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The Einstein-Podolsky-Rosen Argument
and the Bell Inequalities

In 1935, Einstein, Podolsky, and Rosen (EPR) published an important paper in
which they claimed that the whole formalism of quantum mechanics together with
what they called a “Reality Criterion” imply that quantum mechanics cannot be
complete. That is, there must exist some elements of reality that are not described
by quantum mechanics. They concluded that there must be a more complete
description of physical reality involving some hidden variables that can characterize
the state of affairs in the world in more detail than the quantum mechanical state.
This conclusion leads to paradoxical results.

As Bell proved in 1964, under some further but quite plausible assumptions, this
conclusion that there are hidden variables implies that, in some spin-correlation ex-
periments, the measured quantum mechanical probabilities should satisfy particular
inequalities (Bell-type inequalities). The paradox consists in the fact that quantum
probabilities do not satisfy these inequalities. And this paradoxical fact has been
confirmed by several laboratory experiments since the 1970s.

Some researchers have interpreted this result as showing that quantum mechanics
is telling us nature is non-local, that is, that particles can affect each other across
great distances in a time too brief for the effect to have been due to ordinary causal
interaction. Others object to this interpretation, and the problem is still open and
hotly debated among both physicists and philosophers. It has motivated a wide
range of research from the most fundamental quantum mechanical experiments
through foundations of probability theory to the theory of stochastic causality as
well as the metaphysics of free will.
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1 The Einstein—Podolsky—Rosen argument

1.1 The description of the EPR experiment

Instead of the thought experiment described in the original EPR paper we will
formulate the problem for a more realistic spin-correlation experiment suggested by
Bohm and Aharonov in 1957.
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Figure 1: The Bohm—Aharonov spin-correlation experiment

Consider a source emitting two spin-3 particles (Fig. 1). The (spin) state space of
the emitted two-particle system is H?> @ H2, where H? is a 2-dimensional Hilbert
space. (For a brief introduction to quantum mechanics, see Redhead 1987, Chap-
ter 1). Let the quantum state of the system be the so called singlet state: W = Py,

where ¥, = % (v @Yy — Py @ Pyv). P4y and P_y denote the up and down
eigenvectors of the spin-component operator along an arbitrary direction v. In the



two wings, we measure the spin-components along directions a and b, which we
set up by turning the Stern—Gerlach magnets into the corresponding positions. Let
us restrict our considerations for the spin-up events, and introduce the following
notations:

A = The (spin of the left particle is up) detector fires

B = The (spin of the right particle is up) detector fires

a = The left Stern-Gerlach magnet is turned into position a

b = The right Stern-Gerlach magnet is turned into position b

In the quantum mechanical description of the experiment, events A and B are
represented by the following subspaces of H? @ H?:

A span {¢1a @ Pra, Pra @ P-a}
B = span{¢p ®¢Pip, P4 @ YP_p}

(The same capital letter A, B, etc., is used for the event, for the corresponding
subspace, and for the corresponding projector, but the context is always clear.)
Quantum mechanics provides the following probabilistic predictions:

p(Ala) = tr (Py,A) = p(B|b) = tr (Pg,B) =

p(AABlaAb) =tr (Py, AB) =

where <((a,b) denotes the angle between directions a and b. Inasmuch as we
are going to deal with sophisticated interpretational issues, the following must be
explicitly stated:

Assumption 1 R
p (X|x) = tr (WX) (3)

That is to say, whenever we compare quantum mechanics with empiri-
cal facts, “"quantum probability” tr (WX) is identified with the conditional
probability of the outcome event X given that the corresponding measure-
ment x is performed.

This assumption is used in (1)-(2).

The two measurements happen approximately at the same time and at two places
far distant from each other. It is a generally accepted principle in contemporary
physics that there is no super-luminal propagation of causal effects. According to
this principle we have the following assumption:

Assumption 2 The events in the left wing (the setup of the Stern—Gerlach
magnet and the firing of the detector, etc.) cannot have causal effect on
the events in the right wing, and vice versa.

One must recognize that, in spite of this causal separation, (2) generally means that
there are correlations between the outcomes of the measurements performed in the
left and in the right wings. In particular, if <(a, b) = 0, the correlation is maximal:



the outcome of the left measurement “determines”, with probability 1, the outcome
of the right measurement. That is, if we observe “spin-up” in the left wing then we
know in advance that the result must be “spin-down” in the right wing, and vice
versa. The actual correlations depend on the particular measurement setups. The
very possibility of perfect correlation is, however, of paramount importance:

Assumption 3 For any direction b in the right wing one can chose a
direction a in the left wing—and vice versa—such that the outcome events
are perfectly correlated.

1.2 The Reality Criterion

From this fact, that the measurement outcome in the left wing “determines” the
outcome in the right wing, in conjunction with the causal separation of the mea-
surements, one has to conclude that there must exist, locally in the right wing, some
elements of reality which pre-determine the measurement outcome in the right wing.
Einstein, Podolsky, and Rosen formulated this idea in their famous Reality Criterion:

If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of reality corresponding to that quantity.
(Einstein, Podolsky, Rosen 1935, p. 777)

It is probably true that no physicist would find this thesis implausible. In our
example, the value of the spin of the right particle in direction b can be predicted
with 100% certainty by performing a far distant spin measurement on the left particle
in direction b, that is without in any way disturbing the right particle. Consequently,
there must exist some element of reality in the right wing, that corresponds to the
value of the spin of the right particle in direction b, in other words, there must exist
something in the right wing that determines the outcome of the spin measurement
on the right particle.

One might think that if this is true for a given direction b then—by the same
token—it must be true for all possible directions. However, this is not necessarily
the case. This is true only if the following condition is satisfied:

Assumption 4 The choices between the measurement setups in the left
and right wings are entirely autonomous, that is, they are independent
of each other and of the assumed elements of reality that determine the
measurement outcomes.

Otherwise the following conspiracy is possible: something in the world pre-
determines which measurement will be performed and what will be the outcome.
We assume however that there is no such a conspiracy in our world.

Thus, taking into account Assumptions 2, 3 and 4, we arrive at the conclusion that
there are elements of reality corresponding to the values of the spin of the particles
in all directions. (Of course, it does not mean that we are able to predict the spin
of the right particle in all directions simultaneously. The reason is that we are not
able to measure the spin of the left particle in all directions simultaneously.)



1.3 Does quantum mechanics describe these elements of re-
ality?

The answer is no. However, the meaning of this “no” is more complex and depends
on the interpretation of wave function (pure state).

The Copenhagen interpretation asserts that a pure state ¢ provides a complete and
exhaustive description of an individual system, and a dynamical variable represented
by the operator A has value a if and only if Al/) = ayp. Consequently, spin has a
given value only if the state of the system is the corresponding eigenvector of the
spin-operator. But spin-operators in different directions do not commute, therefore
there is no state in which spin would have values in all directions. Thus, in fact, the
EPR argument must be considered as a strong argument against the Copenhagen
interpretation of wave function.

According to the statistical interpretation, a wave function does not provide a com-
plete description of an individual system but only characterizes the system in a
statistical /probabilistic sense. The wave function is not tracing the complete ontol-
ogy of the system. Therefore, from the point of view of the statistical interpretation,
the novelty of the EPR argument consists in not proving that quantum mechanics
is incomplete but pointing out concrete elements of reality that are outside of the
scope of a quantum mechanical description.

