
 

 

Department of Economics 
Manor Road Building, Manor Road 
Oxford, OX1 3UQ 
 

 
 

ISSN 1471-0498 

 
 

 

Department of Economics 
Discussion Paper Series 

 
 
 
 

Selecting a Model for Forecasting  
 

 
Jennifer L. Castle, Jurgen A. Doornik and David F. Hendry 

 
 
 
 
 
 
 
 
 
 

 
Number 861 

November, 2018 



Selecting a Model for Forecasting

Jennifer L. Castle, Jurgen A. Doornik and David F. Hendry∗

Economics Department and Institute for New Economic Thinking at the
Oxford Martin School, University of Oxford, UK

November 9, 2018

Abstract

We investigate the role of the significance level when selecting models for forecasting as it con-
trols both the null retention frequency and the probability of retaining relevant variables when using
binary decisions to retain or drop variables. Analysis identifies the best selection significance level in
a bivariate model when there are location shifts at or near the forecast origin. The trade-off for select-
ing variables in forecasting models in a stationary world, namely that variables should be retained
if their non-centralities exceed 1, applies in the wide-sense non-stationary settings with structural
breaks examined here. The results confirm the optimality of the Akaike Information Criterion for
forecasting in completely different settings than initially derived. An empirical illustration forecast-
ing UK inflation demonstrates the applicability of the analytics. Simulation then explores the choice
of selection significance level for 1-step ahead forecasts in larger models when there are unknown lo-
cation shifts present under a range of alternative scenarios, using the multipath tree search algorithm,
Autometrics (Doornik, 2009), varying the target significance level for the selection of regressors. The
costs of model selection are shown to be small. The results provide support for model selection at
looser than conventional settings, albeit with many additional features explaining the forecast perfor-
mance, with the caveat that retaining irrelevant variables that are subject to location shifts can worsen
forecast performance.

Keywords: Model selection; forecasting; location shifts; significance level; Autometrics

1 Introduction

There are many approaches to formulating models when the sole objective is forecasting, from the very
parsimonious through to large systems. However, there is little agreement on which approaches perform
best on a forecasting criterion: see Makridakis and Hibon (2000) and Fildes and Ord (2002) for evidence
from forecast competitions. Clements and Hendry (2001) suggest this lack of agreement is the outcome
of intermittent distributional shifts differentially impugning alternative formulations. We address this
critique by analysing the selection of models to optimise mean square forecast error performance in
wide-sense non-stationary settings with structural breaks.

The paper focuses on regression models that are linear in the parameters, and considers model selec-
tion that is controlled by the nominal significance level for statistical significance when selecting fore-
casting models subject to breaks. Loose significance levels (such as those implied by AIC: see Akaike,
1973) have been shown to be optimal to select regression models for stationary processes if evaluating
on a 1-step ahead mean-square forecast error (MSFE) criterion; see Shibata (1980) who showed that AIC

∗Financial support from the Robertson Foundation (award 9907422) and Institute for New Economic Thinking (grant
20029822) is gratefully acknowledged. We thank participants at the 2018 International Symposium of Forecasting, Michael
P. Clements, Andrew Martinez, Felix Pretis, and Sophocles Mavroeidis for helpful comments and suggestions, and Michael
McCracken for suggesting comparisons with bagging, which will be reported in a later paper.
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is an asymptotically efficient selection method when the DGP is an infinite order process, also see Ing
and Wei (2003). Many other criteria have been proposed that aim to have optimal properties in certain
settings but information criteria alone are not a sufficient principle for selecting models as they do not
ensure congruence, so a mis-specified model could be selected: see Bontemps and Mizon (2003). In the
simulation exercise, we explore general-to-specific (Gets) model selection, to narrow down the class of
forecasting models to undominated models, yielding the benefits of well-specified encompassing models
in-sample, albeit non-stationarities may preclude those benefits continuing over the forecast horizon.

Here we investigate the significance level for selecting variables, to establish how tight a selection
criterion should be when the specific purpose is forecasting facing a potentially non-stationary environ-
ment induced by location shifts of the conditioning variables’ distributions. The analysis commences
with a bivariate conditional model that is part of a 3-variable system in which the selection decision is
whether to retain or exclude one of the regressors. Such a design is empirically relevant as demonstrated
by an example forecasting UK inflation, where autoregressive models are augmented with the unemploy-
ment rate. This bivariate model is analysed both for stationary and non-stationary settings where location
shifts occur at or near the forecast origin. The static setting still requires forecasts of the conditioning
variables, and alternative forecasting devices are considered, including the two extremes of the class of
robust forecasting devices proposed by Castle, Clements, and Hendry (2015). The results confirm that
regressors should be retained for forecasting if their non-centralities exceed 1, regardless of whether or
not there is a structural break, or of the forecasting device used. These analytic results map to a selection
significance level of 16% in the bivariate case, much looser than conventional significance levels used.
The results closely match that of AIC, which can be interpreted as a likelihood ratio χ2 test for a pair
of nested models with 1 degree of freedom and a penalty of 2, and also gives a significance level of
approximately 16%: see Pötscher (1991) and Leeb and Pötscher (2009).

In their taxonomy of forecast errors in systems where some conditioning variables are forecast off-
line, Hendry and Mizon (2012) show that a key source of forecast failure is any induced shift in the equi-
librium mean of the variable being forecast, irrespective of whether or not those conditioning variables
are included in the forecasting model. Consequently, we include a simulation exercise that evaluates a
wide range of settings including larger models, break types and magnitudes at or near the forecast origin
and the method of forecasting. We consider a range of significance levels from the very tight (0.001),
eliminating almost all potentially irrelevant variables, to the very loose (0.50), enabling retention of rel-
evant variables even if they are only marginally significant. The results enable evaluation of the costs
when forecasting of omitting relevant variables and from incorrectly retaining irrelevant variables. Over-
all, the results support looser than conventional significance levels for selecting forecasting models, with
a 10% target significance level often producing superior forecasts.

The paper is structured as follows. First, section 2 motivates the paper and then section 3 formu-
lates the analysis and section 4 considers the choice of selection significance level for forecasting in a
stationary DGP. Then section 5 analyses selection in a non-stationary DGP where a location shift occurs
out-of-sample in one of the regressors, and investigates the consequences of that variable’s inclusion
or exclusion in the forecasting model. Section 6 considers the impacts on selection of in-sample shifts
using different forecasting devices and section 7 summarises the analytic results. Section 8 presents the
simulation evidence on the performance of the various approaches, examining the preferred significance
level to minimize MSFE across experiment designs, and section 9 concludes. Appendix A includes the
analytic derivations and appendix B provides supplementary tables.

2 Motivation

Two popular models within the large literature on inflation forecasting include single-equation fore-
casting models based on past inflation (univariate models such as ARIMA) and what are often termed
‘Phillips curve forecasts’, augmenting the univariate model with an activity variable such as the unem-
ployment rate or output gap, see Stock and Watson (2009). The framework considered below, although
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Figure 1: (a) Annual UK inflation rate (CPI); (b) Annual UK unemployment rate, with SIS detected
mean shifts at α = 0.1%.

static, can be applied to these two models where the econometrician wishes to determine whether to
augment a univariate forecasting model with the contemporaneous unemployment rate. This ‘exoge-
nous’ variable is subject to breaks in the form of location shifts, which may occur at or near the forecast
horizon. Figure 1 records the annual percentage change in UK consumer price inflation, π, and the UK
unemployment rate as a percentage, Ur, along with a broken mean obtained by Step Indicator Saturation
(SIS) at α = 0.1%.1

The analytics derived below correspond to a Phillips curve formulation (M1), a univariate AR model
(M2) and selection applied to the unemployment rate using a significance level of 0.16 (M3):

M1 : πt+1 − πt = µ+
4∑
i=1

βπ,i∆πt−i +
4∑
i=0

βUr,iUr,t−i + ν1,t+1

M2 : πt+1 − πt = µ+
4∑
i=1

βπ,i∆πt−i + ν2,t+1

M3 : πt+1 − πt = µ+

4∑
i=1

βπ,i∆πt−i +

4∑
i=0

β∗Ur,iUr,t−i + ν3,t+1

where ∗ denotes selection using Autometrics at α = 16%, i.e. β∗Ur
has a zero when a variable is not se-

lected. Dynamics are included to account for any autocorrelation. The forecasting models are estimated
over 2000q1 − 2013q4, producing 1-quarter ahead inflation forecasts for 2014q1-2017q4 evaluated on
MSFE. Selection at 16% results in Ur,t−1 being retained, with a p−value of 0.149, so would not be
retained under a commonly used 5% significance level.

Table 1 reports the pseudo out-of-sample RMSFEs. Three cases are considered corresponding to the
analytics below; (a) known Ur,t, (b) forecast Ûr,t using the in-sample mean, and (c) forecast Ûr,t using
a random walk, i.e. Ur,t−1. Although there is little difference across the models with differences in
RMSFEs not statistically significant, selection at a loose significance level outperforms if Ur,t is known.
As this is infeasible, the random walk applied to selecting the regression model using a significance level
of 16% matches that of the known Ur,t, so selection can be beneficial. We now generalize the framework
to establish the optimal significance level for selection.

1SIS was conducted on the unemployment rate with a forced intercept at a selection significance level of α = 0.001. See
Castle, Doornik, Hendry, and Pretis (2015) for details of SIS.
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Table 1: Root Mean Square Forecast Errors (×100) for annual inflation over 2014q1-2017q4.
M1 M2 M3

Known Ur,t 0.535 0.530 0.515
Mean forecast for Ur,t 0.519 0.530 0.542
Random Walk forecast for Ur,t 0.549 0.530 0.515

3 The analytic design

We initially focus on a static DGP with known future exogenous regressors to highlight the main issues,
before extending to allow for mean-shifts at the forecast origin in unknown future regressors. We examine
the in-sample mean estimator (optimal in the stationary case) and a random walk forecast, both under
a location shift, with the aim of determining the best significance level for selecting a regression model
based on a single t-test. Although a static DGP may seem restrictive, the formulation is a 3 variable
VAR, so the main role of adding dynamics would be slow adjustments to location shifts. Such dynamics
are considered in the simulation exercise in section 8.

The DGP is a static VAR given by: 1 −β1 −β2
0 1 0
0 0 1

 yt
x1,t
x2,t

 =

 β0
µ1
µ2

+

 εt
η1,t
η2,t

 , (1)

where y′t = (yt : x1,t : x2,t) with:
yt ∼ IN3 [µ,Σ] , (2)

where µ′t =
(
µy : µ1 : µ2

)
and, without loss of generality we set V [xi,t] = σ2ii = 1, such that:

Σ =

 σ2ε 0 0
0 1 ρ
0 ρ 1

 . (3)

While it may be more intuitive to lag the exogenous regressors in the DGP for forecasting purposes,
none of the results would change and the current set up naturally leads to analysis of the forecasting
models for the contemporaneous exogenous regressors, allowing a comparison of alternative devices
and an assessment of open models, see Hendry and Mizon (2012). Throughout, we take the in-sample
estimates of the µi to be sufficiently precise that their sampling variation can be neglected, and use the
population values to focus on the impacts of location shifts. Then (1) implies E[yt] = µy = β0 +β1µ1 +
β2µ2 with:

yt = µy + β1 (x1,t − µ1) + β2 (x2,t − µ2) + εt. (4)

3.1 Selecting a model

Considering the conditional model (4) we compare M1, which includes both weakly exogenous regres-
sors, and M2, which excludes x2:

M1 : yt = β0 + β1x1,t + β2x2,t + εt (5)

M2 : yt = φ0 + γ1x1,t + νt, (6)

where Appendix A.1 summarises φ0, γ1, νt and σ2ν .
The choice between M1 and M2 will depend on a test of significance of x2,t. The population non-

centrality of the t-test, tβ2=0, of the null that β2 = 0, denoted ψ, is given by:

ψ2 =
Tβ22

(
1− ρ2

)
σ2ε

. (7)
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Figure 2: MSFE comparisons between M1 (solid lines computed from (8) and circles by simulation) and
M2 (dashed line computed from (9) using (48) and squares by simulation), with β0 = 5, β1 = 1, σ2ε = 1,
µ1 = µ2 = 2, ρ = 0.5 and T = 50, 100, 500, with an additional observation used to calculate the 1-step
ahead MSFEs. (a) T = 50; (b) T = 100; (c) T = 500. Simulations based on M = 100, 000 replications.

