
Asynchronous Distributed Key Generation for Computationally- Secure

Randomness, Consensus, and Threshold Signatures.

ELEFTHERIOS KOKORIS-KOGIAS , Faceook Novi & IST Austria

DAHLIA MALKHI,Faceook Novi

ALEXANDER SPIEGELMAN,Faceook Novi

In this paper, we present the !rstAsynchronous Distributed Key Generation(ADKG) algorithm which is also the !rst distributed key

generation algorithm that can generate cryptographic keys with a dual(f , 2f + 1)! threshold (wheref is the number of faulty parties).

As a result, using our ADKG we remove the trusted setup assumption that the most scalable consensus algorithms make. In order to

create a DKG with a dual(f , 2f + 1)! threshold we !rst answer in the a"rmative the open question posed by Cachin et al. [7] on how

to create an Asynchronous Veri!able Secret Sharing (AVSS) protocol with a reconstruction threshold off + 1 < k " 2f + 1, which

is of independent interest. OurHigh-threshold-AVSS(HAVSS) uses an asymmetric bivariate polynomial to encode the secret. This

enables the reconstruction of the secret only if a set ofk nodes contribute while allowing an honest node that did not participate in

the sharing phase to recover his share with the help off + 1 honest parties.

Once we have HAVSS we can use it to bootstrap scalable partially synchronous consensus protocols, but the question on how to get

a DKG in asynchrony remains as we need a way to produce common randomness. The solution comes from a novelEventually Perfect

Common Coin(EPCC) abstraction that enables the generation of a common coin fromn concurrent HAVSS invocations. EPCCÕs key

property is that it is eventually reliable, as it might fail to agree at mostf times (even if invoked a polynomial number of times). Using

EPCCwe implement anEventually E!cient Asynchronous Binary Agreement(EEABA) which is optimal when the EPCC agrees and

protects safety when EPCC fails.

Finally, using EEABA we construct the !rst ADKG which has the same overhead and expected runtime as the best partially-

synchronous DKG (O(n4) words,O(f) rounds). As a corollary of our ADKG, we can also create the !rst Validated Asynchronous

Byzantine Agreement (VABA) that does not need a trusted dealer to setup threshold signatures of degreen ! f . Our VABA has an

overhead of expectedO(n2) words andO(1) time per instance, after an initialO(n4) words andO(f) time bootstrap via ADKG.

1 INTRODUCTION

A common assumption made by many modern Byzantine fault tolerant distributed algorithms is the existence of a trusted

dealer that generates and distributes cryptographic keys at the beginning of every execution. For example, e"cient

asynchronous Byzantine agreement protocols [1, 3, 9, 17, 29] use a shared coin scheme to produce randomness [34],

e"cient state machine replication protocols [20, 35] use a threshold signature scheme to reduce communication

complexity, and e"cient secure multiparty computation protocols [22, 23] use threshold encryption [26] to reduce the

communication complexity for sharing secret inputs. All these schemes require a trusted dealer, which is a single point

of failure and a potential weakness for secure decentralized systems.

It is therefore natural to ask under what network assumptions and at what cost the requirement of a trusted dealer

can be substituted with a distributed key generation (DKG) protocol. A DKG protocol allows a group of parties to

distribute private shares of a cryptographic key and later use them to compute a common value such that an adversary

controlling a threshold of the parties cannot predict the value. Thereby, this value can be used to produce unpredictable

randomness or as a ÒprivateÓ key.

∗Corresponding Author.

AuthorsÕ addresses: Eleftherios Kokoris-KogiasFaceook Novi & IST Austria, lefteris2k@gmail.com; Dahlia MalkhiFaceook Novi, dahliamalkhi@gmail.com;
Alexander SpiegelmanFaceook Novi, sasha.spiegelman@gmail.com.

*

In synchronous communication settings, a DKG protocol can be realized via a combination of two building blocks,

secret sharing and consensus [32] (or a broadcast channel such as a blockchain [2, 18]). In a nutshell, all parties

simultaneously choose and share a secret and then use a Byzantine agreement instance for each secret in order to

agree if it should be part of the key. The key is the sum of all valid secrets and the share of each party is the sum of

the corresponding shares. To the best of our knowledge, no asynchronous DKG (ADKG) protocol has been previously

proposed. We focus on protocols withn = 3f + 1parties that assume no trusted setup except for public key infrastructure

(PKI). We further explore protocols that support threshold recovery of2f + 1, which is required by e"cient Byzantine

agreement algorithms that use threshold signatures to reduce the size of the messages from linear in the number of

parties to constant [1, 20, 35].

A naive approach for ADKG is to apply the ideas in [32] to the asynchronous settings. For example, it is possible to

use the AVSS scheme of Cachin et al [7] andn independent parallel instances of a binary agreement protocol1 like [4, 6].

However, the resulting algorithm has three drawbacks: First, the secret sharing in [7] has a reconstruction threshold of

f + 1 and thus the resulting ADKG cannot have the desired2f + 1 threshold. Second, runningn binary agreements

does not guarantee a successful protocol execution, since they can all terminate with0 which means that the key will

include no secrets. Finally, even if we could guarantee that more thanf instances terminate successfully2, the resulting

protocol would be ine"cient with a communication complexity ofO(n5lo�n).

In this paper we present the !rst ADKG protocol with a recovery threshold of2f + 1 and low communication cost.

Formally, the main theorem we prove in this paper is following:

T������ 1.1. There exists a protocol amongn parties that solves Asynchronous Distributed Key Generation (ADKG)

with reconstruction thresholdk " n ! f and is secure against an adaptive adversary that controls up tof < n/ 3 parties,

with expectedO(n4) communication complexity and expectedO(f) running time.

In a nutshell, our protocol follows the idea of concurrently sharingn secrets and then agree which to consider for the

key. However, instead of using a costly Byzantine agreement instance for each secret, we use the secrets as the driving

randomness source to build an e"cient common coin which in turn we use for an e"cient Byzantine agreement. In

particular, we observe that to build a common coin from the secrets we can use a slightly weaker agreement notion

which is not subject to the FLP impossibility result. To this end, we !rst improve the asynchronous secret sharing

scheme in [7] to support2f + 1 reconstruction threshold. Then, we rely on the completeness property of our secret

sharing scheme and guarantee that eventually all honest parties get shares for the same secrets. As a result, we know

that all parties eventually agree on the set of secrets and ,hence, could use it for a shared coin. Unfortunately, the parties

do not know when this happens (in contrast to the agreement problem) and cannot ever terminate.

To circumvent this non-termination problem, our idea is to let the parties optimistically think that every received

share is the last one (i.e., all correct AVSS instance have terminated and all other instances are faulty) and try to

terminate. Each time a new share is received byn ! f parties, they generate new key shares and initiate a shared

coin protocol (produce a threshold signature and hash it to get unpredictable randomness). This shared coin #ip is in

turn used in some e"cient binary agreement protocol (these keys replace the ones produced by the trusted dealer).

If the parties happen to agree on the key (their sets of shares correspond to the same secrets), then the Byzantine

agreement protocol terminates successfully. Otherwise, some parties received shares that others have not yet received

and they will try again to terminate when the next (additional) secret is recoverable by all honest parties. We call our

1Each instance agrees on whether an AVSS secret is correctly shared.
2So that the adversary does not know all the secrets that are included in the key.

coin Eventually Perfect Common Coin (EPCC)and the resulting Byzantine agreementEventually E!cient Asynchronous

Binary Agreement (EE-ABA), because eventually (after at mostf failed tries) the protocols converge to the optimal

solutions.

Finally, once we have an EE-ABA, we runn instances that share the same EPCC and use it in order to decide on the

!nal set of shares, which terminates the ADKG protocol. In order to guarantee that the !nal key is unpredictable, the

parties refrain from voting0 in the binary agreement instances that they consider faulty until they witnessf + 1 binary

agreements terminating with1 (which is guaranteed to happen due to the strong termination of the HAVSS). Next we

explain the algorithms in more detail and prove that parties cannot disagree on the set of shares more thanf times.

1.1 Technical contribution

We break the ADKG construction in a bottom-up manner, starting with a building block (Section 3) we callHigh-threshold

Asynchronous Veri"able Secret Sharing(HAVSS). HAVSS is an extension of Cachin et al. [7] AVSS protocol that answers

in the a"rmative the open question they posed on the existence of an AVSS protocol that has a reconstruction threshold

of f + 1 < k " 2f + 1. To achieve this, we separate the reconstruction threshold (which we increase tok) from the

recovery threshold (which is stillf + 1). In order to encode this change, we use anasymmetricbivariate polynomial

where each dimension plays a di$erent role (recovery, reconstruction) and we defend against an adaptive adversary

with a reliable broadcast step before terminating the sharing. More formally HAVSS satis!es the following lemma.

L���� 1.2. There exists a protocol amongn parties that solves Asynchronous Veri"able Secret Sharing (AVSS) for

reconstruction thresholdf + 1 < k " n ! f , with no trusted setup, and is secure against an adaptive adversary that controls

up to f < n/ 3 parties, withO(n3) word communication.

The Òsecret sauceÓ:The second (intermediate) building block is theweak Distributed Key Generation(Section 4). It

builds on top ofn parallel HAVSS invocations and uses the fact that all honest nodes eventually terminate all correct

HAVSS to deliver a prediction on what the DKG should output. The wDKG is weaker than consensus because it refrains

from outputting a !nal decision. Instead, it acts as an eventually perfect agreement detector. Any protocol that uses the

wDKG gets the guarantee that eventually all parties will output the same key, but the speci!c time when the detector

becomes perfect cannot be determined. One key property of wDKG is that every prediction is a superset of all prior

predictions, hence there can only be a limited, totally-ordered number of predictions.

Our third building block (Section 5) is calledEventually Perfect Common Coin(EPCC). It relies on the wDKG to detect

the points of agreement and on adaptively secure deterministic threshold signatures [28] to produce the randomness.

The key property of the EPCC is that the adversary can only force it to disagree a !nite (f) number of times. This

happens because a point of disagreement occurs only iff + 1 honest parties are slower than the rest and the adversary

brings them up to speed after they have invoked the EPCC but before they deliver the result. Due to the way the wDKG

is constructed this can happen for at mostf di$erent keys and for each candidate key it may happen at most once.

Once we have the EPCC we can use the protocol of Moustefaoui et al. [29] to create our fourth building block:

an e"cient Asynchronous Binary Agreement protocol that does not assume a trusted setup (Section 6.1). We call it

Eventually E!cient ABA (EEABA)as it might havef failed runs before converging, but once it converges it is optimal

(with communication complexity ofO(n2) and constant expected round complexity). Formally EEABA achieves the

following:

L���� 1.3. There exists a protocol amongn parties that solves Asynchronous Binary Agreement (ABA) without a trusted

dealer in the authenticated setting and is secure against an adaptive adversary that controls up tof < n/ 3 parties, with

O(n4) one-shot (O(n2) amortized) word communication and expectedO(f) one-shot (O(1) amortized) running time.