It does not mean, however, that statistical interpretation remains entirely untouched
by the EPR argument. In fact the statistical interpretation of quantum mechanics, as
a probabilistic model in general, admits different ontological pictures. And the EPR
argument provides restrictions for the possible ontologies. Consider the following
simple example. Imagine that we pull a die from a hat and throw it (event D).
There are six possible outcomes: (1),(2),...(6). By repeating this experiment
many times, we observe the following relative frequencies:
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p (D) =1, therefore p ((1)) = 0.05,... p ((6)) = 0.55. Our probabilistic model will
be based on these probabilities, and it works well. It correctly describes the behavior
of the system: it correctly reflects the relative frequencies, correctly predicts that
the mean value of the thrown numbers is 4.75, etc. In other words, our probabilistic
model provides everything expected from a probabilistic model. However, there can
be two different ontological pictures behind this probabilistic description:

(A) The dice in the hat are biased differently. Moreover, each of them is
biased by so much, the mass distribution is asymmetric by so much,
that practically (with probability 1) only one outcome is possible when
we throw it. The distribution of the differently biased dice in the hat
is the following: 5% of them are predestinated for (1), 10% for (2), ...
and 55% for (6). That is to say, each die in the hat has a pre-established
property (characterizing its mass distribution). The dice throw—as a
measurement—reveals these properties. When we obtain result (2}, it



reveals that the die has property “2". In other words, there exists a real
event in the world, namely

#(2) = the die we have just pulled from the hat has property 2"

such that
p((2)#(2)AD) = 1 (5)
p((2)[-#(2)AD) = 0 (6)
and, of course,
p(#(2) AD) = p(#(2))p(D) (7
From (5)-(7) we have
p(#(2)) = p((2) D) (8)

That is, in our example, event # (2) occurs with probability 0.1 inde-
pendently of whether we perform the dice throw or not.

(B) All dice in the hat are uniformly prepared. Each of them has the same
slightly asymmetric mass distribution such that the outcome of the
throw can be anything with probabilities (4). In this case, if the result
of the throw is (2), say, it is meaningless to say that the measurement
revealed that the die has property “2". For the outcome of an individual
throw tells nothing about the properties of an individual die. In this
case, there does not exist a real event # (2) for which (5) and (6)—(7)
hold.

By repeating the experiment many times, we obtain the conditional
probabilities (4). These conditional probabilities collectively, that is,
the conditional probability distribution over all possible outcomes, do
reflect an objective property common to all individual dice in the hat,
namely their mass distribution. (One might think that (A) is a hidden
variable interpretation of the probabilistic model in question, while the
situation described in (B) does not admit a hidden variable explanation.
It is entirely possible, however, that events # (1) ,#(2),... are objec-
tively indeterministic. On the other hand, in case (B), the physical
process during the dice throw can be completely deterministic and the
probabilities in question can be epistemic.)

We have a completely similar situation in quantum mechanics. Consider an observ-
able with a spectral decomposition A = ¥, a;P;. It is not entirely clear what we
mean by saying that “tr (WP;) is the probability of that physical quantity A has
value a;, if the sate of the system is W." To clarify the precise meaning of this
statement, let us start with what seems to be certain. We assumed (Assumption 1)
that the quantity tr (WP;) is identified with the observed conditional probability
p ({a;) |a), where a denotes the event consisting in the performing the measure-
ment itself and (a;)denotes the outcome event corresponding to pointer position

- tr (WP = p ((ai) |a) (©)



If nothing more is assumed, then a measurement outcome becomes fixed during the
measurement itself, and we obtain a type (B) interpretation of quantum probabili-
ties. Let us call this minimal interpretation. In this case, a measurement outcome
(a;) does not reveal a property of the individual object. Of course, the state of
the system, W, no matter whether it is a pure state or not, may reflect a property
of the individual objects, just like the conditional probabilities (4) reflect the mass
distribution of the individual dice.

One can also imagine a type (A) interpretation of tr (WP;), which we call the prop-
erty interpretation. According to this view, every individual measurement outcome
(a;)corresponds to an objective property # (a;) intrinsic to the individual object,
which is revealed by the measurement. This property exists and is established inde-
pendently of whether the measurement is performed or not. Just as in the example
above, equation (9) can be continued in the following way:

tr (WP,) = p ((a;) la) = p (#(a;)) (10)

where p (#(a;)) is the probability of that the individual object in question has the
property # (a;).
Now, from the EPR argument we conclude that the ontological picture provided
by the type (B) interpretation is not satisfactory. For according to the EPR argu-
ment there must exist previously established elements of reality that determine the
outcomes of the individual measurements. This claim is nothing but a type (A)
interpretation.

1.4 The EPR conclusion

One has to emphasize that the conclusion of the EPR argument is not a no-go
theorem for hidden variable models of quantum mechanics. On the contrary, it
asserts that there must be a more complete description of physical reality behind
quantum mechanics. There must be a state, a hidden variable, characterizing the
state of affairs in the world in more detail than the quantum mechanical state
operator, something that also reflects the missing elements of reality. In other
words, the pre-established value of the hidden variable has to determine the spin
of both particles in all possible directions. Perhaps it is not fair to quote Einstein
himself in this context, who was not completely satisfied with the published version
of the joint paper (see Fine 1986), but in this final conclusion there seems to be an
agreement:

| am, in fact, firmly convinced that the essentially statistical character
of contemporary quantum theory is solely to be ascribed to the fact that
this theory operates with an incomplete description of physical systems.
(Quoted by Bell 1987, p. 90.)

Also, the EPR paper ended with:

While we have thus shown that the wave function does not provide a
complete description of the physical reality, we left open the question
of whether or not such a description exists. We believe, however, that
such a theory is possible.

The question is: do these missing elements of reality really exist? We will answer
this question in section 3 after some technical preparations.



2 Under what conditions can a system of empir-
ically ascertained probabilities be described by
Kolmogorov’s probability theory?

The following mathematical preparations will provide some probability theoretic in-
equalities which are not identical with but deeply related to the Bell-type inequalities;
they play an important role in distinguishing classical Kolmogorovian probabilities
from quantum probabilities.

2.1 Pitowsky theorem

Imagine that somehow we assign numbers between 0 and 1 to particular events, and
we regard them as “probabilities” in some intuitive sense. Under what conditions
can these “probabilities” be represented in a Kolmogorovian probabilistic theory?
As we will see, such a representation is always possible. Restrictive conditions will
be obtained only if we also want to represent some of the correlations among the
events in question.

Consider the following events: Ay, Ay,... A,. Let
SC{GNli<jij=12,...n}

be a set of pairs of indexes corresponding to those pairs of events the correlations
of which we want to be represented. The following “probabilities” are given:

pi = p(4) i’:‘ 1,2,...n (11)
pii = P (A,' AN A]) (Z,]) €S

We say that “probabilities” (11) have Kolmogorovian representation if there is a
Kolmogorovian probability model (X, u) with some X1, Xp, ... X, € X elements of
the event algebra, such that

pi = u(Xp) i.:'1,2,...n (12)
pii = M (Xi A X]) (Z,]) €S
The question is, under what conditions does there exist such a representation? It

is interesting that this evident problem was not investigated until the pioneer works
of Accardi (1984; 1988) and Pitowsky (1989).