4 Selection when forecasting in a stationary DGP

4.1 Comparing M1 and M2 forecast errors

First we compute the 1-step ahead MSFEs from M1, denoted ·̂ , and M2, denoted ·̃ , and look at the con-
ditions for MSFE2 ≤ MSFE1. An estimated intercept is always retained, which maintains comparability
between M1 and M2.

When there are no breaks, the parameter estimates for M1 are unbiased, E
[̂
εT+1|T

]
= 0, so the MSFE

of M1 is:

MSFE1 = E
[̂
ε2T+1|T

]
= σ2ε

(
1 +

3

T

)
, (8)

which is the unconditional MSFE formula for the impact of estimating 3 parameters, under the assumption
of correct model specification and no breaks. For M2, despite the mis-specification when β2 6= 0,
E
[̃
εT+1|T

]
= 0 and the MSFE is:

MSFE2 = E
[̃
ε2T+1|T

]
= σ2ν

(
1 +

2

T

)
, (9)

where σ2ν = σ2ε
(
1 + T−1ψ2

)
≥ σ2ε . There is one less parameter to estimate, traded off against a larger

equation variance (see Appendix A.2 for derivations).
If the objective is to minimize MSFE, M2 should be used to forecast when MSFE2 ≤ MSFE1, which

requires:

σ2ν

(
1 +

2

T

)
− σ2ε

(
1 +

3

T

)
=
σ2ε
T

[
ψ2

(
1 +

2

T

)
− 1

]
≤ 0 (10)

which occurs when ψ2 ≤ T/ (T + 2).
Figure 2 records the 1-step ahead values of MSFE1 and MSFE2 for known xi,T+1, i = 1, 2, for the

DGP given by (1) and (2) where β2 varies along the horizontal axis to get a range of non-centralities in
the set ψ = [0, 4] using (7). The results confirm that x2 should be retained if its non-centrality exceeds
approximately 1, and the result converges to 1 as T → ∞, as the information content of the regressor
outweighs the parameter estimation cost for 1-step forecasts, regardless of the correlation between x1
and x2.
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Figure 3: The costs/benefits of selection measured by MSFE3
MSFE1

= 1 + (T + 3)−1 (1− pα[ψ])
(
ψ2 − 1

)
for

T = 50 with β0 = 5, β1 = 1, σ2ε = 1, µ1 = µ2 = 2, ρ = 0.5.

4.2 Selecting regressors

Although M1 and M2 provide the extremes of always/never retain x2, in practice selection will be applied.
At a significance level of α and critical value cα, then x2,t will be omitted if, from (5), t2β2=0 < c2α, so
using the approximation that:

tβ2=0 =
β̂2

SE
[
β̂2

] ≈ √T (1− ρ2)β̂2
σε

,

which implies:

β̂
2

2 <
c2ασ

2
ε

T (1− ρ2)
. (11)

Thus, retention of x2,t will depend on α and ψ2 for a given draw.
Forecasts in repeated sampling will be based on a mixture of M1 and M2 depending on whether x2,t

is retained in each draw. The MSFE of the selected model, called M3, will be a weighted average of the
MSFEs of M1 and M2, with the weights given by the probability that x2,t is retained:

MSFE3 = pα[ψ]MSFE1 + (1− pα[ψ])MSFE2

= MSFE1 + (1− pα[ψ]) (MSFE2 −MSFE1) (12)

≈ MSFE1 + σ2εT
−1 (1− pα[ψ])

(
ψ2 − 1

)
, (13)

where ψ2 is given by (7), with:
pα[ψ] = Pr

(
t2β2=0 ≥ c2α

)
. (14)

From the last term in (13) it is clear that MSFE3 ≤ MSFE1 whenever ψ2 ≤ 1. Moreover, pα[ψ] will
be low when ψ2 ≤ 1, so M2 will usually be selected. Note that pα[ψ] = α when β2 = 0. However,
MSFE3 is a highly non-linear function of ψ2 entering directly and indirectly, as well as of α which also
influences pα[ψ] non-linearly.
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Figure 3 records the ratio of MSFE3 to MSFE1, for a range of ψ2, which from (13) is given by:

MSFE3

MSFE1
≈ 1 + (T + 3)−1 (1− pα[ψ])

(
ψ2 − 1

)
.

Selection delivers a 1.8% improvement in MSFE relative to M1 when ψ2 = 0 with α = 0.05 or tighter,
but for looser α, e.g. at 0.5, pα[ψ] = 0.5 when x2,t is irrelevant, the benefits of selection are halved.
Selection is most costly at intermediate non-centralities, where, for example, the largest increase in MSFE

relative to M1 is 3% at α = 0.05 for T = 50, but is over 9% for α = 0.001 at its peak. The hump shape
reflects the non-linear trade-off as the non-centrality of x2,t increases, from the cost of omitting x2,t
rising as its signal is stronger, but the probability of retaining x2,t also increases. The magnitude of
cost/benefit depends on T , so shrinks as the sample size increases.

The selection rule that x2,t should be retained ifψ2 > 1 is evident ∀α, but unfortunately the forecaster
does not know ψ2. If it was known, the optimal α is 0 for ψ2 < 1 and 1 for ψ2 > 1. We next look at the
choice of α to minimize cost/maximize benefit in terms of improvements in 1-step ahead MSFEs for an
unknown ψ2.

4.3 The choice of selection significance level

Given (11), which is required for x2 to be excluded at the chosen significance level assuming unbiased-
ness, on average that inequality requires (when V[·] denotes variance):

E
[
β̂
2

2

]
= V

[
β̂2

]
+ β22 = β22 +

σ2ε
T (1− ρ2)

<
c2ασ

2
ε

T (1− ρ2)
. (15)

Equating that inequality, which β22 must satisfy, with ψ2 < 1 from (10) gives the boundary for the critical
value cα in which selection results in a smaller MSFE due to the omission–estimation trade-off:

β22 =
σ2ε
(
c2α − 1

)
T (1− ρ2)

≤ σ2ε
T (1− ρ2)

.

This implies that c2α = 2 at the boundary (also see Clements and Hendry, 1998, Ch.12), or an approximate
significance level of α = 0.16.

Computing the theoretical probability of retaining x2 for β2 > 0 at α = 0.16 using E[t
β̂2

] = ψ:

Pr
(
t
β̂2
≥ cα

)
= Pr

(
t
β̂2
− ψ ≥ cα − ψ

)
,

we obtain the retention probabilities in table 2, with the corresponding retention probabilities for α =
0.05 recorded for comparison. These results are close to the implied significance level for the AIC in

Table 2: Retention probabilities for individual t−tests given E[t
β̂2

] = ψ, and five independent regressors

with the same non-centrality, where bold cells indicate the grey dots on Figure 4, recorded as 1−(pα[ψ])5.
ψ 1 2 3 4
p0.16[ψ] 0.34 0.72 0.94 0.995
p0.05[ψ] 0.16 0.51 0.85 0.98
(p0.16[ψ])5 0.004 0.19 0.75 0.98
(p0.05[ψ])5 0.000 0.03 0.43 0.89

Campos, Hendry, and Krolzig (2003). This can have a cumulative effect, as shown in figure 4 which
records values of the term (1− pα[ψ]) from table 2, where there are five independent regressors, all
with the same ψ2. The probability of retaining all five variables is low even at loose significance levels
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Figure 4: Values of (1−pα[ψ]) for five independent regressors with the same non-centrality for the range
of α and ψ2.

unless the non-centralities are large, but the gap between α = 0.05 and α = 0.16 at ψ2 = 9 is 29%,
demonstrating large benefits of a looser significance level for the retention of relevant regressors. The
trade-off is that more irrelevant variables will be retained, and this can be costly if those variables are
subject to breaks, which we next explore.

5 An out-of-sample shift in the regressors

We now consider a mean shift in x2 at T + 1 with the forecast origin at T , so the shift coincides with the
1-step ahead forecast. The DGP has the same structure as (1) and (2), but with the mean shifting at time
T + 1 where (3) still holds:

x1,t = µ1 + η1,t t = 1, . . . , T + 1.

x2,t =

{
µ2 + η2,t t = 1, . . . , T.

µ2 + δ + η2,t t = T + 1.
(16)

We first evaluate the trade-off when omitting x2,t for known future exogenous regressors, so the
break which occurs in the forecast period is modelled in the known x2,T+1. Then, the trade-off is
examined for the case where the exogenous regressors are unknown, so must be forecast based on in-
sample observations. Forecasting devices based on full in-sample information and just the last in-sample
observation are considered, which are the extremes of the class in Castle, Clements, and Hendry (2015),
but there is no information in-sample regarding the break to help either device.

5.1 Known future values of regressors

The 1-step ahead forecasts for M1 given (16), in which values of xT+1 are assumed to be known at
T , are unbiased when the parameter estimates are unbiased. The MSFE of M1 (see Appendix A.3 for
derivations) is:

E
[̂
ε
2
T+1|T+1

]
= σ2ε

[
1 +

1

T (1− ρ2)
(
δ2 + 2− ρ

)]
, (17)

8



which does not depend on ψ2. Comparison with (8) highlights the effects of the location shifts: δ2 enters
the MSFE despite the shift being ‘known’ given x2,T+1, and MSFE1 is no longer independent of ρ. (17)
also reveals the additional costs of including an irrelevant regressor which shifts out-of-sample as δ2

enters even when β2 = 0, although it is scaled by T
(
1− ρ2

)
so larger samples mitigate its effect.

The forecast error for M2 is E[̃εT+1|T+1] = β2δ, so the forecasts are biased by the shift in the omitted
variable. The 1-step ahead MSFE for M2 is:

E
[̃
ε
2
T+1|T+1

]
= σ2ε + β22

(
1− ρ2 + δ2

)
+ 2T−1σ2ε

(
1 + T−1ψ2

)
. (18)

β22 enters directly so the MSFE is a function of ψ2, unlike for M1. Comparison with (9) reveals the role
that ρ and δ2 play, and when β2 = 0 so M2 is the correct model (18) collapses to (9).

Again, assuming a criterion of minimizing 1-step ahead MSFE, using (10), MSFE2 ≤ MSFE1 requires:

δ2
(
ψ2 − 1

)
+ ψ2

(
1− ρ2

) (
1 + 2T−1

)
− ρ ≤ 0, (19)

which depends on estimation uncertainty and therefore doesn’t simplify neatly. However, the solution is
close to 1 for reasonable values of ρ. For example, when ρ = 0.5, T = 50 and δ = 4, then ψ2 < 0.983
or |ψ| < 0.991 results in a smaller MSFE2 compared to MSFE1.