Finally, in Section 6.2 we invoken concurrent and correlated EEABAs (one for every HAVSS) to agree on the set of

shares that construct the key and complete the ADKG protocol (Theorem 1).

Corollaries.Since solving DKG implies a solution for consensus (if the secret value is public then it can be used as

the consensus decision), a corollary of our main theorem is:

C�������� 1.4. There exists a protocol amongn parties that solves Validated Asynchronous Byzantine Agreement

without a trusted dealer in the authenticated setting and is secure against an adaptive adversary that controls up tof < n/ 3

parties, with expectedO(n4) word communication and expectedO(f) running time.

And through the combination of our ADKG with the optimal validated asynchronous Byzantine agreement (VABA)

of [1] a second corollary is:

C�������� 1.5. There exists a protocol amongn parties that solves Validated Asynchronous Byzantine Agreement

without a trusted dealer in the authenticated setting and is secure against an adaptive adversary that controls up tof < n/ 3

parties, with expectedO(n2) amortized word communication and expected constant amortized running time.

Contributions.In summary our contributions are:

¥ We answer the open problem of a high-threshold AVSS posed by Cachin et al. [7] a"rmatively. HAVSS in

combination with Hybrid-DKG [24] removes the setup requirement of e"cient partially synchronous consensus

protocols [20, 35].

¥ We introduce a novel EPCC construction that disagrees at mostf times but can be used polynomially many

times.

¥ Using our EPCC inside the protocol of Moustefauoi et al. [29] we create EEABA protocol that needs no trusted

setup. EEABA is optimal if amortized. It terminates inO(f) one-shot (O(1) amortized) expected rounds and has

O(n4) for one-shot, (O(n2) amortized) word complexity.

¥ Usingn parallel invocation of Binary Agreement (all sharing the same EPCC), we construct a computationally-

secure, e"cient, leaderless ADKG. Once the ADKG terminates, we can use the resulting key as a perfect common

coin and as the key used in the threshold signature scheme, which are the building blocks of VABA. The ADKG

hasO(n4) word complexity and terminates in an expectedO(f) rounds. Hence, the combination of ADKG and

VABA results in the !rst trustless VABA solution, which is also optimal if amortized.

1.2 Related work

Consensus is one of the most well studied distributed systems problem, !rst introduced by Pease et al [31], which has

become once again relevant due to the interest in blockchain protocols [25, 27]. The problem can be stated informally

as: how to ensure that a set of distributed processes achieve agreement on a value despite a fraction of the processes

being faulty. From a theoretical point of view, the relevance of the consensus problem derives from several other

distributed systems problems being reducible or equivalent to it. Examples are atomic broadcast [21], or state machine

replication [33]. Algorithms that solve consensus vary much depending on the system model. This paper considers a

message-passing setting for systems that may experience Byzantine (or arbitrary) faults in asynchronous settings (i.e.,

without timing assumptions).

In this paper, we focus on 3 interconnected variants: Asynchronous Binary Agreement (ABA), Distributed Key

Generation (DKG), and Validated Asynchronous Byzantine Agreement (VABA). Furthremore, we survey Asynchronous

Secure Multiparty Computation (AMPC) that could provide a generic solution to our problem.

ABA:. The !rst optimally resilient (f < n/ 3) ABA was introduced by Bracha [6]. It is based on locally drawn random

coins used to defend against a network controlling adversary. As the protocol uses local randomization it can only

terminate when all correct processes happen to propose the same (0 or 1) value which has an expectedO(2n) number

of rounds with every round costingO(n3) messages. Canetti and Rabin [11] where the !rst to propose an ABA that

has polynomial total communication complexity, however, the protocol is far from practically e"cient with a cost of

O(n8lo�n) bits. Advancements in the information-theoretic secure model have lowered the cost down toO(n6) [4].

In order to reduce the communication complexity, Cachin et al [9] demonstrated how to achieve consensus against a

computationally-bounded adversary using cryptography. Trying to achieve this, however, introduced a new assumption

of a trusted dealer that deals a perfect common-coin. Mostefaoui et al. [29] slightly weakened the assumption of Cachin

et al. by assuming a weak common-coin. Nevertheless, it remains an open problem on how to get such a coin e"ciently.

This is the core of our work, we build an eventually perfect common coin without the need of a trusted dealer. Our coin

is also in the computationally-bounded adversary and falls in-between the weak coin and the perfect coin and as a

result, can power MostefaouiÕs protocol.

DKG:.A distributed key generation is a protocol that is executed once by a set of parties in order to achieve consensus

on a shared secret key. The core idea is that each party uses secret sharing to disperse some secret value and then the

parties reach consensus on which secret values have been correctly shared. In the end, these values are combined and

the !nal result is a threshold private-public key-pair that can be used for e"cient ABA [9] and VABA [1]. The !rst DKG

was proposed by Pedersen [32] and is fully synchronous. Gennaro et al. [19] showed that PedersenÕs scheme is secure if

used for threshold signatures, but does not produce uniformly random keys. Hence they also proposed a scheme that

produces such keys, which is not of interest to our protocols. Later, Kate et al. [24] realized that synchronous protocols

are not suitable for large scale deployment over the Internet and proposed a partially-synchronous DKG instead. Their

protocol has a worst-caseO(n4) bit complexity and produces keys with a threshold ofk = f + 1.

Our contribution to the DKG space is two-fold. First, we show how to generate keys with threshold reconstruction

k = 2f + 1, which as we already mentioned can be used to power scalable partially synchronous BFT protocols [20, 35].

Second, we create the !rst asynchronous DKG withO(n4) word complexity making it practical to generate distributed

keys with no timing assumptions.

VABA:.The VABA problem was introduced by Cachin et al. [8] which generalizes ABA, by allowing any externally

valid value to be eligible for consensus. In this model, Abraham et al. [1] have provided an optimal solution (f < n/ 3)

for VABA that has an expected complexity ofO(n2) messages and terminates with probability1 in an expected constant

number of rounds. Both these protocols assume a perfect-coin, hence require a trusted setup. Our contribution in

this model is also two-fold. First we show how we can implement a VABA protocol with no trusted setup and second

we show how to bootstrap the more e"cient protocols [1, 8] with our ADKG in order to get an optimal VABA if we

amortize the cost of the ADKG overO(n2) runs.

Secure Multiparty Computation:On a !rst glance our protocol can be categorised as a special case of Asynchronous

Secure Multiparty Computation [5], however with further inspection it actually provides a foundation for increasing

the e"ciency [5, 14, 15, 22, 23, 30] and removing the trusted setup assumption [14, 22, 23] of existing multiparty

computation protocols.

More speci!cally, existing MPC protocols assume access to a Byzantine Agreement black box which they need

to reach agreement on the inputs by deploying n parallel BAs. However this black box deployment of BA leads to

ine"ciencies leading to an expectedO(n5lo�n) world complexity in the cryptographically secure setting. Using our

protocol which opens the black boxes and reuses the common coin, we can agree on the same inputs in onlyO(n4).

Furthermore, MPC protocols either assume a trusted setup of threshold signatures and threshold encryption [14,22,23]

or employ a special type of AVSS called ACSS [5], which guarantees that all honest parties (instead off + 1) get a share.

Our HAVSS provides the same guarantees, making it a cryptographically secure ACSS protocol. Choudry and Patra [13]

have created a framework where an MPC protocol can be constructed using BA and ACSS, as a result if we plug in our

HAVSS and couple it with error-corrected reliable broadcast [10] we could get the most e"cient AMPC with complexity

ofO(n3lo�n) per multiplication gate. This improvement comes at the cost of sacri!cing unconditional security since the

state of the art has anO(n5lo�n) cost3. However, the most natural use of ADKG would be to bootstrap the threshold

encryption and threshold signing protocols of [23] and then run atO(n2) cost per multiplication gate. If the AMPC

protocol has more thanO(n2) gates, then we can get an amortized cost ofO(n2) per gate.

In summary, this paper provides practical improvements on the foundation protocols of AMPC which could result

through composition to practically e"cient protocols. However, we leave the actual secure implementation and proofs

to future work.

2 MODEL AND DEFINITIONS

In order to reason about distributed algorithms in cryptographic settings we adopt the model de!ned in [9]. For space

limitation and better readability we de!ne here a simpli!ed version and the full formal model can be found in [1, 8, 9]

and in Appendix A. We consider an asynchronous message passing system consisting of a set� of n parties and an

adaptive adversary. The adversary may control up tof < n/ 3 parties during an execution. An adaptive adversary is not

restricted to choose which parties to corrupt at the beginning of an execution, but is free to corrupt (up tof) parties on

the #y. Note that once a party is corrupted, it remains corrupted, and we call it faulty. A party that is never corrupted is

calledhonest.

Communication.We assume asynchronous authenticated links controlled by the adversary, that is, the adversary

can see all messages and decide when and what messages to deliver but cannot deliver a message from an honest

party that was not generated by it. In order to be able to use cryptographic tools in asynchronous settings, the model

de!ned in [1, 8, 9] restricts the adversary to perform no more than a polynomial in the security parameter number of

computation steps during the time a message between two honest parties is sent and delivered. For completeness, in

Appendix A, we give the formal de!nition of the assumption on message delivery and the termination requirement

in asynchronous protocols with computationally bounded adversaries. However, in order to be able to focus on the

distributed computing aspect of our work, we assume throughout the paper perfect cryptographic tools, standard

delivery assumptions and termination requirement. That is, we assume every message between two honest parties is

eventually delivered.

3Concurrent non peer-reviewed works claims reduction toO(n4lo�n) [12]

Complexity.Following [1], our basic communication unit isword, which may contain a constant number of values of

some domainV and cryptographic signatures. We de!ne the totalcommunication costof our protocol to be the number

of words sent among honest parties. One word is a signature that is linear in the size of the security parameter.

Cryptographic Abstractions.Given that our protocols use cryptographic constructions as black boxes, we assume

perfect cryptographic tools and present simpli!ed educational examples that use the multiplicative notation and simple

computationally hiding commitments. Furthermore, in order to still have a correct protocol we employ the Di"e-

Hellman Based Threshold Coin-Tossing Scheme of Cachin et al. [9]. This way the reader can focus on the distributed

aspect of the protocol which is the novelty. However, in order to be adaptively-secure, the actual implementation of our

consensus algorithm requires pairing-based threshold cryptography, as shown by Libert et al. [28]. More speci!cally,

Libert et al. runs a classic synchronous DKG [32], but we can instead use our ADKG (Section 6.2) to terminate their

protocol in asynchrony and generate the consistent secret shares.

Di!e-Hellman Based Coin.In order to follow our protocols, we need to present the coin-tossing protocol of Cachin

et al. [9]. We work with a groupG of large prime order q. At a high level, the value of a coinC is obtained by !rst

hashingC to obtain ø� # G, then raisingø� to a secret exponentx0 # Zq to obtain ø�0 # G, and !nally hashing ø�0 to obtain

the valueF (C) # {0,1}.