For the discussion of the problem, Pitowsky introduced an expressive geometric
language. From the probabilities (11) we compose an 1 + |S|-dimensional, so called,
correlation vector (|S| denotes the cardinality of S):

p= (PlIPZ/---Pn,---Pij,...)

Denote R(1,S) = R"*IS| the linear space consisting of real vectors of this type.
Let ¢ € {0,1}" be an arbitrary n-dimensional vector consisting of 0's and 1's. For
each ¢ we construct the following u® € R(n,S) vector:

ut = g i=12,...n



The set of convex linear combinations of u®’s is called a classical correlation poly-
tope:

c(n,S) = {f € R(n,S)

fIZ)\guS;AgZO;ZAgzl}
& €
In 1989, Pitowsky proved (1989, pp. 22—24) the following theorem:

Theorem  The correlation vector p admits a Kolmogorovian representation if and
only if p € c(n,S).

Beyond the fact that the theorem plays an important technical role in the discussions
of the EPR-Bell problem and other foundational questions of quantum theory, it
shades light on an interesting relationship between classical propositional logic and
Kolmogorovian probability theory. We must recognize that the vertices of ¢(n, S)
defined in (13) are nothing but the classical two-valued truth-value functions over a
minimal propositional algebra naturally related to events A7, Ay, ... A,. Therefore,
what the theorem says is that probability distributions are nothing but weighted
averages of the classical truth-value functions.

2.2 Inequalities

It is a well known mathematical fact that the conditions for a vector to fall into
a convex polytope can be expressed by a set of linear inequalities. What kind of
inequalities express the condition p € ¢(n,S)?

The answer is trivial in the case of 1 = 2 and § = {(1,2)}. Set {0,1}* has four
elements: (0,0), (1,0), (0,1), and (1,1). Consequently the classical correlation
polytope (Fig. 2) has four vertices: (0,0,0), (1,0,0), (0,1,0), and (1,1,1).
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Figure 2: In the case of n = 2, classical correlation polytope has four vertices
The condition p € ¢(2,S) is equivalent with the following inequalities:

0<pn<p1 <1
0<pn<p<1 (14)
pr+tp2—pi2<1



Indeed, from (14) we have:

0 1
p = (1-p1—p2+pn) ( 0)+(P1—P12)<0)
0 0
0 1
+(p2 — p12) ( 1 ) +P12<1)
0 1

Another important case is when n =3 and S = {(1,2),(1,3),(2,3)}. The corre-
sponding set of inequalities is the following (Pitowsky 1989, pp. 25-26):

0<pi;<pi<1
0<pij<p <1
pi+pj—pij <1
pr+p2+ps—pr2—piz—ps <1 (15)
p1—p2—piz+ps=0
p2—pr2—ps+pz =0
p3— P13 =P tp2=0

These are the Bell-Pitowsky inequalities.
Finally we mention the case of n = 4 and

§=1{(1,3),(1,4),(2,3),(2,4)}

One can prove (Pitowsky 1989, pp. 27-30) that the following inequalities are
equivalent with the condition p € ¢(4,S):

0<pj<p<1
0<p;<p <1 i=12j=34
pitpi—pij<1

-1 < petputpu—ps—pi—ps < 0
-1 < ppn+putpu—p3—p2—ps < 0
-1 < pu+tpat+tps—pa—pi—ps < 0
-1 < put+pstpz—pu—p2—p3 < 0

Let us call them the Clauser—Horne—Pitowsky inequalities.

3 Do the missing elements of reality exist?

The elements of reality the EPR paper is talking about are nothing but what the
property interpretation calls properties existing independently of the measurements.
In each run of the experiment, there exist some elements of reality, the system
has particular properties # (a;) which unambiguously determine the measurement
outcome (a;), given that the corresponding measurement a is performed. Similarly

to (5)-(6),

p (ail# (a;) Na) = 1
p(ai|=#(a;) Na) = 0 (18)
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Figure 3: In each run of the experiment, some of the things in question (elements
of reality, properties, “quantum events”, etc.) occur

This condition—coming from Assumptions 2 and 3 and the Reality Criterion—is
sometimes called “Counterfactual Definiteness” (Redhead 1987). According to the
“no conspiracy’” assumption we stipulated in Assumption 4,

p (#(ai) Aa) = p (#(a;)) p (a) (19)
Of course, (17)—(19) imply that
p(#(a;)) = tr (WP) (20)

that is, the relative frequency of the element of reality # (a;) corresponding to the
measurement outcome (a;)must be equal to the corresponding quantum probability
tr (WP,'). However, this is generally impossible. According to the Laboratory Record
Argument (Szabé 2001) below, there are no things (elements of reality, properties,
“quantum events', etc.) the relative frequencies of which could be equal to quantum
probabilities.

Imagine the consecutive time slices of a given region of the world (say, the labora-
tory) corresponding to the consecutive runs of an experiment (Fig. 3). We do not
know what “elements of reality”, “properties’, “quantum events”, etc., are, but we
can imagine that in every such time slices some of them occur, and we can imagine
a laboratory record like the one in Table 1.

“1" stands for the case if the corresponding element of reality occurs and “0" if it does
not. We put “1” into the column corresponding to a conjunction if both elements of
reality occur. In order to avoid the objections like “the two measurements cannot be
performed simultaneously”, or “the conjunction is meaningless”, etc., let us assume

11



Run ‘ X1 ‘ Xn ‘ X3 ‘ Xy ‘ XiNXsg | g ANXy | XoAN X3 | Xo A Xy

1 1 1 1 0 1 0 1 0

2 0 0 1 0 0 0 0 0

3 1 0 0 1 0 1 0 0

4 0 1 1 1 0 0 1 1

5 1 0 0 0 0 0 0 0

6 0 1 0 1 0 0 0 1

7 0 1 0 1 0 0 0 1

8 1 0 0 1 0 1 0 0
99998 1 0 0 0 0 0 0 0
99999 0 0 1 0 0 0 0 0
N=100000 | O 1 1 0 0 0 1

Ni | N | N3 | Ny Ni3 Ny Np3 Npy

Table 1: An imaginary laboratory record about the occurrences of the hidden ele-
ments of reality

that the pairs (X1, X3), (X1,X4), (X2,X3), and (Xp, X4) belong to commuting
projectors.

Now, the relative frequencies can be computed from this table:

N N N;
7’11:71711:?2,...1’124:£ (21)

N’ N
Notice that each row of the table corresponds to one of the 2* possible classical
truth-value functions over the corresponding propositions. In other words, it is one
of the vertices u® (e € {0,1}4) we introduced in (13). Let N denote the number
of type-uf rows in the table. The relative frequencies (21) can also be expressed as
follows:

n, = Z)\Euf
€

7’11']' = Z)\glx[fj
€

where A, = % Clearly, Ay > 0 and Y, A¢ = 1. That is to say, the correla-

tion vector consisting of the relative frequencies in question satisfies the condition
n = (ny,n,...ny) € c(4,S) in section 2a. (Consequently—due to Pitowsky's
theorem—it admits a Kolmogorovian representation.)

One can generalize the above observation in the following stipulation: The elements
of a correlation vector p admit a relative frequency interpretation if and only if p
satisfies the condition p € ¢(n, S).