Figure 5 demonstrates the close approximation to a trade-off at ψ = 1 which holds regardless of the
break. Thus, even knowing there is a shift in x2 does not affect the choice of forecasting model between
including or omitting x2: always (never) include for ψ2 ≥ 1 (ψ2 < 1).

5.2 The impact of selection

Following §4.2, a t−test for statistical significance will be conducted on x2,t in-sample and a decision to
retain or exclude x2,t will be made at cα for a given draw. Hence, M3 will be a weighted average of M1

and M2, using (12):

MSFE3 = MSFE1 + (1− pα[ψ])

{
σ2εT

−1
[
ψ2

(
1 +

δ2

(1− ρ2)

)
− δ2 + 2− ρ

(1− ρ2)

]}
. (20)

(20) is scaled by T so, as the sample size increases, the difference between MSFEM1 and MSFEM2 dimin-
ishes, as before. When ψ2 = 0 the first term in (20) drops out and the benefits of selection relative to
M1 are evident as the second term must be negative. The magnitude of δ2 affects both M1 and M2 but,
from (20), the first δ2 term is multiplied by ψ2 whereas the second offsetting term is not, so if ψ2 > 1
the effect of the location shift is exacerbated.

Figure 5 compares the MSFEs of M1 from (17), M2 from (18), and M3 using (20) at three illustrative
values of α for T = 50 and δ = 4. The profiles of the MSFEs mirror the analytical results for the no
break case. Selection outperforms the estimated DGP for ψ2 < 1 despite a break, and remains close to
the MSFE1 at α = 0.16 for ψ2 > 1.

5.3 Unknown future values of regressors

Now consider that the future values of the regressors are unknown. We use two alternative devices to
obtain forecasts of xi,T+1, i = 1, 2, including using the in-sample mean and a random walk. The random
walk can be thought of as a robust device after a location shift, where robustness refers to improved
forecasting properties following a location shift. However, the random walk is biased for unanticipated
location shifts so is not robust in this setting. The two devices comprise the two extremes of using either
the full in-sample data (t = 1, . . . , T ) or the last observation (t = T ) to produce the forecasts of the
weakly exogenous regressors.

Although the link between y and the xi stays constant, forecasts when the xi,T+1 are unknown will
fail if the shift at T + 1 is not anticipated, inducing a shift in yT+1. This will lead to forecast failure as
the in-sample mean µy shifts to (µy + β2δ) at T + 1, but would be forecast to be µy.
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Figure 5: MSFE comparisons of M1, M2 and M3 at 3 illustrative values of α for known future exogenous
regressors where the break occurs in the mean of x2 at T + 1. σ2ε = 1, β0 = 5, β1 = 1, β2 varies using
(7) with ψ ranging from 0 to 4, µ1 = µ2 = 2, δ = 4, ρ = 0.5 and T = 50

The forecasts based on in-sample estimates from (16) when µ1 and µ2 are non-zero are given by:

x1,T+1|T = µ̂1 =
1

T

T∑
t=1

x1,t = µ1 + η1, (21)

x2,T+1|T = µ̂2 =
1

T

T∑
t=1

x2,t = µ2 + η2, (22)

so will miss the unknown break. When the break occurs in x2, the MSFEs will worsen for β2 6= 0. As
before, we consider the sampling variation in estimating the means as small compared to the impact of
shifts, so we approximate by taking T sufficiently large that µ̂i ≈ µi.

Replacing the unknown xi,T+1 by µi leads to forecasting yT+1 by the in-sample mean for both M1

and M2, see Appendix A.4. Both face the same forecast bias, E
[̂̂
εT+1|T

]
= E

[̃̃
εT+1|T

]
= β2δ which

is the same bias as M2 with known regressors. Parameter estimation adds terms of Op
(
T−1

)
. Hence,

ignoring Op
(
T−1

)
terms, MSFE1 is equal to MSFE2:

E
[̂̂
ε
2

T+1|T

]
= E

[̃̃
ε
2

T+1|T

]
= β22δ

2 + σ2ε +
(
β21 + β22 + 2ρβ1β2

)
. (23)

When β2 = 0 the MSFE is σ2ε + β21, so is inflated relative to the known regressors case as x1,T+1

must also be forecast. However, the in-sample mean forecast is the best forecast device for x1,T+1 in this
setting (in terms of minimum MSFE) as x1,T+1 is stationary and not subject to a location shift. Selection
will have little or no noticeable impact when MSFE2 ≈ MSFE1, as this will also result in MSFE3 ≈ MSFE1.

Figure 6 records the MSFEs for M1 and M2 when there is a break in x2 at T + 1, comparing known
and unknown regressors using the in-sample mean to forecast xi,T+1, i = 1, 2 in the unknown regressor
case, i.e. the figure records (17), (18) and (23), (solid/dashed/dotted lines). Simulations outcomes are
used to capture Op

(
T−1

)
effects but such effects are negligible so are not recorded in the figure (random

walk forecasts also included).
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Figure 6: MSFE comparisons between M1, M2 and M3 for known and unknown future exogenous regres-
sors including in-sample mean and random walk forecasts, where the break occurs in the mean of x2 at
T + 1. σ2ε = 1, β0 = 5, β1 = 1, β2 varies using (7) with ψ ranging from 0 to 4, µ1 = µ2 = 2, δ = 4 and
ρ = 0.5. Simulations with M = 100, 000 replications, T = 50.

For known regressors for MSFE1, the break in µ2 does not affect the MSFE as it is captured in x2,T+1:
even at δ = 4 for T = 100, MSFE1 = 1.23 for the parameters given in the figure which is only slightly
greater than σ2ε . However, when xT+1 is unknown both M1 and M2 are affected by the break in x2,T+1.
Simulation outcomes again closely match the theory for the unknown break case, and show that the
choice of whether to retain or exclude x2,t is not important in a forecasting context. The unanticipated
break dominates any forecast error resulting from model mis-specification. Increasing the sample size
does mitigate the MSFE costs but the increase in MSFE relative to known regressors is maintained for all
ψ2.

These results show that in this static setting of location shifts, if the break occurs in the forecast period
and is unknown and unpredicted, then the retention of x2 is irrelevant (other than parameter estimation
uncertainty), as neither M1 nor M2 capture the shift which dominates the MSFE. Parsimony, or lack
thereof, neither helps nor hinders much in this setting. Moreover, selection does not substantively
affect the outcome as MSFE3 ≈ MSFE1.

5.4 Random Walk forecast for a post-origin break

We now consider using a random walk as the forecasting device for the exogenous variables, given by:

x1,T+1|T = x1,T , (24)

x2,T+1|T = x2,T . (25)

Although the last in-sample observation is an imprecise measure of the out-of-sample mean, it is
unbiased when there are no location shifts (as there are no dynamics in the DGP), so E [x1,T ] = µ1 and
E [x2,T ] = µ2, and hence E [∆x1,T+1] = 0 and E [∆x2,T+1] = δ.

The forecasts from M1 will be biased by the bias in the random walk forecast of x2,T+1, so (see
appendix A.5 for derivations) neglecting the small impact of ηi,T on βi − β̂i:

E
[
εT+1|T

]
= β2δ,

11



and the resulting MSFE1 is:

E
[
ε
2
T+1|T

]
= β22δ

2 + 2
(
β21 + β22

)
+ 4ρβ1β2 + σ2ε

(
1 + 2T−1

)
. (26)

Comparison with (23) highlights the additional cost of using the random walk relative to the in-
sample mean when neither forecasting device can predict the break, since:

E[̂̂ε
2

T+1|T ]− E
[
ε
2
T+1|T

]
= −

(
β21 + β22 + 2ρβ1β2 + 2σ2εT

−1) .
The in-sample mean of x1 is the optimal forecast of x1,T+1 given its in-sample stationarity, so irrespective
of the value of β2, the in-sample mean forecasts dominate when the shift is during the forecast period.
When β2 = 0, (26) collapses to ≈ σ2ε + 2β21, ignoring Op

(
T−1

)
terms, compared to σ2ε + β21 for the

in-sample mean forecasts. A random walk doubles the error variance for the variable being forecast so
can be costly if there are no breaks or if the break occurs after the forecast origin. As for the in-sample
mean case, the MSFE of M1 is a function of the break magnitude.

The forecast bias for M2 is the same as that for M1 by the same argument, although the MSFE2

(reported in Appendix A.5) does deviate from that for M1 as ψ2 increases. This is due to the correlation
parameter ρ which is picking up part of the omitted variable x2,T+1 in M2 and has more effect as ψ2

increases. When β2 = 0, MSFE2 ≈ σ2
ε + 2β2

1, which is the same as M1. Despite small but increasing
deviations as ψ2 increases, MSFE2 follows a similar trajectory to MSFE1 so the mis-specification is less
relevant for the random walk forecasts of the marginal processes relative to the effect of the break, similar
to the results for the in-sample mean forecasts.

5.5 The impact of selection

In practice, selection will be applied to determine whether to include x2,t or not, so from (12) we can
obtain the MSFE3 as:

MSFEM3 = MSFE1 + (1− pα[ψ])

{
σ2εT

−1

[
ψ2

((
1 + ρ2

)
(1− ρ2)

+ T−1

)
+ 1

]}
.

The trade-off between parameter estimation uncertainty and including x2 is essentially the same as in
the known variable case: if x2 has a non-centrality of zero, so β2 = ψ2 = 0, then the 1-step MSFE

is minimized by excluding x2 from the forecasting model. It should be included if ψ2 > 1. However,
depending on the values of ρ and T , the switch point can be smaller than ψ2 = 1, although the impact is
likely to be small given the scale factor σ2εT

−1. Even though the random walk forecast is highly uncertain
by using just one observation, if the variable that breaks is quite significant then it pays to include that
variable when using the random walk forecast.

Figure 6 also records the MSFEs for the random walk forecast using the same parameter values. The
increase in MSFE over the in-sample mean forecasts is evident. Both MSFE1 and MSFE2 follow similar
trajectories, although they do start to diverge for large ψ2, with MSFE3 at α = 0.16 close to MSFE1.

6 An in-sample shift in the regressors

The break is now assumed to occur at T , so there is information available regarding the break from the
last in-sample observation. The DGP is adapted from (16) but the shift in µ2 occurs at T , rather than
T + 1:

x1,t = µ1 + η1,t t = 1, . . . , T + 1.

x2,t =

{
µ2 + η2,t t = 1, . . . , T − 1.

µ2 + δ + η2,t t = T, T + 1.
(27)
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Figure 7: MSFE comparisons between M1, M2 and M3 for unknown future exogenous regressors where
the break occurs in the mean of x2 at T and the in-sample mean is used as the forecast for the conditioning
regressors, recorded with the same models when the break occurs at T + 1, where M1, M2 and M3

coincide in the analytic calculations. T = 50, using the same parameter values as previous figures.

6.1 Forecasts using in-sample means

The relationship of interest, the conditional equation for yT+1, remains constant but the in-sample mean
µy is shifted to (µy + β2δ) at T . Although the only DGP parameter to shift is µ2 to µ2 + δ, sample
calculations will be altered as now E [x2] = µ2 + T−1δ, see Appendix A.6 for derivations.

The impact on the estimated in-sample mean of {x2,t} will be small from the break, unless δ is very
large, so by using the in-sample means for their future unknown values, the forecasted mean of yT+1 for
M1 will still be close to µy, and the resulting forecast error bias is:

E
[̂̂
εT+1|T+1

]
≈ β2δ

(
1− T−1

)
.