In this paper, we distributively generate the secret exponentx0 such that before the coin-toss is invoked every party

Pi holds a sharexi of x0. The party uses this share to generate a share of the coinF (C) which is ø�xi . For our purpose

we abstract the inner workings of the coin by exposing four functions:

generate-share(xi ,C), it uses the partial keyxi to generate a coin-share for coinC.

verify-share(C,m,�) veri!es that � is a valid share of partyPm.

generate-coin(C, [�i]) generates a coin given a threshold of valid shares ofC.

verify-coin(C,�P), veri!es that the given value�P correspond to valid coin forC.

3 HIGH-THRESHOLD ASYNCHRONOUS VERIFIABLE SECRET SHARING

Existing AVSS [7, 11] schemes provide a reconstruction threshold up ton ! 2f shares. Intuitively this is because at

the sharing step the participating nodes can only wait forn ! f readymessage from nodes, wherereadycon!rms

that a node has veri!ed its share. As a result in the reconstruction phase, there can be up tof (corrupt) nodes who

participated at the sharing but do not participate in the reconstruction, hence for the reconstruction to succeed the

recovery threshold should ben ! f ! f = n ! 2f .

In this section we present our HAVSS scheme that requires a high threshold of up ton ! f shares for the secret

reconstruction. Our scheme is an extension of the AVSS scheme by Cachin et al. [7], where the dealer uses anasymmetric

bivariate polynomial instead of a symmetric one. The key idea is that one dimension of the asymmetric bivariate

polynomial has an order off and is used for shares recovery, while the other dimension has an order of2f and is used

for the secret reconstruction.

3.1 Definition

Our protocol falls in the class ofdual-threshold sharing[9], which are protocols that allow the reconstruction threshold

of a secret to be more thanf + 1. Although in the original AVSS [7] paper the authors introduce the notion of a

dual-threshold secret sharing scheme with reconstruction threshold up ton ! f , the AVSS described only works for

reconstruction thresholdn ! 2f . In this work, we solve the open problem posed by the authors on creating an(n,k, f)

dual-threshold AVSS wheref + 1 < k " n ! f . This is an important challenge since an(f ,n ! f)-AVSS can power4

e"cient Byzantine agreement [1, 35] and e"cient MPC [22, 23] which currently require a trusted dealer during setup.

We follow the de!nitions of Cachin et al [7] and modify them for HAVSS: A protocol with a tagID.d to share a

secrets # Zq consists of asharingstage and areconstructionstage as follows.

Sharing stage.The sharing stage starts when the party initializes the protocol. In this case, we say the partyinitializes

a sharing ID.d. There is a special partyPd , called adealer, which is activated additionally on an input message of the

form (ID.d, in, share, s). If this occurs, we sayPd sharess usingID.d among the group. A party is said tocomplete the

sharingID.d when it generates an output of the form(ID.d,out, shared). An honest but slow party might not complete

the sharing if the dealer is malicious. In this case, it can still recover its share of the secret from the rest of the parties

that managed to terminate the sharing. Such a party is said toindirectly complete the sharingID.d.

Reconstruction stage.After a party has completed the sharing, it may be activated on a message(ID.d, in, reconstruct).

In this case, we say the partystarts the reconstruction forID.d. At the end of the reconstruction stage, every party

should output the shared secret. A partyPi terminates the reconstruction stage by generating an output of the form

(ID.d,out, reconstructed, zi). In this case, we sayPi reconstructszi for ID.d. This terminates the protocol.

Furthermore, the protocol should satisfy the following properties for our threat model, except with negligible

probability:

H(i) : Liveness. If the adversary initializes all honest parties on sharingID.d, delivers all associated messages, and the

dealerPd is honest throughout the sharing stage, then all honest parties complete the sharing. Moreover, if all

honest parties subsequently start the reconstruction forID.d, then every honest partyPi reconstructs somezi

for ID.d.

H(ii) : Agreement. Provided the adversary initializes all honest parties on sharingID.d and delivers all associated

messages, the following holds: If some honest party completes the sharingID.d, then all honest parties will

complete the sharing ofID.d.

H(iii) : Correctness. Oncek honest parties have completed the sharing ofID.d, there exists a !xed valuez such that

the following holds:

(1) If the dealer has shared(ID.d, in, share, s) and is honest throughout the sharing stage thenz = s.

(2) If an honest partyPi reconstructzi for ID.d thenzi = z.

H(iv) : Privacy. If an honest dealer shared(ID.d, in, share, s) and less thank ! f honest parties have started the

reconstruction forID.d, then the adversary has no advantage when trying to guess the values.

3.2 Implementation

The key mechanism of HAVSS (see Figure 1) is the use of an asymmetric bi-variate polynomial(k ! 1, f). The !rst

dimension is used to protect the secret, which is reconstructed ifk shares are combined, whereas the second dimension

is used to enable recovery of the shares of the secret from any group off + 1 honest participants.

Letp andq be two large primes satisfyingq | (p ! 1), andq > n. LetG denote a multiplicative subgroup of orderq of

Zp and let� be a generators ofG.

4Coupled with a suitable DKG [24]

Fig. 1. Intuition of HAVSS.Pj receives row�$.j which is used to compute the recovery polynomialbj (�) and column�j .$ which is
used to compute the share polynomialaj (x) and recover its shareSj = aj (0). If a malicious dealer does not sendPm its share,Pm
can still complete indirectly the sharing. This is possible becausePj , that completes the sharing directly, will sendPm a message with
�m .j . Since there aref + 1 available parties that should have shares in columnm and complete the sharing directly,Pm will get
enough points to recoveraj (x), hence recoverSm = am (0). As a result, eventuallyk parties will have sharesSi , compute locally
u(0, x) and recover the secrets = u(0, 0).

(1) The dealer computes a one-dimensional sharing of the secret and uses the second dimension of the bi-variate

polynomial to share the secret-shares. This is achieved by choosing a random bivariate polynomialu # Zq[x ,�]

where the dimension[x] is of degreet = k ! 1 and the dimension[�] is of degreef with u(0,0) = s and it

commits tou(x ,�) =
Õt , f

j , l =0u j l x
j�l by computing a commitment matrixC = {C j l } with C j l = �u jl for j # [0, t],

l # [0, f]. The dealer sends each partyPi a message containing the commitment matrixC as well as arecovery

polynomialai (�) := u(i,�) of order f and ashare polynomialbi (x) := u(x , i) of ordert .

(2) When the parties receive thesendmessage from the dealer, theyechothe points in which their share and

recovery polynomial overlap with each other. To this e$ect,Pi sends anechomessage containingC, ai (j),bi (j)

to every partyP j .

(3) Upon receivingk echomessages that agree onC and contain valid points, every partyPi interpolates its own

share and recovery polynomialsøai and øbi from the receiving points and veri!es that they are the same as the

ones received by the dealer. ThenPi sends areadymessage containingC.

(4) Once the party receives a total ofn ! f readymessages that agree onC, it completesthe sharing. Its share of the

secret issi = øai (0). In order to guarantee that the rest of the parties also complete the sharing, it sends the set of

n ! f readymessages (for the parties that send thereadymessage and will !nish withshared) as well asbi (j) to

every partyP j (for the ones that are slow and will !nish indirectly).

(5) A party that has not sent areadymessage yet, needs to consider the possibility that it is in the slow set. Hence,

if it receivesf + 1 consistentsharedmessages, it interpolatessi = øai (0) and !nishes the sharing indirectly.

As a result, during reconstruction, every honest node eventually has a correct share of the secret. Hence eventually

k points that are consistent withC become public. OncePi receives them all, he can interpolateu(0,�) and recover

s = u(0, 0). The protocol has communication complexity ofO(n4), however, it can be optimized toO(n3) as shown in [7].

3.3 Protocols

Algorithm 1 and 2. In the protocol description, the following predicates are used:

verify-poly(C, i,a,b), wherea,b are polynomials of degreef andt respectively, i.e.,

a(�) =
f’

l =0

al�
l and b(x) =

t’
j =0

bj x
j

This predicate veri!es that the given polynomials are share and recovery polynomials forPi consistent withC; it is

true if and only if for l # [0, f], it holds�al =
Œf

j =0(Cj l)i
j

and for j # [0, t], it holds�bl =
Œt

l =0(Cj l)i
l
.

verify-point(C, i,m,� , �), veri!es that the given values� , � correspond to pointsf (m, i), f (i,m), respectively, committed

to C, whichPi supposedly receives fromPm; it is true if and only if�� =
Œf , t

j , l =0(Cj l)m
j i l and�� =

Œf , t
j , l =0(Cj l)i

jm l
.

verify-share(C,m,�) veri!es that � is a valid share ofPm with respect toC; it is true if and only if�� =
Œt

j =0(Cj 0)m
j
.

verify-shared(C, Si�C) veri!es the set of signaturesSi�C.

The parties may need to interpolate a polynomiala of degreef or a polynomialb of degreet . This can be done using

standard Lagrange interpolation, we abbreviate this by saying a partyinterpolatesa.

In the protocol description the variablese, f , andr count the number ofecho, sharedandreadymessages. They are

instantiated separately only for values ofC that have actually been received in incoming messages.

Analysis.Proofs for the HAVSS properties mostly follow from [7] and for space limitation deferred to Appendix B.

3.4 HAVSS for Bootstrap of Hotstu!/SBFT

Although this paper focuses on fully asynchronous protocols, advancements in partially synchronous protocols [20, 35]

have shown that the ability to generate distributively an(f ,2f + 1)-threshold key is a useful primitive. HAVSS is the

!rst protocol that can power such e"cient DKGs, for example, if we combine HAVSS with Hybrid-DKG [24] we can

securely bootstrap Hotstu$ and SBFT without introducing any new assumptions.

4 WEAK DISTRIBUTED KEY GENERATION

This section describes an asynchronous protocol for detecting agreement on the generation of (up to)f + 1 candidate

shared keys without a trusted setup, which we use for building the eventually perfect coin in the next section. The key

idea of wDKG is that the protocol never terminates (e.g., never commits to a speci!c key). Instead, each party outputs a

!nite sequence of candidate keys, and even though there is no explicit termination (otherwise, we would contradict the

FLP [16] impossibility of asynchronous agreement), we guarantee that eventually all honest parties stop outputting new

candidate keys and the last candidate key output by all honest parties is the same. Moreover, to bound the complexity

of an higher-level protocol that uses our weak distributed key generation (wDKG), we guarantee that no honest party

outputs more thanf + 1 keys.

