


 One-way heat flow formulation with Planck absorption and re-emission

Joseph Reynen
Le Ducal U111

Port Marina Baie des Anges
06270 Villeneuve-Loubet

France
jwreynen@aol.com

August 2013 
updated  December 2013,  now including MATLAB listing
updated  September 2014,  updated MATLAB listing

Introduction

In recent papers [1, 2, 3] the author has discussed the one-way versus the two-way formulation for heat 
flow by radiation.

In [1] is  presented a model of the semi-transparent atmosphere consisting of a stack of gauzes, 
representing the IR-active trace gases (molecules with three or more atoms). Results have been 
validated by comparing them with published results of K&T type of diagrams based on the two-way 
formulation. The one-way formulation does not show the huge absorption in the atmosphere nor the so-
called back-radiation therein.

In [2] a finite element implementation is presented for the one-way heat transport in a stack of gauzes, 
with the same results as [1] concerning OLR and sensitivity due to doubling CO2. 

In [3], again by means of a finite element technique, the heat transport by conduction through two slabs
with a finite thickness separated by a vacuum with a radiation heat transfer shows once more that the 
back-radiation does not exist. 

In [1] and [2] the heat transport by radiation is studied for an atmosphere with given temperature 
distribution defined by the environmental lapse rate. The absorption and re-emission of heat by IR-
active molecules is approached by a stack of grids of “black” wires.
In this paper, instead of a stack of “black” grids, the absorption and emission in the atmosphere is 
assumed to be given by the Planck function as, for example, described in the Science of Doom (SoD) 
blog [4, 5],  however, without the two-way heat flow formulation.

In appendices 2 and 3 the two-way formulation of Schwarzschild equation, as presented in SoD [4,5]
is analysed in detail. It reveals that  the Schwarzschild approach in fact is a scheme identical to the one-
way formulation of heat exchange between pairs of emitters and absorbers. 
The same type of equations as in the stack model results: the absorption coefficients of the gauzes in 
the stack model can be replaced by Planck functions. However, in those equations, appear view factors 
which in the Schwarzschild are calculated in a different way as compared to the stack model. 
These view factors have an impact on the results and indicate that the stack model is to be preferred.
 
In appendix 4 slight differences are discussed concerning so-called view factors.
In appendix 5 the listing of a MATLAB program is given, with line by line green comments.
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Schwarzschild equation

With reference to the SoD blog [4, 5] we repeat the so-called Schwarzschild equation, applied for up-
ward and for down-ward fluxes, in the two-way heat flow formulation in a semi-transparent 
atmosphere. 

In plain words 
It is supposed that the radiation can be split into up-ward components U and a down-ward ones D . 
Radiation  strength depends on the wave length and we can consider U and D as components over a 
wave length interval at a certain wavelength. 
The dimension of the different U's and D's is W/m^2, we call them fluxes.
The up-ward flux starts at the surface of the planet with the Prevost type of  flux corresponding to the 
surface temperature Ts and emissivity according to Stefan-Boltzmann: γ(eσTs^4) where γ represents the
fraction of the Stefan-Boltzmann expression related to the wavelength interval and wavelength of the U
components.

On the one hand, the  up-ward flux decreases proportionally to the flux itself due to absorption by the 
presence of IR-active molecules along its path upward. 
On the other hand it increases by the emission of the same IR-active trace gases  proportional to the 
Planck function B (T(z)) for the wavelength interval and wavelength of U and to the number of IR-
active molecules, assuming that they are emitting as if the molecules were radiating towards outer 
space. The process is described by a Schwarzschild equation for an upward flux component U. 

For the downward components D , taken positive in the negative z-direction, a similar process can be 
described by a Schwarzschild equation. The downward component analysis starts with a  LW input at 
the top of the atmosphere, TOA, usually taken as zero. 
The  downward component D, on the one hand starts to increase along its path s= Htoa-z from z = Htoa
down to the surface z=0, due to downward emission of  IR-active molecules at a temperature T(s) and 
Planck function B (T(s)). 
On the other hand, it decreases due to absorption of a fraction of the downward component. 
 
In more strict mathematical terms. 

The  up-ward components are supposed to be described by the following linear differential equation:
                dU = - Nα(U- B)dz                                                                                                 (1)   

                dU     variation of  upward component  with height             [Watt/m^2]
                  N      number IR-active molecules per cubic meter     [1/m^3]
                  α        cross-section for absorption     [m^2]
                  B       Planck function component for emission                 [Watt/m^2]
                  dz      variation of  vertical co-ordinate z                       [m]

A similar equation can be written for the down-ward components D, which are taken positive in down-
ward direction:
 
                dD =    Nα(D- B)dz                                                                                                  (2)



In (1) and (2) the parameters U , D , and B(T) are for a one centimetre wavelength interval at a specific 
wavelength. 
The total upward intensity,  the total downward intensity and the total Planck function , all three 
function of the height z, become the sum of the components.

                      Utot = Σ U      (3)           Dtot  = Σ D        (4)            Btot =  Σ B(T)                (5)
                                                                   

For the surface of the planet with temperature Ts and emissivity e, it is the so-called Prevost term:

             Utot(z=0)    = eσTs^4                     (6)

In order to study in a transparent way the proposals of Schwarzschild we replace  the parameters
Nα by β being absorption per unit of length.
The Schwarzschild procedure, to split up artificially the radiation in  up-ward  and down-ward  
components at a certain wave length, can then be studied by looking to the solutions of the system of 
the linear differential equations with  β a function of z:

             dU/dz =  -  β(U - B )                                                                                                      (7)

             dD/dz =     β(D - B )                                                                                                       (8)

In appendix 3 the classical  original analytical Schwarzschild solution is given by introducing a 
coordinate transformation based on so-called optical thickness, as well as two other techniques to deal 
with the equations numerically. 

Semi-transparent grids to model the atmosphere.

Suppose we have an atmosphere with a number of axial stations including the surface node = 1 and the 
outer space node = nods, with absorption coefficients fi and temperatures Ti . 
Between the nodes we can identify nods*(nods-1)/2 pairs which are communicating with 
each other. 

