
RC23418 (W0411-057) November 8, 2004
Computer Science

IBM Research Report

Reincarnating PCs with Portable SoulPads

Mandayam Raghunath, Chandra Narayanaswami, Casey Carter*,
Ramón Cáceres

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

*University of Illinois at Urbana-Champaign

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Reincarnating PCs with Portable SoulPads

Mandayam Raghunath1 Chandra Narayanaswami1 Casey Carter2 Ramón Cáceres1

 1IBM T.J. Watson Research Center 2University of Illinois at Urbana-Champaign
 {caceres, chandras, mtr}@us.ibm.com ccarter@cs.uiuc.edu

Abstract
The ability to walk up to any computer, personalize it,

and use it as one’s own has long been a goal of mobile
computing research. We present SoulPad, a new approach
based on carrying an auto-configuring operating system
along with a suspended virtual machine on a small
portable device. With this approach, the computer boots
from the device and resumes the virtual machine, thus
giving the user access to his personal environment,
including previously running computations. SoulPad has
minimal infrastructure requirements and is therefore
applicable to a wide range of conditions, particularly in
developing countries. We report our experience
implementing SoulPad and using it on a variety of
hardware configurations. We address challenges common
to systems similar to SoulPad, and show that the SoulPad
model has significant potential as a mobility solution.

1 Introduction
 Today’s laptop computers give users two highly

desirable features. One is the ability to suspend a
computing session (e.g., running applications, open
windows) and resume it later, perhaps at a different
location. The other is access to their personal and familiar
software environment (e.g., applications, files,
preferences) wherever they are. In spite of this
convenience, a major drawback of this model is that the
user has to carry a fairly bulky device. In addition, though
docking stations allow the user to use a larger display and
attach some peripherals, the user is limited to the
capability of some of the hardware integrated in the
portable computer, such as the processor and the memory.1

Before the advent of portable computers, there were
two main approaches to suspending a session in one
location and resuming it at another. One method was based
on process migration between the machines at the two
locations [3, 17]. Another technique was to move just the
user interface and graphical windows across stationary
machines while continuing to run the application processes
on a single machine [11, 15]. There are several solutions
that store the user’s data on a central server to make it
possible for a user to log in to one of several machines that
are connected to the server and have a common startup
environment [16].

1,2 Authors listed in reverse alphabetical order

More recent solutions to this problem have centered on
the use of virtual machines. For example in Internet
Suspend/Resume (ISR) [7, 8], the user’s computation state
is stored as a check-pointed virtual machine image in the
network when computation is suspended, and retrieved
from the network when computation is resumed at a
machine that has similar base software. ISR has since
explored using a portable storage device as a cache [18].

Figure

Guest Apps (e.g., Word, Firefox)

Guest OS (e.g., Windows, Linux)

Encrypted Virtual Machine (x86 PC)

Virtual Machine Monitor (VMware Workstation)

Auto-configuring Host OS (Knoppix)

d

In this pap

carrying the so
a user to walk
and resume
suspended on
exploits porta
connections,
virtual machin
widely deploye

In summar
body (display,
software, data,

C

SoulPa
 1: SoulPad architecture an

er we present SoulPad, a p
ftware stack shown in Figure
 up to a hitherto unseen pers
a personal computing sess
 another machine. The Sou
ble storage devices, fast
auto-configuring operating
e technology, while coexis
d PC ecosystem.
y, we decouple the user’s m
 CPU, RAM, I/O) and a soul
 preferences). The soul is car
Resume PC
SoulPad (USB 2.0 portable disk)
Suspend P
d use.

ortable device
 1, that allows
onal computer
ion that was

lPad approach
 local wired

systems and
ting with the

achine into a
 (session state,
ried in a small

and light portable device, the SoulPad. The soul can
reincarnate on any one of a large class of x86-based
personal computers with no preloaded software, and
effectively convert that computer into the user’s computer.
The computers on which the SoulPad can reincarnate itself
on are denoted as EnviroPCs. We presently rely on USB
2.0 connections between the SoulPad and the EnviroPC.
The EnviroPC’s CPU, memory and I/O devices are used to
run the software on the SoulPad.

There are several practical advantages to our method.
The

ser to exploit the full
cap

Pad approach could change
the

ell suited to
dev

suspend and resume cycles.

rage devices have made it
pos

deg

 suspend and resume times
and

lts.
We

lPad to work with a wide range of x86
relying on a preinstalled operating

syst

at boots on EnviroPCs and addresses
dware diversity via auto-configuration.

orts Guest

3.
 a Guest OS of the user’s choosing.

 first is that the SoulPad has no battery and thus the
user need not worry about recharging it. The second is that
no network connectivity is required to retrieve suspended
state. Another advantage is that the EnviroPCs do not
require any preloaded software and thus can be
unmanaged. In fact, the EnviroPCs can be diskless and can
be relegated to pieces of furniture that don’t require
constant monitoring for viruses. Since all software running
on the EnviroPC comes from the SoulPad and belongs to
the user, the user does not have to trust a preinstalled
operating system on the EnviroPC.

Our approach also allows the u
abilities of the EnviroPC, for example a high-resolution

display or a fast processor. Finally, by resorting to a fast
wired connection between the SoulPad and the EnviroPC,
we avoid the problems associated with wireless
connections between the two devices – namely device
disambiguation and association, and the power consumed
by wireless communication as in the Intel Personal Server
[21]. We observe that these advantages are in addition to
the general benefits of virtualization, such as encapsulation
and easier system migration.

We believe that the Soul
 way computers are built and used. If the software on

the internal disks adopt the SoulPad stack, users will be
able to easily migrate from one machine to another by
simply moving the disk. For example, a business
professional could insert his disk into a light and compact
laptop for travel around the globe, into a larger but more
powerful laptop for regular use, and even into a wearable
computer with an eyeglass-mounted display if necessary.
Obviously, the disk attachment interface must be
compatible with the different form factors.

Our method is also particularly w
eloping countries, where a large class of society cannot

afford to buy computers and keep them connected to the
Internet. Voltage fluctuations and power outages also add
to the problem. Shared community PCs provide a solution
in such environments. For example many people use web-
based applications from public places. However, this
solution does not address the personalization and
environment preservation issue. By moving to a model
where users own the SoulPad and borrow or rent the
EnviroPC, we can reduce their investment and offer them
personalization and environment preservation across

Our approach has only recently become feasible.
Technical advances in sto

sible to carry small drives that can fit into a pocket and
hold upwards of 60GB for around two hundred dollars (in
2004). Flash storage of several gigabytes already fits on a
key fob. Clearly we can expect tens of gigabytes to fit on
smaller and cheaper portable and wearable devices over
time. Atomic Force Microscope (AFM)-based storage
technologies such as Millipede [20] can have a density of
125 GB per square inch ― ten times higher than the
densest magnetic storage available today. Already several
portable music players such as the Apple iPod and some
digital image viewers feature large drives. Interfaces like
USB 2.0 provide sustained data access rates of more than
150Mbps, leading to acceptable resume and suspend times.

Compared with today’s laptop model, the
disadvantages of our method include the performance

radation due to virtualization, and longer resume times.
In addition, portable devices are susceptible to loss or
damage, but regularly backing up the contents of the
SoulPad can address this issue.

We have implemented our solution and report our
results in this paper. We address

 how they vary with disk, processor, and interconnect
speeds; runtime overheads caused by virtualization and use
of an external disk; practical issues that arise due to
evolution in processor architecture; and security issues.

We first present the software architecture of SoulPad,
followed by our implementation and experimental resu

 then discuss some of the issues we had to deal with as
we moved from concept to prototype, and some challenges
that remain. A number of these issues are relevant to other
efforts such as ISR [7, 8] and the Stanford Collective [13]
that also use virtual machine technology for mobility.
Finally, we discuss some of the related work that has
helped shape our solution.

