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Abstract

We investigate the role of the significance level when selecting models for forecasting as it con-
trols both the null retention frequency and the probability of retaining relevant variables when using
binary decisions to retain or drop variables. Analysis identifies the best selection significance level in
a bivariate model when there are location shifts at or near the forecast origin. The trade-off for select-
ing variables in forecasting models in a stationary world, namely that variables should be retained
if their non-centralities exceed 1, applies in the wide-sense non-stationary settings with structural
breaks examined here. The results confirm the optimality of the Akaike Information Criterion for
forecasting in completely different settings than initially derived. An empirical illustration forecast-
ing UK inflation demonstrates the applicability of the analytics. Simulation then explores the choice
of selection significance level for 1-step ahead forecasts in larger models when there are unknown lo-
cation shifts present under a range of alternative scenarios, using the multipath tree search algorithm,
Autometrics (Doornik, 2009), varying the target significance level for the selection of regressors. The
costs of model selection are shown to be small. The results provide support for model selection at
looser than conventional settings, albeit with many additional features explaining the forecast perfor-
mance, with the caveat that retaining irrelevant variables that are subject to location shifts can worsen
forecast performance.

Keywords: Model selection; forecasting; location shifts; significance level; Autometrics

1 Introduction

There are many approaches to formulating models when the sole objective is forecasting, from the very
parsimonious through to large systems. However, there is little agreement on which approaches perform
best on a forecasting criterion: see Makridakis and Hibon (2000) and Fildes and Ord (2002) for evidence
from forecast competitions. Clements and Hendry (2001) suggest this lack of agreement is the outcome
of intermittent distributional shifts differentially impugning alternative formulations. We address this
critique by analysing the selection of models to optimise mean square forecast error performance in
wide-sense non-stationary settings with structural breaks.

The paper focuses on regression models that are linear in the parameters, and considers model selec-
tion that is controlled by the nominal significance level for statistical significance when selecting fore-
casting models subject to breaks. Loose significance levels (such as those implied by AIC: see Akaike,
1973) have been shown to be optimal to select regression models for stationary processes if evaluating
on a 1-step ahead mean-square forecast error (MSFE) criterion; see Shibata (1980) who showed that AIC

*Financial support from the Robertson Foundation (award 9907422) and Institute for New Economic Thinking (grant
20029822) is gratefully acknowledged. We thank participants at the 2018 International Symposium of Forecasting, Michael
P. Clements, Andrew Martinez, Felix Pretis, and Sophocles Mavroeidis for helpful comments and suggestions, and Michael
McCracken for suggesting comparisons with bagging, which will be reported in a later paper.



is an asymptotically efficient selection method when the DGP is an infinite order process, also see Ing
and Wei (2003). Many other criteria have been proposed that aim to have optimal properties in certain
settings but information criteria alone are not a sufficient principle for selecting models as they do not
ensure congruence, so a mis-specified model could be selected: see Bontemps and Mizon (2003). In the
simulation exercise, we explore general-to-specific (Gets) model selection, to narrow down the class of
forecasting models to undominated models, yielding the benefits of well-specified encompassing models
in-sample, albeit non-stationarities may preclude those benefits continuing over the forecast horizon.

Here we investigate the significance level for selecting variables, to establish how tight a selection
criterion should be when the specific purpose is forecasting facing a potentially non-stationary environ-
ment induced by location shifts of the conditioning variables’ distributions. The analysis commences
with a bivariate conditional model that is part of a 3-variable system in which the selection decision is
whether to retain or exclude one of the regressors. Such a design is empirically relevant as demonstrated
by an example forecasting UK inflation, where autoregressive models are augmented with the unemploy-
ment rate. This bivariate model is analysed both for stationary and non-stationary settings where location
shifts occur at or near the forecast origin. The static setting still requires forecasts of the conditioning
variables, and alternative forecasting devices are considered, including the two extremes of the class of
robust forecasting devices proposed by Castle, Clements, and Hendry (2015). The results confirm that
regressors should be retained for forecasting if their non-centralities exceed 1, regardless of whether or
not there is a structural break, or of the forecasting device used. These analytic results map to a selection
significance level of 16% in the bivariate case, much looser than conventional significance levels used.
The results closely match that of AIC, which can be interpreted as a likelihood ratio x? test for a pair
of nested models with 1 degree of freedom and a penalty of 2, and also gives a significance level of
approximately 16%: see Potscher (1991) and Leeb and Pétscher (2009).

In their taxonomy of forecast errors in systems where some conditioning variables are forecast off-
line, Hendry and Mizon (2012) show that a key source of forecast failure is any induced shift in the equi-
librium mean of the variable being forecast, irrespective of whether or not those conditioning variables
are included in the forecasting model. Consequently, we include a simulation exercise that evaluates a
wide range of settings including larger models, break types and magnitudes at or near the forecast origin
and the method of forecasting. We consider a range of significance levels from the very tight (0.001),
eliminating almost all potentially irrelevant variables, to the very loose (0.50), enabling retention of rel-
evant variables even if they are only marginally significant. The results enable evaluation of the costs
when forecasting of omitting relevant variables and from incorrectly retaining irrelevant variables. Over-
all, the results support looser than conventional significance levels for selecting forecasting models, with
a 10% target significance level often producing superior forecasts.

The paper is structured as follows. First, section 2 motivates the paper and then section 3 formu-
lates the analysis and section 4 considers the choice of selection significance level for forecasting in a
stationary DGP. Then section 5 analyses selection in a non-stationary DGP where a location shift occurs
out-of-sample in one of the regressors, and investigates the consequences of that variable’s inclusion
or exclusion in the forecasting model. Section 6 considers the impacts on selection of in-sample shifts
using different forecasting devices and section 7 summarises the analytic results. Section 8 presents the
simulation evidence on the performance of the various approaches, examining the preferred significance
level to minimize MSFE across experiment designs, and section 9 concludes. Appendix A includes the
analytic derivations and appendix B provides supplementary tables.

2 Motivation

Two popular models within the large literature on inflation forecasting include single-equation fore-
casting models based on past inflation (univariate models such as ARIMA) and what are often termed
‘Phillips curve forecasts’, augmenting the univariate model with an activity variable such as the unem-
ployment rate or output gap, see Stock and Watson (2009). The framework considered below, although
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Figure 1: (a) Annual UK inflation rate (CPI); (b) Annual UK unemployment rate, with SIS detected
mean shifts at o« = 0.1%.

static, can be applied to these two models where the econometrician wishes to determine whether to
augment a univariate forecasting model with the contemporaneous unemployment rate. This ‘exoge-
nous’ variable is subject to breaks in the form of location shifts, which may occur at or near the forecast
horizon. Figure 1 records the annual percentage change in UK consumer price inflation, 7, and the UK
unemployment rate as a percentage, U,., along with a broken mean obtained by Step Indicator Saturation
(SIS) at o = 0.1%.!

The analytics derived below correspond to a Phillips curve formulation (M), a univariate AR model
(M5) and selection applied to the unemployment rate using a significance level of 0.16 (M3):
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where * denotes selection using Autometrics at o« = 16%), i.e. 87; has a zero when a variable is not se-
lected. Dynamics are included to account for any autocorrelation. The forecasting models are estimated
over 2000g1 — 2013¢4, producing 1-quarter ahead inflation forecasts for 2014q1-2017q4 evaluated on
MSFE. Selection at 16% results in U,.;_1 being retained, with a p—value of 0.149, so would not be
retained under a commonly used 5% significance level.

Table 1 reports the pseudo out-of-sample RMSFEs. Three cases are considered corresponding to the
analytics below; (a) known U, ;, (b) forecast ﬁr,t using the in-sample mean, and (c) forecast UM using
a random walk, i.e. U,;_1. Although there is little difference across the models with differences in
RMSFEs not statistically significant, selection at a loose significance level outperforms if U, ; is known.
As this is infeasible, the random walk applied to selecting the regression model using a significance level
of 16% matches that of the known U, 4, so selection can be beneficial. We now generalize the framework
to establish the optimal significance level for selection.

'SIS was conducted on the unemployment rate with a forced intercept at a selection significance level of & = 0.001. See
Castle, Doornik, Hendry, and Pretis (2015) for details of SIS.



Table 1: Root Mean Square Forecast Errors (x 100) for annual inflation over 2014q1-2017g4.
My My M3
Known U4 0.535 0.530 0.515
Mean forecast for U, 0.519 0.530 0.542
Random Walk forecast for U,; 0.549 0.530 0.515

3 The analytic design

We initially focus on a static DGP with known future exogenous regressors to highlight the main issues,
before extending to allow for mean-shifts at the forecast origin in unknown future regressors. We examine
the in-sample mean estimator (optimal in the stationary case) and a random walk forecast, both under
a location shift, with the aim of determining the best significance level for selecting a regression model
based on a single t-test. Although a static DGP may seem restrictive, the formulation is a 3 variable
VAR, so the main role of adding dynamics would be slow adjustments to location shifts. Such dynamics
are considered in the simulation exercise in section 8.
The DGP is a static VAR given by:
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While it may be more intuitive to lag the exogenous regressors in the DGP for forecasting purposes,
none of the results would change and the current set up naturally leads to analysis of the forecasting
models for the contemporaneous exogenous regressors, allowing a comparison of alternative devices
and an assessment of open models, see Hendry and Mizon (2012). Throughout, we take the in-sample
estimates of the p; to be sufficiently precise that their sampling variation can be neglected, and use the
population values to focus on the impacts of location shifts. Then (1) implies E[y;] = ty = Bo+Bip +
Ba g With:

Yo = gy + B (T — py) + Ba (w24 — po) + €. “)

3.1 Selecting a model

Considering the conditional model (4) we compare M1, which includes both weakly exogenous regres-
sors, and Mo, which excludes x5:

My :yp = B+ Bro1s + Boza + € )
Mot yr = ¢o + 71214 + V1, (6)

where Appendix A.1 summarises ¢, 71, v and 0°2.
The choice between M1 and My will depend on a test of significance of x3 ;. The population non-
centrality of the t-test, tg,—o, of the null that 8, = 0, denoted %, is given by:
T3 (1 — p?
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Figure 2: MSFE comparisons between M; (solid lines computed from (8) and circles by simulation) and
M; (dashed line computed from (9) using (48) and squares by simulation), with 8, = 5, 3; =1, az =1,
1 = g =2, p=0.5and T = 50, 100, 500, with an additional observation used to calculate the 1-step
ahead MSFEs. (a) T' = 50; (b) T' = 100; (¢) T' = 500. Simulations based on M = 100, 000 replications.

4 Selection when forecasting in a stationary DGP

4.1 Comparing M; and M, forecast errors

First we compute the 1-step ahead MSFEs from My, denoted -, and Mo, denoted -, and look at the con-
ditions for MSFE, < MSFE;. An estimated intercept is always retained, which maintains comparability
between M1 and Ms.

When there are no breaks, the parameter estimates for M are unbiased, E [€T+1 ‘T] = 0, so the MSFE
of My is:

o 3
MSFE, = E [e%H‘T} = o2 (1 + T) , ®)
which is the unconditional MSFE formula for the impact of estimating 3 parameters, under the assumption
of correct model specification and no breaks. For Ms, despite the mis-specification when 3, # O,
E [ET+1|T] = (0 and the MSFE is:

. 2
MSFE, = E [6%+1|T} = o2 (1 + T) , )
where 02 = o2 (1 + T_lz/)Q) > o2, There is one less parameter to estimate, traded off against a larger
equation variance (see Appendix A.2 for derivations).
If the objective is to minimize MSFE, My should be used to forecast when MSFE, < MSFE;, which

requires:
2 3 0'2 2
2 2 € 2
- — — - £ - — <
o;, <1 + > o (1 + ) [1/) (1 + ) 1] 0

which occurs when ¢? < T/ (T + 2).

Figure 2 records the 1-step ahead values of MSFE; and MSFE; for known z; 711, @ = 1,2, for the
DGP given by (1) and (2) where j3, varies along the horizontal axis to get a range of non-centralities in
the set ¢ = [0, 4] using (7). The results confirm that x should be retained if its non-centrality exceeds
approximately 1, and the result converges to 1 as 7' — oo, as the information content of the regressor
outweighs the parameter estimation cost for 1-step forecasts, regardless of the correlation between x;
and xo.

(10)
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Figure 3: The costs/benefits of selection measured by MEEE’ =1+(T+3)1 (1= paft]) (¥* — 1) for
T =50with B, =5,8,=1,02 =1,y = iy = 2, p = 0.5.

4.2 Selecting regressors

Although M; and M5 provide the extremes of always/never retain o, in practice selection will be applied.
At a significance level of « and critical value c,, then x2; will be omitted if, from (5), t%fo < ci, SO
using the approximation that:

SE {BZ} o
which implies:
2 2
~2 cLo%
—* < 11

Thus, retention of x9 ; will depend on v and ? for a given draw.

Forecasts in repeated sampling will be based on a mixture of My and My depending on whether 2 ;
is retained in each draw. The MSFE of the selected model, called M3, will be a weighted average of the
MSFEs of M; and Ma, with the weights given by the probability that x5 ; is retained:

MSFE3 = pa[w]MSFEl + (1 - Pa[lﬂ) MSFE;

= MSFE; + (1 — pa[¥]) (MSFE; — MSFE;) (12)
~ MSFE; + 02T (1 - paly]) (v* - 1), (13)

where 12 is given by (7), with:
Palt)] = Pr (t%QZO > cg) . (14)

From the last term in (13) it is clear that MSFE; < MSFE; whenever 1[)2 < 1. Moreover, py[t] will
be low when 1? < 1, so My will usually be selected. Note that p,[i)] = o when 8, = 0. However,
MSFEj is a highly non-linear function of 2 entering directly and indirectly, as well as of o which also
influences p,[1/] non-linearly.



Figure 3 records the ratio of MSFE5 to MSFE;, for a range of 1), which from (13) is given by:

MSFE _

voFe, ~ L+ (T+3)7 (L= palv]) (v* = 1).

Selection delivers a 1.8% improvement in MSFE relative to M; when 1)? = 0 with a = 0.05 or tighter,
but for looser a, e.g. at 0.5, po[¢)] = 0.5 when 3 is irrelevant, the benefits of selection are halved.
Selection is most costly at intermediate non-centralities, where, for example, the largest increase in MSFE
relative to My is 3% at o = 0.05 for " = 50, but is over 9% for o = 0.001 at its peak. The hump shape
reflects the non-linear trade-off as the non-centrality of xo; increases, from the cost of omitting o ;
rising as its signal is stronger, but the probability of retaining w2 also increases. The magnitude of
cost/benefit depends on 7', so shrinks as the sample size increases.

The selection rule that x5 ; should be retained if ¢2 > 11is evident Vo, but unfortunately the forecaster
does not know 2. If it was known, the optimal « is O for ¢/> < 1 and 1 for 1) > 1. We next look at the
choice of o to minimize cost/maximize benefit in terms of improvements in 1-step ahead MSFEs for an
unknown 2.

4.3 The choice of selection significance level

Given (11), which is required for x2 to be excluded at the chosen significance level assuming unbiased-
ness, on average that inequality requires (when V|[-] denotes variance):

o2 &
(1-p%) T@A-p%)

Equating that inequality, which 33 must satisfy, with ¢/> < 1 from (10) gives the boundary for the critical
value ¢, in which selection results in a smaller MSFE due to the omission—estimation trade-off:

B3] =V [B.] + 83 = 83+ 7 (15)

2T T(A-p?) T T(A-p?)

This implies that ¢2 = 2 at the boundary (also see Clements and Hendry, 1998, Ch.12), or an approximate
significance level of o = 0.16.
Computing the theoretical probability of retaining x5 for 55 > 0 at o = 0.16 using E[tBQ} =

Pr(t3220a>IPr<t52*¢ZCa*¢>a

we obtain the retention probabilities in table 2, with the corresponding retention probabilities for o =
0.05 recorded for comparison. These results are close to the implied significance level for the AIC in

Table 2: Retention probabilities for individual t—tests given E[tBQ] = 1), and five independent regressors

with the same non-centrality, where bold cells indicate the grey dots on Figure 4, recorded as 1—(pa[1)])°.

Y 1 2 3 4
Po.16[¢] 034 0.72 094 0.995
Po.05 ] 0.16 051 085 098

(Po1s[¢])® 0.004 0.19 0.75 0.98
(Po.os[¢])®  0.000 0.03 043 0.89

Campos, Hendry, and Krolzig (2003). This can have a cumulative effect, as shown in figure 4 which
records values of the term (1 — po[¢]) from table 2, where there are five independent regressors, all
with the same /2. The probability of retaining all five variables is low even at loose significance levels
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Figure 4: Values of (1 — p,[¢]) for five independent regressors with the same non-centrality for the range
of cv and 2.

unless the non-centralities are large, but the gap between o = 0.05 and o = 0.16 at ¢? = 9 is 29%,
demonstrating large benefits of a looser significance level for the retention of relevant regressors. The
trade-off is that more irrelevant variables will be retained, and this can be costly if those variables are
subject to breaks, which we next explore.

