
Patterns for Testing Debian Packages

Antonio Terceiro
terceiro@debian.org

A brief intro to Debian CI

∙ autopkgtest created back in 2006 (!)
∙ 2014: Debian CI launches
∙ Goal: provide automated testing
 for the Debian archive
 (i.e. run autopkgtest for everything)
∙ Plans: gate migrations from
 unstable to testing

https://ci.debian.net/

~8k source packages

~28% of the archive

~21 packages/day
since January 2014

As a CI proponent, I have read and
written tests for several packages.

I started to notice, and suggest,
similar solutions to recurring
problems … and thought they
could/should be documented.

Patterns

A pattern is a re-usable,
documented solution to a
recurring problem

O�en used in design disciplines,
such as architecture and
so�ware engineering

This talk is based on the following paper:

Terceiro, Antonio. 2016. Patterns for Writing
As-Installed Tests for Debian Packages.
Proceedings of the 11th Latin American Conference
on Pattern Languages of Programming
(SugarLoaf PLoP), November 2016.

PDF: https://deb.li/pattestdeb

Documenting patterns

∙ Common elements:
 ∙ Title
 ∙ Context
 ∙ Problem
 ∙ Forces
 ∙ Solution
 ∙ Consequences
 ∙ Examples
∙ Several different styles/templates

A note about Patterns conferences

∙ A breath of fresh air for those
 used to traditional academic
 conferences
∙ Discussion instead of
 presentation
∙ Dedicated reading time
 → people actually read your stuff

A brief introduction to DEP8

DEP8

Goal: test a package in a context as close
as possible from a system where the given
package is properly installed

$ cat debian/tests/control
Tests: test1, test2

Tests: test3
Depends: @, shunit2

Test-Command: wget http://localhost/package/
Depends: @, wget

$ grep Testsuite: debian/control
Testsuite: autopkgtest
added for you by dpkg-source from stretch+
if debian/tests/control exists

Tooling: autopkgtest

$ autopkgtest foo_1.2.3-1.dsc -- null
$ autopkgtest foo_1.2.3-1_amd64.changes -- null
$ autopkgtest -B . -- null

$ autopkgtest … -- lxc --sudo autopkgtest-sid-amd64
$ autopkgtest … -- qemu /path/to/img

Pattern #1
Reuse Existing Tests

Upstream provides tests. They are intended
to run against the source tree, but still
they are useful to verify whether the package
works (context)

However, there are no "as-installed" tests
(problem)

∙ maintainer might lack time or
 skills to write tests …
∙ but upstream already wrote
 some tests

(forces)

Therefore:
Implement as-installed tests as a
simple wrapper program that calls the
existing tests provided by upstream

(solution)

Reusing unit tests is very useful
for library packages

Reusing acceptance tests is useful
for applications

Pattern #2
Test the Installed Package

The goals of DEP-8/autopkgtest is to
test the package as installed.

Tests that exercise the source tree
do not effectively reproduce users'
systems

∙ Some test suites will rely on
 absolute file paths (bad)
 ∙ __FILE__ in Ruby
 ∙ __file__ in Python
∙ Some test suites will rely on
 the testing framework in use
 to setup the environment

Therefore:
Remove usage of programs and library
code from the source tree in favor
of their installed counterparts.

∙ Programs can be called directly
 by name (they are in $PATH)
∙ Libraries can be imported/linked
 against without any extra effort
 (they are in the standard places)
∙ No build is nececessary
 (maybe only the test themselves)

Pattern #3
Clean and disposable test bed

We want reproducible tests, so everything
the test needs to work must be explicit

Tests must reproduce the environment
a user gets when installing the package
on a clean system

∙ Reproducibility comes from automation
∙ Automation has an upfront cost
 (usally worth it in the long run)

Therefore:
Use virtualization or container
technology to provide fresh test
systems

∙ Package dependencies must be correct
∙ Packages needed for the test but not
 for normal usage must be specified in
 the control file
∙ Further automation can be scripted in
 test scripts (e.g. web server setup)
∙ While writing the tests themselves
 it is useful to run them against a
 "dirty" system; but you should test
 on a clean one before uploading

Examples

∙ autopkgtest supports different
 virtualization options, including
 none (null)
∙ Debian CI uses LXC. QEMU will be
 used in the future
∙ Ubuntu autopkgtest uses QEMU and
 LXC

Pattern #4
Acknowledge Known Failures

A package has an extensive
test suite

The majority of tests pass
successfully, but some fail

∙ a test may fail for several reasons
∙ of course, ideally we want 100% of
 the tests passing
∙ Failures needs to be investigated
∙ how severe is each failure?
 ∙ are all features and corner
 cases equally important?
∙ how much effort is required
 to fix broken tests?