Heat exchange between the grids by means of  finite elements

At each node we have an absorption coefficient fi and a temperature Ti . 
The heat exchange by radiation between two surfaces is given by the generalized Stefan-
Boltzmann law [3] based on the work of Christiansen, 1883, [6]:

for Ti >Tj q(i→j) = εijσ(Ti^4 – Tj^4)                                              (9)

                                       1/εij = 1/εi + 1/εj – 1

The latter relation can also be found in Wikipedia:
http://en.wikipedia.org/wiki/Emissivity#Emissivity_between_two_walls 

In plain words, surfaces exchange with each other information about their temperature and about their 
surface conditions, on the basis of which heat is exchanged, emitted by the surface with the higher 

http://en.wikipedia.org/wiki/Emissivity#Emissivity_between_two_walls


temperature  and absorbed by the surface with the lower temperature.
In practical terms, in the radiation process we have to identify pairs of emitters and absorbers (i, j) with 
temperatures Ti and Tj, not necessarily adjacent to each other. 
In a semi-transparent atmosphere, between two communicating surfaces defined by nodes i and j there 
might be other semi-transparent surfaces k in between, communicating with i and j.
In analogy with (9) and introducing  nodal parameters θi = σTi^4 we can write for the nods*(nods-1)/2 
pairs the heat exchange between nodes i and j<nods [2]:

θi = σTi^4   ,      q(i→j)  =  fei,j*( θi - θj )  ,        fei,j  =  fi*viewfactor(i,j)*fj                                    (10)
                                       
                                                                                                                                       k= j-1

                             with           viewfactor(i,j)     =   1 -  Sfk
                                                                                          k=i+1
   

Alternative view factors are presented in appendix 4.
Each pair represents a finite element with two nodes and characteristic equation with fe=fe1,2 :

                             │ fe  -fe ││θ1│  =  │q1│                                                                                                 (11)
                                     │ -fe   fe ││θ2│      │q2│

The nods*(nods-1)/2 overlaying finite elements can be assembled into a system matrix K: 

       K*q  = rhs                 with the solution              q = inv(K)*rhs                                              (12)

      K         :  system matrix of order nods x nods,  
      inv(K) : inverse of K taking into account boundary conditions 

     q        : vector of unknowns θi  in W/m^2, of order nods
      rhs      :  right hand side vector of fluxes q in W/m^2, into the system, of order nods

In case there would be no heat transfer from the bulk of the atmosphere to the IR-active trace gases by 
mechanisms other than LW radiation the right hand side rhs = 0. 

The unknown q  are then defined by (12) with the boundary conditions T=288 K at the surface node=1 
and at outer space node = nods, T=0 K.

In figure 1 the results are depicted for such an hypothetical situation.
The resulting temperature distribution is given for different values of ftot, which represents the total 
amount of absorbers in a column of air. 
The value ftot is also called the optical thickness of the atmosphere. 

As reference is included the temperature due to the environmental lapse rate, ELR.
The results of the hypothetical atmosphere as presented in figure 1 are of interest!
It is noted that in case there is no interaction with the other molecules of the bulk of the atmosphere 
with a temperature defined by ELR, the IR-active trace gases are much colder than the atmosphere.
For the annual and global mean atmosphere , known as the K&T atmosphere, the total absorbers are 
represented by ftot = 0.86 [1].  See also appendix 4 on the sensitivity of this analysis. 



Figure 1

The conclusion is that IR-active trace gases do not heat up the atmosphere!
It is the other way around, the 99% bulk of the atmosphere keeps, by molecular collision also called 
conduction, the IR-active trace gases warm! 
Figure 2 gives the OLR for this hypothetical case. For ftot=0, the OLR = qsurf flux is equal to the 
Prevost flux = eσTs^4 , because without IR-active trace gases the surface is indeed looking without any 
absorption to outer space at zero K.
Figure 2
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The flux through the atmospheric window is given by qwindow = (1-ftot) eσTs^4.
In this hypothetical case , without heat transfer between IR-active trace gases and the bulk of the 
remaining 99% of the atmosphere, OLR=qsurf. 
In appendix 5 a listing is presented of a MATLAB program by which figures 1 and 2 are generated. 
The reader can make his own runs with different boundary conditions.

An alternative and probably more important use of the matrix relation (12) is the reverse solution 
technique. With a given temperature (and thus q ) distribution:    

      q = K*q                                                                                                                              (13)  

      q    :  vector of necessary heat fluxes by mechanisms other than LW radiation (convection, 
               wind, SW-absorption, aerosols etc.) to obtain a measured temperature distribution

               defined by  q . 

The results in figure 3  represent  the standard output for the stack model as presented in [1,2] and 
generated by the MATLAB program of which the listing is given in appendix 5. 
In that program, option 2 represents the K&T global and mean atmosphere. In those publications the 
OLR is said to be 240 W/m^2 and that resulted into a value of ftot = 0.86. [1]
Figure 3
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                                j=nods

                    qsurf = Σ f(1)*viewfactor(1, j)*f(j)*(θ(1) – θ(j))                                                     (14)
                                j=2

The hypothetical back-radiation is defined by the sum of the highlighted terms:

                                  j=nods

               “backrad” = Σ f(1)*viewfactor(1, j)*f(j)* θ(j)                                                               (15)
                                  j=2

This algebraic expression is not a flow of heat, it is just a term in the relation for the surface heat flux 
(14). It is noted that the surface flux (14) is not of the Prevost type, it depends on all nodes and and all 
temperatures!

We see that the absorption in the atmosphere represented by the difference between qsurf and qwindow
is small. The heat transfer mechanism is mainly due to other mechanisms than LW absorption.
That difference being the heat which is deposited by other mechanisms than LW radiation is 
represented by the difference between OLR and qsurf.