Algorithm 1 ProtocolHAVSSfor party Pi and tagID.d (sharing stage)

1: upon initialization do
2: success% false
3: for all C do
4: eC % 0;rC % 0
5: AC % &; BC % & Si�C % &

6: upon receiving ÒI D .d, in, share, sÓdo ! only Pd
7: choose a random asymmetric bivariate polynomialsu of

degree (t, f) withu(0, 0) = u00 = s, i.e.,

u(x, �) =
t, f’
j,l=0

u jl x
j�l

8: C % { Cjl } , whereCjl = �ujl for j # [0, t] andl # [0, f]
9: for j # [1, n] do

10: aj (�) % u(j , �); bj (x) % u(x, j)
11: sendÒI D .d, send, C, aj , bjÓto Pj

12: upon receiving ÒI D .d, send, C, a, bÓ fromPd for the !rst time do
13: if verify ! poly(C, i , a, b) then
14: for j # [1, n] do sendÒI D .d, echo, C, a(j), b(j)Óto Pj

15: upon receiving ÒI D .d, echo, C, �, �Ófrom Pm for the !rst time do
16: if verify ! point(C, i , m, �, �) then
17: AC % AC

–
{(m, �)} ; BC % BC

–
{(m, �)}

18: eC % eC + 1
19: if eC = k then
20: interpolate øa, øb from BC, AC, respectively
21: for j # [1, n] do sendÒI D .d, ready, C, øa(j), øb(j), si�iÓto Pj

22: upon receiving ÒI D .d, ready, C, �, �, si�mÓfrom Pm for the !rst time do
23: if verify ! point(C, i , m, �, �) then
24: Si�C % Si�C

–
{(m, si�m)}

25: rC % rC + 1
26: if rC = n ! f andeC ' k then
27: øC % C; si % øa(0); success% true
28: for j # [1, n] do sendÒI D .d, shared, C, Si�C, øb(j)Óto Pj
29: output (I D .d, out, shared)

30: upon receiving ÒI D .d, shared, C, Si�mC , �Ófrom Pm for the !rst time do
31: if verify ! shared(C, Si�mC) then
32: if eC ' k then ! Can fully terminate
33: øC % C; si % øa(0); success% true
34: for j # [1, n] do sendÒI D .d, shared, C, Si�C, øb(j)Óto Pj
35: output (I D .d, out, shared)
36: else if verify ! point(C, i , m, �) then ! Can only recover share
37: BC % BC

–
{(m, �)}

38: rC % rC + 1
39: if rC = f + 1 then
40: øC % C
41: interpolate øa from BC ,
42: si % øa(0)
43: output (I D .d, out, shared)

Algorithm 2 ProtocolHAVSSfor party Pi and tagID.d (reconstruction stage)

1: upon receiving ÒI D .d, in, reconstructÓdo
2: c % 0;S % &
3: for j # [1, n] do sendÒI D .d, reconstruct-share, si " to Pj

4: upon receiving ÒI D .d, reconstruct-share, �Ófrom Pm do
5: if verify ! share(øC, m, �) then
6: S % S

–
{(m, �)} ;c % c + 1

7: if c = k then
8: interpolatea0 from S
9: output (I D .d, out, reconstructed, a0(0))

10: halt

4.1 Definition

A weak Distributed Key Generation is a helper protocol that is implemented on top ofn HAVSS instances where each

party Pi acts as the dealer of HAVSS instancei. We denote the share that partyPi receives in HAVSS instancej by s j
i ,

and de!ne apredictionof a candidate distributed key to be a set of shares. During a wDKG each partyPi might output a

sequence of predictions, and we say that an output predictionPul t imate is last if Pi does not output a prediction after

Pul t imate . For each partyPi , there is a one-to-one mapping between a set of HAVSS dealers and the predictions induced

by the HAVSS instances of these dealers. That is, given a setS of parties, the predictionsharesi (S) , {s j
i | P j # S } , and

given a predictionP of Pi , source(P) , {P j | s j
i # P} . Note thatsource(sharesi (S)) = S. We say that two predictions

P1,P2 of di$erent parties arematchingif source(P1) = source(P2).

The wDKG protocol provides the following properties.

W(i): Inclusion. For every predictionP an honest party outputs,|source(P)| ' 2f + 1.

W(ii): Containment. For each honest partyPi , predictions are ordered by strict containment. This means that for

any two predictions output byPi in timesk < j : Pk (Pj .

W(iii): Eventual Agreement. Every honest party eventually outputs an ultimate prediction, and all ultimate predic-

tions are matching.

W(iv): Privacy. If no honest party reveals its private share for a predictionp then the adversary can neither compute

the predictionp nor the shared secret s. This is equivalent to the HAVSS privacy property de!ned before.

4.2 Technical Overview

The wDKG protocol usesn instances of HAVSS as sub-protocols. Each partyPi invokes HAVSS instanceID.i as a dealer

and participates in the sharing phases of all HAVSS instances as a receiver. Upon initialization, each partyPi instantiates

its HAVSS with a random secret and collectsn ! f shares from di$erent HAVSS instances (including its own) into a

predictionH . Note that sincen ! f instances have honest leaders, then all honest parties eventually collectn ! f shares.

Then, it starts the eventual agreement phase by broadcasting acandidate-key message that includessource(H). Later,

any timePi delivers another HAVSS share, it inserts the share intoH and broadcasts the newsource(H) in another

candidate-key message.

When a partypi receives2f + 1 candidate-key messages with the same source (set of parties)S, it (1) waits until

H) sharesi (S) or in other words untilpi gets all the HAVSS shares from instances with parties fromS acting as dealers;

and then (2) outputs the predictionsharesi (S) provided it did not output a predictionP 1 sharesi (S) before to make sure

parties output increasing predictions by containment. Note that by the containment property and since predictions by

honest parties consists of at least2f + 1 shares, we get that each party outputs at mostf + 1 predictions.

Although the above protocol has an e"cient (O(n4)) as we will see later) word complexity, it needs one further

check in order to avoid exponential computation and storage. The challenge is that every time a party receives a new

candidate-key it needs to search its local memory to increase the counter of how many matchingsource(H) it has

received. Honest parties broadcast up tof + 1 candidate-key messages, but a Byzantine party might broadcast an

exponential number of such messages, causing the local memory and the cost of searching it to become exponential.

Therefore, in order to avoid this attack we ignorecandidate-key messages from parties that do not satisfy containment

(i.e., a partypi ignores acandidate-key message with source setS from party pj if it previously received frompj a

candidate-key message with source setS * 1 S). The pseudocode appears in Algorithm 3.

Algorithm 3 ProtocolwDKGfor party Pi

1: upon initialization do
2: for every j # {1, . . . , n } do
3: Sj % {} ! The source (set of parties)pi received frompj
4: H % {} ! The set of HAVSS sharespi outputs
5: SP % {} ! The source set of the current prediction
6: C[:] % 0 ! A counter for every possible source
7: select randomr i
8: invoke (i , in, share, r i) ! Every party starts an HAVSS as a dealer

9: upon (I D .j , out, shared) do
10: H % H + { sji }
11: if |H | ' n ! f then
12: send Òcandidate-key, source(H)Ó to all parties

13: upon receiving Òcandidate-key, SÓ from partypj do ! Handle these messages one after the other
14: if S , Sj + SP then
15: Sj % S
16: C[S] % C[S] + 1
17: if C[S] = n ! f then
18: SP % S
19: wait until H) sharesi (S)
20: output (out, key, sharesi (S))

4.3 Analysis

In this Section we prove that the protocol in Figure 3 implements wDKG. The !rst two proofs follow directly from the

code. For the eventual agreement we !rst need to show that no honest party will get stuck at a prediction that is not

the best possible. Then we show that parties will keep delivering predictions that include more shares until they deliver

a prediction with the maximum number of shares (all the shares that were generated by good dealers). Since no party

gets stuck at a suboptimal prediction and there exists a maximum prediction, all parties will eventually deliver that

prediction and stop delivering anything new, hence they eventually agree. Of course the parties will not be aware that

the prediction they delivered is the maximum, which is the reason they cannot explicitly terminate. Speci!cally, we

prove the following lemmas:

4.3.1 Correctness proof.In this section we prove that the protocol in Figure 3 implements wDKG, i.e., satis!es

containment, inclusion, and eventual agreement:

L���� 4.1. The protocol in Algorithm 3 satis"es W(ii) (Containment).

P����. By line 14, honest parties ignore Òcandidate-key, SÓ messages whenS 2 SP. By the code,SP stores the source

set of the last prediction. The lemma follows from the fact thatcandidate-keymessages never handled in parallel.

⇤

L���� 4.2. The protocol in Algorithm 3 satis"es W(i) (Inclusion).

P����. LetP be a prediction some honest partyPi outputs. By line 17,Pi gets at leastn ! f Òcandidate-key, source(P)Ó

messages. Thus, at least one honest party sends a Òcandidate-key, source(P)Ó message. Therefore, by line 11,|source(P)| =

|P| ' n ! f .

⇤

L���� 4.3. An honest party is never stuck.

P����. The only possible place for an honest party to stuck is in Line 19. Consider an honest partyPi that gets to

Line 19 and waits until itsH) sharesi (S) whereS is the source set it received in thecandidate-keymessage. By Line 17,

Pi getsn ! f Òcandidate-key, SÓ messages, and thus at least one honest partyP j sent Òcandidate-key, SÓ message. By

the code,P j delivers a share for every HAVSS instance inS. Thus, by property H(ii),Pi will eventually deliver a share

for every HAVSS instance inS as well. Meaning that eventuallyH) sharesi (S), and thusPi will eventually end the

waiting in Line 19.

⇤

L���� 4.4. The protocol in Algorithm 3 satis"es W(iii) (Eventual Agreement).

P����. Note that the size ofH is bounded byn, so for every honest party there is a point after whichH is never

changing and includes all HAVSS shares it will ever deliver. By H(ii), all honest parties will eventually reach the same

source(H), which we denote bySH .

We now show that an honest partyPi does not ignore a

Òcandidate-key, SH Ó message from an honest partyP j . In other words, the if statement in Line 14 is always true when

P j receives such message. We need to show two conditions:

¥ First,SH , S j . Since by the code,P j only sends the

Òcandidate-key** with source(H), we get by the de!nition ofSH that P j never sends Òcandidate-key, S *Ó message

with S * * SH .

¥ Second,SH , SP. Assume by a way of contradiction that at some pointPi setsSP % S * s.t.S * * SH . By the code,

Pi gets Òcandidate-key, S *Ó message from at least one honest partyPk . Therefore, thesource(H) of party P j was

equal toS * at some point. A contradiction to the de!nition ofSH .

By property H(i), and since we have at leastn ! f honest parties, we get that|SH | ' n ! f . Thus, by the code, all

honest parties will eventually send Òcandidate-key, SH Ó message to all other honest parties. Therefore, by Lemma 4.3

and from the above, every honest partyPi will eventually processn ! f Òcandidate-key, SH Ó message, pass the if

statement in Line 17, and outputsharesi (SH).

It is left to show that no honest party will ever output a prediction aftersharesi (SH). Assume by a way of contradiction

that some partyPi outputsS * after it outputssharesi (SH). By property W(ii) (Containment),S * , SH . Thus, by de!nition

of SH , S * contains a party that acts as a dealer in a HAVSS instance in which no honest party delivers a share. Therefore,

no honest party ever sends a Òcandidate-key, S *Ó message. Hence,Pi never getn ! f Òcandidate-key, S *Ó messages, and

thus by the code never outputS *. A contradiction.