S An out-of-sample shift in the regressors

We now consider a mean shift in z9 at 7'+ 1 with the forecast origin at 7", so the shift coincides with the
1-step ahead forecast. The DGP has the same structure as (1) and (2), but with the mean shifting at time
T + 1 where (3) still holds:

Tt = My + M1y t=1,...,T+1.
/"L2+T/2t tzl,,T
= ’ 16
> {ﬁ@+5+%¢ t=T+1. (16)

We first evaluate the trade-off when omitting w2 ; for known future exogenous regressors, so the
break which occurs in the forecast period is modelled in the known x5 741. Then, the trade-off is
examined for the case where the exogenous regressors are unknown, so must be forecast based on in-
sample observations. Forecasting devices based on full in-sample information and just the last in-sample
observation are considered, which are the extremes of the class in Castle, Clements, and Hendry (2015),
but there is no information in-sample regarding the break to help either device.

5.1 Known future values of regressors

The 1-step ahead forecasts for My given (16), in which values of x7,; are assumed to be known at
T', are unbiased when the parameter estimates are unbiased. The MSFE of M; (see Appendix A.3 for
derivations) is:

=2 1
E { T+1|T+1} = 0! [1+T<1_p2) (0> +2-p)|, (17)
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which does not depend on 2. Comparison with (8) highlights the effects of the location shifts: 62 enters
the MSFE despite the shift being ‘known’ given x2 71, and MSFE; is no longer independent of p. (17)
also reveals the additional costs of including an irrelevant regressor which shifts out-of-sample as 6>
enters even when 3, = 0, although it is scaled by T’ (1 — p2) so larger samples mitigate its effect.

The forecast error for My is E[§T+1|T+1] = (40, so the forecasts are biased by the shift in the omitted
variable. The 1-step ahead MSFE for My is:

E [Efp+1|T+1] =02+ B (1— p*+62) + 2T 02 (1+ T '9?). (18)

,8% enters directly so the MSFE is a function of 12, unlike for M;. Comparison with (9) reveals the role
that p and 62 play, and when 3, = 0 so My is the correct model (18) collapses to (9).
Again, assuming a criterion of minimizing 1-step ahead MSFE, using (10), MSFE; < MSFE, requires:

02 (2~ 1)+ ¢ (1—p?) (1+277Y) —p <0, (19)

which depends on estimation uncertainty and therefore doesn’t simplify neatly. However, the solution is
close to 1 for reasonable values of p. For example, when p = 0.5, T' = 50 and § = 4, then ¢/*> < 0.983
or || < 0.991 results in a smaller MSFE, compared to MSFE;.

Figure 5 demonstrates the close approximation to a trade-off at ©» = 1 which holds regardless of the
break. Thus, even knowing there is a shift in x5 does not affect the choice of forecasting model between
including or omitting x2: always (never) include for 1/)2 >1 (w2 <.

5.2 The impact of selection

Following §4.2, a t—test for statistical significance will be conducted on x5 ; in-sample and a decision to
retain or exclude x5 ; will be made at c,, for a given draw. Hence, M3 will be a weighted average of M
and Mo, using (12):

_ 2—1 |2 62 > 524‘2—0]}
MSFE3 = MSFE; + (1 — pa[¢]) {aeT [¢ <1 + a7 g (20)
(20) is scaled by 7" so, as the sample size increases, the difference between MSFE)y,, and MSFEy, dimin-
ishes, as before. When t)? = 0 the first term in (20) drops out and the benefits of selection relative to
M, are evident as the second term must be negative. The magnitude of §2 affects both M; and M but,
from (20), the first 2 term is multiplied by 1> whereas the second offsetting term is not, so if ¢* > 1
the effect of the location shift is exacerbated.

Figure 5 compares the MSFEs of M; from (17), My from (18), and M3 using (20) at three illustrative
values of a for 7' = 50 and § = 4. The profiles of the MSFEs mirror the analytical results for the no
break case. Selection outperforms the estimated DGP for 1) < 1 despite a break, and remains close to
the MSFE; at o = 0.16 for ¢? > 1.

5.3 Unknown future values of regressors

Now consider that the future values of the regressors are unknown. We use two alternative devices to
obtain forecasts of z; 741, ¢ = 1, 2, including using the in-sample mean and a random walk. The random
walk can be thought of as a robust device after a location shift, where robustness refers to improved
forecasting properties following a location shift. However, the random walk is biased for unanticipated
location shifts so is not robust in this setting. The two devices comprise the two extremes of using either
the full in-sample data (¢ = 1,...,T) or the last observation (f = T') to produce the forecasts of the
weakly exogenous regressors.

Although the link between y and the x; stays constant, forecasts when the x; 71 are unknown will
fail if the shift at 7"+ 1 is not anticipated, inducing a shift in y71. This will lead to forecast failure as
the in-sample mean pi,, shifts to (11, + 850) at T'+ 1, but would be forecast to be ,,.

9



MSFE Break at T+1 of d=4, Known regressors, T=50

Figure 5: MSFE comparisons of M, My and M3 at 3 illustrative values of « for known future exogenous
regressors where the break occurs in the mean of xo at T + 1. 02 = 1, 8, = 5, 81 = 1, 3, varies using
(7) with ¢ ranging from 0 to 4, p1; = 9 = 2,0 =4, p=0.5and T = 50

The forecasts based on in-sample estimates from (16) when p; and p- are non-zero are given by:

T
_ 1 _
TLT+T = M1 = Ziﬁl,t = g+, 21
=1
1 X
T = Hy = T Z$2,t = Mg + M2, (22)
t=1

so will miss the unknown break. When the break occurs in z2, the MSFEs will worsen for 8, # 0. As
before, we consider the sampling variation in estimating the means as small compared to the impact of
shifts, so we approximate by taking 7" sufficiently large that ji; = ;.

Replacing the unknown z; 711 by p; leads to forecasting y741 by the in-sample mean for both M

and Mo, see Appendix A.4. Both face the same forecast bias, E [?TH‘T} =E [%TJFHT} = (56 which

is the same bias as My with known regressors. Parameter estimation adds terms of O, (T‘l). Hence,
ignoring O,, (T~!) terms, MSFE; is equal to MSFE,:

E (77| = E [Graar] = 6367 + 02 + (83 + 63 + 205,8,) 23)

When §, = 0 the MSFE is O'z + ﬁ%, so is inflated relative to the known regressors case as o1 741
must also be forecast. However, the in-sample mean forecast is the best forecast device for z1 741 in this
setting (in terms of minimum MSFE) as &1 741 is stationary and not subject to a location shift. Selection
will have little or no noticeable impact when MSFE, &~ MSFE;, as this will also result in MSFE3 ~ MSFE;.

Figure 6 records the MSFEs for M; and My when there is a break in xo at 7' 4 1, comparing known
and unknown regressors using the in-sample mean to forecast x; 741, ¢ = 1, 2 in the unknown regressor
case, i.e. the figure records (17), (18) and (23), (solid/dashed/dotted lines). Simulations outcomes are
used to capture O, (T _1) effects but such effects are negligible so are not recorded in the figure (random
walk forecasts also included).

10



T=50 Break in mean of X, 1, of 5=4. 1-step ahead MSFE for T+1|T
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Figure 6: MSFE comparisons between M, M and M3 for known and unknown future exogenous regres-
sors including in-sample mean and random walk forecasts, where the break occurs in the mean of 2 at
T+1.02=1,8,=5,8; =1, B varies using (7) with ¢ ranging from 0 to 4, j1; = iy = 2, § = 4 and
p = 0.5. Simulations with M = 100, 000 replications, 7" = 50.

For known regressors for MSFE,, the break in 11, does not affect the MSFE as it is captured in x9 74 1:
even at 0 = 4 for T' = 100, MSFE; = 1.23 for the parameters given in the figure which is only slightly
greater than af. However, when x7 1 is unknown both M1 and M, are affected by the break in x2 74 1.
Simulation outcomes again closely match the theory for the unknown break case, and show that the
choice of whether to retain or exclude x2 ; is not important in a forecasting context. The unanticipated
break dominates any forecast error resulting from model mis-specification. Increasing the sample size
does mitigate the MSFE costs but the increase in MSFE relative to known regressors is maintained for all
2

These results show that in this static setting of location shifts, if the break occurs in the forecast period
and is unknown and unpredicted, then the retention of x5 is irrelevant (other than parameter estimation
uncertainty), as neither M; nor My capture the shift which dominates the MSFE. Parsimony, or lack
thereof, neither helps nor hinders much in this setting. Moreover, selection does not substantively
affect the outcome as MSFE3; ~ MSFE;.

5.4 Random Walk forecast for a post-origin break

We now consider using a random walk as the forecasting device for the exogenous variables, given by:

Tipyr =TT (24)
Torir =TT (25)
Although the last in-sample observation is an imprecise measure of the out-of-sample mean, it is
unbiased when there are no location shifts (as there are no dynamics in the DGP), so E [z1 7] = 114 and
E [z2,7] = 1o, and hence E [Azy 741] = 0 and E[Azy 741] = 6.
The forecasts from M; will be biased by the bias in the random walk forecast of x2 7.1, so (see
appendix A.5 for derivations) neglecting the small impact of 7, - on 3; — BZ

E [er417] = 829,
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and the resulting MSFE; is:

E [ ar| = 836% +2 (83 + B3) + 4pB1 By + 02 (142771 (26)

Comparison with (23) highlights the additional cost of using the random walk relative to the in-
sample mean when neither forecasting device can predict the break, since:

22 =2 —
Eleriqr] — E [ET—H\T} = — (B3 + B3 +2pB1 By +202T77)..

The in-sample mean of x1 is the optimal forecast of x1 741 given its in-sample stationarity, so irrespective
of the value of (35, the in-sample mean forecasts dominate when the shift is during the forecast period.
When 3, = 0, (26) collapses to ~ o2 + 237, ignoring 0, (T _1) terms, compared to o2 + /32 for the
in-sample mean forecasts. A random walk doubles the error variance for the variable being forecast so
can be costly if there are no breaks or if the break occurs after the forecast origin. As for the in-sample
mean case, the MSFE of Mj is a function of the break magnitude.

The forecast bias for My is the same as that for M; by the same argument, although the MSFE;
(reported in Appendix A.5) does deviate from that for My as v)? increases. This is due to the correlation
parameter p which is picking up part of the omitted variable x2 741 in M> and has more effect as )2
increases. When 3, = 0, MSFE, ~ o2 + 2433, which is the same as M;. Despite small but increasing
deviations as )? increases, MSFE, follows a similar trajectory to MSFE; so the mis-specification is less
relevant for the random walk forecasts of the marginal processes relative to the effect of the break, similar
to the results for the in-sample mean forecasts.

5.5 The impact of selection

In practice, selection will be applied to determine whether to include 2 ¢ or not, so from (12) we can

obtain the MSFE; as:
L+
¢2 —=+T | +1] ;.
(1-p?)

The trade-off between parameter estimation uncertainty and including x5 is essentially the same as in
the known variable case: if 2o has a non-centrality of zero, so 3, = v? = 0, then the 1-step MSFE
is minimized by excluding 5 from the forecasting model. It should be included if 1/ > 1. However,
depending on the values of p and T', the switch point can be smaller than /> = 1, although the impact is
likely to be small given the scale factor o2T~!. Even though the random walk forecast is highly uncertain
by using just one observation, if the variable that breaks is quite significant then it pays to include that
variable when using the random walk forecast.

Figure 6 also records the MSFEs for the random walk forecast using the same parameter values. The
increase in MSFE over the in-sample mean forecasts is evident. Both MSFE; and MSFE, follow similar
trajectories, although they do start to diverge for large /%, with MSFE;3 at a = 0.16 close to MSFE;.

MSFEpm, = MSFE; + (1 — pa[¥)]) {UET—l

6 An in-sample shift in the regressors

The break is now assumed to occur at 7', so there is information available regarding the break from the
last in-sample observation. The DGP is adapted from (16) but the shift in p, occurs at 7', rather than
T+ 1:

T = M1+ N1y t=1,...,T+1.
Mo + Mo ¢ t=1,..., T —1.
- ) 27
at {M2+5+772,t t=T,T+1. @7
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Figure 7: MSFE comparisons between M, M2 and M3 for unknown future exogenous regressors where
the break occurs in the mean of x2 at 7" and the in-sample mean is used as the forecast for the conditioning
regressors, recorded with the same models when the break occurs at 7' + 1, where M1, My and M3
coincide in the analytic calculations. 7' = 50, using the same parameter values as previous figures.

6.1 Forecasts using in-sample means

The relationship of interest, the conditional equation for y7 1, remains constant but the in-sample mean
14, is shifted to (u, + B50) at T. Although the only DGP parameter to shift is y; to p19 + d, sample
calculations will be altered as now E [x3] = uy + T 16, see Appendix A.6 for derivations.

The impact on the estimated in-sample mean of {z3} will be small from the break, unless ¢ is very
large, so by using the in-sample means for their future unknown values, the forecasted mean of yp; for
M; will still be close to 1, and the resulting forecast error bias is:

E FT—O—HT—H} ~ B0 (1-T71).

This is unbiased when (35 = 0, but could be badly biased if 550 is large. The MSFE for M is:

E [frpara] = 302 (1= 717 + 52+ 53 + o2 (28)

This is very similar to the MSFE; in (23) for an out-of-sample break using the in-sample means to forecast
the exogenous regressors, and hence MSFE, and MSFE; as well, although the correlation between the two
regressors does not enter.

When (3, = 0, both MSFEs collapse to o2 + /32, but the dampening of the squared location shift by
(1 — T‘l) 2 slightly improves the MSFE for the in-sample shift relative to an out-of-sample shift at larger
12, as shown in figure 7.

For a break out-of-sample we found the analytic results for Ms are identical to those for M (see §5.3).
For the in-sample break, the forecast error and MSFE for My does differ to that of M; (see Appendix A.6
for analytic results). This is because the in-sample location shift affects p which introduces a term similar
to the squared location shift scaled by 7" in (28). Therefore, MSFE; # MSFE; unless 55 = 0, with My
incurring a larger MSFE cost as 1) increases due to misspecification, although the divergence is small
even for small 7", and disappears asymptotically.
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6.2 Selecting regressors

Selection follows from (12) and hence:
MSFE; ~ MSFE; + (1 — pa[¥]) [02 — BT — p*B3 + 2T (02 + £367)] . (29)

The cost of omitting x5 rises with 3562, although increases in [, will raise /> and hence raise the
probability of retaining z», albeit unconnected with the magnitude of 62. As the location shift is scaled
by T', MSFE; — MSFE; as T' — oo, as can be seen in Figure 7.

6.3 Forecasts using the random walk

From the previous analysis in §6.1, knowledge of the break, where the break occurs at 71", brought little
benefit. However, the random walk should do better when the break occurs at 1" as opposed to T + 1 as
it is now a robust forecasting device. As before:

Tyryr = 21,0 and oo = 22T,

but now E [z1 7] = py and E [x2 7] = iy + 6, and hence E [Az; 741] = 0 and E [Azy 741] = 0 as well.
Given the unbiased forecasts of the exogenous regressors, it follows that the forecasts for M; are
unbiased (see Appendix A.7) when the parameter estimates are unbiased. The MSFE for M is:
E[? ]:2(52+52)+455 FCY O A (30)
T+1|T 1 2 PP1P2 € T TA-p2) )"
When 3, = 0, the MSFE is similar to that of the out-of-sample break case, where the random walk
is costly as forecasts of both z1 741 and w9741 are inefficient. However, (30) does depend on the
magnitude of the shift independently of 3, unlike (26). MSFE; is a function of 12, increasing as >
increases unlike in the known regressor case, but it does so more slowly than for breaks out-of-sample,
or breaks in-sample using the in-sample mean. As 1)? increases, the break at 7" in y., has a larger effect
on the dependent variable, and hence the benefits of using a random walk forecast of w2 71 are larger.
Mg will suffer when 3, # 0 as the forecasts will be biased. The MSFE for My is:

E [%L”T} = B2(0% 42+ 1) + 282+ 4pB1 By + 02 (1 4+ T4 + T 22) . 31)

so no robustness to the break is achieved unless 3, = 0. When 85 = 0, MSFE; < MSFE;, but the
bias from not including a robust, and hence unbiased, forecast of x2 71 quickly outweighs parameter
estimation costs at 1)? increases.