The resulting heat budget based on the option 2 values is given in figure 4, with OLR =240 ,
a surface flux of 59 of which 53 through the window, only 6 absorbed by the atmosphere.
The heat evacuation from the surface to higher regions by convection is 109. [2]

Figure 4

 

Global and annual mean heat budget in W/m^2 

 

103 SW 343 SW SUN                                                         240 LW 

     

                                                                                                                                   

           80 SW                                                                            187 LW                  53 LW 

  

                                                                ATMOSPHERE 

                                                                                                                               

 

                                                thermals                                                                                                                        

reflection                                             thermals +  evaporation                        window                                                                                                             

         23 SW            168 SW       SURFACE             109 heat            6 LW         53 LW 

             72 SW  72 heat              ATMOSPHERE 

In appendix 4 an alternative analysis is given for this global and annual mean heat budget, evaluated for
different viewfactors.

 



Heat absorption and re-emission  based on Planck

The Planck function can in each node (i=1:nods) be defined for wavelength intervals at different 
wavelengths (k=1:ktot) and at a temperature Ti. In total ktot*nods variables B(i,k). 
At each node i with  and wave length k we have an height h(i), a number N(i,k) of IR-active molecules 
at wavelength k, and an emissivity α(k) giving an expression for an element flux with nodes i and j 
defined by three algebraic expressions, similar to(10)

                          f(i,k)  =  h(i)*N(i,k)*α(k)                                                                                   (16)

                          f(j,k)  =  h(j)*N(j,k)*α(k)                                                                                    (17)

                       fe(i,j,k) =  f(i,k)*viewfactor(f(i,k),f(j,k))*f(j,k)                                                      (18)
                       
 Element matrix for wave lenght k similar to (11)

                    │  fe(i,j,k)    - fe(i,j,k) │ │B(i,k) │=   │q(i,k) │ 
                    │                                  │ │          │      │          │                                                     (19)

                   │- fe(i,j,k)      fe(i,j,k) ││B(j,k)│    │q(j,k)│

The elements of wave length k can be assembled into a matrix Kk of dimension nods x nods 

similar to  equation (12) .

                    Kk*Bk =  qk                                                                                                                                         (20)

The similar relation of (13) becomes:

                          k=ktot             k=ktot 

                 q = Σ qk = Σ(Kk*Bk)                                                                    (21)
                          k=1          k=1                                        

For known  Kk *Bk  we find the vector  q representing the mismatch of the LW radiation: more LW 
out of the atmosphere than into the atmosphere.
It is the heat deposit due to other mechanims than LW : convection of sensible and latent heat, 
absorption by aerosols etc.

This model is a one-way heat flow formulation. 
It has already been validated in [1] as a mono-chromatic model by comparison with the results of so-
called K&T diagrams, showing that the huge absorption in the atmosphere does not exist, nor the back-
radiation of heat.
The foregoing discussion shows that indeed the stack model is qualitatively similar to the Planck 
approach. But the Planck approach enables to quantify the distributions of the different IR-active trace 
gases like water vapour , CO2 etc. , by defining absorption coefficients fi_H2O , fi_CO2  etc.
The viewfactor matrix in (18) can be taken as “ones(nods)” except for the last column as is discussed in
appendix 4. It remains a subject of further research.



Conclusion

IPCC authors use the Schwarzschild equation with the so-called  two-way heat flow formulation using 
auxiliary fluxes U and D as is described in the SoD blog [4] and [5].
The auxiliary downward flux D is called back-radiation.
 In appendix 2 and 3 the numerical procedures related to the two-way Schwarzschild formulation are 
discussed in more detail and compared to the one-way FEM formulation.
The analyses of appendix 2 and 3 show that the proposal of Schwarzschild does not give the correct 
results.

The exchange of heat between two absorbing/emitting layers is proportional to the difference 
of the corresponding Planck functions:    f(i)*viewfactor(i , j) *f(j) * (B (Ti) - B (Tj))                           
NB When Ti = Tj the exchange of heat is zero, as it should be according to the Second Law of
       Thermodynamics.
      
The numerical procedure has already been applied in [1] and in [2], not with Planck functions B but by 
means of a stack of semi-transparant grids of  ”black” wires with  θ = σ T^4.
In appendix 5 the listing of a MATLAB program is presented.
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Appendix 1

What do pyrgeometers measure?

As a reaction to earlier version of this paper it has been brought up that the conclusion that 
back-radiation of heat does not exist, can't be correct because “back-radiation has been 
measured”.

To explain how pyrometers work it is sufficient to look to the generalized Stefan-Boltzmann 
equation as given in (9) of the main text:

for T1 >T2 q(1→2) = ε12σ(T1^4 – T2^4)              (A1.1)

                                       1/ε12 = 1/ε1 + 1/ε2 – 1

In plain words: two remote surfaces exchange information with each other concerning 
their temperatures and their emissivities, on the basis of which a heat flow is exchanged 
from the warmer surface to the colder one.

Pyrgeometers use above equation. 
Surface 1 is the sensor surface of the pyrgeometer with:
 
        known temperature T1, 
        known ε1 

            known σ , 
        known electrical input q. 

Unknowns are the data of a remote surface to be measured:  ε2 and T2. 

The manufacturers are clever enough to include e.g. a value for ε2  in the chip to measure 
the remote T2, or they make two measurements with two different sets (T1, ε1, q).
 
The gadgets give the possibility to display the remote temperature T2 or the back-radiation
which seems to correspond to σT2^4. That means that it is supposed that ε12 =1 or ε1 = ε2 = 1.
It is not a back-radiation of heat.
            
Appendix 2
 
Two layer comparison  of stack model and Schwarzschild procedure

Both for the Schwarzschild procedure and for the stack model, for a simple two-layer model the 
various equations can be followed up line by line, and compared to each other.
In the model of figure A2.1, node 1 represents the surface of the planet, node 4 outer space, 
node 2 and 3 the atmosphere.
We introduce 4 temperatures Ti and corresponding parameters θi = σTi^4 with dimension W/m^2.



