by the Validity and Termination properties all honest parties decide 1 in thds¢® ABA instances.

mi
Lemma D.2. The protocol in Algorithm 5 satis"es A(i) (Validity).

Proor. Consider a party; that outputs a set of shares. By the code, sincg; outputs a value, it outputs a decision
in all ABA instances. Moreovey; includes all the shares of HAVSS for which the corresponding ABA decides 1. Thus,
we need to prove thap; decideslin atleastn! f ABA instances. The Lemma follows from Lemma D.1.

Lemma D.3. The protocol in Algorithm 5 satis"es A(ii) (Agreement).

Proor. By the code, parties include all the shares of HAVSS instances for which they output 1 in the corresponding
ABA instances. Therefore, the lemma follows from the ABA Agreement property.
i

Lemma D.4. If ABA.j outputs 1, then all honest parties eventually deliver a share for the HAVSS instance fgyr ihich
the dealer.

Proor. By the ABA validity, at least one honest party input 1 #BA.j. Therefore there is at least one honest party
who delivers a share for the HAVSS instance for whighis the dealer. The Lemma follows from the Agreement (Hii)
property of HAVSS.

Lemma D.5. The protocol in Algorithm 5 satis"es A(iii) (Liveness).



Proor. By Lemma D.4, all parties output provided they decide in all the ABA instances. Thus, we need to prove that
all ABA instance eventually terminate. Therefore, by the termination property of ABA, we only need to prove that all
honest party invoke all ABA instances. Thus, by the code, we need to prove that atidagt ABA instance decidé.

The Lemma follows from Lemma D.1.

Lemma D.6. The protocol in Algorithm 5 satis"es A(iv) (Privacy).

Proor. Consider an honest party; that outputs a set of shares . By the Validity property,jvi| * n! f, and thus
sourcefj ) contains at least honest party. The lemma follows from H(iV) (Privacy) of HAVSS.