So in the above example, n € ¢(4,S) if and only if n satisfies the
Clauser—-Horne—Pitowsky inequalities (16). But, in general, quantum probabil-
ities do not satisfy these inequalities. Consider the EPR experiment in sec-
tion la. Assume that the possible directions are a; and ap in the left wing,
and by and b, in the right wing. We will consider the following particular case:
< (a1, b1) = < (a1, by) = < (az, by) = 120° and < (ap,by) = 0. According to

12



(1)-(2), the quantum probabilities are the following:

p(Ailar) = p(Azlaz) = p(Bi|b1) = p(B2|b2) = 5 (22)
p(A1 A Bilay Aby) = p(A1 A Balag Aby)

=p(Axy A Bylap Aby) = % (23)

p(Ap ABilaa \b) = 0 (24)

Let X1 = A1, X, = Ay, X3 = Bq, and X4 = Bp. The question is whether the

corresponding correlation vector n = (%, %, %, %, %, %,O,%) satisfies the condition

of Kolmogorovity or not. Substituting the elements of n into (16), we find that
the system of inequalities is violated. Quantum probabilities measured in the EPR
experiment violate the Clauser—Horne—Pitowsky inequalities, therefore they cannot
be interpreted as relative frequencies. Consequently, there cannot exist quantum
events, elements of reality, properties, or any other things which occur with relative
frequencies equal to quantum probabilities. (To avoid any misunderstanding, the
restriction of a quantum probability measure to the Boolean sublattice of projectors
belonging to the spectral decomposition of one single maximal observable does, of
course, admit a relative frequency interpretation. It must be also mentioned that
quantum probabilities, in general, can be interpreted in terms of relative frequencies
as conditional probabilities. See Szabé 2001.)

In brief, given the existence of the predicted perfect correlations by quantum me-
chanics (Assumption 3), according to the EPR argument, there ought to exist
particular elements of reality, which, according to the Laboratory Record Argument,
cannot exist. To resolve this contradiction, we have to conclude that at least one
of Assumptions 1, 2 and 4 fails.

In the next section we will arrive at similar conclusions in a different context.

4 Bell's inequalities

4.1 Bell's formulation of the problem

When the EPR paper was published, there already existed a hidden variable theory
of quantum mechanics, which achieved its complete form in 1952 (Bohm 19523;
b). This is the de Broglie-Bohm theory, which also called Bohmian mechanics.
(For a historical review of the de Broglie-Bohm theory, see Cushing 1994. For
the Bohmian mechanics version of the standard text-book quantum mechanics, see
Bohm and Hiley 1993 and Holland 1993.) This theory is explicitly non-local in the
following sense: One of its central objects, the so called quantum potential which
locally governs the behavior of a particle, explicitly depends on the simultaneous
coordinates of other, far distant, particles. This kind of non-locality is, however, a
natural feature of all theories containing potentials (like electrostatics or the New-
tonian theory of gravitation). Such a theory is expected to describe physical reality
only in non-relativistic approximation, when the finiteness of the speed of prop-
agation of causal effects is negligible, but, according to our expectations, it fails
on a more detailed spatiotemporal scale. What is unusual in the EPR situation is
that the real laboratory experiments do reach this relativistic spatiotemporal scale,

13
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Figure 4: A local, deterministic, and Markovian (LDM) world. Event A is de-
termined by the history of the universe inside of the backward light-cone |~ (A).
The state of affairs along a Cauchy hyper-surface S completely determines the his-
tory within the dependence domain DT (S). (For these basic concepts of relativity
theory, see Hawking and Ellis 1973; Wald 1984.) In other words, all the relevant
information from the past is encoded in the state of affairs in the present. More
exactly, all information from a past event B influencing A must be encoded in the
corresponding region C

but the observed results are still describable by simple (non-local) quantum/Bohm
mechanics.

In his 1964 paper (reprinted in Bell 1987), John Stuart Bell proved that

In a theory in which parameters are added to quantum mechanics to
determine the results of individual measurements, without changing the
statistical predictions, there must be a mechanism whereby the setting
of one measuring device can influence the reading of another instrument,
however remote. (Bell 1987, p. 20.)

The argument was based on the violation of an inequality derivable from a few plau-
sible assumptions. Instead of Bell's original inequality, it is better to formulate the
argument by means of the Clauser—Horne inequalities, which are more applicable to
the spin-correlation experiment described in section 1a. This difference is, however,
not significant.

Bell was concerned with the following problem: Can the whole EPR experiment
be accommodated in a classical world, that is, in a world which is compatible with
the world-view of pre-quantum-mechanical physics? This pre-quantum-mechanical
world is local, deterministic and Markovian (LDM), that is, it satisfies the following
assumption:

Assumption 2’

Our world is

1. Local—No direct causal connection between spatially separated
events (Assumption 2).

2. Deterministic—Event A is uniquely determined by the pre-history in
the backward light-cone ]~ (A). (Fig. 4)

3. Markovian—All the relevant information from the past is encoded in
the state of affairs in the present.
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Electrodynamics is the paradigmatic LDM theory of this pre-quantum-mechanical
world view.

It should be clear that Assumption 2' prescribes determinism only on the level of the
final ontology, but it does not exclude stochasticity of an epistemic kind. At first
sight Assumption 2’ seems to be much stronger than Assumption 2. It is because the
three metaphysical ideas, locality, determinism, and Markovity, seem to be clearly
distinguishable features of a possible world. However, further reflection reveals
that these concepts are inextricably intertwined. In all pre-quantum-mechanical
examples the laws of physics are such that locality, determinism, and Markovity
are provided together. If, however, our world is objectively indeterministic—this, of
course, hinges on the very issue we are discussing here—then it is far from obvious
how the phrase “no direct causal connection between ..." is understood (also see
section 6).

Anyhow, the question we are concerned with is this: Can all physical events observed
in the EPR experiment be accommodated in an LDM world, including the emissions,
the measurement setups, the measurement outcomes, etc., with relative frequencies
observed in the laboratory and predicted by quantum mechanics?

4.2 The derivation of Bell's inequalities

We have eight different types of event: the measurement outcomes, that is, the
detections of the particles in the corresponding up-detector, Ay, Ay, By, By, and the
measurement setups ai,d,,b1,by. Let us imagine the space-time diagram of one
single run of the experiment (Fig. 5).

PNE)

AL A,

-------------

Figure 5: The space-time diagram of a single run of the EPR experiment

The positive dependence domain of the Cauchy surface S, DT (S), contains all
events we observe in a single run of the experiment. According to the classical
views, the Cauchy data on S unambiguously determine what is going on in domain
D*(S), including whether or not events Ay, Ay, By, By, a1,a2,b1, and by occur.
The occurrence of a type-X event means that the state of affairs in the dependence
domain DT (S) falls into the category X. Which events occur and which do not,
can be expressed with the following functions:

1 if DT(S) falls into category X
u* () :{ 0 ifnot( ) o (25)

Taking into account that an event cannot depend on data outside of the backward
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light-cone,

whi(wAv) = uli(p,A)

ubi(u,Av) = uBi(Av) .