The parameters θi are a measure for temperature, however they are also used as flux. 
It follows from the context.  The absorption factors are fi. 
Two-way Schwarzschild formulation for two layers

In figure A2.1 are included the calculation of the upward fluxes Ui and the downward fluxes Di 

according to the two-way Schwarzschild formulation. 
                                          
 Figure A2.1 
        -----------θ4  = 0, f4=1        hypothetical downward flux          hypothetical upward flux

      ↓   ↑                              ↓   D3 = 0                                U3 = (1-f3)U2 +f3θ3

        -----------θ3          f3                                                                                       = f1(1-f2)(1-f3)θ1+f2(1-f3)θ2+f3θ3

      ↓   ↑                D2 = (1-f3)D3+ f3θ3     U2 = (1-f2)U1 +f2θ2          

       ------------θ2          f2                               =  f3θ3                                            = f1(1-f2)θ1 +f2θ2

       ↓   ↑                D1 = (1-f2)D2+ f2θ2   ↑U1 = f1θ1   hypothetical surface flux

       ------------θ1          f1                                =  f2θ2 +f3(1-f2) θ3                                              of Prevost type          
                                                                                back-radiation   

The flux to outer space and the back-radiation become according to Schwarzschild: 

                                        OLR =  U3  =  f1(1-f2)(1-f3)θ1+f2(1-f3)θ2 + f3θ3                             (A2.1)

                        back-radiation  =  D1 =  f2θ2 +f3(1-f2) θ3                                                  (A2.2)
 
One-way Finite Element formulation for two layers

The one-way formulation by means of finite elements is given in [2].
In the main text of this paper an overview is given in equation (12). 
For the 4 nodes we have 6 communicating elements with fluxes given by (12):

element  (1, 2):  flux   =                   f1f2( θ1 - θ2) 

element  (1, 3):  flux   =          f1(1-f2)f3( θ1 - θ3) 

element  (1, 4):  flux   =      f1(1-f2-f3)f4( θ1 - θ4)   ( flux through atmospheric window)

element  (2, 3):  flux   =                   f2f3( θ2 - θ3) 

element  (2, 4):  flux    =         f2(1-f3)f4( θ2 - θ4) 

element  (3, 4):  flux    =                  f3f4( θ3 - θ4) 

The flux going to outer space corresponds to  node 4, with θ4 = 0 and f4=1:

                     OLR = f1(1-f2-f3) θ1 + f2(1-f3)θ2 +  f3θ3                                                                        (A2.3) 



 The back-radiation at the surface corresponds to the -signs  of the terms with first node 1 in the surface
heat flux, highlighted in yellow:

                    qsurf = f1f2( θ1 - θ2)  +  f1(1-f2)f3( θ1 - θ3)   + f1(1-f2-f3)f4( θ1 - θ4)                             (A2.4)

The hypothetical back-radiation, which is not a heat flux, becomes with θ4 =0 and f4 =1:

                     “backrad”  =  f1f2θ2  +  f1(1-f2)f3θ3                                                                          (A2.5)

Comparison for two layers 

We see that OLR for the two-way Schwarzschild formulation (A2.1) is not exactly equal to the OLR 
for the one-way finite element formulation (A2.2)!  
The difference is due to  treatment of the viewfactor, in particular the flux through the atmospheric 
window, for two layers:
                                       FEM:   viewfactorF(1,4) = 1-f2-f3                                                                      (A2.6)

                        Schwarzschild:   viewfactorS(1,4) = (1-f2)*(1-f3) = 1- f2 - f3 +f2*f3                   (A2.7)    
  
The difference in back-radiation, that is the  difference between (A2.2) and  (A2.5),  is zero, since in a 
model with only two layers  the view factors between nodes in between do not show up yet.
For models with more layers the difference in results is more pronounce.
Figure A2.2 shows the difference between viewfactorS and viewfactorF for ftot=0.86 and 30 layers.
The viewfactors are defined by:
                                                                                                    k=j-1

                 FEM:             viewfactorF(i,j)  = 1 -  Σfk                = 1- f i+1 – fi+2 …fj-1                               (A2.8)
                                                                                                                 k=i+1

                                                                                                                k=j-1

   Schwarzschild:               viewfactorS (i,j)  =      Π(1-fk)   = (1- f i+1)(1 – fi+2) …(1-fj-1)             (A2.9)  
                                                                                                                k=i+1                                                                        

Figure A2.2
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We consider  the last columns of the matrices viewfactorF and viewfactorS, it are the window factors 
from nodes i to outer space, windowF(i) and windowS(i) respectively:

                                                                                         k = nods-1                
windowF(i) =  viewfactorF(i,nods)  = 1 -  Σfk             = 1- f i+1 – fi+2 …fnods-1                                    (A2.10)
                                                                                                    k = i+1

                                                                                                 k = nods-1

windowS(i) = viewfactorS (i,nods)  =      Π(1-fk)   = (1- f i+1)(1 – fi+2) …(1-fnods-1)               (A2.11)  
                                                                                                 k=i+1             

In fig A2.3 and A2.4 they are plotted as function of the node number respectively as function of the 
height z.
Figure A2.3                                                                Fig A2.4

The reader might be interested what would become the results if one  uses  the viewfactorS in 
the FEM stack model, instead of the viewfactorF.
The result is given in figure A2.5, where the results indicated by option2 are the real FEM results
and the results indicated by *Svf those obtained by using the Schwarzschild viewfactorS.
Figure A2.5

0 5 1 0 1 5 2 0 2 5 3 0 3 5
0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

f i g  6 . 7    C o m p a r i s o n  F E M  w i t h  S c h w a r z s c h i l d
l a y e r  =  3 0 ,  m  =  9 ,  h e i g h t  =  1 0  k m ,   L R  =  - 6 . 5  K / k m  ,  T s K  =  2 8 8   e p s s u r f  =  0 . 9 6

C o m p a r i s o n   F E M  w i n d o w F  a n d  S c h w a r z s c h i l d  w i n d o w S

n o d e  n u m b e r

w
in

do
w

F
 o

r 
w

in
do

w
S

 

 
S c h w a r z s c h i l d
F E M

0 2 4 6 8 1 0
0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

f i g  6 . 6    C o m p a r i s o n  F E M  w i t h  S c h w a r z s c h i l d
l a y e r  =  3 0 ,  m  =  9 ,  h e i g h t  =  1 0  k m ,   L R  =  - 6 . 5  K / k m  ,  T s K  =  2 8 8   e p s s u r f  =  0 . 9 6