2 Architecture

2.1 Components
We want the Sou

EnviroPCs without
em. We also want the user to be able to preserve

session state across EnviroPCs. In order to meet these
needs, the software stack on the SoulPad has the following
three components:

1. A Host OS th

har
2. A Virtual Machine Monitor (VMM) that can

suspend/resume virtual machines and supp
OS diversity.
A Virtual Machine (VM) that runs the user’s
applications on

While booting on an EnviroPC, the auto-configuring
t OS discovers the hardware characteristics and Hos the

different I/O devices installed on the EnviroPC, and
configures itself to the hardware present by installing
appropriate driver modules. Auto-configuration, (i.e., the
absence of an install phase) is a requirement for this layer
since the SoulPad has to boot on an EnviroPC that it may
not have seen before. This is in contrast to traditional
operating systems which go through an initial install phase.

Once this step is complete, the Host OS provides a
known environment for the next layer, namely the Virtual
Machine Monitor. The VMM creates a virtual machine,
relying on the underlying Host OS for any services that the
VM requires. The VM provides an environment on which
the user’s operating system (Guest OS) and applications
(also stored on the SoulPad) are run. Since the user’s
computing environment runs on top of a VM, it is possible
for the VMM to suspend the user’s session state and
resume it at a later point in time. The suspended session
state is also stored on the SoulPad.

The user can suspend his session, then shut down the
VMM layer and the Host OS and walk away with his
SoulPad. The user can later attach the SoulPad to a
different EnviroPC and start the Host OS and the VMM
layer and load the suspended session state, resume it, and
continue his session. If the user’s tasks do not require
network access, the PC may be completely disconnected
from the network.

Figure 2: A sample of USB 2.0 portable disks used

as SoulPads. Clockwise from upper left: LaCie 40GB
Da

nal computing environments, from
Wi

The issues we addressed in the course of building our
ted below.

•

al disk instead of an

•

ulPad. Moreover, since the

•

thers such as the

som
sect
mo

f USB 2.0 portable disks as

 2 shows some examples. These devices
er and lighter than portable PCs. For

exa

ey in fact use the same hard-disk
tec

1.

3. indows or Linux for the Guest OS.

taBank, LaCie 60GB PocketDrive, and IBM 40GB

Portable Hard Drive.

The generality of our three-level architecture allows
users a choice of perso

ndows to Linux to any other OS that can run on the
VMs provided by the VMM. Users can even maintain
multiple Guest OS environments on the same SoulPad,
each OS running in its own VM.

2.2 Issues addressed

SoulPad prototype are lis

Performance: Working on a VM introduces
significant overhead when compared to working on
bare hardware. Using an extern
internal disk could make the situation worse. We
therefore evaluate the suspend/resume and operational
performance of SoulPad.

Security and privacy: Portable devices are prone to
theft and loss. We safeguard privacy by encrypting the
user data stored on a So
software on EnviroPCs may not be trustworthy, we
rely only on their hardware and firmware.

Reliability: Portable devices are prone to damage and
loss. We implemented a way to recover the contents of
SoulPads from an alternate source.

• Hardware independence: There are many hardware
differences between PCs. Some of these differences
are hidden by VM technology, but o
CPU instruction set architecture are exposed to the
Guest OS and its applications. We need to determine
across how wide a range of PCs SoulPad will operate.

The following section describes how we addressed
e of these issues with our implementation. Later
ions will return to discuss these and other challenges in

re detail.

3 Implementation

3.1 Overview
We used off-the-shel

SoulPads. Figure
are much small

mple, the LaCie 40GB DataBank measures 4.4 x 2.5 x
0.6 inches and weighs 4.8 ounces. In contrast, a latest-
generation “ultraportable” notebook computer like the
IBM ThinkPad X40 measures 10.5 x 8.3 x 1.06 inches and
weighs 2.7 pounds.

Despite their small size, these portable disks have
comparable storage capacity to notebook and laptop PCs,
e.g., 40-60 GB. Th

hnology. Given the success of portable PCs, it follows
that SoulPads can satisfy the storage needs of large
numbers of users.

To implement the software architecture described in
the previous section, we made the following choices:

Knoppix for the auto-configuring Host OS.

2. VMware Workstation for the VMM.
W

Knoppix [24] provides us with the zero-install and

 needs from a
ost OS. Knoppix is a version of GNU/Linux distributed

as a

devices, loads the
app

which is
mo

he
US

om USB mass storage
dev

sy way for users to preserve their computing
sta

achines on
whi

iate suspend by selecting the
VM

ailable for sharing among
VM

er data if a SoulPad is misplaced or
olds the VM
We used the

pub

t er supplies an
inc

n on the SoulPad.
We

disconnecting.

o a
network with a working DHCP server, the Host OS will
obtain an IP address and thus establish network

auto-configuration features that SoulPad
H

 single bootable CD that includes the Linux kernel and
a range of applications. Knoppix enables users to get a
familiar Linux desktop along with their favorite
applications on almost any PC without having to install
any software on the PC’s hard disk.

The bootloader from the CD loads a Linux kernel and
an in-memory disk image called the Initial RAM Disk.
Subsequently, Knoppix scans for

ropriate device drivers, initializes discovered network
interfaces, generates an appropriate X11 configuration for
the discovered display hardware, and carries out other
auto-configuration steps. These steps are necessary
because Knoppix does not have prior knowledge of the
hardware configuration of PCs on which it boots.

An in-memory filesystem is created for read-write data.
All of the applications, libraries and other read-only data
reside on a compressed filesystem on the CD,

unted using a loopback device in the kernel. The
compressed filesystem approach enables Knoppix to pack
almost 2 Gigabytes of data onto a single 700MB CD. All
of the local session state created by the user under
Knoppix typically resides in the in-memory filesystem and
is lost when the user shuts down Knoppix. Some users
combine a Knoppix CD with a small USB flash key where
they store their personal files and other persistent data.

We create a SoulPad disk by first installing Knoppix
on a USB hard disk, using the hard-disk install script that
comes with Knoppix. We also install a bootloader on t

B disk that loads the kernel and the Initial RAM Disk in
the same manner as the bootloader on a Knoppix CD. We
had to make a few modifications to the Initial RAM Disk
and startup scripts, for example to ensure that USB-related
kernel modules were loaded before trying to mount the
root file system from the USB disk.

With these changes, we were able to take the USB disk
from one machine to another and boot a Knoppix
environment. Newer PCs can boot fr

ices and this trend can be expected to continue.
However, not all PCs currently in the field can do so. We
discuss this issue and present a practical workaround later
in the paper.

While Knoppix by itself enables users to walk up to
any PC and personalize it with their Linux environment,
there is no ea

te as they move from one machine to another because
Knoppix needs a full reboot every time it is moved.
Knoppix users are also limited to that one OS.

We installed VMware Workstation [24] on top of
Knoppix to support suspend/resume of user sessions as
well as OS diversity. We then created virtual m

ch we installed Windows XP Professional or a Linux
variant as the Guest OS.

We automated the SoulPad suspend and resume
sequences so that each runs to completion after an initial
user action. Users init

ware Workstation suspend operation on their screens.
After the VM suspends, Knoppix shuts down and powers
down the machine. At this point the user can disconnect
the SoulPad from one PC and connect it to another. Users
initiate a resume operation by powering up the new PC so
that it boots from the SoulPad. The PC boots into
Knoppix, which starts VMware Workstation, which
resumes the Guest OS session.

On our SoulPad disks we created a 4GB partition to
hold Knoppix and a 2G partition to serve as swap space.
The remaining disk space is av

 images. For example, on a 40GB disk holding only
one VM, there are 34GB available for the Guest OS
environment.

3.2 Encrypted virtual machine image
To protect us

stolen, we encrypt the disk partition that h
images using the AES128 block cipher.

licly available loop-aes package for Linux in our
implementation.