⇤

L���� 4.5. The protocol in Algorithm 3 satis"es W(iv) (Privacy).

P����. Follows directly from the W(i) (inclusion) and H(iv) (privacy).

⇤

Complexity.By the code, each party sends at mostf + 1 candidate-keymessages, each of which of sizeO(n), to all

other parties. Therefore, the bit complexity of each party isO(n3) words, and the total bit complexity isO(n4) words.

5 FROM WEAK DKG TO EVENTUALLY PERFECT COMMON COIN

In this section, we use wDKG as the backbone of aneventually-perfect common coin (EPCC), which is a perfect-common

coin that fails a !nite number of times (at mostf in our case). As a result, we can use it as a perfect-coin as long as we

make sure to handle the small number of disagreements.

5.1 Definition

The EPCC is a long-lived task, which can be invoked many times by each party viacoin-toss(sq) invocation. Each

invocation is associated with a unique sequence numbersq and returns a value�. We assume well-formed executions in

which honest parties block any subsequent EPCC invocations until the invoked EPCC returns a value. This is crucial for

the Eventual Agreement property because disagreement on the EPCC output in one instance must advance at least one

wDKG key toward the following instance. For notational convenience, we assume that if a party invokescoin-toss(sq)

and later invokecoin-toss(sqÕ), thensq* > sq.

An EPCC implementation must satisfy the following properties:

E(i): Unpredictability. For everysq, the probability that the adversary predicts the return value ofcoin-toss(sq)

invocation by an honest party before at least one honest party invokecoin-toss(sq) is at most1/ 2 + �(k), where

�(k) is a negligible function.

E(ii): Termination: If n ! f honest parties invokecoin-toss(sq), then allcoin-toss(sq) invocations by honest parties

eventually return.

E(iii): Eventual Agreement: There are at mostf sequence numberssq for which two invocations ofcoin-toss(sq)

by honest parties return di$erent coins.

5.2 Technical Overview

Our EPCC protocol is built on top ofn HAVSS instances and uses the wDKG algorithm as a sub-protocol. Recall that

the wDKG algorithm outputs a sequence of at mostf + 1 predictions (sets of HAVSS shares)P1, . . . ,Pl . Whenever, the

wDKG sub-protocol outputs a predictionPi we use it to derive a tuple-KPi ,VPi . , whereKPi is thekey, andVPi is the a

bit vectorindicating the HAVSS instances included insource(Pi) (seeget-key below). The-K ,V . variables store the last

derived key, and the bit vector, respectively, and are updated whenever the wDKG outputs a new prediction.

Upon acoin-toss(sq) invocation by an honest partyPi , it enters a protocol to construct a common coin. The protocol

loops using the outputs from wDKG until for some keyK , Pi succeeds in collectingn ! f shares corresponding toK and

the sequence numbersq. More speci!cally, each partyPi uses the latest keyK ,V output from wDKG and the sequence

numbersq to generate its share of the common-coin, and sends acoin-sharemessage with the share together with the

bit vectorV to all other parties. Whenever the wDKG outputs a new prediction,Pi updates the-K ,V . variables, and

broadcasts a new share.

A coin-toss(sq) invocation by an honest partyPi returns when it collects2f + 1 coin-sharemessages from di$erent

parties with valid coin-shares and the same bit vectorV *. Note thatV * can be di$erent from any bit vector party

Pi previously sent in acoin-sharemessage. To validate the coin-shares,Pi needs to generate acommitmentC�*

that is associated to the bit vectorV * by combining all the commitments of HAVSS instances included inV * (see

get-commitmentbelow). Note that in order to be able to do it,Pi !rst needs to complete the sharing phases of all

HAVSS instances included inV *. Then, afterPi successfully veri!es the2f + 1 signatures (seeverify-sharebelow), it

uses them to produce a coin (seegenerate-coin below), sends it in acoin message together with the bit vector to all

other parties, and outputs it.

Upon receiving acoin message,Pi !rst checks that the bit vector includes at least2f + 1 ones in order make sure

randomness from honest parties were included in the associated key generations. Next,Pi generates acommitment

associated with the bit vector and then uses it to verify the coin (seeverify-coin below). If the veri!cation passes,Pi

forwards thecoin message to all parties and output the coin.

Note that since EPCC is a long lived object some honest parties may complete acoin-toss(sq) for somesq before

another honest party invokedcoin-toss(sq). To handle this, honest parties maintain two mapsS andCoinsthat map

tuples of bit-vectors andsq to set of coin-shares and coins, respectively. These maps are updated every time a share-coin

or coin message is received regardless if there is acoin-toss(sq) operation in progress. In addition, when acoin-toss(sq)

operation invoked by an honest partyPi , it !rst checks these maps to see if it already received enough messages to

return a coin. The pseudocode is given below (Algorithm 4) and the omitted proofs are given in Appendix C. In the

pseudocode we use the following functions:

get-key(P) gets a prediction outputP from a wDKG sub-protocol, and outputs-KP,VP. that are computed as follows:

KP =
’
s#P

s and ! pi # source(P),VP[i] = 1

In other words,KP is the sum of all shares inP andVP indicates the HAVSS instances these shares came from.

get-commitment(VP) gets a bit vector that was generated from a predictionP, and returns a commitmentCP that is

used to verify signatures associated withKP (share and coin). In order to be able to computeCP, parties !rst have to

complete the sharing phases of all the HAVSS instance indicated byVP in order to get their commitment, and then

multiply them to getCP. More speci!cally,

! i # {1, . . . ,n} , if VP[i] = 1, then wait for commitmentCi

from P *
i s HAVSS instance

CP =
n÷

i =1

VP[i]Ci

In Algorithm 4, an invocation ofget-commitmentcan block forever if send by a bad party that lies about what

HAVSS instances have terminated. We do not need to handle this as we only care to return one random value of asq.

To this end, we handle all events concurrently and abort all outstanding procedures associated withsq after we output

a coin forsq.

Note that for every predictionP an honest party gets from the wDKG protocol, the bit vectorVP de!nes a unique

privateK i
P for every partyPi , and a unique global commitmentCP. Together, they form the setup required for the

Di"e-Hellman based threshold coin-tossing scheme that is given in [9], which yields a common coin #ip for eachsq

input. In our educational example, we use Pedersen [32] DKG, which does not produce uniformly random keys [19],

but as shown by Libert et al. [28] it is su"cient for the adaptively secure threshold signatures, which we will use for the

real-world deployment. Hence we assume that the key generated by the DKG is su"ciently random for our proofs

and only focus on proving that it remains unpredictable and private. Below we brie#y describe the functionality this

scheme provides, and more details and formal proofs can be found in [9]. Note that the wDKG might output di$erent

sequences of predictions when invoked by di$erent parties, so the challenge that we overcome in Algorithm 4 is how

to eventually agree on the same key.

generate-share(CP,KP, sq) uses the keyKP derived from predictionP to sign the sequence numbersq in order to

generate a share for a coin de!ned byCP andsq.

verify-share(CP, sq, j,�), veri!es that the given value� is a valid coin share fromP j for the coin de!ned byCP andsq.

generate-coin(CP, �, sq) uses a set� of 2f + 1 valid shares de!ned byCP andsq in order to generates the coin.

verify-coin(CP,� , sq), veri!es that the given value� is a valid coin de!ned byCP andsq.

5.3 Analysis

5.3.1 Correctness proof.In this section we showunpredictability, termination, and eventual agreementof our EPCC.

The !rst two properties can easily be deduced from the code. For eventual agreement we !rst need to show that (due to

WDKGÕs containment property) if a party uses a certain set of sharesV1 to produce randomness then it will only use

supersets ofV1 in future invocations. This creates a total ordering of predictions. The second part of the proof relies on

the well-formed nature of EPCC and shows that if di$erent sets of shares where used to generate randomness for a

certain invocationsq then only the largest set of shares will be used for any subsequent invocation. Given that there

can only bef + 1 di$erent valid and totally ordered sets, the adversary can only cause the generation of inconsistent

randomness at mostf times. Speci!cally, we prove in Appendix C the following Lemmas:

L���� 5.1. If a valid coin for somesq is generated, then at least2f + 1 valid share-coins associated with some bit vector

V for sq were previously generated,f + 1 of which by honest parties.

L���� 5.2. The protocol in Algorithm 4 satis"es E(i) (Unpredictability).

L���� 5.3. For everysq, if an invocation ofcoin-toss(sq) by an honest partyPi returns, then allcoin-toss(sq) invocations

by honest parties eventually return.

L���� 5.4. The protocol in Algorithm 4 satis"es E(ii) (Termination).

Algorithm 4 ProtocolEPCCfor party Pi . All events must be handled in parallel persq. Upon !rst output message for
sq all other invocations are aborted.

1: upon initialization do
2: invoke wDKG
3: K % / ; V % / ! last derived key and bit vector, respectively
4: cur rentSQ % / ! / indicates that there is not coin-toss in progress
5: S[:] % {} ! A mapping from tuples of bit vector and sq to sets of shares
6: Coins[:] % / ! A mapping from tuples of bit vector and sq to coins

7: upon (out, key, P) do ! prediction output form the wDKG sub-protocol
8: -K, V . % get-key(P)
9: if cur rentSQ , / then

10: BroadcastShare()

11: upon coin-toss(sq) do
12: cur rentSQ % sq ! Avoid races during concurrent invocations
13: if " V * s.t.Coins[-V *, sq.] , / then ! Already saw the coin
14: ForwardCoinAndReturn(V *, sq)

15: if " V * s.t. |S[-V *, sq.] | ' 2f + 1 then ! Enough shares
16: BroadcastCoinAndReturn(V *, sq)

17: if V , / then
18: BroadcastShare()

19: upon receiving Òcoin-share, sq, � , VjÓ message from partyPj for the !rst time do
20: C % get-commitment(Vj)
21: if verify-share(C, sq, j , �) 0

Õn
k=1Vj [k] ' 2f + 1 then

22: S[-Vj , sq.] % S[-Vj , sq.] + { � }
23: if sq = cur rentSQ 0 |S[-Vj , sq.] | ' 2f + 1 then
24: BroadcastCoinAndReturn(Vj , sq)

25: upon receiving Òcoin, sq, �, VjÓ message from partyPj for the !rst time do
26: C % get-commitment(Vj)
27: if verify-coin(C, �, sq) 0

Õn
k=1Vj [k] ' 2f + 1 then

28: Coins[-Vj , sq.] % �
29: if sq = cur rentSQ then
30: ForwardCoinAndReturn(Vj , sq)

31: procedure B��������S����()
32: C % get-commitment(V)
33: � % generate-share(C, K, cur rentSQ)
34: send Òcoin-share, cur rentSQ, � , V Ó to all parties

35: procedure B��������C���A��R�����(V *, sq)
36: C % get-commitment(V *)
37: � % generate-coin(C, S[-V *, sq.], sq)
38: send Òcoin, sq, �, V *Ó to all parties
39: cur rentSQ % /
40: output (out, coin, sq, �)

41: procedure F������C���A��R�����(V *, sq)
42: send Òcoin, sq, Coins[-V *, sq.], V *Ó to all parties
43: cur rentSQ % /
44: output (out, coin, sq, Coins[-V *, sq.])