A PO 26
w (uA) =t () o)
ubi (w,Av) = ubi(Av)

Figure 6: The statistical ensemble consists of the consecutive repetitions of space-
time pattern in Fig. 5

The whole experiment, that is the statistical ensemble consist of a long sequence
of similar space-time patterns like the one depicted in Fig. 5. In the consecu-
tive situations, the existing values of parameters (y,A,v) determine what hap-
pens in the given run of the experiment (Fig. 6). One can count the rela-
tive frequencies of the various (y,A,v) combinations. Therefore, probabilities
p(u),p(A),p(w),p(LAA),...p( ANAAV) can be considered as given. Apply-
ing (26), the probabilities (relative frequencies) of the eight events can be expressed
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as follows:

p(A) = YL uli(umA)p(uad)

nA
p(B) = AZMB"()\,V)P(/\AV)
pla;) = Y ui(uwA)p(AA)
wA
pbi) = ;ub"()\rV)P(AAV)
p(AiNB)) = ;uA"(V,A)uBf(AIV)P(MMV)
WAV
plainb) = ;”“"(%A)uhf(?tIV)P(MMv)
wAY

\— common causal past

left signal from the far universe j

right signal from the far universe

Figure 7: Due to the common causal past, there can be correlation between the
Cauchy data belonging to the three spatially separated regions. One can, however,
assume that the measurement setups are governed by some independent signals
coming from the far universe

Due to the common causal past, there can be correlations between the Cauchy data
belonging to the three spatially separated regions (Fig. 7). Henceforth, however,
we assume that

p(uAAAY)=p(u)p(A)p )

This assumption can be justified by the following intuitive arguments:

(33)

1. Our concern is to explain correlations between spatially separated events ob-
served in the EPR experiment. It would be completely pointless to explain
these correlation with similar correlations between earlier spatially separated
events. Because then we could say that a correlation observed in a here-and-

now experiment can be explained by something around the Big Bang.

2. In general, p, A, and v stand for huge numbers of Cauchy data, depending
on how detailed the description of the process in question should be. Yet it

17



is reasonable to assume that these parameters only represent those data that
are relevant for the events observed in the EPR experiment. For example,
one can imagine a scenario in which the role of y and v is merely to govern
the choice of measurement setups in the left and in the right wing, and the
values of p and v are fixed by two independent assistants on the left and right
hand sides. In this case, it is quite plausible that the free-will decisions of the

assistants are independent of each other, and also independent of parameter
A.

3. If for any reason we do not like to appeal to free will, we can assume that
parameters y and v, responsible for the measurement setups, are determined
by some random signals coming from the far universe (Fig. 7). Also, we
can assume that the left and right signals are independent of each other and
independent of the value of A—unless we want the explanation to go back to
the initial Big Bang singularity.

Applying Bayes’ rule and taking into account assumption (33), the conditional prob-
ability p (A,' A Bj|ui Abj A )\) can be expressed as follows:

p(Ai/\B]'/\{Zi/\b]'/\)\>

p (ﬂi AN b] A\ )\)

Yo 4 (p, A) % (p, A

Zy y Ui (

)P

)P

) uPi (A, v) ubi (A, v) p () p (v) p (A)
" )u”f(M (W) p(v)pA)
(W) p(WpA) v, ub (Av)p(v)p
Zyul(u Ap ) pA) ©,ubi (A,v)p(
A (u, A) u (u, A) p () p (A)
Zyu'(ﬂ/ Jp(u)p(A)
ZVM’(/\V) ' (A, v) p(v) p (A)
Y, u’l (A v)p(v)p(A)
p(AinaiA)) p(BiAbiAN)
p(a; AA) p (b AA)

uAi

So, parameter A, standing for the Cauchy data carrying the information shared
by the left and right wings, must satisfy the following so-called “screening off”
condition:

p(Ai/\B]'MZ‘Ab]'/\)\) :p(Ailai/\A)p(ijj/\/\) (34)

Bell restricted the concept of LDM embedding with a further requirement which is
nothing but Assumption 4. In this context it says the following: The choice between
the possible measurement setups must be independent from parameter A carrying
the shared information. In other words,

I (R
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In this case, it immediately follows from (27)—(32) that
p(Ailai) = ;P (Ajlai AA)p (A)
p(Bilbi) = ;P (Bilbi ANA)p (M) Lj=12  (36)
p(Ai ABjlai Abj) = ;p (A; A Bjla; Abj AA) p (M)
For example:

p(Aina)  Tuaw (uA)u (uA) p () p(A)

pldia) = Gy T T S AP e ()
Cnant ) pp () Ea (T () p () P ()
T (A pmp () ¥, u (1) p ()
(%) A)p
= L <Z§y Sonn )> PO =L (n )

Equality (*) would not hold without condition (35).
It is an elementary fact that for any real numbers 0 < x1,xp, 1,2 <1

—1<xyy1 +x1y2 +x2y2 — X271 —x1 — Y2 <0
Applying this inequality, for all A we have

1< p(A1lag AA) p(Bi|br AA) +p (Arlagr AA) p(Balba ADA)
+p (Azlaa AA) p (Ba|ba AA) — p (Azlaz AA) p (Bi]br AA)
—p (A1lar AA) = p(Balba AA) <0

Taking into account (34), we obtain:

—-1< p(Al/\B1|a1/\blA/\)+p(A1/\B2|H1/\b2A/\)
+p (Az/\B2|a2/\b2A)\) — p(Az/\B1|a2/\b1 /\/\) (37)
—p(A1lar AA) = p (Ba|ba AA) <0

Multiplying this with probability p (A) and summing up over A, we obtain the
following inequality:

—1 < p (A1 ABqlay Aby) + p (A1 A Bylag Aby)
+p (Az/\Bz‘ﬂz/\bz) —p(Az/\B1|a2/\b1) (38)
—p (A1lar) — p(B2|b2) <0

Similarly, changing the roles of Ay, Ay, By, and B, we have:
1< p(Az/\Bl‘az/\bl)-Fp

+p (A1/\B2‘15l1/\b2) p
—p (Azla2) —

Az/\B2|a2/\b2)
A1 /\B]|111 /\bl) (39)
p (B2|by) <0

1< p(Al /\Bz‘al /\bZ) +p
+p (A2 ABilaa Aby) —p
—p (Ar]ar) —

A1 /\B1|111 /\bl)
Az/\Bz|a2/\b2) (40)
p(B1|b1) <0

~— T~ ~—
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—1 < p (A2 A Balag Aby) + p (Az A Bylaa Aby)
+p (A1 A Bilay Aby) — p (A1 A Bylag A by) (41)
—p (Azlaz) —p (B1]by) <0

Inequalities (38)—(41) are due to Clauser and Horne (1974), but they essentially
play the same role as Bell's original inequalities of 1964. Therefore they are called
Bell-Clauser—Horne inequalities.

According to Assumption 1, the conditional probabilities in the Bell-Clauser—-Horne
inequalities are nothing but the corresponding quantum probabilities, the values of
which are given in (22)—(24). These values violate the Bell-Clauser—Horne inequal-
ities.

So, in a different context, we arrived at conclusions similar to section 1d. That is
to say, one of Assumption 1, Assumption 2" and Assumption 4 must fail.

Notice that the Clauser—Horne—Pitowsky inequalities (16) and the
Bell-Clauser—Horne inequalities (38)—(41) are not identical—in spite of the
obvious similarity. The formers apply to some numbers that are meant to be the
(absolute) probabilities of particular events, and express the necessary condition
of that these “probabilities” admit a Kolmogorovian representation and—in the
Laboratory Record Argument—a relative frequency interpretation. In contrast the
Bell-Clauser—Horne inequalities apply to conditional probabilities, and we derived
them as necessary conditions of LDM embedability.