This is unbiased when β2 = 0, but could be badly biased if β2δ is large. The MSFE for M1 is:

E
[̂̂
ε
2

T+1|T+1

]
= β22δ

2
(
1− T−1

)2
+ β21 + β22 + σ2ε . (28)

This is very similar to the MSFE1 in (23) for an out-of-sample break using the in-sample means to forecast
the exogenous regressors, and hence MSFE2 and MSFE3 as well, although the correlation between the two
regressors does not enter.

When β2 = 0, both MSFEs collapse to σ2ε + β21, but the dampening of the squared location shift by(
1− T−1

)2 slightly improves the MSFE for the in-sample shift relative to an out-of-sample shift at larger
ψ2, as shown in figure 7.

For a break out-of-sample we found the analytic results for M2 are identical to those for M1 (see §5.3).
For the in-sample break, the forecast error and MSFE for M2 does differ to that of M1 (see Appendix A.6
for analytic results). This is because the in-sample location shift affects ρwhich introduces a term similar
to the squared location shift scaled by T in (28). Therefore, MSFE1 6= MSFE2 unless β2 = 0, with M2

incurring a larger MSFE cost as ψ2 increases due to misspecification, although the divergence is small
even for small T , and disappears asymptotically.
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6.2 Selecting regressors

Selection follows from (12) and hence:

MSFE3 ≈ MSFE1 + (1− pα[ψ])
[
σ2ε − β21 − ρ2β22 + 2T−1

(
σ2ν + β22δ

2
)]
. (29)

The cost of omitting x2 rises with β22δ
2, although increases in β2 will raise ψ2 and hence raise the

probability of retaining x2, albeit unconnected with the magnitude of δ2. As the location shift is scaled
by T , MSFE3 → MSFE1 as T →∞, as can be seen in Figure 7.

6.3 Forecasts using the random walk

From the previous analysis in §6.1, knowledge of the break, where the break occurs at T , brought little
benefit. However, the random walk should do better when the break occurs at T as opposed to T + 1 as
it is now a robust forecasting device. As before:

˜̃x1,T+1|T = x1,T and ˜̃x2,T+1|T = x2,T ,

but now E [x1,T ] = µ1 and E [x2,T ] = µ2 + δ, and hence E [∆x1,T+1] = 0 and E [∆x2,T+1] = 0 as well.
Given the unbiased forecasts of the exogenous regressors, it follows that the forecasts for M1 are

unbiased (see Appendix A.7) when the parameter estimates are unbiased. The MSFE for M1 is:

E
[̂
ε
2
T+1|T

]
= 2

(
β21 + β22

)
+ 4ρβ1β2 + σ2ε

(
1 +

2

T
+

δ2

T (1− ρ2)

)
. (30)

When β2 = 0, the MSFE is similar to that of the out-of-sample break case, where the random walk
is costly as forecasts of both x1,T+1 and x2,T+1 are inefficient. However, (30) does depend on the
magnitude of the shift independently of β2, unlike (26). MSFE1 is a function of ψ2, increasing as ψ2

increases unlike in the known regressor case, but it does so more slowly than for breaks out-of-sample,
or breaks in-sample using the in-sample mean. As ψ2 increases, the break at T in µ2 has a larger effect
on the dependent variable, and hence the benefits of using a random walk forecast of x2,T+1 are larger.

M2 will suffer when β2 6= 0 as the forecasts will be biased. The MSFE for M2 is:

E
[̃
ε
2
T+1|T

]
= β22

(
δ2 + ρ2 + 1

)
+ 2β21 + 4ρβ1β2 + σ2ε

(
1 + T−1 + T−2ψ2

)
. (31)

so no robustness to the break is achieved unless β2 = 0. When β2 = 0, MSFE2 < MSFE1, but the
bias from not including a robust, and hence unbiased, forecast of x2,T+1 quickly outweighs parameter
estimation costs at ψ2 increases.

Solving for MSFE2 < MSFE1 results in:

ψ2 <

(
1− ρ2

)
+ δ2

(1− ρ2) (T−1 − 1) + δ2
. (32)

The break term dominates and enters on the numerator and denominator, leading to a trade-off at ≈ 1
with deviations scaled by T−1. For ρ = 0.5, T = 100 and δ = 4, MSFE2 dominates when ψ = 1.05.
Interestingly, the cut-off is slightly above 1 for this case, compared to slightly below 1 for the known
breaks out-of-sample case, but the results still imply that a selection significance level of approximately
16% would be optimal to trade-off the cost of estimating an additional parameter.

Figure 8 records the MSFEs from M1 (30), M2 (31) and three values of M3 (73) for the analytic
results. There is a clear trade-off at ψ2 ≈ 1, just as in the known breaks case.
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Figure 8: MSFE comparisons between M1, M2 and M3 at α = 0.16 for unknown future exogenous
regressors where the break occurs in the mean of x2 at T and the last in-sample observation is used as
the forecast for the conditioning regressors. Also recorded is the MSFE for M1 and M2 using in-sample
means and a misspecified random walk for yT+1 directly. T = 50.

6.4 Selecting regressors

The MSFE for M3 for the random walk is reported in Appendix A.7. As with Figure 5, selection between
M1 and M2 can be advantageous even for the random walk as seen in Figure 8. Selection outperforms
M1 for ψ2 < 1, and remains close to the MSFE1 at α = 0.05 and α = 0.16, again in all cases matching
or outperforming always using M2.

A comparison with the MSFE for the in-sample mean forecasts, also recorded in figure 8, suggest
a possible forecast improvement. If the regressor that breaks at T is known, combining the in-sample
mean forecast for M1 with the random walk forecast for M2 will improve forecast performance (shifting
the MSFE curves for the random walk forecast down by approximately 1). As the number of regressors
increase, the forecasting method for each contemporaneous regressor will have a cumulative impact.
However, as the break occurs in-sample, methods to detect breaks at the forecast origin such as impulse
indicator saturation (IIS) could be used to guide the forecaster to the most appropriate forecasting de-
vice.2 Selection between non-robust and robust forecasting devices requires pre-testing and would only
help for in-sample shifts, see, e.g., Chu, Stinchcombe, and White (1996).

Thus, selection can be valuable for forecasting to the extent that it retains relevant regressors that
shift (here, x2), and also if it eliminates irrelevant regressors that shift, as considered in Section 8.

6.5 A misspecified random walk forecasting device

If a break is suspected, an alternative to selecting a conditional model that aims to approximate the
DGP is to use a knowingly misspecified model of the conditional DGP. A random walk forecast could
be obtained directly for y, with the advantage that yT is known and avoids the need to forecast xi,T+1

i = 1, 2. Hendry and Mizon (2012) derive a forecast error taxonomy for open models that demonstrates
2See Hendry, Johansen, and Santos (2008), Johansen and Nielsen (2009), Johansen and Nielsen (2016) and Hendry and

Doornik (2014) for details of IIS. Castle, Doornik, and Hendry (2012) demonstrate the ability of IIS to detect breaks in the
form of location shift at any point in the sample.
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the numerous additional forecast errors that arise from forecasting regressors offline in open models and
show that in some cases it can pay to use a misspecified model rather than to forecast the regressors
offline. The forecast device is: ˜̃yT+1|T = yT , (33)

where
yT = µy + β2δ + β1η1,T + β2η2,T + εT ,

is a noisy 1-observation estimator of
(
µy + β2δ

)
, The outturn at T + 1 is:

yT+1 =
(
µy + β2δ

)
+ β1∆η1,T+1 + β2∆η2,T+1 + εT+1 + β1η1,T + β2η2,T ,

and so the forecast error is given by:

˜̃εT+1|T = yT+1 − ˜̃yT+1|T

= β1∆η1,T+1 + β2∆η2,T+1 + ∆εT+1, (34)

which is unbiased and has a MSFE of:

E
[̃̃
ε
2

T+1|T

]
= 2

(
β21 + β22

)
+ 4ρβ1β2 + 2σ2ε . (35)

This is independent of δ so should perform relatively the best when δ2 is large, although performs worse
than random walk forecasts for the xi,T+1 i = 1, 2 when ψ2 is small, see Figure 8. The forecasts are
invariant to omitting x2 since the random walk is independent of the regressors, which is a major advan-
tage and negates the role of selection. However, there is a cost when the model is correctly specified.
The results in the simulation below suggest that such an approach should be viewed as complemen-
tary, with forecast pooling across selected conditional models and misspecified robust devices frequently
outperforming individual methods.

7 Overview of analytic results and the impact of selection

The analytic results in §3-6 have established that:

• Regressors should be retained if ψ ' 1. This is established for stationary DGPs and DGPs with a
break out-of-sample for known regressors and a break in-sample using random walk forecasts.

• For the two regressor case, ψ = 1 maps to α ≈ 0.16. Selection delivers improvements to the
1-step ahead MSFE for ψ < 1 and can be close to the correct model specification for ψ > 1, with
the largest deviation occuring at intermediate values of ψ.

• If there are breaks out-of-sample and contemporaneous regressors need to be forecast, the break
dominates the MSFE and selection plays almost no role. Similar results are found even if the break
occurs at the end of the sample, but a non-robust in-sample mean is used to forecast to regressors.

• Random walk forecasts are costly if there are no breaks (forecasting x1,T+1) or if the breaks are
unpredictable (a break at T + 1 and forecasting T + 1|T ). However, they improve MSFE when the
break is predictable (break at T and forecasting T + 1|T ).

Table 3 summarises the full set of analytic results for specific parameters for T = 50, with results for
T = 100 reported in table 9 in the appendix. For each scenario, the ratio of MSFEj/MSFE1 for j = 2, 3
is reported, for three values of α (α = 0.001; 0.05; 0.16). Benchmarks of ψ2 = 0, 1, 4, 9 and 16 are
reported, capturing the full hump shape seen in the figures above. The parameters are σ2ε = 1, β0 = 5,
β1 = 1, µ1 = µ2 = 2, δ = 4 and ρ = 0.5.
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Looking down the column labelled ψ2 = 1 highlights the ψ = 1 trade-off, with all cases almost
exactly equal to 1. (19) found a cut-off slightly lower than 1, which is reflected in the ratio marginally
greater than 1, and conversely, (32) found a cut-off slightly larger than 1, resulting in a ratio slightly
below 1, but the differences are small.

Moving to the column labelled ψ2 = 0, here M2 is the correct model, so the ratio of MSFE2/MSFE1

measures the cost of over-specification. The gains can be substantial in some cases, almost 30% for a
break out-of-sample with known regressors, but in other cases including x2,t is not at all costly despite
its irrelevance. Tighter selection for M3 is close to M2 as x2,t will be omitted more frequently, but even
at α = 0.16 the ratio for M3 is close to the ratio for M2, suggesting that selection is not costly.

Next, consider the columns labelled ψ2 = 4, 9, and 16. M1 is the correct model so the objective is to
minimize the ratio. In some cases M2 performs poorly, but M3 at α = 0.16 is frequently very close to 1,
i.e. MSFE1. Selection forecast performance tends to be worse at ψ2 = 4, but as the signal for x2 increases
the probability of retaining x2 increases so the selected model is closer to M1. The benefits of selection
vary by case. For example, for a break at T using in-sample means, selection at α = 0.16 delivers a
2.4% improvement relative to M2 for ψ = 4, compared to a halving of the ratio for the random walk.
In almost every setting, MSFE3 is close to MSFE1 so the costs of selection are usually small, irrespective
of the non-centrality. In that sense, model selection acts to reduce the risk relative to the worst model.
Conversely, the costs of unmodelled shifts are very large, up to almost 8-fold greater than the baseline
stationary MSFE1.