Solving for MSFE; < MSFE; results in:

(1 - ,02) + 62
A=) T = 1)+ 5

¥? < (32)
The break term dominates and enters on the numerator and denominator, leading to a trade-off at ~ 1
with deviations scaled by T~!. For p = 0.5, T = 100 and § = 4, MSFE, dominates when 1) = 1.05.
Interestingly, the cut-off is slightly above 1 for this case, compared to slightly below 1 for the known
breaks out-of-sample case, but the results still imply that a selection significance level of approximately
16% would be optimal to trade-off the cost of estimating an additional parameter.

Figure 8 records the MSFEs from M; (30), M2 (31) and three values of M3 (73) for the analytic
results. There is a clear trade-off at 1) ~ 1, just as in the known breaks case.

14



T=50 Break at T of =4

M, random walk forecast ’
---- M; random walk forecast -

[ p— M3 at a=0.16 random walk forecast -~
10f- | =<—= M : In-sample mean .
| MG In-sample mean dl
A T=YT

MSFE

......................

—
~ In-sample mean
forecasts

2=

0 | 1 | 4 9 W2 16

Figure 8: MSFE comparisons between M;, Ms and M3 at @ = 0.16 for unknown future exogenous
regressors where the break occurs in the mean of xo at 7" and the last in-sample observation is used as
the forecast for the conditioning regressors. Also recorded is the MSFE for M; and My using in-sample
means and a misspecified random walk for yr, 1 directly. T' = 50.

6.4 Selecting regressors

The MSFE for M3 for the random walk is reported in Appendix A.7. As with Figure 5, selection between
M; and Ms can be advantageous even for the random walk as seen in Figure 8. Selection outperforms
M; for 1/}2 < 1, and remains close to the MSFE; at « = 0.05 and o = 0.16, again in all cases matching
or outperforming always using M.

A comparison with the MSFE for the in-sample mean forecasts, also recorded in figure 8, suggest
a possible forecast improvement. If the regressor that breaks at 7' is known, combining the in-sample
mean forecast for M; with the random walk forecast for My will improve forecast performance (shifting
the MSFE curves for the random walk forecast down by approximately 1). As the number of regressors
increase, the forecasting method for each contemporaneous regressor will have a cumulative impact.
However, as the break occurs in-sample, methods to detect breaks at the forecast origin such as impulse
indicator saturation (IIS) could be used to guide the forecaster to the most appropriate forecasting de-
vice.? Selection between non-robust and robust forecasting devices requires pre-testing and would only
help for in-sample shifts, see, e.g., Chu, Stinchcombe, and White (1996).

Thus, selection can be valuable for forecasting to the extent that it retains relevant regressors that
shift (here, x2), and also if it eliminates irrelevant regressors that shift, as considered in Section 8.

6.5 A misspecified random walk forecasting device

If a break is suspected, an alternative to selecting a conditional model that aims to approximate the
DGP is to use a knowingly misspecified model of the conditional DGP. A random walk forecast could
be obtained directly for y, with the advantage that y7 is known and avoids the need to forecast x; 741
¢ = 1,2. Hendry and Mizon (2012) derive a forecast error taxonomy for open models that demonstrates

See Hendry, Johansen, and Santos (2008), Johansen and Nielsen (2009), Johansen and Nielsen (2016) and Hendry and
Doornik (2014) for details of IIS. Castle, Doornik, and Hendry (2012) demonstrate the ability of IIS to detect breaks in the
form of location shift at any point in the sample.
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the numerous additional forecast errors that arise from forecasting regressors offline in open models and
show that in some cases it can pay to use a misspecified model rather than to forecast the regressors
offline. The forecast device is:

Yryyr = yr, (33)
where
yr = phy + 820 + Bimip + Banar + €r,

is a noisy 1-observation estimator of (1, 4 (30), The outturn at T" + 1 is:

Yr41 = (My + B20) + B1An 141 + BoAng pyq + €1+ Binyr + Banors

and so the forecast error is given by:

erpT = YT+l — §T+1|T
B1AN 141 + BoAng piq + Aerya, (34)

which is unbiased and has a MSFE of:
2
E [GT-H\T} = 2(B + 53) +4pB1 B2 + 207. (35)

This is independent of § so should perform relatively the best when 6° is large, although performs worse
than random walk forecasts for the x; 741 7 = 1,2 when ¢2 is small, see Figure 8. The forecasts are
invariant to omitting xo since the random walk is independent of the regressors, which is a major advan-
tage and negates the role of selection. However, there is a cost when the model is correctly specified.
The results in the simulation below suggest that such an approach should be viewed as complemen-
tary, with forecast pooling across selected conditional models and misspecified robust devices frequently
outperforming individual methods.

7 Overview of analytic results and the impact of selection

The analytic results in §3-6 have established that:

e Regressors should be retained if ¢) < 1. This is established for stationary DGPs and DGPs with a
break out-of-sample for known regressors and a break in-sample using random walk forecasts.

e For the two regressor case, ¥» = 1 maps to a = 0.16. Selection delivers improvements to the
1-step ahead MSFE for ¢ < 1 and can be close to the correct model specification for ¢ > 1, with
the largest deviation occuring at intermediate values of ).

o If there are breaks out-of-sample and contemporaneous regressors need to be forecast, the break
dominates the MSFE and selection plays almost no role. Similar results are found even if the break
occurs at the end of the sample, but a non-robust in-sample mean is used to forecast to regressors.

e Random walk forecasts are costly if there are no breaks (forecasting x1 741) or if the breaks are
unpredictable (a break at 7'+ 1 and forecasting 7'+ 1|7"). However, they improve MSFE when the
break is predictable (break at 7" and forecasting 7" + 1|T").

Table 3 summarises the full set of analytic results for specific parameters for 7" = 50, with results for
T = 100 reported in table 9 in the appendix. For each scenario, the ratio of MSFE; /MSFE; for j = 2,3
is reported, for three values of a (v = 0.001;0.05;0.16). Benchmarks of ¢2 = 0,1,4,9 and 16 are
reported, capturing the full hump shape seen in the figures above. The parameters are 02 = 1, 3, = 5,
Br=1,p =py=2,0=4and p =0.5.
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Looking down the column labelled 1> = 1 highlights the 1) = 1 trade-off, with all cases almost
exactly equal to 1. (19) found a cut-off slightly lower than 1, which is reflected in the ratio marginally
greater than 1, and conversely, (32) found a cut-off slightly larger than 1, resulting in a ratio slightly
below 1, but the differences are small.

Moving to the column labelled 1/12 = 0, here My is the correct model, so the ratio of MSFE, /MSFE;
measures the cost of over-specification. The gains can be substantial in some cases, almost 30% for a
break out-of-sample with known regressors, but in other cases including x» ; is not at all costly despite
its irrelevance. Tighter selection for M3 is close to My as x5 ; will be omitted more frequently, but even
at o = 0.16 the ratio for M3 is close to the ratio for Mo, suggesting that selection is not costly.

Next, consider the columns labelled 1/)2 = 4,9, and 16. My is the correct model so the objective is to
minimize the ratio. In some cases My performs poorly, but M3 at o = 0.16 is frequently very close to 1,
i.e. MSFE;. Selection forecast performance tends to be worse at 1> = 4, but as the signal for x5 increases
the probability of retaining x2 increases so the selected model is closer to M. The benefits of selection
vary by case. For example, for a break at 1" using in-sample means, selection at o = 0.16 delivers a
2.4% improvement relative to Mo for ¢ = 4, compared to a halving of the ratio for the random walk.
In almost every setting, MSFEj3 is close to MSFE; so the costs of selection are usually small, irrespective
of the non-centrality. In that sense, model selection acts to reduce the risk relative to the worst model.
Conversely, the costs of unmodelled shifts are very large, up to almost 8-fold greater than the baseline
stationary MSFE;.

These results show that even facing breaks, the well-known trade-off for selecting variables in fore-
casting models, namely that variables should be retained if their non-centralities exceed 1, still applies,
resulting in much looser significance levels than typically used. The problem with such an approach is
that when many 35 ; = 0 but are subject to location shifts, My, which erroneously includes 2 in the
model, will perform worse. Loose significance levels increase the chance that irrelevant variables with
1 = 0 are retained by being adventitiously significant for that draw. To evaluate this effect, the next
section undertakes a simulation study of selection in models with more irrelevant (10) than relevant (5)
exogenous regressor variables confronting a variety of shifts.

8 Simulation evidence

We generalize the above analysis to consider larger models with dynamics, evaluating for a range of
different significance levels using Monte Carlo analysis. Single t—tests are no longer appropriate as
there are many potential regressors to select and correlations between potential regressors are non-zero.
The selection algorithm Autometrics, see Doornik (2009), is used which is a general-to-specific tree
search algorithm that searches feasible reduction paths to allow for collinearity.

8.1 Simulation Design

The data generating process (DGP) is given by:

Y = Po + 5yyt—1 + 0%+ e, e ~IN [07 a?] ) (36)
where:
< - L+ AXe—1 + 14 fort=1,...,T (37)
(Nxtl)_ (t+vVe)+ (A+vVN)x1 +my fort=T+1,T+2

where n, ~ IN [0, I], and where ¢ is a column vector of ones and v is an (N x 1) vector with elements
taking the value O or 1 to reflect which elements of x; experience a shift (either relevant, irrelevant, or
all regressors). Ve is a (1 x 1) vector giving the intercept shift magnitude. It is set to give a 4 standard
deviation mean shift in x; at 7'+ 1, s0 E [x}. ] = E[xp_p] + 4V [xT,h]l/2 when h > 0, so:

[ I

Expyn] =(1-X""e+4 [0727 (1- >\2)71} L= 6.62t,
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Table 3: T = 50, Ratio My reports mgggf and Ratio M3 reports mgggf 02 =1,8,=5,8 =1,
= py=2,6=4and p=0.5

Case Model ¢?=0 ¢°=1 ¢?>=4 ¢?>=9 ¢?>=16
Stationary Ratio Mj 0981 1.001 1.060  1.158 1.295
(62 =0) RatioMs o« =0.001 0981 1.000 1.051  1.093 1.068

a = 0.05 0.982 1.000 1.027 1.023 1.006
a=0.16 0984 1.000 1.016 1.008 1.001

out-of-sample shift Ratio My 0.709 1.014 1.927 3.450 5.582
known future Ratio Mg «a = 0.001 0.709 1.013 1.836 2.505 2.095
regressors a = 0.05 0.724 1.011 1.449 1.366 1.095

a=0.16 0.756 1.009 1.256 1.136 1.022
out-of-sample shift Ratio My 1.000 1.000 1.000 1.000 1.000
unknown future Ratio M3 o = 0.001 1.000 1.000 1.000 1.000 1.000
regressors o =0.05 1.000 1.000 1.000 1.000 1.000
mean forecast a=0.16 1.000 1.000 1.000 1.000 1.000
out-of-sample shift Ratio My 0.993 1.004 1.020 1.034 1.043
unknown future Ratio Mg «a = 0.001 0.993 1.004 1.018 1.021 1.010
regressors a =0.05 0.994 1.003 1.010 1.005 1.001
random walk forecast a=0.16 0.994 1.002 1.006 1.002 1.000
in-sample shift Ratio My 1.020 1.021 1.022 1.023 1.024
unknown future Ratio M3 o« = 0.001 1.020 1.021 1.020 1.014 1.006
regressors a = 0.05 1.019 1.017 1.011 1.004 1.000
mean forecast a=0.16 1.017 1.014 1.006 1.001 1.000
in-sample shift Ratio My 0.871 0.990 1.273 1.653 2.078
unknown future Ratio Mg «a = 0.001 0.871 0.990 1.246 1.401 1.258
regressors a=0.05 0.878 0.991 1.132 1.097 1.022
random walk forecast a=0.16 0.892 0.993 1.075 1.036 1.005

resulting in ¢* = ¢ + Vi = 3.31¢ and V. = 2.31, for those elements that shift.

A = 0.5y isan (N x N) matrix giving the degree of persistence in the exogenous regressors, with
zeros in the off-diagonals so the regressors are uncorrelated in the population, but lags of the regressors
are correlated. VA = 0.45is a (1 x 1) vector giving the autoregressive parameter shift magnitude, and
so the degree of persistence increases from 0.5 to 0.95 when the elements of the v vector are 1. Shifts in
¢ and A are considered separately.

1/2
o2 =1, B, =5, B, =05and 8 = (af (X' X)fl) 1, where three alternative experiments are
considered, with N = 15 and n as the number of relevant variables, for:

(0,0,0,0,0,0,0,0.5,1,1.5,2,2.5,3,3.5,4)".
,lp = (O? 07 07 O? 0’0’0’070707474747474)/‘ (38)
(Nx1) (0,0,0,0,0,0,0,0,0,0,1,1,1,1,1)".

allowing for some irrelevant variables, some marginally relevant variables and some strongly significant
variables.’

The in-sample period is T = 100, with a sequence of two 1-step ahead forecasts undertaken for
Yr4+1)7 and YrioT+1- AS the break occurs at T + 1, there is no information on the break for the first
forecast, but the second forecast conditions on information at 7'+ 1. M = 1,000 replications.

The four cases examined are:

(a) No breaks: v = Oy.

3Results for N = 10, with 5 fewer irrelevant variables, for p = 0, and for 5y = 0 are similar and are available on request.
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(b) Breaks in relevant variables: v = ({0} y_,, : {1},,)-

(c) Breaks in irrelevant variables: v = ({1} ,_, : {0},,).

(d) Breaks in all variables: v = 1.

Selection is undertaken from the general unrestricted model (GUM):

1 N
ye =Bo+ By + Y Bijaje—i+e, for t=h+1,... T+h-1, (39)
i=0 j=1

for h = 1,2, where ~ denotes the intercept is not selected over so is always retained. A new model is
selected for each forecast horizon (h = 1,2) using a rolling window. Selection is applied using Auto-
metrics for a range of target significance levels « = (0.001,0.01,0.05,0.1,0.16,0.32,0.5), resulting in
a selected model for each replication m and significance level ay:

. ~ ~/
yt = By + Bywi, (40)

where wy stacks (y;—1 : x; : x;—1) and 3, has zeros for regressors not retained in selection.

In the experiments, we compute the 1-step ahead MSFEs, given by ﬁ Zf\i 1 for a

)
T+h,i|T+h—1,a;°
forecast horizon (h = 1, 2) for various forecast models under the assumption of:

. . _ ~ -~/
(i) known future exogenous regressors, with forecast error €7y 7441 = yr+h — By — BsWr+h3

(i) unknown future exogenous regressors using the in-sample mean as the forecast for the retained
. . p— > Ali

exogenous regressors, resulting in the forecast error €y 74 n—1 = Y7+n — Bo — BsWrihT+h—1-

The lagged retained variables will be known for one-step ahead forecasts, so Wr 74,1 con-

sists of the in-sample averages for x7.; but known yrp—1 and xp4p_1, ie. WTihT+h—1 =

1 ~~T+h—1_ |
(yT+h—1 YT 2up=2 Xt XT+h—1>-

The in-sample means for forecasts at 7'+ 1 do not include the break, but for forecasts at 7"+ 2 will
include the break observation, although this will have a small effect on the mean given the sample
size unless the break is extremely large.

(iii) unknown future exogenous regressors, forecasting each variable selected from the GUM by:

N 1

Tjp =00+ 8mj0 1+ YD Sridig—i s ujy ~ IN[0,07] (41)
I=1 =0

forj =1,...,N,l # jandt = 2,...,T,ort = 3,...,T + 1 depending on the forecast
origin, where selection is undertaken at the same «, as that for (40). The resulting forecast error
.2 ~ sl

IS€rypnrin—1 = Yr+h — Bo — BsWrinTrh—1-

One step ahead forecasts are computed for x; 7, 741, —1 but known values are used for any re-

tained lags: Wy rin—1 = (Yr+h—1 1 Ry T4h—1 ° XT4h-1)-

(iv) unknown future exogenous regressors using a robust forecast for the exogenous regressors. Two
alternative robust forecasts are evaluated:

(a) random walk, using the last in-sample observation as the forecast for the retained current-
dated exogenous regressors:

- > ~
€T h|T+h—1 = YT+h—Bo—BsWrth—1, Where W piry 1 = (Yr4n—1: XT4h—1: XT4h-1)-
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(b) random walk with difference, using the robust device from Hendry (2006) as the forecast
for the retained exogenous regressors. For each exogenous regressor, estimate a first-order
autoregression (AR(1)):

Tjt = 5j70 + 5j,113j,t71 + Ujt  Ujg ~ IN [0,0’3] R fOI‘j = 1, - ,N, (42)

fort =2,...,T,ort =3,...,T+1, and obtain a robust forecast given by Z :r:] T+h|T+h 1=
Tjr+n-1 + 5] 1Az 4 p—1. The forecast error is ‘5T+h|T+h L= yren — Bo — /3 WTih-1,

where w WT+h|T+h—1 = (yT+h—1 L XTaho1 + 01 AX g XT+h—1)

(v) unknown future exogenous regressors using an AR(1) for each regressor to obtain forecasts for
the retained exogenous regressors. Estimate (42) for j = 1,..., N to obtain T pip74h—1 =

80+ 0j12; T 1, such that w WA h1 = (yT+h 1 XpppTah—1 : X74h—1). The resulting

forecast error is 6T+h|T+h_1 =Yrih — 50 ,6 wT+h‘T+h 1-
(vi) ‘direct’ univariate forecasts for yrp including:*

(a) arandom walk forecast: Yrpj74n—1 = Yr+h—1; and
(b) an AR(1) forecast: Yrypryn—1 = Yo + V1YT+h—1
such that no exogenous variables are used to forecast yr,p, for h = 1,2.