L���� 5.5. If an honest party generates a share-coin associated withV , then it will never generate a share-coin associated

with V * + V .

L���� 5.6. If for somesq, twocoin-toss(sq) invocations by two honest parties return di#erent valid coins�1 , �2, then

there are two bit vectorsV1,V2 s.t. (1)V1 (V2; and (2)f + 1 honest parties generated valid share-coins associated withV1

for sq and f + 1 honest parties generated valid share-coins associated withV2 for sq.

L���� 5.7. For every1 " k " f + 1, if there arek sequence numberssq for which two invocations ofcoin-toss(sq) by

honest parties output di#erent coins, then there is a bit vectorV of size at least2f + 1+ k such thatf + 1 honest parties

generated valid share-coins associated withV .

L���� 5.8. The protocol in Algorithm 4 satis"es E(iii) (Eventual Agreement).

5.3.2 Complexity.By W(i) and W(ii), each party outputs at mostf + 1 predictions from the wDKG sub-protocol. For

each predictions, each party sends at most a constant number of words andO(n) sized bit-vector to every party. Hence

the worst-case complexity of a consistent coin #ipping is O(n4) bits + O(n3) words.

6 ACHIEVING CONSENSUS

6.1 Eventually E!icient Asynchronous Binary Agreement

Once we have our EPCC, we can use it in any Binary Agreement protocol that uses a weak coin [6, 29]. The most

e"cient asynchronous BA solution is from MoustefaouiÕs et al [29] and has O(n2) bit complexity5.

Since our coin has at mostf bad #ips, when we plug it in [29] we know that if we invoken instances of ABA in

succession with the same coin, then the overall number of bad #ips remainsf in the entire succession. Hence, the

overall complexity remainsO(n3) bit complexity and expectedO(f) rounds. We refer to an ABA that has this succession

property as eventually e"cient ABA (EEABA).

We refrain from reintroducing the full protocol as we only need to plug in ourcoin-toss(sq) and make sure that a

party which has already seen a safe value continues tocoin-toss(sq) in order for EPCC to be live, but ignores the output

of EPCC (as it already knows the safe value). The total bit complexity of our EEABA has two parts. First, there is the

needed HAVSS for EPCC to work, which has a totalO(n4) words (n concurrent instances of HAVSS). Then, we can

start running the ABA of [29] which (as mentioned above) has an overall complexity remainsO(n3) bit complexity

and expectedO(f) rounds. Hence the total complexity of EEABA isO(n4) bit complexity and expectedO(f) rounds.

Nevertheless, if we run this protocol for (O(n2)) sequential decisions it will amortize toO(n2) communication complexity

andO(1) termination because the coin will be perfect for most of the EEABA instances (at mostf failures due to

asynchrony) which means that then2 ! f instances will terminate in an expected number of2 rounds. Hence, we can

get the ABA with the properties de!ned in Lemma 1.3.

6.2 Asynchronous Distributed Key Generation

We build our ADKG protocol on top of EEABA by explicitly terminating the wDKG and agreeing on what HAVSS

instances contribute to the scheme. We can achieve this by extending theAsynchronous Common Subset (ACS)protocol

introduced by Ben-or et al [5]. In an ACS protocol,n processors have some initial value and they need to agree on a

5They do not give an implementation for their weak coin assumption, but instead use an external oracle.

Algorithm 5 ProtocolADKGfor party Pi

1: upon initialization do
2: I % � ! A set of parties, initially all
3: K % {} ! The set of HAVSS shares that corresponds the the agreed instances
4: c % 0 ! A counter for the number of ABAs in whichPi decided
5: select randomr i
6: invoke (i , in, share, r i) ! Every party starts an HAVSS as a dealer

7: upon (I D .j , out, shared) do ! The sharing phase ofPjÕs HAVSS completed
8: if Pj # I then
9: invokeABA.j with 1

10: I % I \ { Pj } ! Remove instances already voted on

11: upon (ABA.j , deliver, 1) do
12: K % K + { sji } ! This might block until the HAVSS delivers, but it will eventually terminate.
13: c % c + 1
14: if c = n ! f then
15: for all Pl # I do
16: invokeABA.l with 0
17: I % I \ { Pl } ! Remove instances already voted on

18: if c = n then
19: output K

20: upon (ABA.j , deliver, 0) do
21: c % c + 1
22: if c = n then
23: output K

subset of values to be adopted. Our Asynchronous Distributed Key Generation is similar, with the added restriction that

the values we agree on need to remain private (secret-shared), hence parties output the same set of partiessource(v)and

maintain a private shares set� locally. For simplicity, we do not deal in this section with the speci!c details of how to a

generate a secret-key, public-key, and the commitments for veri!cation, which is fairly straightforward after we agree

on the set of HAVSS instances.

6.2.1 Definition.More formally, an Asynchronous Distributed Key Generation protocol is a one-shot consensus variant.

Each party is initialized with anID.i of the HAVSS instance it should act as a dealer, as well as the fullID vector of

the HAVSS instances it should be a part of. For every partypi , the protocol outputs a private set of shares�i s.t. the

following is satis!ed except with negligible probability:

A(i): Validity. If an honest party outputs a set of shares�, then |� | ' n ! f and� includes only valid shares.

A(ii): Agreement. For every two honest partiesPi , P j , if Pi andP j output sets of shares�i and� j , respectively, then

source(�i) =source(� j).

A(iii): Liveness. If n ! f correct parties start dealing shares and the adversary delivers all messages, then all correct

parties output a set of shares.

A(iv): Privacy. If an honest partypi outputs a set of shares�i and no honest party has revealed its output shares and

the secret it shared, then the adversary cannot compute the sum of secrets shared by parties insource(�i).

6.2.2 Technical Overview.We follow the ACS solution of Ben-Or et al [5], which consists of startingn parallel reliable

broadcasts, one for each party to act as the sender, where for each broadcast instance, they use a single ABA to agree

whether its value should be included in the set. In their protocol, parties invoke with1 (success) every ABA that

corresponds to a reliable broadcast instance in which they deliver a value, and refraining from invoking with0 any

ABA instance untiln ! f ABA instances have decided 1. Then, they invoke with 0 all other ABA instance and terminate

the ACS protocol once they decided in all ABA instances.

Our ADKG protocol is similar but instead of reliable broadcasts, we uses HAVSS instances. By the agreement and

liveness properties of the HAVSS, eventually there aren ! f ABA instances which all honest parties invoke with 1 and

thus eventuallyn ! f instances agree on 1 (all honest parties decide 1). Note that the properties of the binary ABA

guarantee that if all honest parties invoke it with 1, then they all eventually decide 1 (same for 0). This protocol has an

expected running time ofO(lo�(n)). Additionally EEABA has an expected running time ofO(1) when the network is

synchronized and an expected running time ofO(f) when the adversary is manipulating the message ordering hence the

full ADKG protocol has an expectedO(lo�n) running time without a network level adversary and anO(f + lo�n) = O(f)

running time under asynchrony. On a high-level the ADKG works as follows:

When a party is initialized for ADKG it also initializesn parallel ABA instances of Section 6.1 s.t.ABA.j will be

used to decide if HAVSSID.j terminated successfully (all honest parties delivered a share that corresponds to the same

secret), and proceeds as follows:

(1) Once playerPi delivers an HAVSS share forP j Õs instance he inputs1 in ABA.j.

(2) OncePi decides 1 inn-f ABA instances, it inputs0 in every ABA instance it have not invoked yet.

(3) WhenPi decides in alln ABA instances,pi outputs the subsetK of shares that corresponds to ABA instance in

which it decided1.

A detailed description of the protocol is given in Algorithm 5 and the proof is given in Appendix D.

Analysis.The cost ofn parallel instances (where each instance costs a worst case ofO(n3) and has an expected

O(n) running time) isO(n4) the same as the HAVSS step. Once the ADKG terminates the system can use the strong

common-coin generated to run VABA [1] and amortize the costs toO(n2). We know thatvalidity, agreementandliveness

hold from ACS. Privacy holds frominclusionandprivacyof the wDKG. With this we prove our main Theorem.

7 CONCLUSION

In this paper, we show a protocol that implements the !rst asynchronous Distributed Key Generation protocol. To

achieve this we show how to get the !rst AVSS protocol that supports thresholdsf + 1 < k " 2f + 1, the !rst Eventually

E"cient ABA which does not need a trusted setup and can also be amortized to the optimal cost if runO(n2) times in

sequence, and the !rst VABA that does not require a trusted setup.

ACKNOWLEDGEMENTS

We would like to thank Ittai Abraham for the discussions and guidance during the initial conception of the project,

especially for HAVSS. Furthermore, we would like to thank the anonymous reviewers for pointing out the relevance of

this work to MPC protocols.

REFERENCES

[1] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated asynchronous byzantine agreement. InProceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pages 337Ð346, 2019.

[2] Abhinav Aggarwal, Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Bootstrapping public blockchains without a trusted setup. InProceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pages 366Ð368, 2019.

[3] Georgia Avarikioti, Eleftherios Kokoris Kogias, and Roger Wattenhofer. Brick: Asynchronous state channels.arXiv preprint arXiv:1905.11360, 2019.
[4] Laasya Bangalore, Ashish Choudhury, and Arpita Patra. Almost-surely terminating asynchronous byzantine agreement revisited. InProceedings of

the 2018 ACM Symposium on Principles of Distributed Computing, pages 295Ð304. ACM, 2018.
[5] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal resilience. InProceedings of the thirteenth annual

ACM symposium on Principles of distributed computing, pages 183Ð192. ACM, 1994.
[6] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. InProceedings of the third annual ACM symposium on Principles of distributed

computing, pages 154Ð162. ACM, 1984.
[7] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous veri!able secret sharing and proactive cryptosystems. In

Proceedings of the 9th ACM conference on Computer and communications security, pages 88Ð97. ACM, 2002.
[8] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and e"cient asynchronous broadcast protocols. InAnnual International

Cryptology Conference, pages 524Ð541. Springer, 2001.
[9] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical asynchronous byzantine agreement using

cryptography.Journal of Cryptology, 18(3):219Ð246, 2005.
[10] Christian Cachin and Stefano Tessaro. Asynchronous veri!able information dispersal. In24th IEEE Symposium on Reliable Distributed Systems

(SRDSÕ05), pages 191Ð201. IEEE, 2005.
[11] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. InSTOC, volume 93, pages 42Ð51. Citeseer, 1993.
[12] Ashish Choudhury. Optimally-resilient unconditionally-secure asynchronous multi-party computation revisited. Cryptology ePrint Archive, Report

2020/906, 2020. https://eprint.iacr.org/2020/906.
[13] Ashish Choudhury and Arpita Patra. An e"cient framework for unconditionally secure multiparty computation.IEEE Transactions on Information

Theory, 63(1):428Ð468, 2016.
[14] Ran Cohen. Asynchronous secure multiparty computation in constant time. InPublic-Key CryptographyÐPKC 2016, pages 183Ð207. Springer, 2016.
[15] Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas. Constant-round asynchronous multi-party computation based on one-way functions. In

International Conference on the Theory and Application of Cryptology and Information Security, pages 998Ð1021. Springer, 2016.
[16] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process.JACM, 1985.
[17] Bryan Ford, Philipp Jovanovic, and Ewa Syta. Que sera consensus: Simple asynchronous agreement with private coins and threshold logical clocks.

arXiv preprint arXiv:2003.02291, 2020.
[18] Juan A Garay, Aggelos Kiayias, Nikos Leonardos, and Giorgos Panagiotakos. Bootstrapping the blockchain, with applications to consensus and fast

pki setup. InIACR International Workshop on Public Key Cryptography, pages 465Ð495. Springer, 2018.
[19] Rosario Gennaro, Stanis%aw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation for discrete-log based cryptosystems. In

International Conference on the Theory and Applications of Cryptographic Techniques, pages 295Ð310. Springer, 1999.
[20] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin

Tomescu. Sbft: a scalable and decentralized trust infrastructure. In2019 49th Annual IEEE/IFIP international conference on dependable systems and
networks (DSN), pages 568Ð580. IEEE, 2019.