These results show that even facing breaks, the well-known trade-off for selecting variables in fore-
casting models, namely that variables should be retained if their non-centralities exceed 1, still applies,
resulting in much looser significance levels than typically used. The problem with such an approach is
that when many β2,i = 0 but are subject to location shifts, M1, which erroneously includes x2,t in the
model, will perform worse. Loose significance levels increase the chance that irrelevant variables with
ψ = 0 are retained by being adventitiously significant for that draw. To evaluate this effect, the next
section undertakes a simulation study of selection in models with more irrelevant (10) than relevant (5)
exogenous regressor variables confronting a variety of shifts.

8 Simulation evidence

We generalize the above analysis to consider larger models with dynamics, evaluating for a range of
different significance levels using Monte Carlo analysis. Single t−tests are no longer appropriate as
there are many potential regressors to select and correlations between potential regressors are non-zero.
The selection algorithm Autometrics, see Doornik (2009), is used which is a general-to-specific tree
search algorithm that searches feasible reduction paths to allow for collinearity.

8.1 Simulation Design

The data generating process (DGP) is given by:

yt = β0 + βyyt−1 + β′xt + εt, εt ∼ IN
[
0, σ2ε

]
, (36)

where:

xt
(N×1)

=

{
ι+ λxt−1 + ηt for t = 1, . . . , T
(ι+ ν∇ι) + (λ+ ν∇λ) xt−1 + ηt for t = T + 1, T + 2

(37)

where ηt ∼ INN [0, I], and where ι is a column vector of ones and ν is an (N × 1) vector with elements
taking the value 0 or 1 to reflect which elements of xt experience a shift (either relevant, irrelevant, or
all regressors). ∇ι is a (1× 1) vector giving the intercept shift magnitude. It is set to give a 4 standard
deviation mean shift in xt at T + 1, so E

[
x∗T+h

]
= E [xT−h] + 4V [xT−h]1/2 when h > 0, so:

E
[
x∗T+h

]
= (1− λ)−1 ι+ 4

[
σ2η
(
1− λ2

)−1] 1
2
ι = 6.62ι,
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Table 3: T = 50, Ratio M2 reports MSFE2
MSFE1

and Ratio M3 reports MSFE3
MSFE1

. σ2ε = 1, β0 = 5, β1 = 1,
µ1 = µ2 = 2, δ = 4 and ρ = 0.5

Case Model ψ2 = 0 ψ2 = 1 ψ2 = 4 ψ2 = 9 ψ2 = 16

Stationary Ratio M2 0.981 1.001 1.060 1.158 1.295
(δ2 = 0) Ratio M3 α = 0.001 0.981 1.000 1.051 1.093 1.068

α = 0.05 0.982 1.000 1.027 1.023 1.006
α = 0.16 0.984 1.000 1.016 1.008 1.001

out-of-sample shift Ratio M2 0.709 1.014 1.927 3.450 5.582
known future Ratio M3 α = 0.001 0.709 1.013 1.836 2.505 2.095
regressors α = 0.05 0.724 1.011 1.449 1.366 1.095

α = 0.16 0.756 1.009 1.256 1.136 1.022
out-of-sample shift Ratio M2 1.000 1.000 1.000 1.000 1.000
unknown future Ratio M3 α = 0.001 1.000 1.000 1.000 1.000 1.000
regressors α = 0.05 1.000 1.000 1.000 1.000 1.000
mean forecast α = 0.16 1.000 1.000 1.000 1.000 1.000
out-of-sample shift Ratio M2 0.993 1.004 1.020 1.034 1.043
unknown future Ratio M3 α = 0.001 0.993 1.004 1.018 1.021 1.010
regressors α = 0.05 0.994 1.003 1.010 1.005 1.001
random walk forecast α = 0.16 0.994 1.002 1.006 1.002 1.000
in-sample shift Ratio M2 1.020 1.021 1.022 1.023 1.024
unknown future Ratio M3 α = 0.001 1.020 1.021 1.020 1.014 1.006
regressors α = 0.05 1.019 1.017 1.011 1.004 1.000
mean forecast α = 0.16 1.017 1.014 1.006 1.001 1.000
in-sample shift Ratio M2 0.871 0.990 1.273 1.653 2.078
unknown future Ratio M3 α = 0.001 0.871 0.990 1.246 1.401 1.258
regressors α = 0.05 0.878 0.991 1.132 1.097 1.022
random walk forecast α = 0.16 0.892 0.993 1.075 1.036 1.005

resulting in ι∗ = ι+∇ι = 3.31ι and ∇ι = 2.31, for those elements that shift.
λ = 0.5IN is an (N ×N) matrix giving the degree of persistence in the exogenous regressors, with

zeros in the off-diagonals so the regressors are uncorrelated in the population, but lags of the regressors
are correlated. ∇λ = 0.45 is a (1× 1) vector giving the autoregressive parameter shift magnitude, and
so the degree of persistence increases from 0.5 to 0.95 when the elements of the ν vector are 1. Shifts in
ι and λ are considered separately.

σ2ε = 1, β0 = 5, βy = 0.5 and β =
(
σ2ε (X′X)−1

)1/2
ψ, where three alternative experiments are

considered, with N = 15 and n as the number of relevant variables, for:

ψ
(N×1)

=


(0, 0, 0, 0, 0, 0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4)′ .
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4)′ .
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)′ .

(38)

allowing for some irrelevant variables, some marginally relevant variables and some strongly significant
variables.3

The in-sample period is T = 100, with a sequence of two 1-step ahead forecasts undertaken for
yT+1|T and yT+2|T+1. As the break occurs at T + 1, there is no information on the break for the first
forecast, but the second forecast conditions on information at T + 1. M = 1, 000 replications.

The four cases examined are:
(a) No breaks: ν = 0N .

3Results for N = 10, with 5 fewer irrelevant variables, for ρ = 0, and for βy = 0 are similar and are available on request.
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(b) Breaks in relevant variables: ν =
(
{0}N−n : {1}n

)
.

(c) Breaks in irrelevant variables: ν =
(
{1}N−n : {0}n

)
.

(d) Breaks in all variables: ν = 1N .
Selection is undertaken from the general unrestricted model (GUM):

yt = β0 + βyyt−1 +
1∑
i=0

N∑
j=1

βijxj,t−i + εt, for t = h+ 1, . . . , T + h− 1, (39)

for h = 1, 2, where · denotes the intercept is not selected over so is always retained. A new model is
selected for each forecast horizon (h = 1, 2) using a rolling window. Selection is applied using Auto-
metrics for a range of target significance levels α = (0.001, 0.01, 0.05, 0.1, 0.16, 0.32, 0.5), resulting in
a selected model for each replication m and significance level αk:

ŷt = β̂0 + β̂
′
swt, (40)

where wt stacks (yt−1 : xt : xt−1) and β̂s has zeros for regressors not retained in selection.
In the experiments, we compute the 1-step ahead MSFEs, given by 1

M

∑M
i=1 ε

2
T+h,i|T+h−1,αk

, for a
forecast horizon (h = 1, 2) for various forecast models under the assumption of:

(i) known future exogenous regressors, with forecast error εT+h|T+h−1 = yT+h − β̂0 − β̂
′
swT+h;

(ii) unknown future exogenous regressors using the in-sample mean as the forecast for the retained
exogenous regressors, resulting in the forecast error εT+h|T+h−1 = yT+h− β̂0− β̂

′
swT+h|T+h−1.

The lagged retained variables will be known for one-step ahead forecasts, so wT+h|T+h−1 con-
sists of the in-sample averages for xT+h but known yT+h−1 and xT+h−1, i.e. wT+h|T+h−1 =(
yT+h−1 : 1

T

∑T+h−1
t=2 xt : xT+h−1

)
.

The in-sample means for forecasts at T +1 do not include the break, but for forecasts at T +2 will
include the break observation, although this will have a small effect on the mean given the sample
size unless the break is extremely large.

(iii) unknown future exogenous regressors, forecasting each variable selected from the GUM by:

xj,t = δ0 + δjxj,t−1 +
N∑
l=1

1∑
i=0

δl,ixl,t−i + uj,t uj,t ∼ IN
[
0, σ2u

]
(41)

for j = 1, . . . , N , l 6= j and t = 2, . . . , T, or t = 3, . . . , T + 1 depending on the forecast
origin, where selection is undertaken at the same αk as that for (40). The resulting forecast error
is ̂̂εT+h|T+h−1 = yT+h − β̂0 − β̂

′
sŵT+h|T+h−1.

One step ahead forecasts are computed for xj,T+h|T+h−1 but known values are used for any re-
tained lags: ŵT+h|T+h−1 =

(
yT+h−1 : x̂T+h|T+h−1 : xT+h−1

)
.

(iv) unknown future exogenous regressors using a robust forecast for the exogenous regressors. Two
alternative robust forecasts are evaluated:

(a) random walk, using the last in-sample observation as the forecast for the retained current-
dated exogenous regressors:
ε̃T+h|T+h−1 = yT+h−β̂0−β̂

′
sw̃T+h−1, where w̃T+h|T+h−1 = (yT+h−1 : xT+h−1 : xT+h−1).
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(b) random walk with difference, using the robust device from Hendry (2006) as the forecast
for the retained exogenous regressors. For each exogenous regressor, estimate a first-order
autoregression (AR(1)):

xj,t = δj,0 + δj,1xj,t−1 + uj,t uj,t ∼ IN
[
0, σ2u

]
, for j = 1, . . . , N, (42)

for t = 2, . . . , T, or t = 3, . . . , T + 1, and obtain a robust forecast given by x̂j,T+h|T+h−1 =

xj,T+h−1 + δ̂j,1∆xj,T+h−1. The forecast error is ˜̃εT+h|T+h−1 = yT+h − β̂0 − β̂
′
s
˜̃wT+h−1,

where ˜̃wT+h|T+h−1 =
(
yT+h−1 : xT+h−1 + δ̂1∆xT+h−1 : xT+h−1

)
.

(v) unknown future exogenous regressors using an AR(1) for each regressor to obtain forecasts for
the retained exogenous regressors. Estimate (42) for j = 1, . . . , N to obtain x̂j,T+h|T+h−1 =

δ̂j,0 + δ̂j,1xj,T+h−1, such that ŵT+h|T+h−1 =
(
yT+h−1 : x̂T+h|T+h−1 : xT+h−1

)
. The resulting

forecast error is ̂̂εT+h|T+h−1 = yT+h − β̂0 − β̂
′
sŵT+h|T+h−1.

(vi) ‘direct’ univariate forecasts for yT+h including:4

(a) a random walk forecast: ŷT+h|T+h−1 = yT+h−1; and

(b) an AR(1) forecast: ŷT+h|T+h−1 = γ̂0 + γ̂1yT+h−1;

such that no exogenous variables are used to forecast yT+h for h = 1, 2.

(vii) pooling, computed using an equally weighted average of:
(iii) forecasts of exogenous regressors using a selected model from the GUM (41),
(iv,a) the robust random walk for the exogenous regressors, and
(vi,b) a direct univariate forecast of the endogenous variable using an AR(1).5

Cases (ii) and (iv) are the two extremes of the class of robust forecasting devices proposed by Castle,
Clements, and Hendry (2015) whereby the fundamental parameters (equilibrium mean and growth rate)
are estimated by varying amounts of past data. The full in-sample mean as a forecasting device, used in
(ii), is the least robust, and the instantaneous estimate of the mean in (iv) is the most robust. Intermediate
cases, such as the average of the last r observations to obtain an estimate of the mean of w, could also
be considered.