The encryption key is generated by hashing a user-
supplied passphrase. After the Host OS boots, it prompts
the user to enter he passphrase. If the us

orrect passphrase, the resulting hash will not correspond
to the AES key and the mount operation will fail since the
decrypted data will not correspond to a valid filesystem. In
order to defeat brute force attacks that attempt to guess the
passphrase, the loop-aes package requires the
passphrase to be at least 20 characters long. For
convenience, we permit users to supply this passphrase via
an auxiliary USB flash key. While the Guest OS partition
is mounted, the AES key is retained in kernel memory.
When the partition is unmounted, the AES key is erased
from memory. It is never stored on disk.

At run time it is possible that the Host OS swaps out
pages corresponding to the user’s Guest OS state. These
pages will get written to the swap partitio

 also use loop-aes to encrypt the swap partition to
prevent user data from appearing in plaintext form on the
SoulPad. The key for the swap partition is auto-generated
for each session since swap state does not have to be
preserved across Host OS boot cycles.

SoulPad never writes to the internal disk on an
EnviroPC. Therefore, there is no risk of leaving sensitive
data on the PC’s persistent storage after

3.3 Networking configuration
At resume time, if the EnviroPC is connected t

connectivity. The VMware Workstation virtual machines
are

anager
(TSM), a file-level networked backup service. Whenever

a PC that has connectivity to
the TSM se

4

ence. This section
sults.
 used in all experiments

con

Di
d Transfer

 configured to use Network Address Translation (NAT)
to connect to the external network through the Host OS.
Thus, the Guest OS enjoys network connectivity whenever
the Host OS does. In short, from a networking perspective,
a SoulPad suspend followed by a resume is similar to
suspending a laptop at one location and resuming at
another location.

Many networked applications already support suspend
and resume of laptops, e.g., email and instant messaging
clients. They simply attempt to re-establish their network
connections at resume time. Similarly in the case of
SoulPad, such applications running inside the Guest OS re-
establish their connections when they are able to do so. In
some cases, the resume may happen outside an intranet
and some network resources may not be reachable unless
the user establishes a VPN connection into the intranet.
Laptop users are already familiar with such situations and
the behavior is identical while using a SoulPad.

3.4 Backups
In our enterprise environment we have configured

backups from the SoulPad to Tivoli Storage M

the SoulPad is connected to
rver, we perform an incremental backup of the

SoulPad. If a user loses his SoulPad, a copy of it can be re-
created from the backup server. Again, this model is
similar to the situation where a user loses his laptop and
has to recover data from the most recent backup.

On our prototype SoulPads, we have configured
incremental backups both at the Host OS and Guest OS
levels. At the Host OS level any changes to Guest OS files
appear as changes to the large binary files corresponding to
the VMware Workstation virtual disks (.vmdk files). Our
current backup implementation does not handle minor
modifications to large binary files very well, as it simply
treats the file as having changed and transfers the entire
file to the backup server. So, we specifically exclude these
files from the list of files to be backed up at the Host OS
level. Instead we rely on the incremental backups at the
Guest OS level to back up the modified Guest OS files. In
the future we propose to investigate better backup schemes
that handle large binary files.

We do not backup the suspended virtual machine state
(.vmss file) at suspend time because this would add
considerable latency to the suspend operation. This means
that if the user loses the SoulPad, he also loses the latest
session state and the Guest OS needs to be booted after the
files have been recovered from the backup.

In environments with poor infrastructure where
managed network backup services are not viable, it is
possible to perform local backups using LAN-connected
devices such as Mirra [24], or simply backups to a second
locally connected USB storage device.

Experimental Results
We confirmed the usability of SoulPad through a

variety of experiments. These experiments fall into three
main categories: resume and suspend latencies, application
response times, and hardware independ
describes our methodology and re

The SoulPad software stack
sisted of Knoppix 3.4, VMware Workstation 4.5.1, and

Windows XP Professional. In addition, VMware Tools
was installed in the Guest OS of all VMs.

 Size Spee

sk Model Type (GB) (RPM) Rate
(MB/sec)

(internal) IDE 40 7200 44.92
PocketDrive USB 60 7200 23.09
DataBank USB 40 4200 18.45
Mobile rive USB D 40 4200 8.13

Table 1: Chara ics ks ex .

ed disk h va g ch istics, as shown
e tr rate e ave f 10 the
 Li mm . Th mand res

dr an in tial data reads,
w
w
con

e define suspend

uests that the
VM

e two ThinkPad
mo

cterist of dis used in periments

We us s wit ryin aracter
in Table 1. Th ansfer s ar rages o runs of
hdparm –t
how fast the

nux co and is com measu
ive c susta sequen

ithout file-system buffering effects. All transfer rates
ere measured on a NetVista desktop PC, using a USB 2.0

nection for all but the IDE disk.
As shown, the internal IDE disk has twice the transfer

rate of the fastest external USB disk. There are also
substantial differences in transfer rates among USB disks.

4.1 Resume and suspend latencies
Resume and suspend latencies are key to SoulPad’s

usability. We define resume latency as the time between
when the user powers up the SoulPad-EnviroPC
combination, and when the VM has finished resuming, i.e.,
when the user can continue working. W
latency as the time between when the user req

 be suspended, and when the Host OS has saved
modified state to the SoulPad and shut down, i.e., when
the user can walk away with his SoulPad.

We designed our suspend/resume experiments to
expose the effects of disk speed, interconnect speed,
processor speed, and memory size. Table 2 shows averages
and standard deviations calculated over at least 10 runs for
a variety of disk and PC configurations. The NetVista and
ThinkCentre PCs are desktop machines; th

dels are laptops. In all these experiments, there were
256MB of memory and 16GB of disk space allocated to
the virtual machine. In the interests of simplicity and
space, we omit results for hardware combinations that do
not expose significant additional information.

 CPU Physical Resume Resume Suspend

Disk Model PC Model (GHz,
Pentium
F

Memory
Size

Connection
Type

Time
Average

Time
Std Dev

Time
Average

Suspend
Time

Std Dev
amily) (MB) (sec) (sec) (sec) (sec)

(internal) Ne tVista 2.4, IV 1024 IDE 116 1.0 10 0.4
PocketDrive NetVista U2.4, IV 1024 SB 2.0 121 4.3 26 1.2
DataBank ThinkPad T41 USB 2.0 1.7, M 1024 134 0.6 26 0.3
DataBank NetVista 2.4, IV 1024 U 0 SB 2. 141 1.5 22 0.4
MobileDrive NetVista 2.4, IV 1024 USB 2.0 170 2.6 30 0.2
MobileDrive ThinkCentre 3.0, IV 512 USB 2.0 179 7.4 50 2.0
MobileDrive 30 ThinkPad T 2.4, M 1024 USB 1.1 977 34.5 372 29.2

Table 2: R nd s d la rted by increasing resume tim

The first row of Tab

additional observations
stalled the SoulPad software stack on the internal disk of

the

he PocketDrive
con

tre PC with 512 MB
les

end
tim

 size have a significant
eff

echanism, we used the Time
Sta

, the boot loader,

Table 3 and Table 4 contain timings captured during

Individual Cumulative

esume a uspen tencies, so e.

le 2 serves as a reference point for
. For the results in this row, we

by a single instruction from firmware
kernel space, or user space.

in
 NetVista instead of on a portable disk.
It is noteworthy that external USB drives achieved

resume times close to those of the internal IDE drive. For
example, the average resume time on t

nected to the same NetVista PC was only 5 seconds
longer than the reference (121 vs. 116 seconds). The
average suspend time on that same configuration was 16
seconds longer than the reference (26 vs. 10 seconds).
Disks with lower transfer rates and rotational speeds, like
the DataBank and MobileDrive, have longer resume and
suspend times. Other disk characteristics not captured in
Table 1, such as buffer size, also affect the resume and
suspend latencies shown in Table 2.