[21] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and related problems. Technical report, Cornell University, 1994.
[22] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous multi-party computation with optimal resilience. InAnnual

International Conference on the Theory and Applications of Cryptographic Techniques, pages 322Ð340. Springer, 2005.
[23] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party computation with quadratic communication. InInternational

Colloquium on Automata, Languages, and Programming, pages 473Ð485. Springer, 2008.
[24] Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key generation in the wild.IACR Cryptology ePrint Archive, 2012:377, 2012.
[25] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Kho", Linus Gasser, and Bryan Ford. Enhancing bitcoin security and performance

with strong consistency via collective signing. In25th{usenix} security symposium ({usenix} security 16), pages 279Ð296, 2016.
[26] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas Gailly, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford.

Calypso: Auditable sharing of private data over blockchains.IACR Cryptol. ePrint Arch., Tech. Rep, 209:2018, 2018.
[27] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized

ledger via sharding. In2018 IEEE Symposium on Security and Privacy (SP), pages 583Ð598. IEEE, 2018.
[28] Beno”t Libert, Marc Joye, and Moti Yung. Born and raised distributively: Fully distributed non-interactive adaptively-secure threshold signatures

with short shares.Theoretical Computer Science, 645:1Ð24, 2016.
[29] Achour MostŽfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous binary byzantine consensus with t< n/3, o (n2) messages,

and o (1) expected time.Journal of the ACM (JACM), 62(4):31, 2015.

[30] Arpita Patra, Ashish Choudhary, and C Pandu Rangan. E"cient statistical asynchronous veri!able secret sharing with optimal resilience. In
International Conference on Information Theoretic Security, pages 74Ð92. Springer, 2009.

[31] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults.Journal of the ACM (JACM), 27(2):228Ð234, 1980.
[32] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. InWorkshop on the Theory and Application of of Cryptographic Techniques,

pages 522Ð526. Springer, 1991.
[33] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.ACM Computing Surveys (CSUR), 22(4):299Ð319,

1990.
[34] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail Kho", Michael J Fischer, and Bryan Ford. Scalable

bias-resistant distributed randomness. In2017 IEEE Symposium on Security and Privacy (SP), pages 444Ð460. Ieee, 2017.
[35] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstu$: Bft consensus with linearity and responsiveness. In

Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pages 347Ð356, 2019.

A FULL COMPUTATIONAL MODEL

Following [1, 8, 9], we use standard modern cryptographic assumptions and de!nitions. We model the computations

made by all system components as probabilistic Turing machines, and bound the number of computational basic steps

allowed by the adversary by a polynomial in asecurity parameter k. A function �(k) is negligiblein k if for all c > 0

there exists ak0 s.t.�(k) < 1/kc for all k > k0. A computational problem is calledinfeasibleif any polynomial time

probabilistic algorithm solves it only with negligible probability. Note that by the de!nition of infeasible problems, the

probability to solve at least one such problem out of a polynomial ink number of problems is negligible. Intuitively,

this means that for any protocolP that uses a polynomial ink number of infeasible problems, ifP is correct provided

that the adversary does not solve one of its infeasible problems, then the protocol is correct except with negligible

probability. We assume that the number of partiesn is bounded by a polynomial ink.

Communication.We assume asynchronous links controlled by the adversary, that is, the adversary can see all

messages and decide when and what messages to deliver. In order to !t the communication model with the computational

assumptions, we restrict the adversary to perform no more than a polynomial ink number of computation steps between

the time a messagem from an honest partypi is sent to an honest partypj and the timem is delivered bypj
6. In addition,

for simplicity, we assume that messages areauthenticatedin a sense that if an honest partypi receives a messagem

indicating thatm was sent by an honest partypj , thenm was indeed generated bypj and sent topi at some prior

time. This assumption is reasonable since it can be easily implemented with standard symmetric-key cryptographic

techniques in our model.

Termination.Note that the traditional de!nition of the liveness property in distributed system, which requires that

all correct (honest) partieseventuallyterminate provided that all messages between correct (honest) parties eventually

arrive, does not make sense in this model. This is because the traditional de!nition allows the following:

¥ Unbounded delivery time between honest parties, which potentially gives the adversary unbounded time to

solve infeasible problems.

¥ Unbounded runs that potentially may consist of an unbounded number of infeasible problems, and thus the

probability that the adversary manages to solve one is not negligible.

Following Cachin et al. [8, 9], we address the !rst concern by restricting the number of computation steps the adversary

makes during message transmission among honest parties. So as long as the total number of messages in the protocol is

polynomial ink, the error probability remains negligible. To deal with the second concern, we do not use a standard

6Note that although this restriction gives some upper bound on the communication in terms of the adversary local speed, the model is still asynchronous
since speeds of di$erent parties are completely unrelated.

liveness property in this paper, but instead we reason about the total number of messages required for all honest parties

to terminate. We adopt the following de!nition from [8, 9]:

De"nition A.1 (Uniformly Bounded Statistic).LetX be a random variable. We say thatX is probabilistically uniformly

boundedif there exist a !xed polynomialT (k) and a !xed negligible functions� (l) and�(k) such that for alll ,k ' 0,

Pr [X > lT (k)] " � (l) + �(k)

With the above de!nition Cachin et al. [8, 9] de!ne a progress property that makes sense in the cryptographic settings:

¥ E!ciency: The number of messages generated by the honest parties is probabilistically uniformly bounded

The e"ciency property implies that the probability of the adversary to solve an infeasible problem is negligible, which

makes it possible to reason about the correctness of the primitivesÕ properties. However, note that this property can

be trivially satis!ed by a protocol that never terminates but also never sends any messages. Therefore, in order for a

primitive to be meaningful in this model, Cachin et al. [8, 9] require another property:

¥ Termination: If all messages sent by honest parties have been delivered, then all honest parties terminated.

B HAVSS PROOFS

L���� B.1. The protocol in Algorithms 1 and 2 satisfy H(i) (Liveness).

P����. If the dealerpd is honest, it follows directly by inspection of the protocol that all honest parties complete the

sharingID.d, provided all parties initialize the sharingID.d and the adversary delivers all associated messages.

⇤

L���� B.2. The protocol in Algorithms 1 and 2 satisfy H(ii) (Agreement).

P����. We show that if some honest partypi completes the sharing ofID.d, then all honest parties will complete

the sharing ofID.d, provided all parties initialize the sharingID.d and the adversary delivers all associated messages.

Consider two cases:

¥ First,pi completes the sharing directly (line 29 or line 35 in Algorithm 1). Then it has receivedn ! f valid ready

messages that agree on someøC from a set of at leastn ! f partiesS. Since we have at mostf Byzantine parties,

we get thatS contains at leastn ! 2f honest parties who have witnessedk valid echomessages and thus each

such party will also complete the sharing upon reception ofn ! f readymessages. By the algorithm in step 4

(line 28 or 34), after receivingn ! f (signed) validreadymessages,pi sends them to all other parties. Therefore,

every honest party inS eventually receivesn ! f valid readymessages and thus eventually outputs shared. It is

left to show that honest parties not inS will terminate as well. Consider such partypj that never sent aready

message. We already showed that eventuallyf + 1 honest parties inS output shared, which means that they had

a correctb(j) polynomial and they will eventually sent asharedmessage with a valid point topj . Therefore,pj

eventually gets at leastf + 1 consistent shared messages, recovers its share in step 5 and terminates as well (line

36-43).

¥ Second,pi complete the sharing indirectly (line 36-43). Then we know thatpi gets at leastf + 1consistentshared

messages, meaning thatpi gets at least one such message from an honest partypj . By step 4,pj was part of S

and terminated (line 29 or 35). Therefore, by the !rst case, we get that all honest eventually outputshared.

⇤

L���� B.3. Suppose an honest partyPi sends asharedmessage containingCi and a distinct honest partyP j sends a

sharedmessage containingC j . ThenCi = C j .

P����. We prove the lemma by contradiction. SupposeCi , C j . Pi outputs thesharedfor Ci only if it has received

at leastn ! f readymessages forCi or veri!ed Si�C that containsn ! f signedreadymessages forCi . P j outputs the

sharedforC j only if it has received at leastn ! f readymessage forC j or veri!ed Si�C that contains the onn ! f signed

readymessages forC j . From then ! f readymessages forCi at leastn ! 2f are generated by honest parties. From the

n ! f readymessages forC j at leastn ! 2f are generated by honest parties. Since there are at mostf malicious parties

andn > 3f this is only possible if an honest party signed two contradictingreadymessages. A contradiction to the

code of the protocol.

⇤

L���� B.4. The protocol in Algorithms 1 and 2 satisfy H(iii) (Correctness).

P����. Let Jbe the index set of thek honest parties that have completed the sharing and lets j be the shares of� . To

prove the !rst part, suppose the dealer has shareds and is honest throughout the sharing stage. Towards a contradiction

assumez , s.
Because the dealer is honest, it is easy to see that everyechomessage sent from an honestPi to P j contains

C,u(i, j),u(j, i), as computed by the dealer. Furthermore, if the parties in� computed their shares only from these echo

messages, thens j = a j (0) = u(j, 0). But sincez , s, at least one honest partyPi computed a polynomialai (�) , u(i,�);

this must be becausePi accepted an echo or ready message from some corruptedPm containingam , u(m, i). SincePi

has evaluated verify-point to true, we have�a =
Œf

j =0(Cj l)i
j

On the other hand, the dealer has sent polynomialsam

to Pm satisfying�am =
Œf

j =0(øCj l)i
j
. However, from Lemma B.3 and the fact that the dealer is honest we know that

øC = C. HencePm knows anam , a such that�a = �am , however this is a collision to the commitment scheme which

should be hard (binding commitment). A contradiction.