Results are also reported for estimation of the GUM, equation (39), and estimation of the DGP
(36). Forecasts are obtained by plugging in values for all regressors in the GUM/DGP using methods
(i)–(v). Note that for (iii), the in-sample selected forecast, the GUM and DGP have different forecasts
for different values of α as the α refers to the significance level for selection of the models to produce
forecasts of the regressors (41) as well as the significance level for selection of the forecasting model (i.e.
α = 1 for the DGP and GUM). The DGP provides the infeasible benchmark as it cannot be known in
practice, but it allows the costs of selection to be measured by comparing the forecasts from the selected
model relative to had the DGP been known. Comparison with the GUM is also informative to measure
the costs and benefits of search.

8.2 Results

Tables 10-15 record the MSFEs for the range of experiments, with each table corresponding to a set of
experiments for a given ψ specification and a given horizon; T + 1|T or T + 2|T + 1, where T + 1|T

4‘Direct’ refers to forecasts that ignore conditioning variables and just use the endogenous variable in producing forecasts.
5Forecast averages are also computed for an equally weighted average of: {(iv,a) and (v)}, {(iv,b) and (v)},

{(iv,a) and (iii)}, {(iv,b) and (iii)}, {(iv,a), (iii) and (v)}, {(vi,a) and (vi,b)}, {(iv,a), (v) and (vi,b)}, and {(iv,a), (v) and (iii)}.
The pooled forecast for {(iv,a), (vi,b) and (iii)} was found to outperform, but results for the other pooled forecasts are available
on request.
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implies the break occurs out-of-sample (as the location shift occurs at T + 1) and T + 2|T + 1 is where
the break occurs in-sample. Where a number is only reported in the first row of the table corresponding
to α = 0.001, the same MSFE applies to all values of α.

8.2.1 Potency and Gauge

Before considering forecast performance, selection is examined using potency and gauge, given by:

retention rate: p̃j = 1
M

∑M
i=1 1{β̂j,i 6=0}, j = 1, . . . , 2N + 1,

potency = 1
n+1

∑n+1
j=1 p̃j ,

gauge = 1
2N−n

∑2N+1
j=n+2 p̃j ,

(43)

where the GUM includes lags of the regressors and the lagged dependent variable so there are 2N + 1
possible variables, of which n + 1 are relevant. The intercept is forced so is excluded from the potency
calculations.

Figure 9 records the gauge averaged across all experiments, recorded at each target significance level.
The very narrow range for the gauge at each α is evident, despite wide variations in DGP specifications.
The gauge is slightly above the target significance level at very tight significance levels, and is too low at
very loose significance levels, but is well calibrated for the intermediate target significance levels, almost
exactly for a significance level of 16%.

Average gauge across experiments 
Minimum gauge 
Maximum gauge 
1st quartile 
3rd quartile 
α 
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α 

Figure 9: Gauge across all experiments (two forecast horizons, three ψ specifications and all types of
break) with target significance level α.

Figure 10 records the potency against the theoretical probability. The theoretical retention rate is
calculated as the average of the probability of retaining a single relevant variable assuming a single
independent t−test at a given significance level for each relevant variable, so includes the probability
of retaining the lagged dependent variable (which is 0.983 for α = 0.001, increasing to 1 for larger α).
Retention probabilities for the exogenous regressors are given in Table 8. The variation in potency is
narrow across all experiments, and the potency is very close to the theoretical probabilities. At tighter
significance levels there are cases where the potency exceeds the retention rate for a single test, due to
a looser gauge than the significance level. Nevertheless, the probability of retaining the DGP is much
smaller, as Table 8 shows.

To summarise, selection using Autometrics has the expected properties with a well-calibrated null
rejection frequency close to the chosen significance level for a wide range of values of α, and with non-
null rejections close to the powers of one-off t−tests with the same non-centralities. Consequently, it
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Figure 10: Potency across experiments for each ψ specification in equation (38), i.e. (a)ψ = 4; (b)ψ =
1; (c) ψ = 0.5, . . . , 4. Theoretical retention is the average probability of retaining each of the relevant
regressors including the lagged dependent variable and either five variables with a non-centralities of 4
or 1 or eight regressors ranging from 0.5, . . . 4.

is appropriate to use Autometrics to evaluate the theoretical results derived in sections 3-6 by simula-
tion, without concern that the selection algorithm will influence the results relative to the single t−test
approach analyzed above.

8.2.2 Minimum MSFE methods

We can infer some general results from the appendix tables 10–15. First, when the break occurs out-of-
sample, so forecasts are computed for T + 1 when the break occurs at T + 1, the two dominant methods
across all experiments are using the in-sample mean to forecast the exogenous regressors, and the pooled
forecast. For the experiment having 5 relevant regressors with non-centralities of 4, a slightly tighter
significance level of between 1% and 5% dominates, but for the other two experiments (non-centralities
of 1 or a range of non-centralities), a selection significance level of 10% often out-performs, with 16%
frequently ranked second.

Moving to the case when the break occurs in-sample, so the forecasts are computed for T+2 when the
break occurs at T +1, the robust device given by a random walk augmented with the difference weighted
by the persistence parameter is preferred when the break occurs in the relevant or all regressors. Looser
significance levels tend to do well here, at roughly 10% for the experiments with non-centralities of 4, and
even looser at 32%–50% for a range of non-centralities. If the breaks occur in the irrelevant regressors,
pooling works well, but here tighter significance levels are preferred. When the non-centralities are small
(ψi = 1∀i), pooling outperforms the robust device, and just using the sample mean still works well for
breaks in irrelevant variables.

There are substantial differences in the forecast performance of the two robust devices. When there
is a break in the relevant regressors, the random walk plus the difference notably improves on the random
walk forecasts, cutting the MSFE by a half to two-thirds in some cases. If there are no breaks, or breaks
occur in the irrelevant regressors, the random walk forecast is preferred to the random walk with differ-
ence. The benefits of using the random walk device with the difference are so large if there are breaks
that this method dominates if the source of the break is unknown.

The variation in MSFEs across α is very small for intermediate values of α relative to the variation
in MSFEs across break types and DGP designs. Too tight or too loose α (0.1% or 50%) can worsen the
MSFE substantially, but for moderate α the selection significance level does not have a huge impact on
forecast performance. This is an encouraging finding showing that forecast performance is relatively
unaffected by the precise choice of significance level for selection when using Autometrics, despite a
wide range of non-centralities and numbers of relevant and irrelevant exogenous variables.
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8.2.3 Forecast rankings

The appendix tables 10–15 are summarised in tables 5-7 which report outcomes when selecting at α =
5% and 16%, comparing to the DGP and known regressors as infeasible benchmarks to evaluate the
costs of selection against knowing the model. Highlighted cells are the minimum MSFE for selection
comparing between the sample mean, robust random walk with difference and the pooled forecast: bold
shows cases where knowing the DGP, but not the future values of the regressors, dominates.

While the results are mixed, selection at 5% is preferred for the non-centralities of 4, but 16% often
dominates for the non-centralities of 1, or mixed non-centralities. If the signal coming from the relevant
regressors is strong, a tighter significance level enables elimination of many more irrelevant variables
at low cost, but with a weak signal the trade-off between retaining irrelevant variables and omitting
relevant variables is more finely balanced, and a significance level of 16% as derived in the theory above
can dominate. Perhaps the most surprising finding is that knowing the DGP would only have been
preferred in 4 out of the 14 cases, irrespective of the non-centralities of the relevant variables, although
also knowing the future values of the regressors (and hence the breaks) would always have dominated.

Table 4 ranks the forecast performance of each method for selection at α = 10%, where 1 is the
minimum MSFE and 8 is the worst MSFE for the experiment design. A 10% significance level is a
reasonable choice for 15 variables in the GUM when at least half are likely to be not very relevant, and
the largest number of minimum MSFEs occurs at 10% reflecting the balance discussed above. Forecast
pooling is consistently ranked in the top half of methods, suggesting that it is a successful insurance
policy. An AR(1) for y also performs well across the board, matching an oft-found outcome. This model
is mis-specified, ignoring all information from the exogenous regressors, but mis-specification need not
entail forecast failure. Indeed, the costs of forecasting the exogenous regressors can outweight their
inclusion. However, the DGP design is an AR(1) in y so this forecasting device has the advantage of
correctly specifying the dynamics. Such a naive device may not perform so well if the DGP contained
more complex dynamics.

However, using the AR(1) for the exogenous regressors performs worst across all experiments, de-
spite the DGP dynamics for the exogenous regressors being an AR(1) process. The random walk with
difference forecasts oscillate between being ranked first for relevant breaks in-sample to one of the worst
for breaks out-of-sample. In contrast, the in-sample mean switches from being the best forecast for
breaks out-of-sample, but the worst for breaks in-sample. Unfortunately the forecaster does not know
which world they will be in when computing forecasts, although IIS may help.

8.2.4 Is selection costly when forecasting?

Comparing selection to the DGP at 5% or 16% in tables 5–7, the costs of selection can be very small
when the regressors are unknown and must be forecast. As knowing the precise formulation of the DGP
is always infeasible, selection must be undertaken. Bold cells indicate where knowing the DGP, but
not future values of regressors, would have dominated, and there are many quadrants where selection
delivers a smaller MSFE. These results demonstrate that selection incurs almost no cost relative to the
DGP, with the caveat that a very tight significance level of α = 0.1% can increase the MSFE relative
to the DGP. Known future regressors (i) are omitted from the tables but almost always deliver the best
forecast performance, although would be infeasible in practice.

Figure 11 records a scatter plot of the MSFEs for the selected model at three alternative significance
levels against the MSFEs for the DGP, for three alternative forecasting devices including selecting a
forecasting model for the regressors, using the in-sample mean and the robust device augmented with the
difference, across all experiments conducted. The solid black line is the 45◦ line, so if the MSFEs lie on
the line then there is no cost to selecting from a more general model compared to knowing the DGP. At
very tight significance levels, selection does increase MSFEs, particularly if the regressors are forecast
by selecting a model from the GUM, but at 5% or 16% almost all observations lie on or very close to the
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Table 4: Simulation summary rankings for α = 10%. ‘Out’ refers to forecasts for T + 1|T ,
i.e. the break is out-of-sample. ‘In’ refers to forecasts for T + 2|T + 1 where the break is in-
sample. (1) is for the case with ψ = (0, 0, 0, 0, 0, 0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4)′, (2) is case ψ =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4)′, and (3) is for ψ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)′. Lower
case Roman numerals respectively denote forecasting the unknown future exogenous regressors by: (ii)
the in-sample mean; (iii) selecting from the GUM (41); (iva) a random walk; (ivb) that with the added
difference; (v) an AR(1); (via) a direct random walk forecast of y; (vib) a direct AR(1) forecast of y; and
(vii) pooling.