Another observation is that physical memory size
matters for SoulPad. Resume and suspend latencies are
noticeably longer on the ThinkCen

s memory than the other PCs, even though the
ThinkCentre has the fastest CPU. Resume time rose to
nearly 3 minutes and suspend time closer to 1 minute.

Finally, the last row of Table 2 makes clear that USB
1.1 is too slow to support SoulPad. Resume times when
using USB 1.1 rise to more than 16 minutes while susp

es rise to more than 6 minutes.
Our overall conclusion is that SoulPad is usable on a

range of existing portable disk and PC configurations. Disk
transfer rate and physical memory

ect on resume and suspend latencies, while processor
speed has less of an effect (at least for the 1.7-3.0 GHz
range we used in our experiments). Disk-to-PC
interconnects with speeds comparable to USB 2.0 are
required but increasingly standard on commercially
available PCs.

We proceeded to collect fine-grained timings of
different stages in the SoulPad suspend and resume
sequences. As a timing m

mp Counter (TSC) available on x86 processors. This
monotonically increasing value resets to zero on each
powerup, advances with each clock cycle, and can be read

sample resume and suspend runs, respectively. Both runs
used the DataBank disk connected over USB2.0 to the
NetVista PC, as in the fourth row of Table 2.

Resume Stage

Time (sec) Time (sec)
BIOS Power-On Self-Test 16.137 16.137
Boot Loader 1.013 17.150
Host OS Kernel Startup 5.790 22.940
Host OS Init RAM Disk 2.599 25.539
Host OS Autoconfig 56.822 82.361
VM State Load + Resume 57.271 139.632

Table 3: Resume stages an ple lat

Indi
Tim

Cumulative
T

d sam encies.

Suspend Stage vidual

e (sec) ime (sec)
VM Suspend 5.805 5.805
VM State Save 15.794 21.599

Table 4: Suspend stages and sample latencies.

A able 3, So e
operation took almost 140 utoco he
H nted for some ess than this
ti 7 seconds. see belo here
is roo

T nd
res

ed pages of
phy

s shown in T the sample
seconds. A

ulPad resum
nfiguring t

ost OS accou what l half of
me, or roughly 5 We will w that t

m for reducing the latency of this stage.
he time to load VM state from disk into memory a

ume the running VM is another major contributor to
total resume latency, also accounting for roughly 57
seconds in the sample run of Table 3. The ballooning
technique presented in [13] can be used to reduce the
latency of this stage. Ballooning zeroes unus

sical memory allocated to VMs. These pages would
then lend themselves to more effective compression for
transfer between SoulPads and PCs.

As shown in Table 4, the sample SoulPad suspend
operation took under 22 seconds. The two main

components of this latency are the time to stop the VM
(roughly 6 seconds) and the time to save to disk the
contents of the VM’s memory as well as other recently
changed VM state (roughly 16 seconds). Aside from the
con

el-module dependencies.
The

tents of the VM memory, the amount of state saved at
suspend time is relatively small because writes to the
VM’s virtual disks have been propagated to the SoulPad
throughout the VM’s operation.

We then explored ways to reduce the resume latency
by streamlining the Knoppix autoconfiguration procedure.
The results in Table 2 were obtained using a base Knoppix
installation. We were able to eliminate two steps from this
base case: rebuilding the mapping from library names to
path names, and rebuilding kern

 former is necessary only when libraries are installed or
moved, and the latter is only necessary when kernel
modules are added, changed, or removed. Such Host OS
configuration changes will be rare on a SoulPad since the
Host OS is only used as a vehicle to bring up a virtual
machine. This layer of the SoulPad architecture can be
tightly managed by system administrators working for
enterprises or service providers.

Experiment

Resume
Time

Average
(sec)

Resume
Time

Std Dev
(sec)

Suspend
Time

Average
(sec)

Suspend
Time

Std Dev
(sec)

Original 141 1.5 22 0.4
Streamlined 129 1.6 22 0.3
Encrypted 139 1.3 28 0.6

Table 5: Im e at
streamlining th OS equ en

al Mach age encry file sy .

sho e im on re e laten f
 these steps ese measurements were

don

late

y
10

d boot are familiar
ope

inkPad T41 running off
the

nce to complete
bef

ndustry-standard
erhead introduced by

the

esults more
easi

 Internet Content
Cre

load generation and
per

pact on r
e Host

sume and
 boot s

suspend l
ence, th

encies of
 storing

the Virtu ine im in an pted stem

Table 5 ws th pact sum cy o
eliminating two . Th

e on the same DataBank-NetVista combination shown
in the fourth row of Table 2, yielding a baseline resume
time of 141 seconds. As shown in Table 5, streamlining
the Knoppix autoconfiguration stage reduced resume

ncy by 12 seconds, to 129 seconds total. Further
optimizations of the boot sequence may also be possible.

 Table 5 also shows the impact of encrypting the VM
image. We placed the VM image on a file system
encrypted with the AES128 cipher. We then measured
suspend and resume latencies on the same DataBank-
NetVista combination after streamlining the Knoppix
autoconfiguration stage. As shown, resume latency rose b

seconds but remained below the original 141 seconds,
and suspend latency rose by 6 seconds but remained below
30 seconds. We conclude that using an encrypted file
system is both desirable and viable.

Finally, it is useful to compare SoulPad
suspend/resume times to hibernate/resume and
shutdown/boot times on today’s portable computers.

Hibernation saves the session state to disk before powering
down the machine. Resume after hibernation restores the
session from disk. Shutdown an

rations common to all PCs. Portable PCs also offer a
standby/resume feature, but it cannot hold session state for
arbitrary periods of time. Standby holds state in volatile
memory and draws battery power.

We measured a ThinkPad T41 running Windows XP
from its internal IDE disk. Over three runs, hibernate and
resume times both varied between 26 and 28 seconds,
shutdown times varied between 31 and 43 seconds, and
boot times were stable around 50 seconds.

In comparison, on that same Th
 DataBank disk, Table 2 shows that SoulPad suspend

times averaged 26 seconds and resume times 134 seconds.
We see that SoulPad suspend times are roughly equal to
hibernate and shutdown times, although the user must
always wait for the SoulPad suspend seque

ore walking away. SoulPad resume times are
considerably longer than resume-after-hibernate and boot
times. The extra waits are the price to pay for the added
portability and hardware independence of SoulPad.

4.2 Application response times
Application response times are another key metric of

SoulPad’s usability. The time it takes for applications to
respond to user-initiated operations is a measure of what it
feels like to use the system for everyday work.

We used SYSmark 200223 [22], an i
benchmark suite, to evaluate the ov

SoulPad three-level architecture when compared to a
standard OS installation running on bare hardware. We
chose to use a standard benchmark suite instead of creating
our own because this makes our experimental r

ly reproduced by other researchers.
SYSmark employs workloads that emulate common

uses of Windows PCs in business environments. The
workloads fall into two classes: Office Productivity and
Internet Content Creation. Office Productivity exercises
nine applications that include programs in the Microsoft
Office suite and McAfee VirusScan.

ation exercises five applications: Adobe Photoshop,
Adobe Premiere, Macromedia Dreamweaver, Macromedia
Flash, and Microsoft Media Encoder.

SYSmark measures the time it takes for applications to
complete tasks initiated by mouse clicks or keystrokes. It
uses Visual Test and Visual Basic to emulate a person
sending commands to the computer. The sequence of
commands was chosen by observing industry professionals
at work. Additional detail on the work

formance measurement methodology is available from
the SYSmark 2002 documentation [22].

3 SYSmark is a trademark of Business Applications

Performance Corporation.