Finally, it worthwhile mentioning, that the spin-correlation experiment described
in section la has been performed in reality, partly with spin—% particles, partly
with photons (Clauser and Shimony 1981). (The experimental scenario for spin—%
particles can easily be translated into the terms of polarization measurements with
entangled photon pairs.) In the experiments with photons, the spatial separation of
the left and right wing measurements has also been realized. (The first experiment
in which the spatial separation was realized is Aspect, Grangier and Roger 1981. The
best conditions have been achieved in Weihs et al. 1998.) So far, the experimental
results have been in wonderful agreement with quantum mechanical predictions.
Therefore, the violation of the Bell-type inequalities is an experimental fact.

In the particular case when the values of p(A;|la;AA), p(BilbiAA), and
p(Ai A Bjla; A b A'A) on the right hand side of (36) are only 0 or 1, A is called
a deterministic hidden variable. The above derivation of the Bell-Clauser—Horne
inequalities simultaneously holds for both stochastic and deterministic hidden vari-
able theories. Notice that the screening off condition (34) is not automatically
satisfied by any deterministic hidden variable. What we automatically have in the
deterministic case is the following:

p (Al' A B]‘|ﬂ,‘ A bj N )\) =p (A,-]a,» A b] A /\) p (B]‘|ﬂ,‘ A bj A )\)
This is different from condition (34), except if the following are also satisfied:

p (Ailai NbjAL) = p(Ailai AA) (42)

that is to say, the outcome in the left wing is independent of the choice of the mea-
surement setup in the right wing, and vice versa. Conditions (42)—(43), sometimes
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called “parameter independence” (Van Fraassen 1989), are, however, automatically
satisfied by LDM embedability.

Thus, the distinction between deterministic and stochastic hidden variable theories
is not so significant. As we have seen, the necessary condition of their existence is
common to both of them.

When we say that the hidden variable model is “stochastic”’, it means epistemic
stochasticity. Parameter A does not fully determine the measurement outcomes:
the value of ui (11, 1) also depends on y, and the value of 4% (A,v) also depends
on v. But the LDM world, as a whole, is deterministic: whether events A; and B;
occur is fully determined by y, A, and v.

5 Possible resolutions of the paradox

5.1 Conspiracy

There is an easy resolution of the EPR/Bell paradox, if we allow the conspiracy that
was prohibited by Assumption 4 (Brans 1988; Szab6 1995). It is hard to believe,
however, that the “free” decisions of the laboratory assistants in the left and right
wings depend on the value of the hidden variable which also determines the spins
of the two particles.

5.2 Fine's interpretation of quantum statistics

Assumption 1 seems to be the most robust one. One might think that (9) is a
simple empirical fact. There is, however, a resolution of the problem which is
entirely compatible with Assumptions 2’ and 4, but violates Assumption 1 in a very
sophisticated way. This is Arthur Fine's interpretation of quantum statistics (1982).
The basic idea is this. To determine “What does quantum probability actually
describe in the real world?” we have to analyze the actual empirical counterpart
of tr (WP;) in the experimental confirmations of quantum theory. Consider the
schema of a typical quantum measurement (Fig. 8).

Contrary to classical physics where getting information about the existence of a
physical entity and measuring one of its characteristics are two different actions,
in a typical quantum measurement these two actions coincide. Therefore we have
no independent information about the content of the original ensemble of objects
emitted by the source. In fact, the theoretical “probability” predicted by quantum
mechanics is identified with the ratio of the number of detections in one channel
relative to the total number of detections, that is,

o N;

tr (WP;) TN (44)
Now, if, as it is usually assumed, a non-detection were an independent random
mistake of an inefficient detector or something like that, then the right hand side of
(44) would be still equal to p ((a;) |a). This is, however, a completely implausible
assumption within the context of a hidden variable theory. (This is the most essential
point of Fine's approach.) For if there are (hidden) elements of reality, for instance
the particle has some hidden properties, that pre-determine the outcome of the
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Figure 8: The schema of a typical quantum measurement. The source is producing
objects on which the measurement is performed. The very existence of an object
can be observed via the detection of an outcome event. Therefore, we have no
information about the content of the original ensemble of objects emitted by the
source. The quantum probabilities are identified with the frequencies of the different
outcomes, relative to a sub-ensemble of objects producing any outcome

measurement and in general pre-determine the behavior of the system during the
whole measurement process, then it is quite plausible that they also pre-determine
whether the entity in question can pass through the analyzer and can be detected,
or not. If so, then the right hand side of (44) is a relative frequency on a “biased”
ensemble, therefore

p(#(a) = p ((a;) |a) # tr (WP,)

and the Clauser—Horne—Pitowsky inequalities as well as the Bell-Clauser—Horne in-
equalities can be—and, in fact, are—satisfied. This is, of course, not the whole
story. The concrete hidden variable theory has to describe how the hidden prop-
erties determine the whole process and how the relative frequencies of the hidden
elements of reality are related to quantum probabilities. There exist such hidden
variable models for several spin-correlation experiments and they are entirely com-
patible with the real experiments performed so far (2008). For further reading see
Fine 1986; 1991; Larsson 1999; Szab6 2000; Szabé and Fine 2002.

5.3 Non-locality, but without communication

In spite of the above mentioned developments and in spite of the fact that the
no-action-at-a-distance principle seems to hold in all other branches of physics,
the painful conclusion that Assumption 2 is violated is more widely accepted in
contemporary philosophy of physics.

Many argue that the violation of locality observed in the EPR experiment is not a
serious one, because the spin-correlations are not capable of transmitting informa-
tion between spatially separated space-time regions. The argument is based on the
fact that, although the outcome in the right wing is (maximally) correlated with the
outcome in the left wing, the outcome in the left wing itself is a random event (with
probability % it is “up” or “"down”) which cannot be influenced by our free action.

22



We cannot send Morse code signals from the left station to the right one with an
EPR equipment.

Others argue that this is a misinterpretation of the original no-action-at-a-distance
principle which completely prohibits spatially separated physical events having any
causal influence on each other, no matter whether or not the whole process is
suitable for transmission of information. Consider the example depicted in Fig. 9.

SOS SOS

SOS S0OS

random sequence of signals

the same random sequence of signals

random sequence of signals

© S X\h%

the same random sequence of signals

Figure 9: In case (A) the telegraph works normally. In case (B) something goes
wrong and the key randomly presses itself. The random signal is properly transmitted
but the equipment is not suitable for sending a telegram. Case (C) is just like (B),
but the cable connecting the two equipments is broken

In case (A) the telegraph works normally. By pressing the key we can send infor-
mation from one station to the other. It is no wonder that the pressing of the key
at the sender station and the behavior of the register at the receiver station are
maximally correlated. We have a clear causal explanation of how the signal is prop-
agating along the cable connecting the two stations. Next, imagine that something
goes wrong and the key randomly presses itself (case (B)). The random sequence of
signals generated in this way is properly transmitted to the receiver station, but the
system is not suitable to send telegrams. Still we have a clear causal explanation of
the correlation between the behaviors of the key and the register. Finally, case (C),
imagine the same situation as (B) except that the cable connecting the two stations
is broken. In this situation, it would be astonishing if there really were correlations
between the random behavior of the key and the behavior of the register, and it
would cry out for causal explanation, no matter whether or not we are able to send
information from one station to the other.