C o m p a r i s o n   F E M  w i n d o w F  a n d  S c h w a r z s c h i l d  w i n d o w S

h e i g h t  k m

w
in

do
w

F
 o

r 
w

in
do

w
S

 

 
S c h w a r z s c h i l d
F E M

0 0 . 2 0 . 4 0 . 6 0 . 8 1
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

f i g  6 . 6    C o m p a r i s o n  F E M  w i t h  S c h w a r z s c h i l d
w i n d o w M a t r i x  =  1  n o d s  =  4 0  m  =  9  h e i g h t  =  1 0   L R  =  - 6 . 5   T s K  =  2 8 8   e p s s u r f  =  0 . 9 6

C o m p a r i s o n  F E M  ( o p t i o n  2 )  a n d  F E M  w i t h  S c h w a r z s c h i l d  v i e w f a c t o r s ( * S v f )

f t o t

W
/m

2

 

 

O L R  o p t i o n  2
q s u r f  o p t i o n  2
q w i n d o w  o p t i o n  2
q a b s o r b  o p t i o n  2
" b a c k r a d " o p t i o n 2
b a c k r a d S v f
O L R S v f
q s u r f S v f
q a b s o r b S v f
q t o a  =  2 4 0



We see a disappointing result, in particular for the outgoing long wave radiation: the difference between 
OLR option 2 and ORLSvf is disturbing. The ORLSvf values seem not to depend on ftot. 
And ftot is the optical thickness according to the Schwazschild procedure.
Did nobody remark the fact that OLRvf does not depend on the optical thickness?

The back radiation with the Schwarzschild viewfactors, backradSvf, is closer to the values calculated by
the FEM model, backrad option 2, which is not a back-radiation of heat but only a part of the algebraic 
expression for qsurf option 2.

These differences between the two approaches need more detailed analyses of the Schwarzschild 
proposal, which we address in appendix 3

Appendix 3

Solution of the Schwarzschild equations at one wavelength interval

In this appendix the proposal of Schwarzschild is studied in detail using matrices for multi-layer 
models. A more simple discussion for a two layer model was given in appendix 2.

The proposal of Schwarzschild consists of splitting up the radiation in two components: an up-ward 
component and a down-ward component, U respectively D.
These components are indeed hypothetical. Not everybody agrees that this splitting up was only for 
reasons of analysis, which back in Schwarzschild's time  had to be carried out without computers. 
According to the Schwarzschild proposal the absorption by a layer of an absorbing atmosphere can be 
described by multiplication of the up-going flux U with  a factor (1-f), where f is the absorption factor 
of the layer. The up-ward flux at the surface is supposed to be the Prevost flux: U1=eσTs^4
And in the same way for the downward flux, by assuming it zero at TOA .

We will present in this appendix the original analytical Schwarzschild solution expressed as integrals. 
The integrals were evaluated by techniques of quadrature available at the time. 
We will also use more modern numerical techniques to solve the Schwarzschild equations by an 
explicit stepping procedure as well as by an implicit scheme based on a variational process of least 
squares. 

Why this zeal on various numerical techniques? 
The reason is to try to understand the differences from the results by the FEM formulation of the semi-
transparent atmosphere by a stack of grids and the results from the original Schwarzschild procedure 
which have been programmed by the author, see appendix 5.
The type of results are the same but a difference for the outgoing long wave radiation OLR between 
the two models is disturbing. 



Modification of original Schwarzschild procedure

To bring the results closer to each other, two modifications  to the original Schwarzschild procedure 
are introduced in this paper: 

(1)   Instead of starting to calculate the up-ward component U by the Prevost component
        U1=eσTs^4, we make it less hypothetical by subtracting  the calculated hypothetical 
       back- radiation at  the surface:   
       the starting  condition for the  up-ward flux becomes: U1 = eσTs^4 – D1.

(2)   Moreover, we consider the flux through the atmospheric window as a parallel flux not  
       affected by  the  Schwarzschild procedure of multiplying the flux through an absorbing 
       layer by a factor (1-f).
      The starting value for the upward flux becomes: U1 = eσTs^4 – D1 – qwindow.
       Once from this upward flux the outgoing radiation has been evaluated by the Schwarzschild  
       procedure,  the parallel flux qwindow has to be added to OLR.

Most readers will agree with the author that these modifications are straight forward!

However, SoD blog [4,5] made already objections to an earlier version of this paper that the splitting up
of the radiation in up-ward and down-ward fluxes is called  artificial : 
it was against what is called the “SoD etiquette”!

We wonder what will now be the objections against the modifications which are making the 
hypothetical splitting up less hypothetical, since we put the hypothetical components back again 
together, through the boundary condition! 
We see more coherent results when in the boundary conditions for the up-ward flux, the result of the 
analysis of the down-ward flux is subtracted before carrying out the analysis of the up-ward flux!

Original analytical solution of Schwarzschild

The Schwarzschild equations become with β = Nα  for the up-ward component U respectively 
the down-ward component  D:

             dU/dz =  -  β (U-B)                                                                                               (A3.1)

             dD/dz =     β (D-B)                                                                                                (A3.2)

NB The  downward component  D is supposed to be positive in the downward direction.

To facilitate  the analytical solution for a β depending on z,  a coordinate transformation is 
introduced:
                                                                 Htoa
        dτ  =   -  βdz          or           τ (z) =  ∫β dz'                         (A3.3)
                                                                  z
        Htoa :       height of the TOA, top of atmosphere.
Physically the parameter  τ is interpreted as optical thickness and represents the amount of absorbers 
above a point z in the column of air.  At TOA we assume τ =0, at the surface τ = τmax = ftot..



The Schwarzschild equations become:

                dU/dτ  -U = -B                                                                                                       (A3.4)           

               dD/dτ  +D =  B                                                                                                        (A3.5)

The solutions become:
                                 τ
      exp(-τ ) U =    - ∫exp(-τ ')Bdτ'  +C1                                                                                 (A3.6)   
                                0

                                 τ
       exp(τ ) D =      ∫exp(τ ')Bdτ'    +C2                                                                                 (A3.7)
                               0
It can be inspected by differentiating with respect to τ that it are indeed the solutions of the linear 
differential equations with variable right hand side B.
The integration constant C2 =0,  because  at TOA the down-ward flux D=0 and τ = 0. 