(vii) pooling, computed using an equally weighted average of:
(iii) forecasts of exogenous regressors using a selected model from the GUM (41),
(iv,a) the robust random walk for the exogenous regressors, and
(vi,b) a direct univariate forecast of the endogenous variable using an AR(1).’

Cases (ii) and (iv) are the two extremes of the class of robust forecasting devices proposed by Castle,
Clements, and Hendry (2015) whereby the fundamental parameters (equilibrium mean and growth rate)
are estimated by varying amounts of past data. The full in-sample mean as a forecasting device, used in
(i1), is the least robust, and the instantaneous estimate of the mean in (iv) is the most robust. Intermediate
cases, such as the average of the last r observations to obtain an estimate of the mean of w, could also
be considered.

Results are also reported for estimation of the GUM, equation (39), and estimation of the DGP
(36). Forecasts are obtained by plugging in values for all regressors in the GUM/DGP using methods
(i)—(v). Note that for (iii), the in-sample selected forecast, the GUM and DGP have different forecasts
for different values of « as the « refers to the significance level for selection of the models to produce
forecasts of the regressors (41) as well as the significance level for selection of the forecasting model (i.e.
a = 1 for the DGP and GUM). The DGP provides the infeasible benchmark as it cannot be known in
practice, but it allows the costs of selection to be measured by comparing the forecasts from the selected
model relative to had the DGP been known. Comparison with the GUM is also informative to measure
the costs and benefits of search.

8.2 Results

Tables 10-15 record the MSFEs for the range of experiments, with each table corresponding to a set of
experiments for a given 1) specification and a given horizon; '+ 1|7 or T' + 2|T + 1, where T + 1|T

“Direct’ refers to forecasts that ignore conditioning variables and just use the endogenous variable in producing forecasts.

SForecast averages are also computed for an equally weighted average of: {(iv,a) and (v)}, {(iv.b) and (v)},
{(iv,a) and (iii)}, {(iv,b) and (iii)}, {(iv,a), (iii) and (v)}, {(vi,a) and (vi,b)}, {(iv,a), (v) and (vi,b)}, and {(iv,a), (v) and (iii)}.
The pooled forecast for {(iv,a), (vi,b) and (iii)} was found to outperform, but results for the other pooled forecasts are available
on request.
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implies the break occurs out-of-sample (as the location shift occurs at 7" + 1) and 7" + 2|T" + 1 is where
the break occurs in-sample. Where a number is only reported in the first row of the table corresponding
to o = 0.001, the same MSFE applies to all values of a.

8.2.1 Potency and Gauge

Before considering forecast performance, selection is examined using potency and gauge, given by:

retention rate: p; = ﬁ Zf\il 1{3_ Lo} j=1,....,2N+1,
I,
1~
potency = n%rl Z?; P, (43)
1 IN+1 ~
gauge = 3N-n Zj=n+2 Py,

where the GUM includes lags of the regressors and the lagged dependent variable so there are 2N + 1
possible variables, of which n + 1 are relevant. The intercept is forced so is excluded from the potency
calculations.

Figure 9 records the gauge averaged across all experiments, recorded at each target significance level.
The very narrow range for the gauge at each « is evident, despite wide variations in DGP specifications.
The gauge is slightly above the target significance level at very tight significance levels, and is too low at
very loose significance levels, but is well calibrated for the intermediate target significance levels, almost
exactly for a significance level of 16%.

—— Average gauge across experiments
Minimum gauge

Maximum gauge

1st quartile

3rd quartile

a

0.4+

0.001 0.01 0.05 0.1 0.16 032 05 4.

Figure 9: Gauge across all experiments (two forecast horizons, three v specifications and all types of
break) with target significance level a.

Figure 10 records the potency against the theoretical probability. The theoretical retention rate is
calculated as the average of the probability of retaining a single relevant variable assuming a single
independent t—test at a given significance level for each relevant variable, so includes the probability
of retaining the lagged dependent variable (which is 0.983 for & = 0.001, increasing to 1 for larger «).
Retention probabilities for the exogenous regressors are given in Table 8. The variation in potency is
narrow across all experiments, and the potency is very close to the theoretical probabilities. At tighter
significance levels there are cases where the potency exceeds the retention rate for a single test, due to
a looser gauge than the significance level. Nevertheless, the probability of retaining the DGP is much
smaller, as Table 8 shows.

To summarise, selection using Autometrics has the expected properties with a well-calibrated null
rejection frequency close to the chosen significance level for a wide range of values of «, and with non-
null rejections close to the powers of one-off t—tests with the same non-centralities. Consequently, it
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Figure 10: Potency across experiments for each 1) specification in equation (38), i.e. (a) ¥ = 4; (b)Y =
1; (¢) ¢ = 0.5,...,4. Theoretical retention is the average probability of retaining each of the relevant
regressors including the lagged dependent variable and either five variables with a non-centralities of 4
or 1 or eight regressors ranging from 0.5, . . . 4.

is appropriate to use Autometrics to evaluate the theoretical results derived in sections 3-6 by simula-
tion, without concern that the selection algorithm will influence the results relative to the single t—test
approach analyzed above.

8.2.2 Minimum MSFE methods

We can infer some general results from the appendix tables 10-15. First, when the break occurs out-of-
sample, so forecasts are computed for 7' + 1 when the break occurs at 7"+ 1, the two dominant methods
across all experiments are using the in-sample mean to forecast the exogenous regressors, and the pooled
forecast. For the experiment having 5 relevant regressors with non-centralities of 4, a slightly tighter
significance level of between 1% and 5% dominates, but for the other two experiments (non-centralities
of 1 or a range of non-centralities), a selection significance level of 10% often out-performs, with 16%
frequently ranked second.

Moving to the case when the break occurs in-sample, so the forecasts are computed for 7+2 when the
break occurs at 7'+ 1, the robust device given by a random walk augmented with the difference weighted
by the persistence parameter is preferred when the break occurs in the relevant or all regressors. Looser
significance levels tend to do well here, at roughly 10% for the experiments with non-centralities of 4, and
even looser at 32%-50% for a range of non-centralities. If the breaks occur in the irrelevant regressors,
pooling works well, but here tighter significance levels are preferred. When the non-centralities are small
(1p; = 1V4), pooling outperforms the robust device, and just using the sample mean still works well for
breaks in irrelevant variables.

There are substantial differences in the forecast performance of the two robust devices. When there
is a break in the relevant regressors, the random walk plus the difference notably improves on the random
walk forecasts, cutting the MSFE by a half to two-thirds in some cases. If there are no breaks, or breaks
occur in the irrelevant regressors, the random walk forecast is preferred to the random walk with differ-
ence. The benefits of using the random walk device with the difference are so large if there are breaks
that this method dominates if the source of the break is unknown.

The variation in MSFEs across « is very small for intermediate values of « relative to the variation
in MSFEs across break types and DGP designs. Too tight or too loose a (0.1% or 50%) can worsen the
MSFE substantially, but for moderate « the selection significance level does not have a huge impact on
forecast performance. This is an encouraging finding showing that forecast performance is relatively
unaffected by the precise choice of significance level for selection when using Autometrics, despite a
wide range of non-centralities and numbers of relevant and irrelevant exogenous variables.
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8.2.3 Forecast rankings

The appendix tables 10-15 are summarised in tables 5-7 which report outcomes when selecting at o =
5% and 16%, comparing to the DGP and known regressors as infeasible benchmarks to evaluate the
costs of selection against knowing the model. Highlighted cells are the minimum MSFE for selection
comparing between the sample mean, robust random walk with difference and the pooled forecast: bold
shows cases where knowing the DGP, but not the future values of the regressors, dominates.

While the results are mixed, selection at 5% is preferred for the non-centralities of 4, but 16% often
dominates for the non-centralities of 1, or mixed non-centralities. If the signal coming from the relevant
regressors is strong, a tighter significance level enables elimination of many more irrelevant variables
at low cost, but with a weak signal the trade-off between retaining irrelevant variables and omitting
relevant variables is more finely balanced, and a significance level of 16% as derived in the theory above
can dominate. Perhaps the most surprising finding is that knowing the DGP would only have been
preferred in 4 out of the 14 cases, irrespective of the non-centralities of the relevant variables, although
also knowing the future values of the regressors (and hence the breaks) would always have dominated.

Table 4 ranks the forecast performance of each method for selection at & = 10%, where 1 is the
minimum MSFE and & is the worst MSFE for the experiment design. A 10% significance level is a
reasonable choice for 15 variables in the GUM when at least half are likely to be not very relevant, and
the largest number of minimum MSFEs occurs at 10% reflecting the balance discussed above. Forecast
pooling is consistently ranked in the top half of methods, suggesting that it is a successful insurance
policy. An AR(1) for y also performs well across the board, matching an oft-found outcome. This model
is mis-specified, ignoring all information from the exogenous regressors, but mis-specification need not
entail forecast failure. Indeed, the costs of forecasting the exogenous regressors can outweight their
inclusion. However, the DGP design is an AR(1) in y so this forecasting device has the advantage of
correctly specifying the dynamics. Such a naive device may not perform so well if the DGP contained
more complex dynamics.

However, using the AR(1) for the exogenous regressors performs worst across all experiments, de-
spite the DGP dynamics for the exogenous regressors being an AR(1) process. The random walk with
difference forecasts oscillate between being ranked first for relevant breaks in-sample to one of the worst
for breaks out-of-sample. In contrast, the in-sample mean switches from being the best forecast for
breaks out-of-sample, but the worst for breaks in-sample. Unfortunately the forecaster does not know
which world they will be in when computing forecasts, although IIS may help.

8.2.4 Is selection costly when forecasting?

Comparing selection to the DGP at 5% or 16% in tables 5-7, the costs of selection can be very small
when the regressors are unknown and must be forecast. As knowing the precise formulation of the DGP
is always infeasible, selection must be undertaken. Bold cells indicate where knowing the DGP, but
not future values of regressors, would have dominated, and there are many quadrants where selection
delivers a smaller MSFE. These results demonstrate that selection incurs almost no cost relative to the
DGP, with the caveat that a very tight significance level of o = 0.1% can increase the MSFE relative
to the DGP. Known future regressors (i) are omitted from the tables but almost always deliver the best
forecast performance, although would be infeasible in practice.

Figure 11 records a scatter plot of the MSFEs for the selected model at three alternative significance
levels against the MSFEs for the DGP, for three alternative forecasting devices including selecting a
forecasting model for the regressors, using the in-sample mean and the robust device augmented with the
difference, across all experiments conducted. The solid black line is the 45° line, so if the MSFEs lie on
the line then there is no cost to selecting from a more general model compared to knowing the DGP. At
very tight significance levels, selection does increase MSFEs, particularly if the regressors are forecast
by selecting a model from the GUM, but at 5% or 16% almost all observations lie on or very close to the
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Table 4: Simulation summary rankings for a« = 10%. ‘Out’ refers to forecasts for 7' + 1|7,
i.e. the break is out-of-sample. ‘In’ refers to forecasts for T + 2|T" + 1 where the break is in-
sample. (1) is for the case with ¢y = (0,0,0,0,0,0,0,0.5,1,1.5,2,2.5,3,3.5,4), (2) is case ) =
(0,0,0,0,0,0,0,0,0,0,4,4,4,4,4), and (3) is for v = (0,0,0,0,0,0,0,0,0,0,1,1,1,1,1)". Lower
case Roman numerals respectively denote forecasting the unknown future exogenous regressors by: (ii)
the in-sample mean; (iii) selecting from the GUM (41); (iva) a random walk; (ivb) that with the added
difference; (v) an AR(1); (via) a direct random walk forecast of y; (vib) a direct AR(1) forecast of y; and
(vii) pooling.

(i) (i) (@{va) (ivb) (v) (via) (vib) (vii)

No Break
(1) Out
In
(2) Out
In
(3) Out
In
Break Relevant
(1) Out
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In
(3) Out
In
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(1) Out
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(2) Out
In
(3) Out
In
(1) Out
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Table 5: Simulation summary for 8 relevant variables with non-centralities of 0.5;1; 1.5;2;2.5; 3; 3.5;4
and 7 irrelevant variables. Underlined cells indicate minimum MSFE for selection across methods listed;
bold where knowing the DGP, but not the future values of the regressors, would have dominated.

Break type & case Out: T+ 1|T In: T+2[T+1

DGP a=005 a=0.16| DGP a=0.05 a=0.16
No break
(ii) sample mean 1.59 1.63 1.64 | 157 1.59 1.62
(iv,b) RW with diff. | 2.12 2.26 230 | 2.02 2.11 2.18
(vii) pooling 1.52 1.52 1.49 1.53
Break Relevant
¢ (ii) sample mean 17.56 17.58 17.54 | 39.50 40.40 41.28
(iv,b) RW with diff. | 18.61 18.77 18.96 | 2.53 391 3.46
(vii) pooling 17.75 17.79 17.99 16.54
A (i) sample mean 4.46 4.51 450 | 11.96 12.12 12.35
(iv,b) RW with diff. | 4.38 4.62 4.66 | 2.43 3.40 3.11
(vii) pooling 4.16 4.16 7.07 6.76
Break Irrelevant
¢ (ii) sample mean 1.59 1.63 1.64 | 1.57 1.59 1.60
(iv,b) RW with diff. | 2.11 2.25 2.31 2.01 2.21 2.30
(vii) pooling 1.52 1.54 1.54 1.57
A (ii) sample mean 1.59 1.63 1.64 1.57 1.59 1.61
(iv,b) RW with diff. | 2.12 2.25 231 | 2.02 2.11 2.20
(vii) pooling 1.52 1.53 1.51 1.55
Break All
¢ (ii) sample mean 17.88 17.90 17.86 | 40.01 40.93 41.69
(iv,b) RW with diff. | 18.86 18.99 19.12 | 2.53 3.76 3.46
(vii) pooling 18.02 18.00 17.30 15.50
A (ii) sample mean 4.50 4.55 4.55 | 12.06 12.23 12.45
(iv,b) RW with diff. | 4.40 4.63 468 | 242 3.37 3.15
(vii) pooling 4.19 4.18 6.99 6.64

45° line, so not knowing the correct model and undertaking selection at fairly loose significance levels is
not costly in a forecasting context.

8.2.5 Explaining the variation in forecast performance

There are 2142 distinct MSFE observations excluding results for the GUM and DGP, with a mean of
5.15 and a standard deviation of 7.50. Attempts to explain the main characteristics of the results in a
response surface highlighted the high degree of non-linearity, large number of interaction terms and many
indicator variables retained using impulse indicator saturation needed to obtain a congruent specification.
The results do not lend themselves to a parsimonious response surface specification.

However, the analysis does highlight some important aspects that explain forecast performance
across experiments. Some characteristics are self-evident: breaks in relevant variables, breaks in the in-
tercept and breaks in experiments with regressors with large non-centralities result in the largest MSFEs.
Features that matter across specifications are potency, gauge and the theoretical retention probability
given 1. Higher potency improves forecast performance as does higher retention probability, so both
the theoretical and empirical measures of retaining relevant variables matter. The overall effect of gauge
varies by forecast method, with the retention of more irrelevant variables less problematic for known
regressors than if the regressors need to be forecast. The retention probabilities are recorded in Table 8,
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Table 6: Simulation summary for 5 relevant variables with non-centralities of 4 and 10 irrelevant vari-
ables. Underlined cells indicate minimum MSFE for selection across methods listed; bold where knowing
the DGP, but not the future values of the regressors, would have dominated.