As this simple example illustrates, no matter whether or not we are able to com-
municate with EPR equipment, the very fact that we observe correlations which
cannot be accommodated in the causal order of the world is still an embarrassing
metaphysical problem.
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5.4 Modifying the theory

In order to resolve the paradox, there have been various suggestions to modify
the underlying physical/mathematical/logical theories by which we describe the
phenomena in question. Some of these endeavors are based on the observation
that the violation of the Bell-type inequalities is deeply related to the non-classical
feature of quantum probability theory (Santos 1986; Pitowsky 1989; Pykacz 1989;
Pykacz and Santos 1991). More exactly, it is rooted in the (non-distributive lattice)
structure of the underlying event algebra which essentially differs from the classical
Boolean algebra. According to some of these approaches, the fact in itself that the
Bell-type inequalities are violated has nothing to do with such physical questions
as locality, causality or the ontology of quantum phenomena. It is just a simple
mathematical consequence of quantum probability theory and/or quantum logic
(Pitowsky 1989, pp. 49-51; 182-183).

According to another approach, it is quantum mechanics itself that has to be mod-
ified. So called relational quantum mechanics (Bene 1992; Rovelli 1996; Bene and
Dieks 2002) introduces a new concept: the relative quantum state. It turns out
that the relative quantum state of the right particle changes if the left particle is
measured and vice versa. Therefore, it is argued, the two particles are not causally
separated at a quantum level.

Some papers, motivated by the problem of quantum gravity, suggest space-time
structures that are intrinsically based on quantum theory. These results have re-
markable interrelations with the EPR—Bell problem (Szabé 1986; 1989; Svetlichny
2000). The EPR events, which are spatially separated in classical space-time, turn
out not to be spatially separated in some other space-time structures based on
quantum mechanics.

Another branch of research attempts to develop, within the framework of algebraic
quantum field theory, an exact concept of “separation” of subsystems (Rédei 1989;
Redhead 1995; Rédei and Summers 2002; 2005).

What is common to all these efforts is that they aim to improve the concep-
tual/theoretical means by which we describe and analyze the EPR-Bell problem.
All these approaches, however, encounter the following difficulty: The violation of
the Bell-type inequalities is an experimental fact. It means that the EPR—Bell prob-
lem exists independently of quantum mechanics, and independently of any other
theories: what is important from (1)—(2) is that

p(Ala) = p(Blb) =

p(AABlanD) = Esin2 <I(a2,b)

(45)

— N =

(46)

We observe correlations in the macroscopic world, which have no satisfactory ex-
planation. It is hard to see how we could resolve the EPR-Bell paradox by changing
something in our theories, by introducing new concepts, by changing, for example,
the notion of a quantum state, by applying “quantum logic”, "quantum space-time",
etc. For, until the modified theory can reproduce the experimentally observed rel-
ative frequencies (45)—(46), the modified theory will contradict to Assumptions 1,
2/2’, and 4 (Note that Fine's approach differs from the other proposals in claiming
that (45)—(46) are not what we actually observe in the real experiments).
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6 No correlation without causal explanation

How correlations between event types are related to causality between particular
events is an old problem in the history of philosophy. Although the underlying
causality on the level of particular events does not necessarily yield to correlations
on the level of event types, it is a deeply rooted metaphysical conviction, on the other
hand, that there is no correlation without causal explanation. If there is correlation
between two event types then there must exist something in the common causal past
of the corresponding particular events that explains the correlation. This something
is called a “common cause”. “Particular event” means an event of a definite space-
time locus, a definite piece of the history of the universe, that is the totally detailed
state of affairs in a given space-time region.

The interesting situation is, of course, when the correlated events are not in di-
rect causal relationship; for example, they are simultaneous or, at least, spatially
separated. (In order to distinguish direct causal relations from common-cause-type
causal schemas, in other words real causal processes from pseudo-processes, Re-
ichenbach (1956) and Salmon (1984) introduced the so called mark-transmission
criterion: a direct causal process is capable of transmitting a local modification in
structure (a “mark’); a pseudo-process is not. Consider Salmon’s simple example:
as the spotlight rotates, the spot of light moves around the wall. We can place
a red filter at the wall with the result that the spot of light becomes red at that
point. But if we make such a modification in the travelling spot, it will not be
transmitted beyond the point of interaction. The “motion” of the spot of light on
the wall is not a real causal process. On the contrary, the propagation of light from
the spotlight to the wall is a real causal process. If we place a red filter in front of
the spotlight, the change of color propagates with the light signal to the wall, and
the spot of light on the wall becomes red. It is not entirely clear, however, how
the mark-transmission criterion is applicable for objectively random uncontrollable
phenomena, like the EPR experiment. It also must be mentioned that the criterion
is based on some prior metaphysical assumptions about free will and free action.)

The idea that a correlation between events having no direct causal relation must
always have a common-cause explanation is due to Hans Reichenbach (1956). It is
hotly disputed whether the principle holds at all. Many philosophers claim that there
are “regularities” in our world that have no causal explanations. The most famous
such example was given by Elliot Sober (1988): The bread prices in Britain have
been going up steadily over the last few centuries. The water levels in Venice have
been going up steadily over the last few centuries. There is therefore a “regularity”
between simultaneous bread prices in Britain and sea levels in Venice. However,
there is presumably no direct causation involved, nor a common cause. Of course,
“regularity” here does not mean correlation in probability-theoretic sense (p(A A
B) —p(A)p(B) = 1-1—1 = 0). So, it is still an open question whether the
principle holds, in its original Reichenbachian sense, for events having non-zero
correlation. Various examples from classical physics have been suggested which
violate Reichenbach’s common cause principle. There is no consensus on whether
these examples are valid. There is, however, a consensus that the EPR—Bell problem
is a serious challenge to Reichenbach's principle.

Another much-discussed problem is how to define the concept of common cause.
As we have seen, in Bell's understanding, the common cause is the hidden state
of the universe in the intersection of the backward light cones of the correlated
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events. This view is based on the LDM world view of the pre-quantum-mechanical
physics. According to Reichenbach'’s definition (1956, Chapter 19) a common cause
explaining the correlation p(A A B) — p(A)p(B) # 0 is an event C satisfying the
following condition:

p (AN B|C) p (A|C) p (B|C) (47)
p(ANB|=C) = p(A|=C)p(B|=C) (48)

Reichenbach based his common-cause concept on intuitive examples from the classi-
cal world with epistemic probabilities. However, as Nancy Cartwright (1987) points
out, we are in trouble if the world is objectively indeterministic. We have no suitable
metaphysical language to tell when a world is local, to tell the difference between
direct and common-cause-type correlations, to tell what a common cause is, and
so on. These concepts of the theory of stochastic causality are either unjustified or
originated from the observations of epistemically stochastic phenomena of a deter-
ministic world. (For further reading see Hofer-Szab¢ et al. 2013.)

7 References and Further Reading

Accardi, L. (1984): The probabilistic roots of the quantum mechanical paradoxes,
in: The Wave-Particle Dualism, S. Diner et al. (eds.), D. Reidel, Dor-
drecht.

Accardi, L. (1988): Foundations of quantum mechanics: a quantum probabilistic
approach, in: The Nature of Quantum Paradoxes, G. Tarrozzi and A.
Van Der Merwe (eds.), Kluwer Academic Publishers, Dordrecht.

Aspect, A., Grangier, P., and Roger, G. (1981): Experimental Test of Realistic Lo-
cal Theories via Bell's Theorem, Physical Review Letters 47 460.