(ii) (iii) (iva) (ivb) (v) (via) (vib) (vii)
No Break

(1) Out 3 4 5 7 8 6 1 2
In 3 4 5 7 8 6 1 2

(2) Out 4 3 5 7 8 6 2 1
In 3 4 5 7 8 6 2 1

(3) Out 2 4 5 6 8 7 1 3
In 2 4 5 6 8 7 1 3

Break Relevant
(1) Out 1 3 6 7 8 5 2 4

ι In 8 3 2 1 6 5 7 4
(2) Out 1 4 5 7 8 6 2 3

In 8 4 2 1 6 5 7 3
(3) Out 1 4 5 6 8 7 2 3

In 8 4 2 1 7 3 6 5
(1) Out 5 2 4 7 8 6 3 1

λ In 8 4 2 1 6 5 7 3
(2) Out 7 3 2 6 8 5 4 1

In 8 4 2 1 6 5 7 3
(3) Out 2 4 5 6 8 7 1 3

In 7 4 3 2 8 5 6 1
Break Irrelevant

(1) Out 3 4 5 7 8 6 1 2
ι In 3 6 4 7 8 5 1 2

(2) Out 3 4 5 7 8 6 2 1
In 3 6 5 7 8 4 1 2

(3) Out 2 5 4 6 8 7 1 3
In 2 6 4 7 8 5 1 3

(1) Out 3 4 5 7 8 6 2 1
λ In 3 4 5 7 8 6 1 2

(2) Out 4 3 5 7 8 6 2 1
In 3 6 4 7 8 5 1 2

(3) Out 2 4 5 6 8 7 1 3
In 2 5 4 6 8 7 1 3

Break All
(1) Out 1 4 5 7 8 6 2 3

ι In 8 3 2 1 6 5 7 4
(2) Out 1 4 5 7 8 6 2 3

In 8 3 2 1 6 5 7 4
(3) Out 1 4 5 6 8 7 2 3

In 8 5 2 1 7 3 6 4
(1) Out 5 2 4 7 8 6 3 1

λ In 8 3 2 1 6 5 7 4
(2) Out 7 3 2 6 8 5 4 1

In 8 4 2 1 6 5 7 3
(3) Out 2 4 5 6 8 7 1 3

In 7 4 3 2 8 5 6 1
Average 4.2 4.0 3.9 5.1 7.6 5.6 3.1 2.5
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Table 5: Simulation summary for 8 relevant variables with non-centralities of 0.5; 1; 1.5; 2; 2.5; 3; 3.5; 4
and 7 irrelevant variables. Underlined cells indicate minimum MSFE for selection across methods listed;
bold where knowing the DGP, but not the future values of the regressors, would have dominated.

Break type & case Out: T + 1|T In: T + 2|T + 1
DGP α = 0.05 α = 0.16 DGP α = 0.05 α = 0.16

No break
(ii) sample mean 1.59 1.63 1.64 1.57 1.59 1.62
(iv,b) RW with diff. 2.12 2.26 2.30 2.02 2.11 2.18
(vii) pooling 1.52 1.52 1.49 1.53

Break Relevant
ι (ii) sample mean 17.56 17.58 17.54 39.50 40.40 41.28

(iv,b) RW with diff. 18.61 18.77 18.96 2.53 3.91 3.46
(vii) pooling 17.75 17.79 17.99 16.54

λ (ii) sample mean 4.46 4.51 4.50 11.96 12.12 12.35
(iv,b) RW with diff. 4.38 4.62 4.66 2.43 3.40 3.11
(vii) pooling 4.16 4.16 7.07 6.76

Break Irrelevant
ι (ii) sample mean 1.59 1.63 1.64 1.57 1.59 1.60

(iv,b) RW with diff. 2.11 2.25 2.31 2.01 2.21 2.30
(vii) pooling 1.52 1.54 1.54 1.57

λ (ii) sample mean 1.59 1.63 1.64 1.57 1.59 1.61
(iv,b) RW with diff. 2.12 2.25 2.31 2.02 2.11 2.20
(vii) pooling 1.52 1.53 1.51 1.55

Break All
ι (ii) sample mean 17.88 17.90 17.86 40.01 40.93 41.69

(iv,b) RW with diff. 18.86 18.99 19.12 2.53 3.76 3.46
(vii) pooling 18.02 18.00 17.30 15.50

λ (ii) sample mean 4.50 4.55 4.55 12.06 12.23 12.45
(iv,b) RW with diff. 4.40 4.63 4.68 2.42 3.37 3.15
(vii) pooling 4.19 4.18 6.99 6.64

45◦ line, so not knowing the correct model and undertaking selection at fairly loose significance levels is
not costly in a forecasting context.

8.2.5 Explaining the variation in forecast performance

There are 2142 distinct MSFE observations excluding results for the GUM and DGP, with a mean of
5.15 and a standard deviation of 7.50. Attempts to explain the main characteristics of the results in a
response surface highlighted the high degree of non-linearity, large number of interaction terms and many
indicator variables retained using impulse indicator saturation needed to obtain a congruent specification.
The results do not lend themselves to a parsimonious response surface specification.

However, the analysis does highlight some important aspects that explain forecast performance
across experiments. Some characteristics are self-evident: breaks in relevant variables, breaks in the in-
tercept and breaks in experiments with regressors with large non-centralities result in the largest MSFEs.
Features that matter across specifications are potency, gauge and the theoretical retention probability
given ψ. Higher potency improves forecast performance as does higher retention probability, so both
the theoretical and empirical measures of retaining relevant variables matter. The overall effect of gauge
varies by forecast method, with the retention of more irrelevant variables less problematic for known
regressors than if the regressors need to be forecast. The retention probabilities are recorded in Table 8,
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Table 6: Simulation summary for 5 relevant variables with non-centralities of 4 and 10 irrelevant vari-
ables. Underlined cells indicate minimum MSFE for selection across methods listed; bold where knowing
the DGP, but not the future values of the regressors, would have dominated.

Break type & case Out: T + 1|T In: T + 2|T + 1
DGP α = 0.05 α = 0.16 DGP α = 0.05 α = 0.16

No break
(ii) sample mean 1.90 1.96 1.97 1.89 1.93 1.95
(iv,b) RW with diff. 2.59 2.68 2.77 2.51 2.62 2.71
(vii) pooling 1.73 1.77 1.76 1.80

Break Relevant
ι (ii) sample mean 21.22 21.20 21.22 47.18 48.42 49.52

(iv,b) RW with diff. 22.60 22.77 22.78 2.92 3.37 3.41
(vii) pooling 21.51 21.56 20.13 19.51

λ (ii) sample mean 5.46 5.52 5.54 14.52 14.80 15.11
(iv,b) RW with diff. 5.17 5.35 5.44 2.87 3.20 3.28
(vii) pooling 4.91 4.96 8.04 7.99

Break Irrelevant
ι (ii) sample mean 1.89 1.95 1.96 1.88 1.92 1.94

(iv,b) RW with diff. 2.57 2.67 2.75 2.49 2.73 2.90
(vii) pooling 1.74 1.78 1.82 1.94

λ (ii) sample mean 1.90 1.96 1.97 1.89 1.93 1.95
(iv,b) RW with diff. 2.58 2.67 2.77 2.51 2.62 2.65
(vii) pooling 1.73 1.77 1.79 1.84

Break All
ι (ii) sample mean 21.88 21.88 21.89 48.27 49.58 50.64

(iv,b) RW with diff. 23.14 23.30 23.32 2.94 3.43 3.59
(vii) pooling 22.10 22.14 18.92 17.70

λ (ii) sample mean 5.55 5.60 5.64 14.71 15.01 15.28
(iv,b) RW with diff. 5.21 5.40 5.47 2.87 3.17 3.29
(vii) pooling 4.98 5.01 7.88 7.77

which compute the probability of retaining all relevant regressors assuming independent t−tests. While
the probability of retaining one variable may be quite large, the joint probability of retaining all relevant
variables can be extremely low. Thus, even using a significance level of 16%, many relevant variables
will be omitted if their non-centralities are small. However, their contribution to explaining the dependent
variable is also small and therefore breaks in such variables will have a smaller effect. The break mag-
nitude will be a function of the coefficient in the conditional model, the degree of persistence governing
the break evolution, and the size of the break in the marginal model.

The choice of α interacts with whether the break occurs in the relevant or irrelevant regressors, such
that a tighter significance level is preferred for breaks in irrelevant regressors, effectively increasing
the chance of their removal, but a looser significance level is preferred for breaks in relevant variables,
consistent with retaining such variables being important when the variables shift.

If the relevant variables have large non-centralities, standard significance levels of 1% or 5% are
preferred to minimize MSFE, but if the relevant regressors range in non-centrality from small to large, a
looser significance level is preferred. For the practitioner who was uncertain of the nature of the unknown
DGP, a moderate selection significance level of α = 10%–16% insures against the extremes, although
there will be cases when such a choice is not optimal.
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Table 7: Simulation summary for 5 relevant variables with non-centralities of 1 and 10 irrelevant vari-
ables. Underlined cells indicate minimum MSFE for selection across methods listed; bold where knowing
the DGP, but not the future values of the regressors, would have dominated.

Break type & case Out: T + 1|T In: T + 2|T + 1
DGP α = 0.05 α = 0.16 DGP α = 0.05 α = 0.16

No break
(ii) sample mean 1.06 1.09 1.09 1.06 1.08 1.08
(iv,b) RW with diff. 1.19 1.29 1.37 1.20 1.23 1.33
(vii) pooling 1.11 1.12 1.08 1.10

Break Relevant
ι (ii) sample mean 2.32 2.34 2.34 4.07 4.22 4.26

(iv,b) RW with diff. 2.52 2.61 2.73 1.53 2.60 2.18
(vii) pooling 2.39 2.42 3.09 2.73

λ (ii) sample mean 1.30 1.33 1.33 1.88 1.93 1.94
(iv,b) RW with diff. 1.38 1.53 1.60 1.28 1.70 1.63
(vii) pooling 1.35 1.36 1.70 1.62

Break Irrelevant
ι (ii) sample mean 1.06 1.09 1.09 1.06 1.07 1.08

(iv,b) RW with diff. 1.19 1.28 1.37 1.20 1.40 1.62
(vii) pooling 1.11 1.12 1.10 1.14

λ (ii) sample mean 1.06 1.09 1.09 1.06 1.08 1.08
(iv,b) RW with diff. 1.19 1.29 1.38 1.20 1.27 1.34
(vii) pooling 1.11 1.12 1.10 1.10

Break All
ι (ii) sample mean 2.36 2.38 2.38 4.14 4.28 4.34

(iv,b) RW with diff. 2.56 2.66 2.74 1.53 2.71 2.33
(vii) pooling 2.43 2.45 3.05 2.67

λ (ii) sample mean 1.31 1.34 1.34 1.90 1.94 1.95
(iv,b) RW with diff. 1.39 1.53 1.59 1.28 1.72 1.66
(vii) pooling 1.35 1.36 1.70 1.61

Table 8: Retention probabilities P (reject H0|ψ, α); ×5 refers to the probability of retaining all 5 re-
gressors with a given non-centrality and “Joint” is the probability of retaining all regressors with non-
centralities of (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4), assuming independence.
α ψ = 4 ×5 ψ = 1 ×5 ψ = 0.5 ψ = 1.5 ψ = 2 ψ = 2.5 ψ = 3 ψ = 3.5 Joint
0.001 0.729 0.206 0.008 0.000 0.002 0.029 0.082 0.187 0.348 0.544 0.000
0.01 0.915 0.642 0.052 0.000 0.017 0.130 0.266 0.450 0.646 0.809 0.000
0.05 0.978 0.895 0.163 0.000 0.069 0.314 0.506 0.697 0.845 0.935 0.001
0.1 0.990 0.953 0.255 0.001 0.123 0.436 0.633 0.799 0.910 0.967 0.006
0.16 0.995 0.976 0.339 0.004 0.180 0.534 0.721 0.861 0.943 0.981 0.019
0.32 0.999 0.993 0.500 0.031 0.309 0.692 0.841 0.933 0.977 0.994 0.081
0.5 1.000 0.998 0.627 0.097 0.430 0.795 0.907 0.966 0.990 0.998 0.185

9 Conclusion

The paper investigates the choice of significance level and its associated critical value when selecting
forecasting models, both analytically in a static bivariate setting where there are location shifts at the
forecast origin, and in more general simulation experiments. The theory suggests that variables should
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Figure 11: Scatter plots of the MSFE for model selection against the MSFE for DGP for unknown fu-
ture regressors which are forecast using: (top row) the in-sample mean of the exogenous regressors,
and (bottom row) the robust device augmented with the difference, for significance levels of 0.1% (left
hand panel), 5% (middle panel) and 16% (right hand panel). The solid black line is the 45◦ line. The
experiments include the three ψ specifications, two forecast horizons, and all 7 break specifications.

be retained if their non-centralities exceed 1, which translates to c2α = 2 at the boundary. This result
holds regardless of whether or not location shifts affect the variable about which a retention decision
is made. Undertaking selection at such loose significance levels implies that fewer relevant variables
will be excluded when they contribute to forecast accuracy, but that more variables will be retained by
chance because they happen to be in a draw that results in statistical significance at the proposed critical
value. Although retaining irrelevant variables that are subject to location shifts usually worsens forecast
performance, their coefficient estimates will be driven towards zero when updating estimates as the
horizon moves forward. Indeed, in a progressive research strategy of learning sequentially from evidence,
large breaks in irrelevant variables will rapidly lead to their being omitted and focus the specification on
relevant variables.

