Buildings

A source of enormous untapped efficiency potential

The buildings and buildings construction sectors combined are responsible for over one-third of global final energy consumption and nearly 40% of total direct and indirect CO2 emissions. Energy demand from buildings and buildings construction continues to rise, driven by improved access to energy in developing countries, greater ownership and use of energy-consuming devices, and rapid growth in global buildings floor area.

Key findings

Buildings sector energy intensity in selected regions in the Sustainable Development Scenario, 2000-2030

Openexpand

Energy-related CO2 emissions from buildings have risen in recent years

Energy-related CO2 emissions from buildings have risen in recent years after flattening between 2013 and 2016. Direct and indirect emissions from electricity and commercial heat used in buildings rose to 10 GtCO2 in 2019, the highest level ever recorded. Several factors have contributed to this rise, including growing energy demand for heating and cooling with rising air-conditioner ownership and extreme weather events. Enormous emissions reduction potential remains untapped due to the continued use of fossil fuel-based assets, a lack of effective energy-efficiency policies and insufficient investment in sustainable buildings.
Our work

The EBC TCP, created in 1977, carries out research and development efforts towards near-zero energy and carbon emissions in the built environment. Activities under the EBC TCP focus on the integration of energy-efficient and sustainable technologies into healthy buildings and communities.

The DHC TCP conducts research and development as well as policy analysis and international co-operation to increase the market penetration of district heating and cooling systems with low environmental impact.

The aims of the 4E TCP are to promote energy efficiency as the key to ensuring safe, reliable, affordable and sustainable energy systems. As an international platform for collaboration between governments, the 4E TCP provides policy guidance to its members and other governments concerning energy using equipment and systems. The 4E TCP prioritises technologies and applications with significant energy consumption and energy saving potential within the residential, commercial and industrial sectors (not including transport). To meet its aims, the 4E TCP harnesses the expertise of governments, industry, experts and other TCPs for joint research related to the development and deployment of energy efficient equipment.

The mission of the Energy Storage TCP is to facilitate research, development, implementation and integration of energy storage technologies to optimise the energy efficiency of all kinds of energy systems and enable the increasing use of renewable energy. Storage technologies are a central component in energy-efficient and sustainable energy systems. Energy storage is a cross-cutting issue that relies on expert knowledge of many disciplines. The Energy Storage TCP fosters widespread experience, synergies and cross-disciplinary co-ordination of working plans and research goals.

The HPT TCP functions as an international framework of co-operation and knowledge exchange for the different stakeholders in the field of heat pumping technologies used for heating, cooling, air-conditioning and refrigeration in buildings, industries, thermal grids and other applications. The mission of the HPT TCP is to accelerate the transformation to an efficient, renewable, clean and secure energy sector in its member countries and beyond through collaboration research, demonstration and data collection and through enabling innovations and deployment in the area of heat pumping technologies.

Through multi-disciplinary international collaborative research and knowledge exchange, as well as market and policy recommendations, the SHC TCP works to increase the deployment rate of solar heating and cooling systems by breaking down the technical and non-technical barriers to increase deployment.