Bell, J. S. (1964): On the Einstein—Podolsky—Rosen paradox, Physics 1 195
(reprinted in Bell 1987).

Bell, J. S. (1987): Speakable and unspeakable in quantum mechanics, Cambridge
University Press, Cambridge.

Bene, Gy. (1992): Quantum reference systems: a new framework for quantum me-
chanics, Physica A242 529.

Bene, Gy. and Dieks, D. (2002): A perspectival version of the modal interpretation
of quantum mechanics and the origin of macroscopic behavior, Foun-
dations of Physics 32 645.

Bohm, D. (1952a): A Suggested Interpretation of the Quantum Theory in Terms
of ‘Hidden' Variables, 1. Il., Physical Review 85 166, 180.

Bohm, D. (1952b): Reply to Criticism of a Causal Re-interpretation of the Quantum
theory, Physical Review 87 389.

Bohm, D. and Aharonov, Y. (1957): Discussion of Experimental Proof for the
Paradox of Einstein, Rosen, and Podolsky, Physical Review 108 1070.

26



Bohm, D. and Hiley, B. J. (1993): The Undivided Universe, Routledge, London.

Brans, C. H. (1988): Bell's theorem does not eliminate fully causal hidden variables,
International Journal of Theoretical Physics 27 219.

Cartwright, N. (1987): How to tell a common cause: Generalization of the con-
junctive fork criterion, in: Probability and Causality, J. H. Fetzer (ed.),
D. Reidel, Dordrecht.

Clauser, J. F. and Horne, M. A. (1974): Experimental consequences of objective
local theories, Physical Review D10 526.

Clauser, J.F. and Shimony, A. (1978): Bell's Theorem: Experimental Test and Im-
plications, Reports on Progress in Physics 41 1881.

Cushing, J. T. (1994): Quantum Mechanics — Historical Contingency and the
Copenhagen Hegemony, The University of Chicago Press, Chicago and
London.

Einstein, A., Podolsky, B., and Rosen, N. (1935): Can Quantum Mechanical De-
scription of Physical Reality be Considered Complete?, Physical Review
47 777.

Fine, A. (1982): Some local models for correlation experiments, Synthese 50 279.

Fine, A. (1986): The Shaky Game — Einstein, realism and the Quantum Theory,
The University of Chicago Press, Chicago.

Fine, A. (1991): Inequalities for Nonideal Correlation Experiments, Foundations of
Physics 21 365.

Hawking, S. W. and Ellis, G. F. R. (1973): The Large Scale Structure of Space-
Time, Cambridge University Press, Cambridge.

Hofer-Szabé, G., Rédei, M., and Szabé, L. E. (2013): The Principle of the Com-
mon Cause, Cambridge University Press, Cambridge.

Holland, P. R. (1993): The Quantum Theory of Motion — An Account of the de
Broglie-Bohm Causal Interpretation of Quantum Mechanics, Cambridge
University Press.

Larsson, J-A. (1999): Modeling the singlet state with local variables, Physics Let-
ters A256 245.

Pykacz, J. (1989): On Bell-type inequalities in quantum logic, in: The Concept of
Probability, E. |. Bitsakis and C. A. Nicolaides (eds.), Kluwer, Dor-
drecht.

Pykacz, J. and Santos, E. (1991): Hidden variables in quantum logic approach re-
examined, Journal of Mathematical Physics 32 1287.

Pitowsky, 1. (1989): Quantum Probability — Quantum Logic, Lecture Notes in
Physics 321, Springer, Berlin.

Rédei, M. (1989): The hidden variable problem in algebraic relativistic quantum
field theory, Journal of Mathematical Physics 30 461.

27



Rédei, M. and Summers, S. J. (2002): Local Primitive Causality and the Common
Cause Principle in quantum field theory, Foundations of Physics 32 335.

Rédei, M. and Summers, S. J. (2005): Remarks on causality in relativistic quantum
field theory, International Journal of Theoretical Physics 44 1029

Redhead, M. L. G. (1987): Incompleteness, Nonlocality, and Realism — A Prole-
gomenon to the Philosophy of Quantum Mechanics, Clarendon Press,
Oxford.

Redhead, M. L. G. (1995): More Ado About Nothing, Foundations of Physics 25
123.

Reichenbach, H. (1956): The Direction of Time, University of California Press,
Berkeley.

Rovelli, C. (1996): Relational quantum mechanics, International Journal of Theo-
retical Physics 35 1637.

Salmon, W. C. (1984): Scientific Explanation and the Causal Structure of the
World, Princeton University Press, Princeton.

Santos, E. (1986): The Bell inequalities as tests of classical logic, Physics Letters
A115 363.

Sober, E. (1988): The Principle of the Common Cause, in: Probability and Causal-
ity, J. Fetzer (ed.), Reidel, Dordrecht.

Svetlichny, G. (2000): The Space-time Origin of Quantum Mechanics: Covering
Law, Foundations of Physics 30 1819.

Szabd, L. E. (1986): Quantum Causal Structures, Journal of Mathematical Physics
27 2709.

Szabd, L. E. (1989): Quantum Causal Structure and the Einstein-Podolsky-Rosen
Experiment, International Journal of Theoretical Physics 28 35.

Szab¢, L. E. (1995): Is quantum mechanics compatible with a deterministic uni-
verse? Two interpretations of quantum probabilities, Foundations of
Physics Letters 8 421.

Szabé, L. E. (2000): Contextuality Without Contextuality: Fine's Interpretation of
Quantum Mechanics, Reports on Philosophy, No. 20 p. 117.

Szabé, L. E. (2001): Critical reflections on quantum probability theory, in: John
von Neumann and the Foundations of Quantum Physics, M. Rédei, M.
Stoeltzner (eds.), Kluwer Academic Publishers, Dordrecht.

Szab¢, L. E. and Fine, A. (2002): A local hidden variable theory for the GHZ ex-
periment, Physics Letters A295 229.

Van Fraassen, B. C. (1989): The Charybdis of Realism: Epistemological Implica-
tions of Bell's Inequality, in: Philosophical Consequences of Quantum
Theory, J. Cushing and E. McMullin (eds.), University of Notre Dame
Press, Notre Dame.

28



Wald, R. M. (1984): General Relativity, University of Chicago Press, Chicago and
London.

Weihs, G., Jennewin, T., Simon, C., Weinfurter, H., and Zeilinger, A. (1998):
Violation of Bell's Inequality under Strict Einstein Locality Conditions,
Physical Review Letters 81 5039.

Author Information:

Laszl6 E. Szabo
Email: leszabo®@phil.elte.hu
E6tvos University, Budapest

Last updated on January 7, 2018 | Categories: Philosophy of Science

29



	The Einstein–Podolsky–Rosen argument
	The description of the EPR experiment
	The Reality Criterion
	Does quantum mechanics describe these elements of reality?
	The EPR conclusion

	Under what conditions can a system of empirically ascertained probabilities be described by Kolmogorov's probability theory?
	Pitowsky theorem
	Inequalities

	Do the missing elements of reality exist?
	Bell's inequalities
	Bell's formulation of the problem
	The derivation of Bell's inequalities

	Possible resolutions of the paradox
	Conspiracy
	Fine's interpretation of quantum statistics
	Non-locality, but without communication
	Modifying the theory

	No correlation without causal explanation
	References and Further Reading