The integration constant C1 follows from :  at z=0 , τ = τmax .
In the original Schwarzschild procedure  the upward flux at the surface is the Prevost flux:  

             U1= U(τmax) = eσTs^4.
                                                        τmax

             C1=  exp(-τmax) eσTs^4 + ∫exp(-τ ')Bdτ'                                                                  (A3.8)
                                                        0

The solutions for U and D become:
                                                                            τmax

                 U(τ)  =    exp(-(τmax--τ)) eσTs^4 + exp(τ ) ∫exp(-τ ')Bdτ'                                   (A3.9)            
                                                                                     τ 
                                             τ
                 D(τ)  =    exp(-τ) ∫exp(τ ')Bdτ'                                                                            (A3.10)
                                           0

The outgoing long-wave radiation respectively the back-radiation at the surface become:

                                                                       τmax

                    OLR = U(τ=0) = exp(-τmax)eσTs^4   + ∫exp(-τ ') Bdτ'                                      (A3.11)          
                                                                                 0 

                                                                         τmax

          backrad  = D(τmax)   =                                    ∫exp(-(τmax -τ '))Bdτ'                           (A3.12)
                                                                         0                
It is noted that U, D , τmax,  τ and the Prevost term eσTs^4 , are wavelength dependent and the integrals



have to be evaluated for different  wavelengths.
Applying this Schwarzschild solution to the stack model we have to replace B by θ and the 
optical thickness τmax by ftot(1) .
The integration variables related to optical thickness, τ' and dτ' become:      
                                            
   τ'   is replaced  by ftot(i):  

    for i =2:nods-2  
            ftot(i) = ftot(i-1) – f(i)      (optical thickness at position z(i))
     end   

  dτ'  is replaced  by   f(i)

In the equations (A3.11 ) , (A3.12 ) the integrals are replaced by discrete summations, denoted by Σ:

                                                                                                    i=nods-1

                  OLRS0 =   (exp(-ftot(1)) ) eσTs^4  +  Σ(f(i) *θ (i)*exp(-ftot(i)))                                (A3.13)
                                                                            i=2  

                                                                           i=nods-1

             backradS0 =                                              Σ(f(i) *θ(i)*exp(-(ftot(1)-ftot(i)))                     (A3.14)
                                                                                                     i=2   
                                                                                                                                                                
These relations were the way how back around 1900 problems were solved, without computers.
The results are given in figA3.1 and compared with the results of the FEM model already given in 
[1,2]  , indicated by option=2, and also depicted in the main text as figure 2.

Figure A3.1
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We see that outgoing long wave radiation determined by the original Schwarzschild procedure OLRS0
remains more or less at the level of the Prevost flux at the surface. Not very promising!
OLRS0 is similar to the ORLSvf curve of figure A2.5 of appendix2.
The backradSO is close to the expression defined by the FEM model of the stack, and it is similar to 
backradSvf of figure A2.5 of appendix 2.

Modified Schwarzschild procedure

The modified original Schwarzschild solution, due to a modified boundary condition, can be written by 
subtracting from the Prevost term eσTs^4 in (A3.13), the back-radiation term backradS0 and the term 
qwindow.

We will first apply the backrad modification.                    
The modified outgoing long wave radiation becomes by modifying for the back-radiation, OLR0MBR

      OLRS0MBR =   (exp(-ftot(1))) (eσTs^4 -backradS0 ) +

                                                                                                                      i=nods-1

                                                                             Σ(f(i)*θ(i)*exp(-ftot(i)))                  (A3.15)  
                                                                                                                      i=2

The results for OLRS0MBR are given in  figure A3.2.  
Figure A3.2    

We see the influence of the modification of subtracting the hypothetical backrad from the hypothetical 
Prevost flux at the surface.
Still not promising, the red curve OLRS0MBR is  not very similar to the blue OLR option 2.
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We now apply the second modification of the original Schwarzschild procedure, by considering the flux
through the atmospheric window as a parallel radiation, not affected by the IR-active molecules.
We have to subtract also qwindow from the Prevost term.
But once the outgoing long wave radiation has been defined by the Schwarzschild procedure , we have 
to add qwindow:

     OLRS0M =   (exp(-ftot(1))) (eσTs^4 -backradS0 -qwindow) + qwindow

                                                                                                                      i=nods-1

                                                                             Σ(f(i)*θ(i)*exp(-ftot(i)))                  (A3.16)  
                                                                                                                      i=2
                                                                                                                     

The parallel flux through the atmospheric window is defined by:

                           qwindow =(1-ftot) eσTs^4                                                                                (A3.17)

The results of both modifications of the original Schwarzschild procedure, OLRS0M, are given in 
figure  A3.3
Figure A3.3

We observe that with the two modifications the OLRS0M, the outgoing long-wave radiation according 
to modified Schwarzschild, starts to look like the OLR option 2 from the FEM stack model.
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Before the final discussion of the Schwarzschild procedure , we want to show the results of alternative 
numerical techniques to solve the differential equations. Just to verify that the differences are not due to
numerical processes, but to an unfortunate physical Schwarzschild proposal.

Forward stepping numerical procedure, explicit technique

For the discretized stack of the atmosphere with absorption/emission coefficients fi  =  (β Δz)i  and  
Planck function Bi = θi ,  a forward stepping procedure is described to solve equations A3.1 and A3,2, 
starting from the original respectively the modified boundary conditions for the up-ward  and down-
ward fluxes:

        Ui+1 = Ui (1 -  fi+1) + fi+1 θ i+1                                                                                                 (A3.18)

           Di =  Di+1(1-  fi) +fi θ i                                                                                                         (A3.19)

The original Schwarzschild boundary conditions respectively the modified ones are :

   U1 =  ε σ TsK^4       or the modified BC     U1 =  ε σ TsK^4 -  D1 - qwindow                           (A3.20)

      Dnods-1  =  0                                                                                                                             (A3.21)  

The solutions have to be interpreted as :
                                                                                                                                  
           OLRS1 = Unods-1    or for modified BC        OLRS1M= Unods-1  +qwindow                      (A3.22) 

       backradS1 = D1                                                                                                                      (A3.23)

The results are given in figure A3.4 as OLRS1, OLRS1M and backradS1.