Break type & case Out: T+ 1|T In: T+2[T+1

DGP a=0.05 a=0.16 | DGP «a=0.05 «a=0.16
No break
(ii) sample mean 1.90 1.96 1.97 1.89 1.93 1.95
(iv,b) RW with diff. | 2.59 2.68 2.77 | 251 2.62 2.71
(vii) pooling 1.73 1.77 1.76 1.80
Break Relevant
¢ (ii) sample mean 21.22 21.20 21.22 | 47.18 48.42 49.52
(iv,b) RW with diff. | 22.60 22.77 22.78 | 2.92 3.37 341
(vii) pooling 21.51 21.56 20.13 19.51
A (i) sample mean 5.46 5.52 5.54 | 14.52 14.80 15.11
(iv,b) RW with diff. | 5.17 5.35 544 | 2.87 3.20 3.28
(vii) pooling 491 4.96 8.04 7.99
Break Irrelevant
¢ (ii) sample mean 1.89 1.95 1.96 1.88 1.92 1.94
(iv,b) RW with diff. | 2.57 2.67 275 | 2.49 2.73 2.90
(vii) pooling 1.74 1.78 1.82 1.94
A (ii) sample mean 1.90 1.96 1.97 1.89 1.93 1.95
(iv,b) RW with diff. | 2.58 2.67 2.77 | 2.51 2.62 2.65
(vii) pooling 1.73 1.77 1.79 1.84
Break All
¢ (ii) sample mean 21.88 21.88 21.89 | 48.27 49.58 50.64
(iv,b) RW with diff. | 23.14 23.30 2332 | 2.94 343 3.59
(vii) pooling 22.10 22.14 18.92 17.70
A (ii) sample mean 5.55 5.60 564 | 1471 15.01 15.28
(iv,b) RW with diff. | 5.21 5.40 547 | 2.87 3.17 3.29
(vii) pooling 4.98 5.01 7.88 7.77

which compute the probability of retaining all relevant regressors assuming independent t—tests. While
the probability of retaining one variable may be quite large, the joint probability of retaining all relevant
variables can be extremely low. Thus, even using a significance level of 16%, many relevant variables
will be omitted if their non-centralities are small. However, their contribution to explaining the dependent
variable is also small and therefore breaks in such variables will have a smaller effect. The break mag-
nitude will be a function of the coefficient in the conditional model, the degree of persistence governing
the break evolution, and the size of the break in the marginal model.

The choice of « interacts with whether the break occurs in the relevant or irrelevant regressors, such
that a tighter significance level is preferred for breaks in irrelevant regressors, effectively increasing
the chance of their removal, but a looser significance level is preferred for breaks in relevant variables,
consistent with retaining such variables being important when the variables shift.

If the relevant variables have large non-centralities, standard significance levels of 1% or 5% are
preferred to minimize MSFE, but if the relevant regressors range in non-centrality from small to large, a
looser significance level is preferred. For the practitioner who was uncertain of the nature of the unknown
DGP, a moderate selection significance level of & = 10%-16% insures against the extremes, although
there will be cases when such a choice is not optimal.
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Table 7: Simulation summary for 5 relevant variables with non-centralities of 1 and 10 irrelevant vari-
ables. Underlined cells indicate minimum MSFE for selection across methods listed; bold where knowing
the DGP, but not the future values of the regressors, would have dominated.

Break type & case Out: T+ 1|T Int T+ 2T+ 1

DGP a=005 «a=0.16|DGP a=0.05 a=0.16
No break
(ii) sample mean 1.06 1.09 1.09 | 1.06 1.08 1.08
(iv,b) RW with diff. | 1.19 1.29 1.37 | 1.20 1.23 1.33
(vii) pooling 1.11 1.12 1.08 1.10
Break Relevant
¢ (ii) sample mean 2.32 2.34 2.34 | 4.07 422 4.26
(iv,b) RW with diff. | 2.52 2.61 2.73 | 1.53 2.60 2.18
(vii) pooling 2.39 242 3.09 2.73
A (ii) sample mean 1.30 1.33 1.33 | 1.88 1.93 1.94
(iv,b) RW with diff. | 1.38 1.53 1.60 | 1.28 1.70 1.63
(vii) pooling 1.35 1.36 1.70 1.62
Break Irrelevant
¢ (il) sample mean 1.06 1.09 1.09 | 1.06 1.07 1.08
(iv,b) RW with diff. | 1.19 1.28 1.37 | 1.20 1.40 1.62
(vii) pooling 1.11 1.12 1.10 1.14
A (ii) sample mean 1.06 1.09 1.09 | 1.06 1.08 1.08
(iv,b) RW with diff. | 1.19 1.29 1.38 | 1.20 1.27 1.34
(vii) pooling 1.11 1.12 1.10 1.10
Break All
¢ (il) sample mean 2.36 2.38 2.38 | 4.14 4.28 4.34
(iv,b) RW with diff. | 2.56 2.66 2.74 | 1.53 2.71 2.33
(vii) pooling 2.43 2.45 3.05 2.67
A (ii) sample mean 1.31 1.34 1.34 | 1.90 1.94 1.95
(iv,b) RW with diff. | 1.39 1.53 1.59 | 1.28 1.72 1.66
(vii) pooling 1.35 1.36 1.70 1.61

Table 8: Retention probabilities P (reject Hy|t, «); x5 refers to the probability of retaining all 5 re-

gressors with a given non-centrality and “Joint” is the probability of retaining all regressors with non-

centralities of (0.5, 1, 1.5,2,2.5,3,3.5,4), assuming independence.
o} =4 x5 | =1 x5 |¢Y=05 =15 =2 =25 =3 =35 Joint
0.001 0.729 0.206 | 0.008 0.000 0.002 0.029  0.082 0.187 0.348 0.544  0.000
0.01 0915 0.642 | 0.052 0.000 0.017 0.130 0.266 0.450 0.646 0.809 0.000
0.05 0.978 0.895 | 0.163 0.000 0.069 0.314 0.506 0.697 0.845 0.935 0.001
0.1 0.990 0.953 | 0.255 0.001 0.123 0.436 0.633 0.799 0.910 0.967 0.006
0.16 0.995 0.976 | 0.339 0.004 0.180 0.534 0.721 0.861 0.943 0.981 0.019
0.32 0.999 0.993 | 0.500 0.031 0.309 0.692 0.841 0.933  0.977 0.994 0.081
0.5 1.000 0.998 | 0.627 0.097 0.430 0.795  0.907 0.966  0.990 0.998 0.185

9 Conclusion

The paper investigates the choice of significance level and its associated critical value when selecting
forecasting models, both analytically in a static bivariate setting where there are location shifts at the
forecast origin, and in more general simulation experiments. The theory suggests that variables should
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Figure 11: Scatter plots of the MSFE for model selection against the MSFE for DGP for unknown fu-
ture regressors which are forecast using: (top row) the in-sample mean of the exogenous regressors,
and (bottom row) the robust device augmented with the difference, for significance levels of 0.1% (left
hand panel), 5% (middle panel) and 16% (right hand panel). The solid black line is the 45° line. The
experiments include the three ¢ specifications, two forecast horizons, and all 7 break specifications.

be retained if their non-centralities exceed 1, which translates to ¢2 = 2 at the boundary. This result
holds regardless of whether or not location shifts affect the variable about which a retention decision
is made. Undertaking selection at such loose significance levels implies that fewer relevant variables
will be excluded when they contribute to forecast accuracy, but that more variables will be retained by
chance because they happen to be in a draw that results in statistical significance at the proposed critical
value. Although retaining irrelevant variables that are subject to location shifts usually worsens forecast
performance, their coefficient estimates will be driven towards zero when updating estimates as the
horizon moves forward. Indeed, in a progressive research strategy of learning sequentially from evidence,
large breaks in irrelevant variables will rapidly lead to their being omitted and focus the specification on
relevant variables.

Although the static design is simple, it is not restrictive. The analytic results hold regardless of
whether the regressors are contemporaneous or lagged, although the timing of location shifts is fun-
damental. Dynamics will slow adjustment to new equilibria, but would not change the essence of the
results. The inflation forecasting illustration demonstrates the analytic results, with a loose selection
significance level of 16% being preferred for both the known regressors and the random walk forecasts
for unknown regressors case.

The simulation evidence examines a wide range of experimental designs and despite the disparate
outcomes, they provide some guidance for forecasting. The ideal scenario is obviously to have complete
knowledge of the DGP, such that the empirical modeller knows the number and magnitude of both
relevant and irrelevant regressors, and their future values, and hence whether and where breaks are likely
to occur. In practice, no-one has the benefit of omniscience, and once the future values of regressors need
to be forecast, not knowing the precise specification of the DGP may not be costly relative to selecting
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from a GUM that nests it. Indeed, simply knowing the specification of the DGP, but needing to forecast
future values of the exogenous regressors, rarely delivered the best MSFE outcome.

The simulation results suggest that if the model is being used primarily for 1-step ahead forecasting
with the aim of minimizing MSFE, selection at looser than standard selection significance levels may well
help, and doing so will rarely hinder forecast performance. The results provide some support for selecting
models at around 10% when there are approximately 15 regressors, many of which are irrelevant. This
is close to the 16% derived theoretically in the paper when the number of irrelevant regressors is small.
The simulation results also highlight the degree of complexity in pinning down the optimal selection
rule for forecasting, with results depending on all aspects of the experimental design. A take-away for
the forecaster is that pooling works well across many settings, suggesting a combination of model-based
forecast, robust device and univariate methods provides a good insurance policy. Moreover, methods that
did not nest the DGP, such as the direct AR(1) forecast of the dependent variable, also performed well,
both matching commonly found empirical outcomes.

A Analytic Calculations

A.1 Derivations for the equations reported in §3.1

The DGP given in (1), (2) and (3) results in

B, — 0 o? o2 —po110
VT él b1 ~ N K >7€< 22 11022 >], 44
Ba — By ’ 0 01103 (1 = p?) \ —po11o2 oty (9

with:
VT (3, — 7i,) ~ N [0,0%], (45)
where we subsequently set 011 = 099 = 0 without loss of generality.
My in (6) partials out 2 ;. From (2) we can write in deviations from means for¢ = 1,...,T"
Tog — po = p(T1t — py) + ey, (46)

such that e; = 154 — p1y 4, 5071 = (B4 + B2p) and ¢y = p1,, — 1 41- Hence My is:

Yo = py + (B1+ Bap) (z1,6 — p1) + Baer + &
=+ (@1t — py) + i,

with vy = p,,. The error for My is given by:

vy = By (772,t - P771,t) + €, 47)

where:
7=t B (1) =0 (1 T7) 2 o )

a0 e

A.2 Derivations for the equations reported in $4

Also:

The 1-step ahead forecast error from M is:

€ryr = Yr+1 — Urr
= (uy —ny) + (51 - 51) (1,701 — ) + (52 - 52) (z2,041 — p12) + €741 (50)
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When there are no breaks, the parameter estimates are unbiased, E [€T+1|T] = 0 so the MSFE of M is:

1 2 2p? 3
~2 _ 2 + _ P _ 2 2
E[ETMT}_UE <1+T+T(1_p2) T(l—p2)> o2 <1+T>. (51)

The 1-step ahead forecast error from My in which 3 ; is omitted is:

ET+1|T = Yr+i1— §T+1|T
= Bamari1 +ert1+ (Yo — o) + (B — V1) M 141 (52)

Therefore, despite the mis-specification, E [é7.7] = 0 and the MSFE is:
E [6T+1\T} =E {(52712,T+1 +erir+ (vo — o) + (B1 = 31) M 141) } =o(l+3 ) (53)

A.3 Derivations for the equations reported in §5.1

The regression equation itself stays constant so:
yre1 = (py + B20) + By (w1041 — 1) + B (2141 — fig — 6) + €1 (54)

Consequently, using ﬁo = by — 31 Wy — BQ 49 to match the formulation of My, the forecast for My is:

~

§T+1|T+1 = Hy + By + By (1,041 — 1) + Ba (T2,141 — Hg — 0) (55)

and the 1-step ahead forecast error for M is:

?T+1|T+1 = Yr+i1— ?T+1|T+1
= (ﬁz - 52) o+ (51 - 51) N1+ (52 - 52) Mo, 41 T €741, (56)

and a 1-step ahead MSFE of:

=2 2+2—p
E ¢ | =2 (1+ 751 57
€rir+1| =0 | L+ T(1—p2) (57)
Next consider the 1-step ahead forecast for Mo, given v, = p,, and v; = (31 + Bap):
§T+1\T+1 =%+ 71 (@141 — p1) -
The 1-step ahead forecast error is given by:

§T+1\T+1 = Yr+1— §T+1|T+1
= B8+ (Yo — 7o) + (v1 = V1) Mr41 — Bepni g + Bang g + Erta,

and the 1-step ahead MSFE for My is:

=2 _
E {eﬂlml} =02+ B2 (1= p?+62) + 2T o2, (58)
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A.4 Derivations for the equations reported in §5.3
For Bo = [y — Bl y — Bz#z, replacing the unknown x; 71 by p; leads to forecasting y71 by the

in-sample mean:

Y111 = Hys

so the forecast error for M is:

gT+1\T = Yr+1— §T+1|T
= B0+ Bimirs1 + Banarir + €r1, (59)
and the forecast error bias is: N
E |ersur| = B20. (60)
The MSFE; is: )
E [7air] = 62+ 53 (14 6%) + 20818, + o2 (61)

Parameter estimation adds terms of O, (T _1).
Similarly, for My, from (6) forecasting 1 741 by 1, leads to:

Yr+1T = Hys

and hence for ‘*known’ p,, the forecast error is:

€rp1r = B20 + Binir1 + Bana g1 + €r+1 =erqqr,

with: .
E [ET+1|T} = 52&

and MSFE; is given by (23). Hence, ignoring O,, (T*I) terms, MSFE,; = MSFE;.

A.5 Derivations for the equations reported in §5.4
From (54) the regression equation for y71 can also be written as:
Yr+1 = (My + 525) + B1Az1 71 + By (Ao i1 — 6) + erg1 + B + Banar-

Furthermore, the forecast for M; using (24) and (25) is:

o~

Yra1r = My + B1 (@11 — p1) + Ba (T27 — 112)
so the forecast error for My is:
€T+1|T = Yr+1— §T+1\T

= B0+ B1Az1 741 + By (A2 11 —0) + (/31 - 31) mr+ (ﬁz - Bz) No,r + €741

Consequently, neglecting the small impact of 7, 7 on 3; — [AB’Z

E [€T+1|T] = (359,

and hence MSFE; is:

E F%’“lT] =232 + B3 (2+62) +4pBy o + 02 (1+ 2171 . (62)
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Next, we compute the equivalent bias and MSFE for My, noting v; = 3 + B4p, so that the forecast

is given by:
Yrgr = Yo + 71 (@10 — p11)

As Yo = Yo = p, the forecast error for M7 using the random walk is:

€Tt = YT+1 — YT

= P90+ B1AN 11 + BaAng iy + vy + (81 — 1) M + Banars

where, as before:
E |:€T+1|T:| — BQ(S

Neglecting the small impact of 7, - on 7, the MSFE for My is:

=2 - -
E [Tror] =288+ 83 (34 7+ 0%) + 49818 + 0% (14 T + T729%).

A.6 Derivations for the equations reported in §6.1

The conditional DGP for the forecast observation is:

yr+1 = Bo + Brr1re1 + Baworyr + et

= (py + B820) + By (w1741 — p1) + Ba (w2011 — pgy — 8) + er1,

(63)

(64)

(65)

where the in-sample mean 1, is shifted to (41, + 850) at T'. Sample calculations will be altered as now

E [Za] = po + 7716 from:

T
_ 1 _ _
xQZT;vat:M2+T L5 + 75,

and neglecting terms of 7~2 or smaller:
(052)° ~ 03, + T8,

with 075 = 012 implying that:
% 012

01105,

The intercept is again included with Bo = fy — Blﬂl — Bz {1 to match the formulation of M.

Uriaire & Bo+ Bipy + Ba (g + T710) = p, + BoT716,

and hence neglecting terms of 7'~2 or smaller, the forecast error for M is:

~

€T+ T+l = YT+1 — YT41|T+1

~ Bod (1—=T7Y) + Binirsr + Banaryr + €41,

so the forecast error bias is given by:

E F\T-&—HT—H} ~By0 (1-T71).

The MSFE for M is:

=2 _1\2
E [5T+1|T+1] =507 (1—T7")" + B + B85 + ol.
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Omitting z2 from the forecasting equation leads to a forecast error of:

~

€ry1T+1 = YT+ — YT41T+1
B0 + (Vo — Vo) + (1 — V1) M1 T VT4 (68)

Q

with a MSFE for My given by:

~2 2
E [eﬂlml} =B25% + o+ 02 (1 + T) (69)

where o2 is given in (48).