Office Productivity Workload

1.29
(0.019)

1.42
(0.025)1.50Ti

m
e

1.00
(0.004)

0.00

0.50

1.00

System Configuration

N
or

m
al

iz
ed

 R
es

po
ns

e

Physical, IDE Virtual, IDE Virtual, USB

Figure 3: Response times for the Office Productivity

workload from SYSmark 2002.

Internet Content Creation Workload

1.00
(0.011)

1.26
(0.005

1.38
1.50

Ti
m

e

)
(0.023)

0.00

0.50

1.00

System Configuration

N
or

m
al

iz
ed

 R
es

po
ns

e

Physical, IDE Virtual, IDE Virtual, USB

Figure 4: Response times for the Internet Content

Creation workload from SYSmark 2002.

At the end of a run SYSmark reports the average

response time over hundreds of operations. Given the
variety of these operations, from replacing a word in a tex
doc

 times between
system configurations than the absolute values. In our
res

represents our baseline configuration: Windows XP

le bar corresponds to running
the

% increase over the
bas

ms were six models of IBM ThinkPad
entre desktops, and a

ulPad worked smoothly
on

riority order
wit

t
ument to re-encoding a video clip, it is more

meaningful to examine the relative response

ults we thus normalize response time to a baseline
system configuration. All our SYSmark runs used the
NetVista PC with 1 GB of memory installed in the
physical machine, and 512 MB of memory allocated to the
VM when a VM was used.

Figure 3 and Figure 4 show response time averages
(with standard deviations in parentheses) across three runs
of the Office Productivity and Internet Content Creation
workloads, respectively. The left bar in each graph

Professional running on the physical machine and from the
internal IDE drive. The midd

SoulPad three-level architecture, but still from the
internal IDE drive. It is intended to isolate the overhead of
virtualization from the overhead of using an external drive.
The right bar corresponds to running the SoulPad
architecture on the PocketDrive connected via USB 2.0.
The right bar also includes the overhead of storing the VM
image on an encrypted file system.

Our overall conclusion is that SoulPad is usable on
today’s portable disks and PCs, and it will become
increasingly usable as hardware continues to improve.
Across the two workloads, moving to a VM-based
configuration on the IDE drive incurred a 26-29% increase
in response time. Moving to a VM-based configuration on
the USB drive incurred a 38-42

eline. These overhead numbers seem high, but with
today’s fast disks and PCs, absolute performance remains
acceptable for a large class of business and personal users.
It is interesting to note that this slowdown is roughly
equivalent to using a one year-old machine without
virtualization. As further anecdotal evidence, one of the
authors has used VMware Workstation virtual machines on
laptop-class PCs for everyday work since 2000. User-
perceived performance will continue to improve along
with hardware.

4.3 Hardware independence
A remaining usability question is: across how wide a

range of PCs will SoulPad work? We ran experiments on a
larger collection of PCs than mentioned so far in order to
explore these hardware independence issues. Among these
additional syste
laptops, four models of IBM ThinkC
Dell Dimension desktop. While So

the earlier set of machines, we ran into a number of
practical obstacles when we expanded the set.

One problem is that not all PCs would boot SoulPad
from USB. Increasingly, new PCs include a BIOS option
to boot from USB mass storage devices. However, many
legacy PCs do not offer this option. Furthermore, the
option is not uniformly easy to use on PCs that do offer it.
Sometimes booting from USB must first be enabled. Once
enabled, the USB option must be placed in p

h respect to other boot devices. On some PCs, it is
necessary to reposition the USB option in the priority order
every time a different USB device is attached, or even on
every boot operation. Only on some recently manufactured
PCs is it possible to position the USB option once for all
time and all devices, so that the PC will always boot from
a SoulPad when one is connected.

We worked around these difficulties by creating an
auxiliary mini-CD containing a boot loader that quickly
switches the boot sequence to a USB device. Booting from
CD is universally supported on current-generation PCs,

usually higher in priority than booting from internal disk.
Using this CD we were thus able to use SoulPad on all the
PCs we tried. SoulPad users could carry such an auxiliary
CD

 1600x1200 pixels, while others only
102

 application. It is possible to work within that
win

aller memory sizes (at the
exp

nufacturer can
ens

ctions to meet the demands
of applications such as media processing, security, etc.

A between 1997
and 2004. For performance reasons, today’s VM

he
ted

and
 for use when booting from USB is not available or

properly configured. However, over time we expect that
booting from USB will attain the ubiquity and ease of use
of booting from CD.

Another problem is that SoulPad was not always able
to resume a user session with the same graphics
configuration in use at suspend time. Graphics settings are
personal choices determined by factors like visual acuity
and application mix. Graphics capabilities vary widely
among PCs. For example, some machines support display
resolutions as high as

4x768.
As a result, it was sometimes necessary to manually

change graphics settings after a resume operation. For
example, the display resolution and color depth settings in
the Guest OS must match those of the Host OS in order for
a VM to use the full screen, and not be limited to running
inside the Host OS window allocated to the VMware
Workstation

dow, but it is often preferable to cede the whole display
to the Guest OS, for example to hide from naïve users that
they are dealing with a virtual machine. Further work is
needed to automatically adapt the overall graphics
configuration for best effect.

A final problem we ran into occurred when a PC did
not have enough memory to run the VM stored in a
SoulPad. Our default SoulPad configuration allocates
256MB to the VM. These VMs would not resume on PCs
with 256MB or less of total physical memory. In principle
the VMM should be able to swap portions of the VM as
necessary to operate with sm

ense of performance), but current VMM
implementations have limitations in this area. Ideally, the
VMM and Guest OS should adapt to the amount of
physical memory available at resume time.

The above experiences make clear that work remains
before the full promise of VM-based mobility, where “any
PC is your PC”, can be realized. However, it is important
to note that such mobility is already practical if constrained
to a known subset of PC models and configurations, as is
the case in many enterprise settings. In addition, with some
planning and testing, any single PC ma

ure that a SoulPad-like solution works on all its
offerings. The following section discusses additional
hardware independence issues.

5 Discussion and Future Work

5.1 Instruction Set Architecture (ISA) diversity
The x86 architecture has steadily evolved over the

years with the addition of instru

Table 6 shows the changes to the Intel IS

technologies permit guest operating systems to query t
hardware and determine which instructions are suppor

 directly execute the instructions that are available.
When we use VM technology for mobility we encounter
the situation of suspending a VM on one machine and
resuming it on another machine that may not support the
same set of instructions. For instance a VM may be
suspended on a Pentium IV and resumed on a Pentium III.
The Guest OS and applications may have queried the
hardware on the Pentium IV, determined that SSE3
instructions are available, and subsequently try to execute
them on the Pentium III where such instructions are not
supported. Since the SoulPad moves the Host OS and the
VMM layers from machine to machine, these layers have
to deal with different ISAs as well.

Processor
Name

Year Feature
Name

Feature Description

Pentium 1993
Pentium II
MMX

1997 MMX SIMD Integer
Operations. No new
registers. 57 new
instructions.

Pentium III,
Celeron

tensions. 32-bit

g point
ort. 8

.
s.

1999 SSE Streaming SIMD

Ex
parallel floatin
numerical supp
new 128-bit registers
70 new instruction

Pentium IV, 2002 SSE2 D
it
nt

Celeron II
Streaming SIM
Extensions II. 64-b
parallel floating poi
numeric support. 144
new instructions.

Pentium IV

 D

2004 SSE3
(Prescott),
Pentium IV
M, Celeron

Complex Arithmetic.
Memory and Thread
Handling. 13 new
instructions.

Table 6: Intel process

tio
roach to handling ISA di
onsider the Host OS. Since ISAs are typically

patible, the Host OS (kernel and other
executables) rocessor
family such n newer

sso
is oes not use the newer instructions and

cou

Since the only function of the Host OS is to run the VMM

or evolution.