Implicit solution

Instead of an explicit  stepping process for (A3.1) and (A3.2 ), an implicit solution technique can be 
used. The advantage of an implicit solution is that for the same mesh size the solution is more precise, 
or alternatively a coarser mesh can be used. 

Equations (A3.1) and (A3,2) with the mesh and the absorbers fi  =  (β Δz)i can be written as:

up-ward :           A1*U =  B1* Θ  =  rhs1           solution:   U = inv(A1)*rhs1                          (A3.24)

down-ward :      A2*D  =  B2*Θ  =  rhs2           solution:   D = inv(A2)*rhs2                          (A3.25)

A1,  A2,  B1,  B2 : matrices of order (nods-1) x (nods-1), depending on the absorbing factors fi

The element matrices can be written as (see text books on finite elements):

                      │1-f+f^2/3         -1+f^2/6  │                                    │-f/2+f^2/3         -f/2+f^2/6  │
     A1el =      │                                        │                 B1el =        │                                           │
                      │ -1  +f^2/6     1+f +f^2/3 │                                    │ f/2 +f^2/6           f/2+f^2/3│      



                     │1+f+f^2/3         -1+f^2/6 │                                     │  f/2+f^2/3           f/2+f^2/6  │        
    A2el =      │                                        │                 B2el =         │                                              │
                     │ -1 +f^2/6       1- f +f^2/3│                                    │- f/2 +f^2/6        - f/2+f^2/3  │  

The 2x2  element matrices are assembled in the classical way into block diagonal matrices 
A1, A2 , B1, B2.

inv(A1), inv(A2) : inverted matrices taking into account the BC:  (A3.20) and (A3.21)

U is the vector of the nods-1 components of the up-ward flux
 
D is the vector of the nods-1 components of the down-ward flux

Θ is the vector of the nods-1 components of the stack Planck functions 
Boundary condition as before, the original Schwarzschild and the modified one: 
(A3.18) and (A3.19).

Solutions are interpreted as in the stepping procedure: (A3.22), (A3.23).
In figure A3.4 the results for OLRS2, ORLS2M, backradS2 are included, together with the ones of the 
original Schwarzschild procedures and the explicit stepping procedure.
Figure A3.4

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

fig 6.5   Comparison FEM with Schwarzschild
windowMatrix = 1 nods = 40 m = 9 height = 10  LR = -6.5  TsK = 288  epssurf = 0.96

Comparison FEM (option 2) with various modified Schwarzschild

ftot

W
/m

2

 

 
OLR option 2
OLRS0
OLRS1
OLRS2
OLRS0M
OLRS1M
OLRS2M
"backrad"option2
backradS0
backradS1
backradS2
qwindow
qtoa=240



 We see from figure A3.4 that for the original Schwarzschild procedure the 3 results for the outgoing 
long wave radiation, OLRS0, OLRS1 and OLRS2, are all three about equal to the Prevost surface flux: 
ε σ TsK^4 .  
All three numerical processes give the same result, the algebra of Schwarzschild is correct  the physics 
is wrong, at least the Schwarzschild physics as presented by SoD in [4,5].

With the two modifications of the boundary condition, as proposed in this paper :

(1) decreasing the starting value of the hypothetical up-ward component with the hypothetical 
back- radiation D1 , making the starting value more real
 

(2) treating the flux through the atmospheric window as a parallel flux, 
not affected by the IR-active trace gases, making the starting value still more real 

the three values OLRS0M, OLRS1M and OLRS2M move towards OLR option 2 of the FEM model,
but the measured 240 OLR as given in the K&T papers (see [1]) is not reached by  Schwarzschild.

The back-radiation of the Schwarzschild is close to the result for backrad option 2 expression, which is 
not a back-radiation of heat as already discussed in the main text with equations (14) and (15).

Conclusion concerning the Schwarzschild proposal

The Schwarzschild equation is based on the hypothesis that the component of the hypothetical up-ward 
Prevost-type of surface flux, augmented by the hypothetical emission from IR-active trace gases, is 
decreased when passing a layer by a factor (1-f) where f is the absorption factor of the layer. 

It turns out that the Schwarzschild procedure as implemented in the SoD blog [4,5] does not  give the 
correct results, at least they are different from the FEM model [2] of which the equations can also be 
written by means finite differences, as was done in [1]. 

The FEM model gives results with OLR = 240 W/m^2, for  ftot = 0.86 , and surface temperature 
TsK=288. 
The model has been validated by the experimental results of the K&T diagram publications, see [1].

Doubling the CO2 concentration from 380 ppm to 760 ppm gives a surface temperature  sensitivity of 
0.03 K. [2]

All the figures presented in this appendix  are produced by option 6 of a MATLAB program of which 
the listing is given in appendix 5.   
      
       
Appendix 4

View factors are still an issue

In [1] the equations of the stack model were derived by means of finite differences.
The components  of the viewfactorF matrix as discussed in appendix 2 were all equal to one



 except  the windowF vector, being the last column of the matrix viewfactorF, as given in equation 
(A2.10).
The results  were validated by K&T publications see [1], where OLR = 240.
The expression for OLR in the stack model is given by:

                          i=nods-1

   OLR =   Σ (f(i)*viewfactorF(i,nods)*f(nods)*(θ(i) – θ(nods)))                                             (A4.1)
                          i=1

For f (nods) = 1 , θ (nods) = 0 and viewfactorF(i,nods) = windowF(i):

                          i=nods-1

   OLR =   Σ (f(i)*windowF(i)*θ(i))                                                                                      (A4.2)
                          i=1

We see that indeed for the OLR only the last column of the viewfactorF matrix is used. 
The fact that only windowF is used has no effect on OLR.
The qsurf is defined by the   equation (14) :
                                j=nods

                    qsurf = Σ f(1)*viewfactorF(1, j)*f(j)*(θ(1) – θ(j))                                        (14) or (A4.3)
                                j=2

The hypothetical back-radiation is defined by the sum of the highlighted terms:
                                  j=nods

               backrad = Σ f(1)*viewfactorF(1, j)*f(j)* θ(j)                                                 (15) or (A4.4)
                                   j=2

We see in this algebraic viewfactorF components outside the last column, and they were taken as 1 in 
the finite difference paper [1]. (windowMatrix=0)
In figure A4.1 the results are given  with the viewfactorF only different from  1 in the last “nods” 
column, consisting of windowF(i) as given in equation A2.10. It is the same as already given in [1]. 