A.7 Derivations for the equations reported in §6.3 and §6.4

Following a similar strategy as the previous analysis, including the intercept for comparability where
Bo = ty — Biitg — Bapiy, then the forecast for My is:

Yrpyre = Bo + BiZiryyr + BaZariur = Hy + B20 + Biny g1 + Banarias
so that the forecast error for M is:

€T+ = Yr+1 — Yr4+yr

= (52 - Bz) 0+ B1AN p4q + B2Any pig + €41 + (51 - 31) mr+ (52 - Bz) PR

with E [/E\T+1\T} = 0 when the parameter estimates are unbiased. The MSFE for M is:
=2 2 2 2 -1 &
E [eTH‘T} =2(BT+B5+2p81Bs) +ol |14+T "2+ a—n)l (70)

Next we compute the random walk forecast for My so v, = ; + Bp and v, = p,,, leading to the
forecast given by:

Yrg1r = Yo + 71 (@11 — 1),

and the forecast error for My is:

%T+1|T = Yr+1— §T+1|T
= P90+ B1AN pyq + BaAng iy + vy + (B1 — 1) M + Banars (71)

which is now biased for 5,9 # 0. The MSFE for My is:
=2 _ —
E [eﬂ”T} =287+ B35 (6% + 14 p°) +4pB1By + 02 (1L + T 1+ T 2¢?) . (72)

From (12):

52

MSFE; = MSFE; + (1 — pa[y]) [ﬁ% (6% +p* =1) + 7 (T(l__pz)

—T 'y T%/Pﬂ (73)

33



References

Akaike, A.. 1973. Information theory and an extension of the maximum likelihood principle. In
B. N. Petrov and F. L. Csaki (Eds.), Second International Symposium of Information Theory,
pp. 267-281. Budapest: Akademiai Kiado.

Bontemps, C. and G. E. Mizon. 2003. Congruence and encompassing. In B. P. Stigum (Ed.),
Econometrics and the Philosophy of Economics, pp. 354-378. Princeton: Princeton University
Press.

Breiman, L.. 1996. Bagging predictors. Machine Learning 24, 123—-140.

Campos, J., D. F. Hendry, and H.-M. Krolzig. 2003. Consistent model selection by an automatic
Gets approach. Oxford Bulletin of Economics and Statistics 65, 803-819.

Castle, J. L., M. P. Clements, and D. F. Hendry. 2015. Robust approaches to forecasting. Interna-
tional Journal of Forecasting 31, 99-112.

Castle, J. L., J. A. Doornik, and D. F. Hendry. 2012. Model selection when there are multiple
breaks. Journal of Econometrics 169(2), 239-246.

Castle, J. L., J. A. Doornik, D. F. Hendry, and F. Pretis. 2015. Detecting location shifts during
model selection by step-indicator saturation. Econometrics 3(2), 240-264.

Castle, J. L. and N. Shephard (Eds.). 2009. The Methodology and Practice of Econometrics. Ox-
ford: Oxford University Press.

Chu, C. S., M. Stinchcombe, and H. White. 1996. Monitoring structural change. Econometrica 64,
1045-1065.

Clements, M. P. and D. F. Hendry. 1998. Forecasting Economic Time Series. Cambridge: Cam-
bridge University Press.

Clements, M. P. and D. F. Hendry. 2001. Explaining the results of the M3 forecasting competition.
International Journal of Forecasting 17, 550-554.

Doornik, J. A.. 2009. Autometrics. See Castle and Shephard (2009), pp. 88—121.

Fildes, R. and K. Ord. 2002. Forecasting competitions — their role in improving forecasting prac-
tice and research. In M. P. Clements and D. F. Hendry (Eds.), A Companion to Economic
Forecasting, pp. 322-253. Oxford: Blackwells.

Hendry, D. F.. 1995. Dynamic Econometrics. Oxford: Oxford University Press.

Hendry, D. F.. 2006. Robustifying forecasts from equilibrium-correction models. Journal of
Econometrics 135, 399-426.

Hendry, D. F. and J. A. Doornik. 2014. Empirical Model Discovery and Theory Evaluation. Cam-
bridge, Mass.: MIT Press.

Hendry, D. E., S. Johansen, and C. Santos. 2008. Automatic selection of indicators in a fully
saturated regression. Computational Statistics 33, 317-335. Erratum, 337-339.

Hendry, D. F. and G. E. Mizon. 2012. Open-model forecast-error taxonomies. In X. Chen and
N. R. Swanson (Eds.), Recent Advances and Future Directions in Causality, Prediction, and
Specification Analysis, pp. 219-240. New York: Springer.

Ing, C-K. and C-Z. Wei. 2003. On same-realization prediction in an infinite-order autoregressive
process. Journal of Multivariate Analysis 85, 130-155.

Inoue, A. and L. Kilian. 2008. How useful is bagging in forecasting economic time series? A case
study of U.S. consumer price inflation. Journal of the American Statistical Association 103,
511-522.

34



Johansen, S. and B. Nielsen. 2009. An analysis of the indicator saturation estimator as a robust
regression estimator. See Castle and Shephard (2009), pp. 1-36.

Johansen, S. and B. Nielsen. 2016. Outlier detection algorithms for least squares time series re-
gression. Scandinavian Journal of Statistics 43(2), 321-348. With Discussion.

Leeb, H. and B. M. Potscher. 2009. Model selection. In T. Andersen, R. A. Davis, J.-P. Kreiss, and
T. Mikosch (Eds.), Handbook of Financial Time Series, pp. 889-926. Berlin: Springer.

Makridakis, S. and M. Hibon. 2000. The M3-competition: Results, conclusions and implications.
International Journal of Forecasting 16, 451-476.

Potscher, B. M.. 1991. Effects of model selection on inference. Econometric Theory 7, 163—185.

Shibata, R.. 1980. Asymptotically efficient selection of the order of the model for estimating
parameters of a linear process. Annals of Statistics 8, 147-164.

Stock, James and Mark W. Watson. 2009. Phillips curve inflation forecasts. In J. Fuhrer, Y. Ko-
drzycki, J. Little, and G. Olivei (Eds.), Understanding Inflation and the Implications for Mon-
etary Policy, pp. 99-202. Cambridge: MIT Press.

B Supplementary Tables

Table 9: T' = 100, Ratio Ms reports MSFE2 and Ratio Mg reports MSFEs

MSFE; MSFE;
Case Model ¢?> =0 ¢?>=1 ¢*=4 ¢*=9 ¢*=16
Stationary Ratio M 0990 1.000 1.030 1.079 1.149
(62 =0) RatioMs «=0.001 0990 1.000 1.026  1.048 1.035

a=0.05 0.991 1.000 1.014 1.012 1.003
a=0.16  0.992 1.000 1.008 1.004 1.001

out-of-sample shift Ratio My 0.827 1.008 1.551 2.457 3.724
known future Ratio Mg «a = 0.001 0.827 1.008 1.497 1.895 1.651
regressors o =0.05 0.836 1.007 1.267 1.217 1.056

a=0.16 0.855 1.005 1.152 1.081 1.013
out-of-sample shift Ratio My 1.000 1.000 1.000 1.000 1.000
unknown future Ratio M3 o« = 0.001 1.000 1.000 1.000 1.000 1.000
regressors a = 0.05 1.000 1.000 1.000 1.000 1.000
mean forecast a=0.16 1.000 1.000 1.000 1.000 1.000
out-of-sample shift Ratio My 0.997 1.002 1.013 1.024 1.033
unknown future Ratio Mg «a = 0.001 0.997 1.002 1.012 1.015 1.008
regressors a = 0.05 0.997 1.002 1.006 1.004 1.001
random walk forecast a=0.16 0.997 1.001 1.004 1.001 1.000
in-sample shift Ratio My 1.010 1.009 1.008 1.007 1.007
unknown future Ratio M3 « = 0.001 1.010 1.009 1.008 1.005 1.002
regressors a = 0.05 1.010 1.008 1.004 1.001 1.000
mean forecast a=0.16 1.008 1.006 1.002 1.000 1.000
in-sample shift Ratio My 0.931 0.994 1.155 1.386 1.661
unknown future Ratio Mg o = 0.001 0.931 0.994 1.140 1.237 1.158
regressors a = 0.05 0.934  0.995 1.075 1.058 1.014
random walk forecast a=0.16 0.942 0.996 1.043 1.021 1.003
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Table 10: Forecasts for 7" + 1|7 where break occurs at 7" + 1. DGP contains lagged dependent variable
with persistence of 0.5. ¢ = (0,0,0,0,0,0,0,0.5,1,1.5,2,2.5,3,3.5,4). N = 15, so there are n =
8 relevant regressors and N — n = 7 irrelevant regressors. Pool (1) given by an equally weighted
average of (iv,a) Robust RW, (iii) in-sample forecast for X, and (vi,b) Direct y forecast using an AR(1).
Intercept forced and not included in measure of potency. Bold indicates minimum MSFE for selection
with unknown regressors, with underline highlighting next smallest MSFE and italic highlighting third
smallest MSFE.

[ () known regressors | (ii) in-sample mean | (i) in-sample forecast ‘ ((iv) robust forecast ‘ (V) AR(I) forecast | (vi) direct forecast [ (vii) Pool | selection
(2) RW | (b) RW with diff
(%) GUM_DGP_ Select GUM __ DGP_Select GUM _ DGP_ Select GUM _ DGP _Select GUM _ DGP Select GUM _ DGP__ Select (a) RW (b) AR(1) (I) Potency Gauge
No break
0. 1519 1128 1528 1758 1590 1678 2359 1474 1617 2655 1694 1755 2816 2118 2015 5368 1438 1720 1.848 1.506 1541 0346 0.012
1 1388 1626 2366 1484 1.579 1.782 2.164 2.116 1513 0487 0.028
5 1.381 1.634 2374 1518 1635 1.822 2258 2797 1521 0.604 0073
10 1.378 1.630 2381 1550  1.650 1.813 2255 3342 1506 0.645 0.116
16 1397 1.640 2380 1.577 1704 1.840 2295 3.807 1521 0681 0.164
32 1.430 1.666 2413 1650  1.856 1.806 2266 4.564 1530 0760 0.296
50 1.481 1675 2428 1674  1.906 1.836 2.324 5.009 1533 0829 0435
Break in relevant regress
¢ 01 2110 1545 6748 17.678 17.561 17.662 18292 17.649 17.702 18451 18.140 18.083 18525 18.607 18.396 20730 17.632 18.074 18.371 17651 17723 0344 0012
1 3.631 17.653 18309 17.661 17.652 18.224 18.690 18.869 17726 0484 0028
5 2553 17.585 18330 17.755 17.763 18303 18.774 19.736 17751 0599  0.074
10 2321 17.534 18477 17.847 17.713 18383 18.861 20.355 17737 0.643  0.116
16 2217 17.541 18477 17.948 17.898 18.421 18.956 20.906 17789 0.680 0.164
32 2.120 17567 18474 18.027 18.019 18395 18.936 21.838 17763 0759  0.294
50 2.085 17.558 18.465 18.165 18340 18.441 19.004 22.174 17823 0.825 0437
A 01 1638 1245 2598 4669 4455 4534 4806 4124 4354 5244 4103 4366 5357 4379 4554 7.669 4.083 4494  4.502 4.294 4253 0344 0012
1 1.879 4520 4817 4125 4265 4.302 4.588 5.046 4176 0484 0.028
5 1.667 4507 4822 4149 4279 4311 4622 5.826 4157 0.601 0074
10 1.589 4484 4864 4189  4.249 4.309 4.618 6.238 4130 0645 0.116
16 1.592 4502 4863 4234 4347 4.340 4.664 6.799 4160 0.681 0.163
32 1.598 4544 4877 4308 4515 4342 4.691 7.628 4183 0760 0296
50 1613 4553 4875 4338  4.587 4.355 4715 8.058 4.180 0828 0436
Break in irrelevant regressors
¢ 01 2130 1128 1566 1754 1.587 1.674 2332 1505 1619 2647 1.691 1743 2808 2112 2001 5353 1436 1745  1.847 1.504 0344 0012
1 1.443 1624 2346 1493  1.584 1.779 2.165 2.157 0482 0.029
5 1.548 1.630 2359 1582  1.687 1.825 2254 2.827 0.599  0.073
10 1.605 1626 2387 1634 1728 1813 2265 3.257 0.643  0.115
16 1.697 1635 2368 1703  1.842 1.853 2313 3.812 0.681  0.163
32 1.859 1.663 2425 1811 2,052 1.806 2261 4.560 0761 0.295
50 2.000 1672 2469 1899 2217 1.836 2323 5.017 0.826 0436
A 01 1653 1128 1539 1758 1.590 1.674 2346 1487 1620 2.653 1.694 1748 2814 2117 2009 5367 1438 1746  1.848 1.506 1539 0344 0.012
1 1.408 1627 2356 1490  1.586 1.781 2.164 2158 1515 0485  0.029
5 1.439 1.634 2374 1544 1648 1.820 2247 2798 1523 0602 0073
10 1433 1631 2390 1573  1.665 1.817 2.267 3331 1506 0.645 0.115
16 1.491 1639 2384 1615 1.740 1.849 2308 3.866 1528 0682 0.164
32 1534 1667 2424 1690  1.901 1.803 2259 4.519 1531 0760 0295
50 1.605 1677 2449 1736  1.991 1.838 2.328 5.068 1541 0828 0436
Break in all regressors
¢ 01 2707 1545 6.843 17.993 17.878 17.975 18.595 17.931 17.956 18.775 18.404 18383 18.847 18.860 18.706 21.057 17.922 18316 18656  17.957 18002 0345 0.012
1 3.685 17937 18622 17.917 17.879 18.432 18.903 19.190 17965 0486  0.029
5 2.726 17.896 18.630 18.094 18.041 18.552 18.994 19.997 18015 0.603 0073
10 2.554 17.854 18.827 18241 18.054 18.637 19.097 20.589 18011 0.644 0.116
16 2502 17.860 18.770 18.287 18.126 18.628 19.124 21.325 17999 0.681 0.163
32 2574 17.891 18755 18473 18360 18.649 19.181 22.209 18011 0761  0.296
50 2,616 17.885 18762 18.578 18.726 18710 19.256 22,603 18.069  0.828 0.436
A 01 1765 1245 2612 4718 4503 4579 4848 4166 4388 5292 4130 4396 5405 4401 4583 7720 4120 4541 4536 4.337 4287 0344 0012
1 1.899 4565 4866 4155 4.292 4.324 4.594 5.066 4206 0485 0.028
5 1713 4550 4876 4201 4319 4331 4629 5.833 4189 0.603 0074
10 1.668 4535 4929 4236 4305 4.347 4.654 6.268 4169 0644 0.116
16 1.674 4551 4921 4280 4375 4.355 4.677 6.905 4179 0680 0.164
32 1.693 4597 4935 4355 4549 4358 4700 7.674 4199 0760 0295
50 1735 4603 4941 4386 4.644 4.388 4.739 8.059 4206 0.829 0435
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Table 11: Forecasts for 7' + 2|7 + 1 where break occurs at 7'+ 1. DGP contains lagged dependent
variable with persistence of 0.5. ¢ = (0,0,0,0,0,0,0,0.5,1,1.5,2,2.5,3,3.5,4). N = 15, so there are
n = 8 relevant regressors and N — n = 7 irrelevant regressors. Pool (1) given by an equally weighted
average of (iv,a) Robust RW, (iii) in-sample forecast for X, and (vi,b) Direct y forecast using an AR(1).
Intercept forced and not included in measure of potency. Bold indicates minimum MSFE for selection
with unknown regressors, with underline highlighting next smallest MSFE and italic highlighting third
smallest MSFE.