5.1.1 Solu
The app

Let us first c
backward com

ns
versity varies by layer.

 can be configured for an older p
 as 386 and be expected to work o

proce r families.
Th approach d
ld result in lower performance. This drawback can be

addressed by keeping multiple copies of ISA-dependent
components of the Host OS, each configured to a different
ISA, and choosing the appropriate version at boot time.

we do not believe the storage overhead for carrying
multiple versions of these components will be significant.

ada

cal
cha

uspension. At resume
tim

ractical workarounds

n. The binding typically happens at
compile time or install time, though it can happen later as
well. If the binding happens only at compile or install time
we could install the entire guest VM software on an old

so PCs encountered by the
use

puter” be taken to mean a virtual

2.

that enforces licenses m so change accordingly. Some

Similar approaches can be applied for the VMM as
well. When the VMM is started the version corresponding
to the ISA of the EnviroPC can be used to ensure that the
VMM itself does not use any unsupported instructions.

The matter is much more complicated for the VM
image, because we need to suspend and resume the Guest
OS and applications without restarting or reinstalling. If
operating systems and applications could dynamically

pt to changes in the ISA, the VMM could simply signal
the Guest OS that the ISA has changed and expect the
adaptation to take care of this problem. While such
dynamic adaptation to ISA changes is a hard techni

llenge, there have been several examples where
applications have evolved the ability to survive changes in
the environment. For instance, in the early stages of
graphical windowing systems, applications were written to
fixed display resolution and window sizes. However, today
most applications dynamically adapt to changing graphics
configurations. Similarly, many applications have been
made resilient to changes in network settings. Several
server operating systems have developed the ability to
dynamically reconfigure themselves (without rebooting) to
changes in hardware resources such as amount of DRAM,
number of CPUs, and I/O devices.

One way of handling dynamic ISA changes is to
compile applications such that the performance critical
sections of the code are built for different ISAs, while the
other sections are built for the oldest ISA. At run time,
applications choose the ISA-specific code paths in the
performance-critical sections. When a suspend request is
received, applications complete the current performance-
critical section before allowing s

e, the application probes the ISA so that subsequent
performance-critical sections take the paths corresponding
to the new ISA. Such an approach can also be used in the
Host OS and the VMM layers to avoid carrying multiple
versions.

In summary, all layers of software need to be aware
that they may be suspended on one processor family and
resumed on another. They should adapt to the change if
performance benefits of newer processor architectures are
to be exploited and mobility across a larger class of
machines is desired.

5.1.2 P
Since dynamic adaptation to ISA changes is not

currently supported by PC operating systems,
compromises are necessary to use VM technology for
mobility.

At present there is a tight binding between the software
and the ISA it runs o

proces r family. If all the Enviro
r are the same or newer, none of the unsupported

instructions will be encountered. At the same time none of
the performance enhancements possible with the newer
ISA will be used by the guest VM. If the user were to try
to use the SoulPad with an ISA that is older than the one
configured, the Host OS should refuse to resume the VM.
This workaround would limit the range of the EnviroPCs
that can be used. While this approach works, it delivers
lower performance.

If the Guest OS and applications bind to the ISA at
start time instead of install time, the VMM may ask the
user to reboot the Guest OS or restart the appropriate
applications when a different ISA is encountered. This
approach will exploit the highest performance offered by
the current ISA, but will result in lower usability.

Another method is to be more aggressive and configure
the guest VM software for the most recent processor
architecture. When running on an older machine and an
unsupported instruction is encountered, the VMM should
emulate it using available instructions. To the best of our
knowledge, today’s VMMs do not emulate missing
instructions. If this feature was added, a penalty is paid
only when the user visits older machines. If applications
bind to the ISA at start time, it may be advantageous to
restart them on older ISAs instead of relying on instruction
emulation support provided by the VMM.

If instruction emulation support is provided in the
VMM, it is important to ensure that when newer
instructions are added to the ISA, emulation support has to
be made available before the Guest OS or any applications
start using those instructions.

5.2 Software licensing

Machine virtualization disrupts traditional approaches
to software licensing. For instance, the arguably dominant
licensing model for PC software permits use of the
software “on a single computer”. In the absence of VM
technology this model is relatively easy to understand.
However, the introduction of VM technology, VM-based
mobility, and SoulPad raises difficult questions, such as:

1. Should the term “com
or physical machine?
Should the term “computer” be taken to mean the
processor that runs the software or the storage device
that holds the software?

3. Should users be allowed to run the software on two or
more VMs on the same physical machine?

4. Should users be allowed to run the software on a VM
that moves between physical machines?

Not only does the language of licenses need to change
to make clear the answers to such questions, but software

ust al

sof ware products incorporate code to verify that the user
 compliance with the license terms. A popular form of

 code records information

t
is in
this about the hardware present

n
the the install

aspe s. Therefore,
soft

it is

es often suffers
from voltage fluctuations and complete outages, forcing

nterruptible power supply
to

rivacy risks for
Sou

t the memory contents
dissipate. Some versions of Knoppix also actively wipe
memory as part of normal shutdown procedures.

nd privacy concerns remain.
For

g up computing
ses

n mobility, etc., and not
ples of such efforts include the V
, Condor [9], and Sprite [3].

one machine and resume at another exactly where they left

at i stall time, and periodically checks at run time whether
"computer" has changed significantly since

operation. As we’ve discussed, VMs do not hide all
cts of physical hardware from Guest OS

ware installed on a SoulPad may stop working when
moved between significantly different physical machines.

For VM-based mobility in general, and SoulPad in
particular, it is important that software vendors recognize
the above issues and devise license terms that
accommodate user needs. Some software vendors are
already aware of the disruptive nature of VM technology
and have started addressing these issues.

5.3 Developing countries

SoulPad is well suited to developing countries. One
reason why is that it can work on disconnected PCs, so that

 a good fit for environments with poor networking and
server infrastructure. Another reason is that SoulPad
supports personalized computing on shared PCs.

Although PC prices continue to drop, in many parts of
the world there is more to owning a PC than buying the
basic computer. Electric power to hom

the additional purchase of an uni
ensure clean software shutdowns and protect the

hardware from damage. In addition, many people cannot
afford to provide Internet service to their homes. Sharing
PCs maintained at a community center or Internet café
remains a popular model because it amortizes these
infrastructure costs across multiple users.

SoulPad allows users of such shared PCs to maintain
widely different software environments without interfering
with each other. Furthermore, SoulPad users do not store
sensitive data on shared machines. Users maintain physical
control over their software and data, while the inherent
portability of the solution prevents over-reliance on any
particular infrastructure provider.

5.4 Security and privacy

We have lowered the security and p
lPad users in several important ways. One, we start

EnviroPCs from a known power-down state. Two, we do
not run any software previously installed on EnviroPCs.
Three, we encrypt the VM image and swap space on
SoulPads. Four, we do not write anything to stable storage
in EnviroPCs. Five, we power down the EnviroPC at the
end of the suspend procedure to le

However, some security a
 example, we have not protected against compromised

firmware (e.g., the BIOS). We have also not addressed
hardware-related threats such as key loggers or bus
snoopers. A future SoulPad with modest processing
capacity could query the Trusted Platform Module (TPM)
[23] hardware that is increasingly available in commodity
PCs, to determine that the BIOS is trustworthy before
allowing the PC to boot the Host OS.

In addition, equipping SoulPads with biometric
authentication hardware would be an improvement over
our current practice of asking for a passphrase through the
EnviroPC. Note that it is not necessary to equip SoulPads
with a battery to support biometric authentication or TPM-
based attestation. Power for these operations can be
obtained from the EnviroPC.

The SoulPad model also presents security risks for
owners of EnviroPCs. Since the Host OS boots directly on
the PC, a SoulPad user has complete control over the PC,
including any internal disks and network interfaces. A
malicious user could corrupt or erase the contents of a hard
disk, or launch a network-based attack.

