BEVERIDGEAN UNEMPLOYMENT GAP

Pascal Michaillat (Brown)

Emmanuel Saez (Berkeley)

UNEMPLOYMENT GAP: KEY FOR MACRO POLICIES

- US government mandate is to achieve "full employment"
 - Humphrey-Hawkins Full Employment Act of 1978
 - unemployment gap = distance from "full employment"
- optimal macro policies depend on distance from efficiency
 - monetary policy, fiscal policy, labor subsidies/taxes
 - unemployment gap = distance from efficiency

CHALLENGES IN MEASURING UNEMPLOYMENT GAP

- 1. statistical approach (CBO)
 - trend unemployment generally not efficient
- 2. Phillips-curve approach
 - based on inflation dynamics but not welfare
- 3. our approach: based on welfare in matching model
 - same welfare concept as Hosios (1990)
 - but applicable to any matching model
 - and implementable with observable statistics

OVERVIEW OF THE METHOD: 2009–2019

OVERVIEW OF THE METHOD: 2009-2019

OVERVIEW OF THE METHOD: 2009–2019

OVERVIEW OF THE METHOD: 2009–2019

THEORY

BEVERIDGE CURVE

- Beveridge curve: v(u)
 - v: vacancy rate
 - u: unemployment rate
 - decreasing, convex
- present in many countries (Elbsy, Michaels, Ratner 2015)
- present in many models
 - matching (Diamond-Mortensen-Pissarides + variants)
 - mismatch (Shimer 2007)
 - stock-flow matching (Ebrahimy, Shimer 2010)

SOCIAL WELFARE

- recruiting cost: ρ workers / vacancy
- social value of unemployment / employment: z
- social welfare (Hosios 1990):

$$(1-u)+u\cdot z-\rho\cdot v(u)$$

• first-order condition wrt *u* to maximize welfare:

$$-1 + z - \rho \cdot v'(u) = 0$$
$$v'(u) = -\frac{1 - z}{\rho}$$

EFFICIENT UNEMPLOYMENT & BUSINESS CYCLES

EFFICIENT UNEMPLOYMENT & BUSINESS CYCLES

EFFICIENT UNEMPLOYMENT & BUSINESS CYCLES

COSTLIER RECRUITING

COSTLIER UNEMPLOYMENT

WORSE MISMATCH

SUFFICIENT-STATISTIC FORMULA

- labor market tightness: $\theta = v/u$
- Beveridge elasticity: $\epsilon = -d \ln(v)/d \ln(u) = -v'(u)/\theta$
- efficient labor market tightness: θ^*

$$v'(u) = -\frac{1-z}{\rho}$$
$$-\frac{v'(u)}{\theta} \cdot \theta = \frac{1-z}{\rho}$$
$$\theta^* = \frac{1-z}{\rho \epsilon}$$

• $u - u^*$ obtained from $\theta - \theta^*$ through Beveridge curve

LOG BEVERIDGE CURVE: 1951–1959

LOG BEVERIDGE CURVE: 1959–1971

LOG BEVERIDGE CURVE: 1971–1975

LOG BEVERIDGE CURVE: 1975–1987

LOG BEVERIDGE CURVE: 1990-1999

LOG BEVERIDGE CURVE: 2001–2009

LOG BEVERIDGE CURVE: 2010-2019

LOG BEVERIDGE CURVE: 2010–2019

BEVERIDGE ELASTICITY: 1951–2019

RECRUITING COST & VALUE OF UNEMPLOYMENT

- recruiting cost: 1997 National Employer Survey (Villena 2010)
 - 4,500 establishments
 - firms spend 2.5% of labor costs on recruiting
 - $\rightsquigarrow \rho = 0.72$
- value of unemployment: military administrative data for 1993–2004 (Borgschulte, Martorell 2018)
 - 420,000 veterans
 - during unemployment: 13%–35% of earnings loss is offset by leisure and home production

EFFICIENT UNEMPLOYMENT & UNEMPLOYMENT GAP

ALTERNATIVE CALIBRATIONS OF Z

BASELINE EFFICIENT UNEMPLOYMENT RATE

LOWER BOUND: z = 0

CHODOROW-REICH, KARABARBOUNIS (2016): z = 0.4

HAGEDORN, MANOVSKII (2008): z = 0.96

MINNESOTA Z: NO UNEMPLOYMENT GAP