Figure A4.2 gives the results with the complete viewfactorF (windowMatrix=1): 
 OLR : the same because it only depends on the last column of viewfactorF = windowF
 qsurf lower                   involves now viewfactor components which are nearly all one
 qabsorp lower              idem
 backrad lower              idem


Figure A4.1   windowMatrix=0                                   Figure A4.2   windowMatrix=1
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We see here the numbers from ref [1] and we repeat the comparison with K&T  as Table A2-3, copied 
here from appendix 2 in ref [1].
The hypothetical back-radiation as defined by the highlighted terms in the algebraic expression (15) or 
( A4.2),   is equal to 306 W/m^2. And with the total viewfactorF matrix (windowMatrix=1) it is about 
200 according to figure AA.2.

Table A2-3   heat fluxes Watt/m^2   from reference [1]
                                                      mechanims     absorption
                 qtoa             qsurf           other than     LW in atm
source     OLRtot        ORLq       LW radiation      qatmLW        back-radiation
KT             240     390-324 = 66        169                350                 324
VD             235    395-330 =  65        175                355                 330
FM             252    378-315 =  63        189                315                 315
fig-5-41     240                       68        172                 23                 (306)

 It follows clearly from this comparison that the 3 K&T type publications in [1] in fact have used a kind
of stack model: from measured temperature distributions heat fluxes are defined, as well as the 
hypothetical back-radiation. 
Unfortunately the term back-radiation is used, and a physical interpretation is given to it.
There is no physical interpretation back-radiation is just an algebraical expression with a negative sign 
in the surface flux, which is not of the Prevost type. 
Figure A4.1 is the basis of the global and annual heat budget as given in figure A4.3 copied from [1].
The figure has to be compared with figure 4 in the main text of the present paper, which is based on a 
complete viewfactorF matrix. (windowMatix=1).

Figure A4.3  for reduced viewfactorF matrix = windowF vector (windowMatrix=0).



The use of the two different viewfactorF matrices, has little influence on the outgoing OLR in case of a 
prescribed atmospheric temperature defined by ELR.

It has more effect on the efficiency of heat transport within the atmosphere. 
We see that for example the hypothetical back-radiation is 50% higher when the major part of the 
viewfactorF matrix is kept equal to 1 and only the last column of the matrix has the values of the 
windowF vector.

We repeat also the hypothetical case of an atmosphere where the IR-active molecules are supposed to 
be isolated from the 99% bulk of the atmosphere consisting of oxygen and nitrogen. 
No heat transport by convection. All heat has to leave the surface by LW radiation.
We get results of the type of figure 1 in the main text which we repeat here in in figure A4.5.
In figure A4.4 we give the same case for components of the viewfactorF matrix closer to one, the 
components not equal to one are in the last column,  represented by the vector windowF.

figure A4.4   window F                                                 figure A4.5  viewfactorF 

We observe a different temperature distribution! 
The blue lines correspond to a nearly zero concentration  of IR-active trace gases.
They are the same in the two figures.
In figure A4.4 the heat transfer by LW radiation in vertical direction is stronger than in figure A4.5.
In figure A4.4 with a higher heat transfer, for a higher concentration up to ftot = 0.859  the IR-active 
trace gases are warmer i.e. closer to the surface temperature.
In figure A4.5  with a lower heat transfer, for a higher concentration up to ftot=0.859 the IR-active trace
gases are colder i.e further away of the surface temperature.

However in both cases  the IR-active trace gases are cooler than the atmosphere given by the ELR line. 
The IR-active gases are not heating up the bulk of 99% of the atmosphere. 
It is the other way around, the bulk of the 99% of the atmosphere keeps the IR-active trace gases warm.

The author has included this appendix in order to show that the radiation through the atmosphere is not 
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yet completely clear: the viewfactorF has an important effect for cases that LW radiation is 
predominant. In practical cases the LW radiation is not predominant.
The K&T publications with the claimed 320 W/m^2 back-radiation as given in the first paper [1] of the 
author on the subject, seem to have worked only with the windowF vector, since the backrad of 306 
W/m^2 and the OLR = 240 correspond to values found from the stack model with windowMatix=0..

Once the author had developed a numerical tool with FEM , numerical comparisons were easier to 
carry out. In a first time the author had the idea that using viewfactorF matrix instead of the windowF 
vector had little influence, which was indeed true for OLR.
But the differences as shown in figures A4.4 and A4.5 need to be studied in more detail.

For the sensitivity analysis, it is obvious that the results are the same for the two view factor 
distributions: sensitivity for doubling CO2 is 0.1 K. The reader can verify it by running option 5 of the 
MATLAB program of which the listing is presented in appendix 5.
The reason is that the sensitivity analysis depends on the derivative of OLR with ftot, and the outgoing 
long wave radiation OLR is given by the last column of viewfactorF = windowF 

The author does not have yet any preference for the two different viewfactorF matrices.
Readers who have experimental experience are invited to give suggestions.

Appendix 5

Matlab program to analyze absorption in a semi-transparent atmosphere
 
Since September 2014  the listing is published in a separate paper: 
  

http://www.tech-know-group.com/papers/Reynen-MATLAB-listing.pdf

http://www.tech-know-group.com/papers/Reynen-MATLAB-listing.pdf