To prove the second part, assume by a way of contradiction that two distinct honest partiesPi andP j reconstruct

valueszi andz j such thatzi , z j . This means that they have received two distinct setsSi = (l , s(i)
l) S j = (l , s(j)

l)) and

of k shares each, which are valid with respect to the unique commitment matrixC used byPi andP j (the uniqueness

of C follows from Lemma B.3). According to the protocol,zi andz j are interpolated from the setsSi , S j respectively.

Since the shares in are valid, it is easy to see that�zi = C00 = �zj , however the commitment scheme is binding. A

contradiction.

⇤

L���� B.5. The protocol in Algorithms 1 and 2 satisfy H(iV) (Privacy).

P����. If the dealerpd is honest, it follows directly by inspection of the protocol that the dealer generated a

polynomial with degree(t , f) then no set off shares can reconstruct it. Furthermore, by inspection of the code, no

honest party reveals its shares and polynomials to any unauthorized party. Finally, the lemma follows from the hiding

property of the commitment scheme. That is, the adversary is unable to recover a share or points on the polynomial by

looking atC.

⇤

C EPCC PROOFS

L���� 5.1. If a valid coin for somesq is generated, then at least2f + 1 valid share-coins associated with some bit vector

V for sq were previously generated,f + 1 of which by honest parties.

P����. By the code,Pi either gets2f + 1 share-coin messages with correct shares associated with some bit vector

V andsq or gets a coin message with valid coin associated with some bit vectorV andsq. In the second case, by the

generate-coin andverify-coin functions, we know that at least2f + 1 valid share-coins associated withV andsq are

needed to produce the valid coin. In addition, note that by the code,Pi ignores bit vectors that include less than2f + 1

ones. Therefore, we only need to show that the adversary cannot produce more thanf valid share-coins associated

with sq and some bit vectorV that includes at least2f + 1 ones (before honest parties do it).

By the H(iv) property of HAVSS (privacy), the adversary cannot learn the shares of honest parties that were delivered

in HAVSS instances with honest dealers. SinceV includes at least2f + 1 ones, we get that the associated keys of honest

parties include shares from HAVSS instances with honest dealers. Therefore, the adversary cannot learn the keys of

honest parties that are associated withV , and thus cannot produce more thanf valid share-coins associated withV .

⇤

L���� 5.2. The protocol in Algorithm 4 satis"es E(i) (Unpredictability).

P����. First, due to W(i) (Inclusion), we know that any valid shared private-key has contribution of at leastf + 1

honest parties who never reveal them, hence the adversary does not know the shared private-key.

Second, consider an honest partyPi whoÕscoin-toss(sq) invocation returns a coin�. By Lemma 5.1, at leastf + 1

share-coins forsq were previously generated. By the code, an honest party does not generate a share-coin forsq before

coin-toss(sq) is invoked. Therefore, the adversary can neither know the private-key nor predict� before at least one

honest party invokescoin-toss(sq).

⇤

L���� 5.3. For everysq, if an invocation ofcoin-toss(sq) by an honest partyPi returns, then allcoin-toss(sq) invocations

by honest parties eventually return.

P����. Assume by a way of contradiction that some invocation ofcoin-toss(sq) by an honest partyP j never returns.

By the code, beforePi returns, it forwards the coin to all other parties in acoin message, and thus all other honest

parties eventually get this messages. In addition, sincePi is honest, we know that the coin is valid and associated with a

bit vector that includes at least2f + 1 ones. Therefore,P j will eventually get this coin, successfully verify it and return

it. A contradiction.

⇤

L���� 5.4. The protocol in Algorithm 4 satis"es E(ii) (Termination).

P����. Assume by a way of contradiction that some invocation ofcoin-toss(sq) by an honest partyP j never returns.

By Lemma 5.3, we get that no invocation ofcoin-toss(sq) by an honest party returns. By the W(iii)(Eventual Agreement)

property of the wDKG sub-protocol, every partyPi eventually outputs an ultimate prediction and never outputs a

prediction again. Moreover, by W(iii), we also know that all the ultimate predictions of honest parties are matching,

meaning that they are associated with the same bit vectorV *. In addition, by property W(i), we get thatV * includes at

least2f + 1 ones.

Therefore, by the code, all honest parties eventually generate and send to all other parties a valid coin-share forsq

that is associated withV *. Hence,P j will eventually get2f + 1 valid coin shares forsq that are associated with a valid

bit vector (includes2f + 1 ones), and thus eventually generate a coin and return. A contradiction.

⇤

L���� 5.5. If an honest party generates a share-coin associated withV , then it will never generate a share-coin associated

with V * + V .

P����. By the code, at any point during the EPCC algorithm, an honest party generates share-coins that are

associated with the bit vector that were produced (viaget-key) from the last prediction it received from the wDKG

sub-protocol. By property W(ii) (Containment) of the wDKG sub-protocol, we know that predictions outputted from

the wDKG are related by containment, and thus the lemma follows.

⇤

L���� 5.6. If for somesq, twocoin-toss(sq) invocations by two honest parties return di#erent valid coins�1 , �2, then

there are two bit vectorsV1,V2 s.t. (1)V1 (V2; and (2)f + 1 honest parties generated valid share-coins associated withV1

for sq and f + 1 honest parties generated valid share-coins associated withV2 for sq.

P����. By Lemma 5.1,�1 implies that at least2f + 1 valid share-coins associated with some bit vectorV1 for sq were

previously generated,f + 1 of which by honest parties; and�2 implies that at least2f + 1 valid share-coins associated

with some bit vectorV2 for sq were previously generated,f + 1 of which by honest parties. Therefore, there is at least

1 honest partyPi that generated a share-coin forsq that is associated withV1 and another share-coin forsq that is

associated withV2. Since�1 , �2, we get by H(iii) (HAVSS correctness) thatV1 , V2. Therefore, by Lemma 5.5,V1 and

V2 are related by containment.

⇤

L���� 5.7. For every1 " k " f + 1, if there arek sequence numberssq for which two invocations ofcoin-toss(sq) by

honest parties output di#erent coins, then there is a bit vectorV of size at least2f + 1+ k such thatf + 1 honest parties

generated valid share-coins associated withV .

P����. We prove by induction onk.

Base: we show that if there is onesq for which two invocations ofcoin-toss(sq) by honest parties output di$erent

coins then there is some vectorV of size at least2f + 2 such thatf + 1 honest parties generated valid share-coins

associated withV . By the code, honest parties only generate share-coins that are associated with bit vectors that were

produced from wDKG prediction outputs. Thus, by property W(i) (Inclusion) of wDKG, honest parties only generate

share-coins that are associated with bit vectors of size at lest2f + 1. Therefore, the base case follows from Lemma 5.6.

Step: Assume the lemma holds for some1 " k " f , we show that the lemma holds fork + 1. First note that sinek " f ,

we get that the total number number of crytpographic signatures is polynomial in the security parameter, and thus all

previous lemmas hold except with negligible probability. Letsqk andskk+1 be thekth and(k + 1)th sequence numbers

for which two invocations ofcoin-tossby honest parties output di$erent coins, respectively. By the well-formed nature

of EPCC we are guaranteed that any honest party invokescoin-toss(sqk+1) only after coin-toss(sqk) returns. By the

induction assumption, there is a bit vectorV k of size at least2f + 1+ k such thatf + 1 honest parties generated valid

share-coins associated withV k before theircoin-toss(sqk) invocation returns. So by Lemma 5.5 and by well-formance,

there aref + 1 honest parties that do generate share-coins associated with bit vectors with less than2f + 1+ k entries

for skk+1. By Lemma 5.1, we need2f + 1 valid shares in order to generate a valid coin forskk+1. Thus, since every bad

party can generate at most one valid share-coin, we get that only coins that are associated with bit vectors of size at

least2f + 1+ k can be generated forskk+1. Therefore, the lemma follows from lemma 5.6.

⇤

L���� 5.8. The protocol in Algorithm 4 satis"es E(iii) (Eventual Agreement).

P����. Assume by a way of contradiction that there aref + 1 sequence numberssq for which two invocations of

coin-toss(sq) by honest parties return di$erent coins. By Lemma 5.7, then there is a bit vectorV of size at least3f + 2

such thatf + 1 honest parties generated valid share-coins associated withV . Since the number of parties is (and thus

HAVSS) instances is3f + 1, we get a contradiction to the bit vector de!nition.

⇤

D ADKG PROOFS

L���� D.1. All honest parties decide1 in at leastn ! f ABA instances.

P����. Consider two case:

¥ First, there is an honest party that inputs0 in some ABA instance. By the code, it decides1 in at leastn ! f ABA

instances. Therefore, by the ABA Agreement property all honest parties decide1 in at leastn ! f ABA instances.

¥ Second, no honest party invoke an ABA with0. By the H(i) (Liveness) property of HAVSS, there aren ! f HAVSS

instance for which all honest parties deliver a share, and thus input 1 in the corresponding ABA instances.

Therefore, by the Validity and Termination properties all honest parties decide 1 in thesen ! f ABA instances.

⇤

L���� D.2. The protocol in Algorithm 5 satis"es A(i) (Validity).

P����. Consider a partypi that outputs a set of shares�. By the code, sincepi outputs a value, it outputs a decision

in all ABA instances. Moreover,� includes all the shares of HAVSS for which the corresponding ABA decides 1. Thus,

we need to prove thatpi decides1 in at leastn ! f ABA instances. The Lemma follows from Lemma D.1.

⇤

L���� D.3. The protocol in Algorithm 5 satis"es A(ii) (Agreement).

P����. By the code, parties include all the shares of HAVSS instances for which they output 1 in the corresponding

ABA instances. Therefore, the lemma follows from the ABA Agreement property.

⇤

L���� D.4. If ABA.j outputs 1, then all honest parties eventually deliver a share for the HAVSS instance for whichpj is

the dealer.

P����. By the ABA validity, at least one honest party input 1 toABA.j. Therefore there is at least one honest party

who delivers a share for the HAVSS instance for whichpj is the dealer. The Lemma follows from the Agreement (Hii)

property of HAVSS.

⇤

L���� D.5. The protocol in Algorithm 5 satis"es A(iii) (Liveness).

P����. By Lemma D.4, all parties output provided they decide in all the ABA instances. Thus, we need to prove that

all ABA instance eventually terminate. Therefore, by the termination property of ABA, we only need to prove that all

honest party invoke all ABA instances. Thus, by the code, we need to prove that at leastn ! f ABA instance decide1.

The Lemma follows from Lemma D.1.

⇤

L���� D.6. The protocol in Algorithm 5 satis"es A(iv) (Privacy).

P����. Consider an honest partypi that outputs a set of shares�i . By the Validity property,|�i | ' n ! f , and thus

source(�i) contains at least1 honest party. The lemma follows from H(iV) (Privacy) of HAVSS.

⇤