[ () known regressors | (ii) in-sample mean | (iii) in-sample forecast ‘ ((iv) robust forecast ‘ (v) AR(1) forecast | (vi) direct forecast | (vii) Pool | selection
(a) RW | (b) RW with diff

a(%) GUM DGP Select GUM DGP  Select GUM DGP  Select GUM DGP  Select GUM DGP Select GUM DGP  Select (a) RW  (b) AR(1) (1) Potency Gauge
No break

01 1497 1090 1392 1691 1573 1629 2300 1474 1532 2911 1.683 1723 3081 2018 1984 5493 1450 1753 1842 1501 1503 0344 0012

1 1313 1582 2302 1487  1.541 1733 2,027 2125 1491 0481 0.027

5 1296 1590 2294 1521 1.600 1759 2112 2.684 1495 0601 0074

10 1311 1594 2291 1568  1.666 1769 2.135 2.904 1502 0645 0114

16 1362 1620 2325 1604 1.741 1.802 2179 3459 1526 0684 0163

32 1.440 1634 2321 1671 1853 1816 2.225 4221 1536 0765 0297

50 1484 1642 2317 1646 1878 1843 2252 4677 1532 0827 0437

Break in relevant regressors

L 0.1 2518 1.661 7.683 43373 39.504 40.018 12.516 19.880 25317 43421 6.423 14.839 43320 2531 8.732 18419 19386 25675 18.350 31.740 23.049 0400  0.013

1 4.148 40.163 12,533 18.716 21.753 11.314 5.321 23.821 20.332 0516 0.027
5 2787 40398 12551 16.566 17.910 9.213 3911 22.812 17.986 0622  0.074
10 2.440 40.781 12,691 15438 16.215 8.755 3.597 22.471 17.144 0.665 0.113
16 2.446 41280 12703 14415 14.813 8.624 3.464 22.407 16.539 0.695 0.163
32 2.369 41.986 12701 12.786 12.595 8.303 3.298 22.474 15.452 0771 0.293
50 2416 42422 12720 11921 11.458 8.173 3177 22.502 14.888 0.831 0438

A 0.1 1.846 1331 3997 12918 11963 11.924 6356 7.394 8.893 13246 3986 6.793 13339 2426 5422 10.006 7.153 9.186  7.161 10.025 8.351 0357 0.013

1 2513 11983 6351  7.278  8.106 5727 4.160 9.050 7661 0486 0.028

5 1918 12117 6342 6899 7305 5.005 3399 9225 7066 0.607 0.075

10 1.793 12236 6340 6797  7.056 4816 3.198 9318 6.884 0648 0.114

16 1.776 12346 6393 6726  6.880 4724 3.105 9599 6760  0.689 0.161

32 1.813 12558 6379 6421 6483 4.637 3.009 10.403 6540 0766  0.295

50 1.809 12661 6410 6339  6.286 4,609 2.958 10.548 6419 0830 0438

Break in irrelevant regres:

¢ T 00 2429 1090 1449 1689 1569 1601 4075 1493 1570 3254 1677 1732 3853 2011 1992 9067 1445 1721 1835 1.496 1507 0341 0012
1 1512 1571 4118 1546  1.688 1.742 2072 2225 1517 0477 0.026

5 1611 1589 4200 1697 1878 1.807 2211 2704 1538 0597 0073

10 1.696 1.587 4305 1.823 2,057 1.817 2238 3.090 1564 0.641 0112

16 1.841 1604 4336 1918 2203 1.831 2303 3576 1575 0682  0.163

32 2.108 1623 4429 2042 2.500 1.892 2463 4.499 1613 0765 0294

50 2296 1640 4518 2204 2743 1.937 2571 5.058 1653 0826 0435

A 01 1783 1090 1416 1692 1573 1628 2768 1470 1554 3012 1682 1714 3411 2017 1969 6356 1449 1693  1.841 1.500 1504 0342 0012
1 1.395 1579 2779 1512 1591 1.745 2045 2154 1507 0477 0.027

5 1.389 1589 2.805 1586  1.676 1.763 2114 2682 1507 0600 0.073

10 1.447 1597 2863  1.662 1791 1.797 2.166 3.037 1531 0647 0.114

16 1.562 1613 2879 1710  1.8%4 1.804 2.197 3.494 1550 0.684 0.164

32 1.639 1630 2918 1819 2059 1.811 2230 4.379 1565 0765 0296

50 1.740 1640 2938 1891  2.169 1.850 2288 4781 1581 0.827 0435

Break in all regressors
¢ T 00 3260 1.662 7.546 43937 40014 40392 7302 19.097 24.667 44548 6439 14575 44941 2534 8448 9857 19580 25.658 18506 32094 22820 0402 0013

1 4.190 40.684  7.335 17.558 20.883 11.236 5.293 23.933 20.062 0514 0.027
5 2.843 40926  7.482 14542 16.130 9.014 3.755 22.638 17.297 0622  0.073
10 2710 41378  7.548 12.821 13.877 8.734 3.612 22.479 16.245 0.665 0.113
16 2.675 41.690  7.741 11.586 12.398 8.503 3.458 22911 15.496 0692  0.163
32 2.906 42439 7.806  9.664 10.130 8.335 3421 23.272 14.325 0772 0.293
50 3.077 42958 7910 8747  8.893 8.337 3428 22.711 13.646 0.834 0438
A 0.1 2047 1331 3988 13.031 12064 12.054 5226 7300 8818 13.665 3.991 6.796 13940 2423 5417 8149 7.195 9255 7.191 10.095 8.346 0356 0.013
1 2.497 12.097 5218  7.117 8.012 5.698 4.111 8.977 7.634 0.487  0.027
5 1.921 12230 5232 6.594  7.056 4.990 3.369 9.115 6.987 0.607  0.075
10 1.863 12305 5288  6.348  6.693 4914 3292 9.228 6.793 0.648  0.114
16 1.891 12445 5344 6237 6.488 4.781 3.153 9.646 6.644 0.684  0.163
32 1.920 12649 5385 5851 5898 4.670 3.027 10.526 6.334 0.765  0.296
50 1.986 12747 5416 5661  5.705 4.648 3.011 10.695 6.201 0.829 0435
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Table 12: Forecasts for T+ 1|T where break occurs at 7'+ 1. DGP contains lagged dependent variable
with persistence of 0.5. ¢» = (0,0,0,0,0,0,0,0,0,0,4,4,4,4,4). N = 15, so there are n = 5 relevant
regressors and N —n = 10 irrelevant regressors. Intercept forced and not included in measure of potency.
Pool (1) given by an equally weighted average of (iv,a) Robust RW, (iii) in-sample forecast for X, and
(vi,b) Direct y forecast using an AR(1). Pool (2) given by an equally weighted average of (iv,a) Robust
RW and (iii) in-sample forecast for X. Bold indicates minimum MSFE for selection with unknown
regressors, with underline highlighting next smallest MSFE and italic highlighting third smallest MSFE.

[ () known regressors | (ii) in-sample mean | (iii) in-sample forecast ‘ ((iv) robust forecast ‘ (V) AR(D) forecast | (vi) direct forecast | (vi) Pool | selection
(2) RW | (b) RW with diff
(%) GUM_DGP_ Sclect GUM _ DGP_ Sclect GUM _ DGP _ Select GUM _ DGP _ Select GUM _ DGP _ Select GUM _ DGP_ Select () RW_ (b) AR(1) [6) (D) Potency Gauge
No break

0.1 1514 1093 1363 2142 1904 1940 3.134 1706 1787 3445 2019 2106 3.613 2589 2621 6228 1670 1935  2.179 1794 1853 1760 0753  0.008

1 1.244 1941 337 1723 1783 2070 2.643 2225 1819 1733 0919  0.020

5 1241 1956 3.144 1764 1843 2.068 2.680 3.164 1827 1727 0969  0.068

10 1.293 1966  3.144  1.808 1914 2.131 2751 3.624 1872 1755 0973 0.115

16 1.330 1971 3.140 1845 1963 2.151 2765 4.058 1897 1765 0975 0.165

32 1411 2006 3072 1927 2154 2.165 2794 4.984 1952 1797 0990 0292

50 1.455 2043 3193 1978 2222 2.199 2.851 5577 1974 1803 0993  0.440
Break in relevant regressors

¢ 00 1883 1321 3761 21348 21222 21301 22152 21303 21.371 22491 22016 22.146 22556 22.599 22727 25568 21312 21739 22197  21.379 21.663 21495  0.744  0.009

1 1.861 21215 22165 21.322 21366 22,053 22,656 22251 21599 21445 0914 0.020

5 1.616 21204 22178 21481 21.588 22.150 22.770 23.577 21723 21514 0965 0.068

10 1.640 21204 22292 21549 21683 22.152 2771 24,091 21740 21521 0971 0115

16 1.692 21219 22299 21.695 21.837 22173 22.780 24.692 21801 21.556 0974 0.164

32 1.733 21.237 22268 21.723 22,018 22.220 22851 25.808 21839 21570 0989 0.293

50 1.799 21.245 22237 21776 22.143 22.343 23.017 26.260 21907 21.600 0993 0.437

A 01 1601 LIS6 1.887 5763 5457 5499 6.150 4910 5081 6712 4852 5139 6833 5172 5457 9405 4877 5309 5370 5209 5018 5010 0749 0.008

1 1.363 5482 6156 4917  4.990 4.958 5302 5.599 4.867 4903 0918 0.020

5 1335 5516 6.161 4971  5.087 4.980 5.348 6.661 4904 4915 0968 0.068

10 1379 5531 6196 5021 5.161 5.037 5.416 7.080 4947 4940 0972 0.114

16 1.398 5542 6197 5073 5244 5.065 5.443 7.646 4988 4963 0976 0.164

32 1471 5591 6204 5.152  5.428 5.098 5.499 8.618 5048 4997 0990 0.293

50 1.534 5631 6201 5.166 5.474 5.163 5.587 9.172 5074 5003 0993 0438
Break in irrelevant regressors

¢ 01 2358 1093 1451 2128 1.893 1943 3080 1780 1.862 3419 2006 2086 3.587 2566 2.583 6192 1.663 1939  2.169 1786 1.872 1767 0745  0.008

1 1329 1931 3.090 1759  1.820 2052 2.621 2239 1817 1724 0914  0.020

5 1.451 1946 3.096 1870 1972 2.062 2.670 3.184 1862 1736 0966 0.068

10 1578 1956 3.120 1957  2.091 2.130 2748 3.641 1915 1761 0970 0.114

16 1.700 1960 3.107 2052 2220 2.141 2754 4.042 1948 1777 0974 0.165

32 1.981 1991 3.079 2265 2547 2.160 2784 4.959 2028 1817 0989 0293

50 2.145 2029 3258 2418 2811 2185 2.824 5.567 2101 1.849 0993  0.439

A 01 1685 1.093 1387 2141 1903 1937 3012 1733 1818 3441 2017 2108 3.608 2585 2618 6224 1670 1948  2.177 1794 1870 1769 0754  0.008

1 1274 1940 3117 1736 1797 2.065 2.637 2224 1823 1733 0918 0.020

5 1.296 1957 3131 1.801  1.887 2.066 2,675 3.166 1845 1735 0969 0.068

10 1359 1966 3.138 1.855 1961 2.136 2762 3615 1891 1760 0972 0.115

16 1.418 1966 3.131 1918  2.047 2.149 2767 4.039 1926 1775 0975 0.165

32 1527 2005 3169 2016 2248 2.164 2792 4.981 1975  1.800 0990 0.293

50 1.604 2041 3207 2109 2396 2207 2.860 5575 2031 1827 0993 0439

Break in all regressors
¢ T 01 2695 1321 3734 22011 21.883 21957 22797 21878 21951 23.174 22.579 22687 23236 23.142 23233 26269 21923 22355 22796 22016 22211 22066 0753 0.008

1 1.883 21.873 22.815 21.879 21.900 22.608 23216 22816 22127 22.003 0.920  0.020
5 1.793 21.876 22.815 22.160 22.245 22.703 23.304 24.199 22297 22.096 0.968  0.068
10 1.911 21.876 23.012 22362 22416 22741 23.340 24.596 22346 22.116 0972 0.115
16 2.025 21.890 22957 22479 22.628 22738 23318 25.399 22399 22144 0975 0.165
32 2236 21.895 22917 22554 22.824 22.804 23.426 26.377 22409 22.132 0990 0293
50 2451 21915 22928 22.681 23.024 22.892 23.549 26.941 22453 22.138 0993 0.440
A 0.1 1756 1.156 1904 5858 5548 6230  4.977 6.808 4901 5180 6928 5213 9.503 4947 5343 5433 5.289 0751 0.008
1 1.400 6242 4.968 5.015 5.681 0918  0.020
5 1.386 6250  5.045 5.031 6.732 0967  0.068
10 1.438 6.297  5.105 5.085 7.170 0972 0.115
16 1.486 6.287  5.163 5.105 7.708 0975  0.165
32 1.580 6.297 5214 5.158 8.653 0.990  0.293
50 1.665 6.308  5.255 5.220 9.310 5122 5.047 0.993  0.440
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Table 13: Forecasts for T'+2|T'+1 where break occurs at 7'+ 1. DGP contains lagged dependent variable
with persistence of 0.5. ¢ = (0,0,0,0,0,0,0,0,0,0,4,4,4,4,4). N = 15, so there are n = 5 relevant
regressors and N —n = 10 irrelevant regressors. Intercept forced and not included in measure of potency.
Pool (1) given by an equally weighted average of (iv,a) Robust RW, (iii) in-sample forecast for X, and
(vi,b) Direct y forecast using an AR(1). Bold indicates minimum MSFE for selection with unknown
regressors, with underline highlighting next smallest MSFE and italic highlighting third smallest MSFE.

[ () known regressors | (i) in-sample mean | (i) in-sample forecast ‘ ((iv) robust forecast ‘ (v) AR(1) forecast [ (vi) direct forecast [ (vii) Pool | selection
(a) RW | (b) RW with diff

a (%) GUM DGP Select GUM DGP  Select GUM DGP  Select GUM DGP Select GUM DGP Select GUM DGP  Select (a)RW (b) AR(I) (1) Potency Gauge
No break

0.1 1495 1056 1302 2078 1.893 1918 3.002 1747 1.793 3730 2040 2073 3.898 2512 2530 6.381 1706 1.940  2.180 1.799 1.759 0.756  0.008

1 1.176 1.909  3.004 1.758  1.790 2.078 2.587 2.254 1741 0.920  0.020

5 1.190 1.931 2990 1.812 1.882 2.086 2.617 2.871 1756 0.969  0.067

10 1.225 1.938 2992  1.875  1.966 2.103 2.637 3.455 1.775 0.974  0.114

16 1.295 1.949  3.028 1912 2.043 2.168 2.707 3.883 1.805 0.978  0.164

32 1.395 1.974  3.028 1.987 2221 2.193 2.767 4.668 1.833 0.988  0.293

50 1.436 2.003  3.029 1.966 2239 2.201 2.768 5.175 1.819 0.994  0.440

Break in relevant regressors
¢ 00 2059 1431 3984 52259 47.182 47.823 27793 24191 26788 53270 7.632 11630 53.390 2918 5653 31.625 23.137 26309 22385 36993 23294 0791  0.009

1 2.056 47937 27.823 23269 23.928 8.960 3.661 24.724 21.100 0925 0.020
5 1.779 48423 27.822 21.339 21.640 8.555 3.367 25.248 20.129 0968  0.068
10 1.764 48996 27.870 20.207 20.288 8.669 3.344 25.741 19.727 0975  0.115
16 1.856 49522 27.854 19.308 19.344 8.921 3415 25.865 19.506 0979  0.162
32 1.975 50.351 27.864 17.909 17.561 9.155 3473 26.920 18.934 0990  0.293
50 2.057 51.027 27.758 17.125 16514 9.526 3.636 27.131 18.660 0994 0441

A 0.1 1720 1.193 2463 15844 14523 14.583 10.698 8939 9706 16.555 4.756 6.176 16701 2871 4.398 14213 8.601 9.636  8.676 11.897 8.838 0.763  0.008

1 1.493 14.683 10706 8852  9.061 5203 3.325 9.534 8218 0917 0020
5 1.434 14803 10.690 8532 8720 5.094 3.199 10.169 8041 0968 0.068
10 1.452 14955 10671 8440 8612 5.117 3.186 10.785 8001 0976 0.115
16 1513 15108 10692 8365 8525 5227 3.281 11.133 7980 0976 0.162
32 1.606 15312 10690 8.168 8282 5281 11.945 7.889 0990 0.293
50 1.653 15496 10685 8033  8.046 5.401 12,561 7819 0993  0.440
Break in irrelevant regressors
¢ 01 2773 1056 1439 2068 1.879 1886 12058 1797 1.851 4260 2021 2095 5080 2489 2582 15899 1.692 1971  2.163 1784 1760 0745 0.009
1 1416 1893 12140 1861 1985 2091 2645 2.248 1766 0914 0020
5 1665 1916 12280 2125  2.406 2117 2734 3.005 1821 0964 0066
10 1855 1928 12402 2362 2.730 2174 2827 3534 1880 0970 0.113
16 2010 1936 12474 2542 3015 2223 2903 4050 1937 0976  0.163
32 2344 1968 12665 2.848  3.530 2339 3173 5.180 2033 0989 0292
50 2618 1990 12800 3.034 3843 2343 3.192 5.805 2071 0993 0439
A 01 1901 1056 1353 2079 1.891 1909 5144 1749 1793 4019 2037 2087 4378 2509 2558 8512 1703 1906 2177 1796 1755 0753  0.008
1 1230 1907 5169 1789 1842 2076 2584 2249 1748 0918  0.020
5 1352 1929 5220 1933 2039 2095 2622 2925 1787 0968  0.068
10 1.430 1942 5291 2054 2204 2098 2.608 3.551 1813 0971 0.116
16 1480 1953 5294 2,041 2345 2127 2655 3.840 1840 0976 0.164
32 1.703 1979 5410 2286 2581 2213 2.829 4.848 1890 0987 0.293
50 1.804 2001 5442 2386 2743 2200 2783 5354 1898 0995 0439