Fortunately, there are ways to prevent SoulPads from
modifying internal disks. For example, PC owners could
password-protect the disks using facilities already
provided by most disks and BIOSes on current PCs. In
addition, EnviroPCs can be diskless as described earlier.
Addressing the potential for network-based attacks
remains an area for future work.

6 Related Work
Users invest large amounts of time personalizing their

computing environments and settin
sions. They naturally desire to reuse as much of these

environments and sessions as possible. Solutions to meet
this desire have evolved in stages. At first, users of time-
shared machines were satisfied with the ability to reuse
data files created during earlier sessions. As applications
became more complex and long-lived, researchers also
attempted to move running processes across machines for
load balancing, single-applicatio
require a restart. Exam
System [17], Butler [10]

As computers became more plentiful, users felt the
need for a familiar look and feel, i.e., common file
systems, desktop look and feel, application preferences,
etc., across different machines. Distributed file systems
such as NFS, AFS, etc., and networked stations such as X
terminals and Windows terminals, allowed users access to
remote files and applications from different machines. We
have now reached the point in evolution where sessions
last days or months and users want the ability to suspend a
complete working session, i.e., the complete desktop, at

off. Users also want automatic remapping of peripherals in
different settings, such as reassigning the default printer to
a lo

 Server is switched to
ano

color-map tables, etc.
Slu

] used a similar partition between the
app

ntinued. This model is elegant because the
use

l product that allows migration of virtual
ma

 has marked
the

Platform [24], the OQO [24], and severable
we

cal printer in the new location.
The related work towards the goal of suspending and

resuming a complete session can be split into two broad
categories, one which required the user to carry something
with them and another that did not.

We first look at solutions that did not require the user
to carry any device with them. We note that all of these
approaches require common software to be installed on the
machines. Some approaches like Teleporting [12] and
XMove [15] intercept the data flowing between the server
and the client at a medium-grain graphics protocol level
such as the X protocol. The graphics interface is moved to
a different machine and the application continues to run on
the same remote machine. The X

ther client by using a proxy X Server in between the
GUI and the remote machine. The proxy needed to handle
the differences in capabilities of the two clients, such as
color depth of the frame buffer,

ggish performance due to high network latencies on
round trips and exposures in the X security model limited
this approach.

Another approach drew the line between the
application and the graphics/IO at a lower level. Stateless
thin clients such as SLIM [16] (elements of which were
incorporated into SunRay [24]) and VNC [11] included
low-level graphics rendering primitives that operated on
the frame buffer, such as bitmap transfers. Applications
ran on servers and user input was provided at the thin
client. A high-bandwidth connection between the thin
clients and servers was necessary for good interactive
performance. Users could access their applications from
different machines and resume where they left off
previously, since all state was maintained at the server.
The InfoPad [19

lication and the GUI, but realized it on a small portable
device that included wireless connectivity between it and
the server.

Chen and Noble [2] observed that virtual machine
technology [4] can be used to migrate sessions between
computers and thus be used for mobility. Internet
Suspend/Resume [7,8] developed this idea and
demonstrated that using commercial VM technology such
as VMware Workstation together with a networked file
system such as Coda [14], it is possible to walk up to a
machine and resume a suspended session. Each ISR client
has a Host OS and VMware Workstation preinstalled, and
has access to a networked repository of VM images. When
a session is suspended the VM image is stored on a server.
When a user resumes a session, this image is restored and
the session is co

r need not carry any device. However, the host
machines need network connectivity and preloaded
software.

More recently ISR has added portable storage as a
lookaside cache to speed up resume time [18]. The copy in
the network is considered the primary copy and the
portable copy is the secondary copy. The ISR project has
independently experimented with running VMware
Workstation over Knoppix from a portable storage device,
for the purpose of introducing ISR to users without
disturbing the internal disks on their machines [5].
Sapuntzakis et al. [13] have studied how to optimize the
transfer of encapsulated virtual machine state between
different machines. VMotion by VMware [24] is a
commercia

chines across different physical machines.
MobiDesk [1] transparently virtualizes the display,

operating system and network. Applications run on hosting
servers. The clients are input and output devices.
Individual processes are virtualized instead of the complete
operating system environment. The display is virtualized
with a virtual display driver which is similar in flavor to
that in SLIM and VNC. Network connections operate
through a proxy and a technique similar to NAT is used to
map fixed virtual address to new physical network
addresses.

The ability to carry a portable computer, suspend the
machine, and resume work at another location

 most successful realization of user mobility. Suspend
and resume times were acceptable and people could work
in disconnected modes. Network connections had to be re-
established and applications needed to be resilient. For
example telnet sessions are not preserved. Technologies
such as MobiDesk [1] consider how to preserve network
connections across session suspend and resume. Efforts to
build smaller portable machines with similar functionality
include the IBM MetaPad [24], the Antelope Modular
Computing

arable computers. The drawback with these approaches
is that the user is limited to the capability of his portable
computer, and cannot leverage more powerful CPU and
memory resources even if they were available. The Intel
Personal Server [21] utilizes other devices near it over
wireless links and web-based interfaces to view data. The
IBM Personal Mobile Hub [6] acts as an intermediary
between body worn sensors and back end infrastructure.

Some recent commercial offerings attempt to support
personalization of anonymous PCs. For example, Migo
[24] allows the user to carry personal settings and files on
a USB flash key. One limitation of this approach is that it
must be tailored for each application to be migrated.
MetroPipe [24] starts a CPU emulator on top of an existing
OS, then boots a tiny variant of Knoppix. It provides
personalized access to networked services, but does not
preserve user sessions.

Name What is
carried?

Host PC
dependencies

Key benefits Some drawbacks

Laptop
computer

CPU, disk,
memory, screen,
kbd, battery

(Not Applicable) Ubiquitous and Si
pro

ze and weight
ven

Ultraportable Same as laptop (Not Applicable)
e.g., OQO

Sm d lighter
than laptops.

Small display and keyboard aller an

Portable
preferences,

o

tings S, same of
data to carry

on analysis.
Dependency on Host PC

Session state is not preserved.
e.g., Mig

Personal set
in portable
storage

Identical O
application
software installed

Small amount Needs per applicati

software install.

MetaPad, y,

battery

Custom connector Adapts to multiple Compute capacity limited to
Antelope

CPU, memor
disk, suspend to I/O peripherals form factors resources on portable

SLIM, VN
XMove

C,
orms

Nothing Needs preinstalled
software

Works on many
different platf

Needs reliable low-latency
network

MobiDesk Nothing
software

Both processes and
I/O can be moved

w-latency Needs preinstalled Needs reliable lo
network

ISR w/o
portable
storage

latency

e at
arbitrary locations

Nothing Needs preinstalled
software

Local execution
hides network

Needs high-bandwidth
network for fast resum

ISR with
portable
storage

Portable storage
device used as a
cache.

Needs preinstalled
software

Fast resume and
suspend.

Needs network to validate
cache

SoulPad Complete SW
ent on

portable disk

 resume time due to
tion environm

USB 2.0 No preinstalled
software (only
BIOS)

Increased
Host OS auto-configura

Ta o ache

E restori ng pended
sessio necess dapt to local environments.
Solut ecti p by
changing settings for work parameters,
etc., as users move fro to another.