Therefore:
Make known failures non-fatal

∙ Passing tests act as regression
 test suite
∙ list of non-fatal failures can
 be used as a TODO list
∙ one should probably not postpone
 fixing the underlying issues forever

Pattern #5
Automatically Generate Test Metadata

∙ Teams have large amounts of similar packages
 which could be tested with similar code
∙ Upstream communities usually have conventions
 on how to run tests

Similar packages tend to have similar
or identical test control files

∙ duplicated test definitions are bad
∙ Some packages will need slight
 variations

Therefore:
Replace duplicated test definitions
with ones generated automatically at
runtime.

∙ automatically generated definitions
 can be updated centrally
∙ handling test environments is also
 managed centrally

∙ e.g. making sure the tests are
 running against the installed
 package

we do this with autodep8(1)

package: ruby-foo
$ grep ^Testsuite debian/control
Testsuite: autopkgtest-pkg-ruby

$ autodep8
Test-Command: gem2deb-test-runner \
 --autopkgtest \
 --check-dependencies 2>&1
Depends: @, «build-dependencies», \
 gem2deb-test-runner

Also supported:
Perl, Python, NodeJS, DKMS, R, ELPA, Go

Pattern #6
Smoke Tests

∙ Not all packages provide tests
∙ Sometimes features are provided
 by the packaging and not by upstream
 (e.g. maintainer scripts, service
 definitions)

The package maintainer wants to add
tests to make sure that high-level
functionality works.

∙ Testing internals may be hard
 (and should be done upstream)
∙ Packaging-specific tests might
 be justifiable

Therefore:
Write smoke tests that exercise
functionality of the package and
check for expected results.

A smoke test covers the main
and/or most basic functionality of a
system.

smoke → fire

Even the simplest test case
(e.g. myprogram --version)
could catch:

∙ Silent ABI changes
∙ Issues in dependencies
∙ Invalid instructions
∙ Packaging issues
 (myprogram: command not found)

Pattern #7
Record Interactive Session

∙ Some packages predate the
 pervasiveness of automated testing
∙ Sometimes writing automated tests
 upfront is not so easy
 (e.g. experimental interfaces)

You want to provide tests for a
package that provides none.

some programs will have a clear
boundary with its environment, e.g.
 CLIs
 GUIs
 listening server sockets

Therefore:

Record sample interactions with
the program in a way that they can
be "played back" later as automated
tests.

∙ install the package on a clean testbed
∙ Exercise the interface, and verify
 results match expected/documented
 behavior
∙ record that interaction in an
 executable format (YMMV)

$ cat examples/cut.txt
$ echo "one:two:three:four:five:six" | cut -d : -f 1
one
$ echo "one:two:three:four:five:six" | cut -d : -f 4
four
$ echo "one:two:three:four:five:six" | cut -d : -f 1,4
one:four
$ echo "one:two:three:four:five:six" | cut -d : -f 4,1
one:four
$ echo "one:two:three:four:five:six" | cut -d : -f 1-4
one:two:three:four
$ echo "one:two:three:four:five:six" | cut -d : -f 4-
four:five:six

$ clitest examples/cut.txt
#1 echo "one:two:three:four:five:six" | cut -d : -f 1
#2 echo "one:two:three:four:five:six" | cut -d : -f 4
#3 echo "one:two:three:four:five:six" | cut -d : -f 1,4
#4 echo "one:two:three:four:five:six" | cut -d : -f 4,1
#5 echo "one:two:three:four:five:six" | cut -d : -f 1-4
#6 echo "one:two:three:four:five:six" | cut -d : -f 4-
OK: 6 of 6 tests passed

Final remarks

∙ These patterns document solutions
 for autopkgtest-related design
 issues
∙ hopefully they are useful for you
∙ Some patterns solve the same problem
∙ Can you identify other patterns?

plug: ci/autopkgtest BoF
Friday 15:30 — "Bo" room

Learn more

Paper PDF
https://deb.li/pattestdeb

Debian CI documentation
https://ci.debian.net/doc/

Tutorial: Functional testing of Debian packages
(DC15 talk; transcription at Debian CI docs)