Break in all regressors

[ 0.1 3272 1431 3749 53481 48274 48843 8715 23.024 25524 55694 7.683 11361 56.781 2.936 11710 23.567 26460 22.753 37.726 22931 0.801  0.009

1 2219 49.088 8796 21.222 21.992 8.892 24.961 20.561 0928  0.020
5 2.038 49.577 8984 17.588 17.946 8.557 25.583 18.921 0972 0.067
10 2218 50.060  9.066 15.503 16.059 8.670 26.295 18.191 0976  0.116
16 2.409 50.645 9308 14.117 14.640 8.969 26.302 17.703 0979  0.162
32 2749 51.666  9.408 11.808 12.057 9.510 27.000 16.738 0.990  0.293
50 3.059 52259 9.526 10.705 10.864 9.848 27.395 16.214 0995 0439

A 0.1 2046 1.193 2504 16.058 14712 14795 6917 8755 9555 17222 4767 6.168 17.653 2.868 10.126  8.680  9.695  8.733 12.023 8.815 0.765  0.009

1 1.550 14.867  6.909 8569  8.805 5.157 9.468 8.142 0919  0.020
5 1.522 15014 6939 7978 8.183 5.084 10.330 7.875 0.969  0.067
10 1.575 15132 6.998  7.681  7.933 5.136 10.865 7.770 0974 0.115
16 1.664 15284  7.060  7.581  7.834 5.270 11.210 7.769 0978  0.165
32 1.828 15572 7.136  7.061  7.192 5.358 12.159 7.505 0990  0.294
50 1.927 15.699  7.177  6.837  6.950 5423 12.463 7.392 0.994 0441
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Table 14: Forecasts for T+ 1|7 where break occurs at 7' + 1. DGP contains lagged dependent variable
with persistence of 0.5. ¢ = (0,0,0,0,0,0,0,0,0,0,1,1,1,1,1). N = 15, so there are n = 5 relevant
regressors and N —n = 10 irrelevant regressors. Intercept forced and not included in measure of potency.
Pool (1) given by an equally weighted average of (iv,a) Robust RW, (iii) in-sample forecast for X, and
(vi,b) Direct y forecast using an AR(1). Bold indicates minimum MSFE for selection with unknown
regressors, with underline highlighting next smallest MSFE and italic highlighting third smallest MSFE.

[ () known regressors | (ii) in-sample mean [ (iii) in-sample forecast ((iv) robust forecast ‘ (v) AR(1) forecast | (vi) direct forecast | (vii) Pool | selection
() RW | (&) RW with diff
a(%) GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select (a) RW (b) AR(1) (1) Potency Gauge
No break
0.1 1532 1.098 1.126 1.142 1.058 1.119 1.648 1059 1.126 1767 1.128 1.130 1962 1.194 1.150 2958 1.059 1.151 1.387 1.060 1.094 0.177  0.012
1 1.131 1.107 1.654 1.065 1.123 1.157 1.184 1.327 1.095 0.209  0.021
5 1.240 1.088 1.665 1.076 1.177 1.220 1.288 1.731 1111 0.294  0.069
10 1.294 1.078 1.677 1.081 1218 1.239 1.337 1.956 1.117 0352 0.112
16 1.307 1.088 1.671 1.091 1248 1.257 1.373 2.200 1.121 0.409  0.160
32 1.406 1.093 1.700 1.107 1312 1.294 1.443 2.585 1.129 0.540  0.291
50 1.470 1.093 1.720 1.112 1.381 1.312 1.489 2.847 1.141 0.650  0.438
Break in relevant regressors
L 0.1 1899 1316 2293 2407 2320 2372 2.883 2346 2399 2992 2456 2419 3.162 2525 2453 4.192 2351 2443 2.752 2.334 2.373 0.177  0.012
1 2.191 2373 2896 2350 2390 2451 2.484 2.682 2373 0.208  0.021
5 2.023 2342 2908 2.378 2438 2.540 2.615 3.114 2.393 0.293  0.069
10 1.986 2332 2956 2380 2481 2.572 2.670 3.441 2.405 0.348  0.111
16 1.890 2.338 2948 2405 2.535 2.606 2.725 3.574 2.418 0.406  0.161
32 1.848 2343 2975 2424 2.59% 2.630 2.779 4.039 2.419 0.535  0.291
50 1.864 2343 2999 2432 2736 2.662 2.844 4.360 2.450 0.649  0.438
A 0.1 1617 1.163 1359 1394 1302 1360 1.850 1282 1.373 1978 1333 1380 2.162 1383 1404 3.156 1.283 1406 1.633 1.304 1.341 0.176 ~ 0.013
1 1.347 1.351 1.858 1.287 1.361 1.403 1.433 1.593 1.338 0.209  0.021
5 1.424 1.331 1.870 1302 1.408 1.466 1.535 2.004 1.350 0.293  0.069
10 1.476 1.323 1.894 1304 1.440 1.484 1.579 2.281 1.354 0.351  0.112
16 1.450 1.330 1.886 1.319 1484 1.492 1.602 2.459 1.358 0.408  0.160
32 1.536 1.336 1.912 1337 1539 1.528 1.670 2.885 1.364 0.537  0.291
50 1.550 1.338 1.933 1342 1.622 1.545 1.711 3.191 1.379 0.649  0.438
Break in irrelevant regressors
2 0.1 2398 1.098 1.188 1.141 1.057 1.119 1.623 1075 1.126 1765 1.128 1.130 1.960 1.193 1.149 2953 1.059 1.149 1.387 1.059 1.093 0.176 ~ 0.012
1 1.194 1.107 1.639 1.075 1.133 1.162 1.190 1.330 1.099 0.208  0.021
5 1.414 1.088 1.650 1.092 1.190 1.221 1.285 1.752 1.113 0294 0.069
10 1.537 1.080 1.683 1.096 1.263 1.230 1.330 1.962 1.123 0.349  0.111
16 1.658 1.087 1.678 1.107 1.290 1.256 1.370 2.196 1.125 0.409  0.160
32 1.979 1.093 1752 1.144 1.409 1.282 1.423 2.591 1.136 0.538  0.291
50 2213 1.093 1.815 1.170 1.560 1.310 1.484 2.873 1.160 0.647  0.436
A 0.1 1711 1.098 1.142 1.142 1.058 1.120 1.634 1.066 1.127 1.766 1.128 1.130 1.962 1.194 1.149 2957 1.059 1.151 1.387 1.060 1.094 0.177  0.012
1 1.141 1.107 1.644 1.069 1.128 1.161 1.189 1.327 1.098 0.210  0.021
5 1.284 1.088 1.660 1.084 1.184 1.221 1.286 1.726 1.113 0295 0.069
10 1.345 1078 1.679 1.089 1.228 1.238 1.339 1.952 1.119 0351 0.111
16 1.379 1.088 1.671 1.100 1257 1.261 1.378 2.210 1.124 0411 0.160
32 1.532 1.094 1713 1.121 1.330 1.287 1.433 2.590 1.129 0539 0.291
50 1.631 1.093 1.743 1.135 1421 1.305 1.478 2.878 1.143 0.649  0.437
Break in all regressors
L 0.1 2729 1316 2364 2449 2362 2418 2902 2396 2445 3.035 2492 2459 3204 2559 2493 4239 2390 2491 2.791 2376 2415 0.177  0.012
1 2253 2415 2923 2392 2441 2.502 2.538 2.726 2.420 0.209  0.021
5 2228 2383 2932 2427 2483 2.584 2.658 3.143 2434 0.294  0.069
10 2220 2370 3.015 2435 2543 2.604 2.708 3.433 2443 0351 0.112
16 2.150 2376 2993 2459 2585 2.624 2.737 3.664 2.445 0.410  0.160
32 2.397 2384 3.045 2486 2.676 2.694 2.858 4.098 2.458 0.539  0.291
50 2.567 2386 3.107 2503 2.884 2.696 2.874 4.386 2.484 0.650  0.438
A 0.1 1781 1.163 1375 1400 1307 1367 1.844 1292 1380 1.984 1336 1384 2168 1386 1409 3.163 1.288 1411 1.637 1.310 1.346 0.177  0.012
1 1.369 1.359 1.857 1293 1.374 1.408 1.436 1.603 1.345 0.209  0.021
5 1.467 1.338 1.872 1311 1414 1.465 1.531 2.007 1.354 0.293  0.069
10 1.511 1.328 1.904 1314 1459 1.481 1.574 2274 1.359 0351 0.111
16 1.494 1.337 1.892 1.329 1.487 1.489 1.594 2.485 1.358 0.409  0.160
32 1.644 1.343  1.928 1.347 1560 1.535 1.675 2.868 1.371 0.538  0.292
50 1.703 1345 1959 1.358 1.654 1.545 1.711 3.178 1.382 0.649  0.438
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Table 15: Forecasts for 7' + 2|7 + 1 where break occurs at 7' + 1. DGP contains lagged dependent
variable with persistence of 0.5. ¢» = (0,0,0,0,0,0,0,0,0,0,1,1,1,1,1). N = 15, so there are n = 5
relevant regressors and N —n = 10 irrelevant regressors. Intercept forced and not included in measure of
potency. Pool (1) given by an equally weighted average of (iv,a) Robust RW, (iii) in-sample forecast for
X, and (vi,b) Direct y forecast using an AR(1). Pool (3) given by an equally weighted average of (iv,b)
Robust RW with Diff and (iii) in-sample forecast for X. Bold indicates minimum MSFE for selection
with unknown regressors, with underline highlighting next smallest MSFE and italic highlighting third
smallest MSFE.

[ (D) known regressors | (ii) in-sample mean | (iii) in-sample forecast ((iv) robust forecast ‘ (V) AR(1) forecast | (vi) direct forecast | (vii) Pool | selection
(a) RW | (b) RW with diff

a(%) GUM DGP Seclect GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select (a) RW (b) AR(l) 3) (1) Potency Gauge
No break

0.1 1506 1071 1.161 1.109 1.062 1.096 1559 1062 1.104 1.823 1.130 1.118 1.996 1.197 1.154 2964 1.062 1.169 1.362 1.054 1.118 1.080 0.179  0.013

1 1.189 1.090 1564 1.061 1.112 1.119 1.149 1.324 1.109  1.075 0.209  0.023

5 1.222 1.076  1.555 1.069 1.148 1.161 1.231 1.567 1.143  1.080 0291 0.071

10 1.266 1.076 1.546 1.077 1.181 1.188 1.276 1.787 1.165 1.087 0355  0.113

16 1.296 1.078 1573 1.084 1.221 1.220 1.326 2.026 1.198  1.100 0.406  0.160

32 1.412 1.080 1.571 1.091 1310 1.275 1.435 2.309 1.260 1.121 0.533  0.292

50 1.460 1.080 1.576 1.079 1.347 1.318 1.512 2.609 1.292 1.132 0.645 0436

Break in relevant regressors
¢ T 00 2082 1436 3603 4440 4066 4213 3489 2578 3882 5077 1622 3715 5561 1.528 3.616 4705 2504 4003 2664 3849 3.690 3786 0182 0013

1 3.153 4.191 3503 2517 3.558 3.372 3.230 3.973 3.288 3.528 0220  0.022

5 2.492 4221 3.537 2397 3.083 2.798 2.598 3.892 2.638 3.092 0315 0.069

10 2.237 4235 3.571 2317 2.869 2.548 2.339 3.940 2.349 2.889 0.377  0.111

16 2.067 4256 3.587 2276 2.657 2.382 2.178 4.044 2.140 2.729 0424 0.159

32 2.140 4302 3.641 2186 2.630 2.146 2.023 4.204 1.969 2551 0.544  0.293

50 2.089 4325 3.636 2147 2582 2.044 1.961 4415 1.857 2447 0.656  0.436

A 0.1 1.742 1206 1865 2011 1.884 1.943 2161 1540 1.886 2.708 1.341 1871 2917 1284 1.879 3.526 1516 1.947 1.782 1.825 1.863 1.845 0.180  0.013
1 1.809 1.933  2.167 1.531 1.834 1.804 1.796 2.105 1.783 1.794 0210 0.023

5 1.640 1.927  2.172 1510 1.755 1.705 1.697 2.303 1.652  1.698 0295 0.070

10 1.600 1925 2.165 1.508 1.740 1.664 1.662 2.531 1601 1660 0360 0.113

16 1.622 1936 2170 1.505 1.716 1.620 1.632 2718 1.555 1.618 0416 0.159

32 1.686 1.947 2,193 1495 1.759 1.600 1.645 2.975 1.545 1.590 0.540  0.292

50 1.705 1.955 2218 1484 1.777 1.593 1.664 3.195 1.528 1.569 0.651  0.438

Break in irrelevant regressors

L 0.1 2793 1071 1.194 1111 1062 1.09 2917 1067 1.116 2354 1.129 1.124 3.169 1.196 1.179 4273 1062 1.191 1.361 1.053  1.122 1.079 0.178  0.013
1 1.304 1.086 2976 1.071 1.174 1.139 1.212 1.381 1.143  1.084 0.209  0.022

5 1.603 1072 3.091 1.118 1.343 1.221 1.398 1.738 1.245 1.102 0.288  0.069

10 1.779 1.074 3204 1.146 1465 1.277 1.523 2.032 1.319 1121 0.348  0.111

16 1.928 1.084 3258 1.171 1.563 1.327 1.621 2.310 1377 1.137 0410  0.157

32 2.353 1.079 3462 1229 1.885 1.416 1.848 2.872 1.542  1.194 0.536  0.290

50 2.612 1.084 3.578 1254 2.086 1.476 1.972 3178 1.645  1.237 0.646  0.437

A 0.1 1908 1071 1.178 1.110 1062 1.097 2008 1.061 1.108 2076 1.130 1.120 2417 1.197 1.158 3379 1.062 1.189 1.362 1.054 1.119 1.081 0.179  0.013
1 1.228 1.091 2.029 1.063 1.129 1.123 1.162 1.345 1.120  1.079 0209  0.023

5 1.373 1.080 2.046 1.090 1.209 1.186 1.273 1.637 1.186 1.096 0.290  0.071

10 1.433 1.080 2.091 1.104 1.265 1.215 1.325 1.869 1.212 1.104 0.347  0.113

16 1.488 1076 2.107 1122 1.292 1214 1.340 2.122 1219 1.097 0411 0.160

32 1.692 1077 2204 1.138 1.370 1.295 1.494 2.387 1.281 1115 0.539  0.291

50 1.803 1.085 2227 1.160 1.505 1.333 1.571 2.753 1.347 1.144 0.648  0.437

Break in all regressors

L 0.1 3306 1436 3.684 4521 4.138 4.300 2519 3938 5951 1.625 3777 7.064 1529 3.691 4.064 2533 4.104 2.687 3913 3.748 3.839 0.181  0.014
1 3.278 4.274 2405 3.686 3.382 3.268 4.068 3342 3567 0221 0.023

5 2713 4.283 2201 3.091 2.821 2710 3.927 2,639 3.050 0311  0.069

10 2.581 4.292 2.087 2927 2.527 2431 4.083 2363 2.809 0373 0.112

16 2.589 4.336 2.002 2.784 2.416 2334 4.134 2.196 2.667 0426  0.157

32 2.853 4.379 1.888 2.798 2214 2238 4.542 2.067 2.460 0.546  0.291

50 3.067 4411 1.829 2.821 2135 2235 4.935 2.017 2.357 0.657 0438

A 0.1 2064 1206 1.894 2026 189 1.963 2234 1526 1.896 3.019 1342 1883 3424 1283 1885 3.533 1.520 1988 1785 1.836 1.870 1.854  0.181 0.013
1 1.846 1.948 2239 1.508 1.847 1.820 1.815 2.147 1.797  1.803 0210  0.023

5 1.744 1.942 2270 1485 1.774 1.706 1.715 2.359 1.665  1.695 0.296  0.070

10 1.727 1.936 2322 1477 1.765 1.666 1.666 2.518 1.610 1.653 0361 0.112

16 1.740 1.950 2355 1480 1.723 1.633 1.659 2.727 1.563 1.606 0412 0.159

32 1.911 1.958 2434 1456 1.775 1.625 1.692 3.005 1562 1.573 0.546  0.293

50 1.945 1.969 2472 1457  1.842 1.624 1.716 354 1.566 1566 0.652  0.435
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