Table 7 lists some of the benefits a
different solutions. Each solution come
are

ization
tha

managed devices.

no trace o EnviroPC and therefore it is
immediately available for other users. We also believe that

nable untries
 the equiring

 own a cheaper device instead of a full PC.

to-
 to satisfy our desire to be

e talled software on the EnviroPC.

ble 7: Comparison

s and sus

f mobility appro

We leave

s.

n the ven after
ns, it is

ng personal setti
ary to a

ions such as IBM Access Conn
default printers, net
m one location

ons [24] hel

nd drawbacks of the
s with tradeoffs that 7 Conclusions

 acceptable in certain environments. Approaches that
separate the applications from the user interface require
reliable low-latency networks, preinstalled client software,
do not require any portable devices, and have fast suspend
and resume times. Solutions based on client virtual

t do not require the user to carry anything, require high-
bandwidth networks and preinstalled client software, have
moderate suspend/resume times and good interactive
performance. However, they do not yet address processor
architecture dependencies well. Approaches that require
bulky devices to be carried are able to suspend and resume
quickly and do not require networking.

Our approach is particularly well suited to
environments and situations where connectivity is poor
and the software state of environmental computers is
unpredictable. The user is required to carry a device and
suitable mechanisms have to be built to protect and recover
from loss of the device. However, a significant advantage
is that the EnviroPCs can be diskless, un

our model can e
to benefit from
them to

 more users in developing co
computing revolution by r

We have built a system that allows a user to walk up to
a class of generic PCs and resume a suspended session by
attaching a portable device to it. We provided detailed
measurements using several types of portable SoulPads
and EnviroPC configurations. The time to resume a
session is in the order of two minutes and the time to
suspend is in the order of thirty seconds. Application
performance degradation for the SYSmark 2002
benchmark is around 40%. We believe that
suspend/resume latencies and application response times
are in the acceptable range for many users. Our approach
incurs an increased resume time due to the Host OS au
configuration needed
ind pendent of any ins

To our knowledge, the ability to resume suspended
user sessions on standard PCs containing no software is
unique to our approach. Issues surrounding the loss of the
SoulPad are similar to ones for losing laptops, though one
could argue that smaller devices are easier to lose.

Backups can be done opportunistically to a server while
connected to a network, or to local storage alternatives
when networked backup services are not available.

We also reported several lessons learned from our
experience. Processor architecture evolution needs to be
addressed by virtual machine technologies for this type of
migration to work across a broader class of machines.
Software licensing terms need to be reexamined with the
advent of VM-based mobility. Both these issues need to be
add

hones,
dig

esk:
Computing, Proc. of ACM

2.

te communication, June 2004.
C. Narayanaswami, M. Nidd, Personal

7.
hop on Mobile Computing

8.
innamohideen, Seamless Mobile

9.
 Servers.

 hared

87,

11.
E Internet

12.

tions Magazine, Third

13.

, Proc. of the 5 USENIX

14.
mputer Systems, May 2002, pp. 85-124.

Principles,

17.

19. oering, R. W.

20. lipede" - Nanotechnology

21.
tous Computing,

22.

2002

23.

24.

ressed by OS, VMM, and application vendors.
Clearly, the use of virtual machines for migration of

user environments is a promising approach. However,
further work is needed before this vision can be realized in
a broad set of computing environments. We hope that our
work motivates the community to address some of the
issues we have raised. New directions for combining
SoulPad with portable music players, mobile p

ital cameras, etc., should also be explored further.

8 Acknowledgements
We would like to thank Srinivas Krishnamurti, Mendel

Rosenblum and Michael Yang for helping us obtain
permission to publish benchmark results involving
VMware Workstation 4. We are also grateful to John
Peterson for providing a copy of SYSmark 2002 and
helping us obtain permission to publish its results. We
would also like to thank our shepherd and the anonymous
reviewers for comments that helped improve the paper.

9 References
1. R. Baratto, S. Potter, G. Su and J. Nieh, MobiD

Mobile Virtual Desktop
MobiCom 2004, pp 1-15.
P.M. Chen and B. D. Noble, When Virtual is Better
Than Real, Proc. of 8th IEEE HotOS Workshop, May
2001, pp 133-138.

3. F. Douglis and J. K. Ousterhout, Transparent Process
Migration: Design Alternatives and the Sprite
Implementation. Software Practice and Experience,
21(8), 1991.

4. R. P. Goldberg, Survey of Virtual Machine Research,
IEEE Computer, 7 (6), 1974, pp 34-45.

5. C. Helfrich, priva
6. D. Husemann,

Mobile Hub, Proc. of IEEE ISWC 2004, pp 85-91.
M. Kozuch and M. Satyanarayanan, Internet Suspend
/Resume, 5th IEEE Works
Systems and Applications, 2002, pp. 40-46.
M. Kozuch, M. Satyanarayanan, T. Bressoud, C.
Helfrich and S. S
Computing on Fixed Infrastructure, IEEE Computer,
37 (7), July 2004, pp. 65-72.
M. J. Litzkow, Remote Unix: Turning Idle
Workstations into Cycle

Proc. of the Summer 1987 USENIX Conference, June,
1987, pp. 381-384.

10. D.A. Nichols. Using Idle Workstations in a S
Computing Environment. Proc. of the 11th ACM
Symposium on Operating Systems Principles, 19
pp. 5-12.
T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual Network Computing. IEE
Computing, 2(1), Jan/Feb 1998, pp 33-38.
T. Richardson, F. Bennett, G. Mapp, A. Hopper,
Teleporting in an X Window System Environment .
IEEE Personal Communica
Quarter 1994, 1(3), June 1994, pp. 6-12.
C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.
S. Lam, M. Rosenblum, Optimizing the Migration of
Virtual Computers th

Symposium on Operating System Design and
Implementation, December 2002, pp 377-390.
M. Satyanarayanan, The Evolution of Coda, ACM
Trans. on Co

15. E. Solomita, J. Kempf., and D. Duchamp, XMOVE: A
pseudoserver for X window movement. The X
Resource, 11(1), 1994, pp. 143-172.

16. B. K. Schmidt, M. S. Lam, J. D. Northcutt, The
Interactive Performance of SLIM: a Stateless, Thin-
Client Architecture, Proc. of the 17th ACM
Symposium on Operating Systems
December 1999, pp. 32-47.
M. Theimer, K. A. Lantz, D. R. Cheriton,
Preemptable Remote Execution Facilities for the V
System, Proc. of the ACM Symposium on Operating
Systems Principles, 1985, pp. 2-12.

18. N. Tolia, J. Harkes, M. Kozuch, and M.
Satyanarayanan , Integrating Portable and Distributed
Storage, Proc. of the 3rd USENIX Conference on File
and Storage Technologies, 2004, pp. 227-238.
T. E. Truman, T. Pering, R. D
Broderson, The InfoPad Multimedia Terminal: A
Portable Device for Wireless Information Access,
IEEE Transactions on Computers, 47(10), October
1998, pp. 1073-1087.
P. Vettiger, et al., The "Mil
Entering Data Storage, IEEE Trans. on
Nanotechnology, 1(1), Mar 2002, pp 39-55.
R. Want, et al., The Personal Server: Changing the
Way We Think about Ubiqui
Ubicomp 2002, pp. 194-209.
Business Applications Performance Corporation, An
Overview of SYSmark 2002, March
2002,http://www.bapco.com/techdocs/SYSmark
Methodology.pdf
Trusted Platform Module (TPM) specification,
https://www.trustedcomputinggroup.org/
Please consult http://www.google.com/ or your
favorite search engine.

	Introduction
	Architecture
	Components
	Issues addressed
	The issues we addressed in the course of building our SoulPa
	Performance: Working on a VM introduces significant overhead
	Security and privacy: Portable devices are prone to theft an
	Reliability: Portable devices are prone to damage and loss.
	Hardware independence: There are many hardware differences b
	The following section describes how we addressed some of the

	Implementation
	Overview
	Encrypted virtual machine image
	Networking configuration
	Backups

	Experimental Results
	Resume and suspend latencies
	Application response times
	Hardware independence

	Discussion and Future Work
	Instruction Set Architecture (ISA) diversity
	Solutions
	Practical workarounds

	Software licensing
	Developing countries
	Security and privacy

	Related Work
	Conclusions
	Acknowledgements
	References