Although the static design is simple, it is not restrictive. The analytic results hold regardless of
whether the regressors are contemporaneous or lagged, although the timing of location shifts is fun-
damental. Dynamics will slow adjustment to new equilibria, but would not change the essence of the
results. The inflation forecasting illustration demonstrates the analytic results, with a loose selection
significance level of 16% being preferred for both the known regressors and the random walk forecasts
for unknown regressors case.

The simulation evidence examines a wide range of experimental designs and despite the disparate
outcomes, they provide some guidance for forecasting. The ideal scenario is obviously to have complete
knowledge of the DGP, such that the empirical modeller knows the number and magnitude of both
relevant and irrelevant regressors, and their future values, and hence whether and where breaks are likely
to occur. In practice, no-one has the benefit of omniscience, and once the future values of regressors need
to be forecast, not knowing the precise specification of the DGP may not be costly relative to selecting
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from a GUM that nests it. Indeed, simply knowing the specification of the DGP, but needing to forecast
future values of the exogenous regressors, rarely delivered the best MSFE outcome.

The simulation results suggest that if the model is being used primarily for 1-step ahead forecasting
with the aim of minimizing MSFE, selection at looser than standard selection significance levels may well
help, and doing so will rarely hinder forecast performance. The results provide some support for selecting
models at around 10% when there are approximately 15 regressors, many of which are irrelevant. This
is close to the 16% derived theoretically in the paper when the number of irrelevant regressors is small.
The simulation results also highlight the degree of complexity in pinning down the optimal selection
rule for forecasting, with results depending on all aspects of the experimental design. A take-away for
the forecaster is that pooling works well across many settings, suggesting a combination of model-based
forecast, robust device and univariate methods provides a good insurance policy. Moreover, methods that
did not nest the DGP, such as the direct AR(1) forecast of the dependent variable, also performed well,
both matching commonly found empirical outcomes.

A Analytic Calculations

A.1 Derivations for the equations reported in §3.1

The DGP given in (1), (2) and (3) results in

√
T

(
β̂1 − β1
β̂2 − β2

)
∼ N2

[(
0
0

)
,

σ2ε
σ211σ

2
22 (1− ρ2)

(
σ222 −ρσ11σ22

−ρσ11σ22 σ211

)]
, (44)

with: √
T
(
µy − µ̂y

)
∼ N

[
0, σ2ε

]
, (45)

where we subsequently set σ11 = σ22 = 0 without loss of generality.
M2 in (6) partials out x2,t. From (2) we can write in deviations from means for t = 1, . . . , T :

x2,t − µ2 = ρ (x1,t − µ1) + et, (46)

such that et = η2,t − ρη1,t, so γ1 = (β1 + β2ρ) and φ0 = µy − γ1µ1. Hence M2 is:

yt = µy + (β1 + β2ρ) (x1,t − µ1) + β2et + εt

= γ0 + γ1 (x1,t − µ1) + νt,

with γ0 = µy. The error for M2 is given by:

νt = β2
(
η2,t − ρη1,t

)
+ εt, (47)

where:
σ2ν = σ2ε + β22

(
1− ρ2

)
= σ2ε

(
1 + T−1ψ2

)
≥ σ2ε . (48)

Also:
√
T

(
γ̃0 − γ0
γ̃1 − γ1

)
∼ N2

[(
0
0

)
, σ2ν

(
1 0
0 1

)]
. (49)

A.2 Derivations for the equations reported in §4

The 1-step ahead forecast error from M1 is:

ε̂T+1|T = yT+1 − ŷT+1|T

=
(
µy − µ̂y

)
+
(
β1 − β̂1

)
(x1,T+1 − µ1) +

(
β2 − β̂2

)
(x2,T+1 − µ2) + εT+1. (50)
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When there are no breaks, the parameter estimates are unbiased, E
[̂
εT+1|T

]
= 0 so the MSFE of M1 is:

E
[̂
ε2T+1|T

]
= σ2ε

(
1 +

1

T
+

2

T (1− ρ2)
− 2ρ2

T (1− ρ2)

)
= σ2ε

(
1 +

3

T

)
. (51)

The 1-step ahead forecast error from M2 in which x2,t is omitted is:

ε̃T+1|T = yT+1 − ỹT+1|T

= β2η2,T+1 + εT+1 + (γ0 − γ̃0) + (β1 − γ̃1) η1,T+1. (52)

Therefore, despite the mis-specification, E
[̃
εT+1|T

]
= 0 and the MSFE is:

E
[̃
ε2T+1|T

]
= E

[(
β2η2,T+1 + εT+1 + (γ0 − γ̃0) + (β1 − γ̃1) η1,T+1

)2]
= σ2ν

(
1 +

2

T

)
. (53)

A.3 Derivations for the equations reported in §5.1

The regression equation itself stays constant so:

yT+1 =
(
µy + β2δ

)
+ β1 (x1,T+1 − µ1) + β2 (x2,T+1 − µ2 − δ) + εT+1. (54)

Consequently, using β̂0 = µy − β̂1µ1 − β̂2µ2 to match the formulation of M2, the forecast for M1 is:

ŷT+1|T+1 = µy + β̂2δ + β̂1 (x1,T+1 − µ1) + β̂2 (x2,T+1 − µ2 − δ) , (55)

and the 1-step ahead forecast error for M1 is:

ε̂T+1|T+1 = yT+1 − ŷT+1|T+1

=
(
β2 − β̂2

)
δ +

(
β1 − β̂1

)
η1,T+1 +

(
β2 − β̂2

)
η2,T+1 + εT+1, (56)

and a 1-step ahead MSFE of:

E
[̂
ε
2
T+1|T+1

]
= σ2ε

(
1 +

δ2 + 2− ρ
T (1− ρ2)

)
. (57)

Next consider the 1-step ahead forecast for M2, given γ0 = µy and γ1 = (β1 + β2ρ):

ỹT+1|T+1 = γ̃0 + γ̃1 (x1,T+1 − µ1) .

The 1-step ahead forecast error is given by:

ε̃T+1|T+1 = yT+1 − ỹT+1|T+1

= β2δ + (γ0 − γ̃0) + (γ1 − γ̃1) η1,T+1 − β2ρη1,T+1 + β2η2,T+1 + εT+1,

and the 1-step ahead MSFE for M2 is:

E
[̃
ε
2
T+1|T+1

]
= σ2ε + β22

(
1− ρ2 + δ2

)
+ 2T−1σ2ν . (58)
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A.4 Derivations for the equations reported in §5.3

For β̂0 = µy − β̂1µ1 − β̂2µ2, replacing the unknown xi,T+1 by µi leads to forecasting yT+1 by the
in-sample mean:

̂̂yT+1|T = µy,

so the forecast error for M1 is:

̂̂εT+1|T = yT+1 − ̂̂yT+1|T

= β2δ + β1η1,T+1 + β2η2,T+1 + εT+1, (59)

and the forecast error bias is:
E
[̂̂
εT+1|T

]
= β2δ. (60)

The MSFE1 is:
E
[̂̂
ε
2

T+1|T

]
= β21 + β22

(
1 + δ2

)
+ 2ρβ1β2 + σ2ε . (61)

Parameter estimation adds terms of Op
(
T−1

)
.

Similarly, for M2, from (6) forecasting x1,T+1 by µ1 leads to:

˜̃yT+1|T = µy,

and hence for ‘known’ µy the forecast error is:

˜̃εT+1|T = β2δ + β1η1,T+1 + β2η2,T+1 + εT+1 = ̂̂εT+1|T ,

with:
E
[̃̃
εT+1|T

]
= β2δ,

and MSFE2 is given by (23). Hence, ignoring Op
(
T−1

)
terms, MSFE2 = MSFE1.

A.5 Derivations for the equations reported in §5.4

From (54) the regression equation for yT+1 can also be written as:

yT+1 =
(
µy + β2δ

)
+ β1∆x1,T+1 + β2 (∆x2,T+1 − δ) + εT+1 + β1η1,T + β2η2,T .

Furthermore, the forecast for M1 using (24) and (25) is:

yT+1|T = µy + β̂1 (x1,T − µ1) + β̂2 (x2,T − µ2) ,

so the forecast error for M1 is:

εT+1|T = yT+1 − yT+1|T

= β2δ + β1∆x1,T+1 + β2 (∆x2,T+1 − δ) +
(
β1 − β̂1

)
η1,T +

(
β2 − β̂2

)
η2,T + εT+1.

Consequently, neglecting the small impact of ηi,T on βi − β̂i:

E
[
εT+1|T

]
= β2δ,

and hence MSFE1 is:

E
[
ε
2
T+1|T

]
= 2β21 + β22

(
2 + δ2

)
+ 4ρβ1β2 + σ2ε

(
1 + 2T−1

)
. (62)
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Next, we compute the equivalent bias and MSFE for M2, noting γ1 = β1 + β2ρ, so that the forecast
is given by:

ỹT+1|T = γ̃0 + γ̃1 (x1,T − µ1)

As γ̃0 = γ0 = µy, the forecast error for M2 using the random walk is:

ε̃T+1|T = yT+1 − ỹT+1|T

= β2δ + β1∆η1,T+1 + β2∆η2,T+1 + εT+1 + (β1 − γ̃1) η1,T + β2η2,T , (63)

where, as before:
E
[̃
εT+1|T

]
= β2δ.

Neglecting the small impact of η1,T on γ̃1 the MSFE for M2 is:

E
[̃
ε
2
T+1|T

]
= 2β21 + β22

(
3 + ρ2 + δ2

)
+ 4ρβ1β2 + σ2ε

(
1 + T−1 + T−2ψ2

)
. (64)

A.6 Derivations for the equations reported in §6.1

The conditional DGP for the forecast observation is:

yT+1 = β0 + β1x1,T+1 + β2x2,T+1 + εT+1

=
(
µy + β2δ

)
+ β1 (x1,T+1 − µ1) + β2 (x2,T+1 − µ2 − δ) + εT+1, (65)

where the in-sample mean µy is shifted to (µy + β2δ) at T . Sample calculations will be altered as now
E [x2] = µ2 + T−1δ from:

x2 =
1

T

T∑
t=1

x2,t = µ2 + T−1δ + η2,

and neglecting terms of T−2 or smaller:

(σ∗22)
2 ≈ σ222 + T−1δ2,

with σ∗12 = σ12 implying that:
ρ∗ =

σ12
σ11σ∗22

.

The intercept is again included with β̂0 = µy − β̂1µ1 − β̂2µ2 to match the formulation of M2.

̂̂yT+1|T+1 ≈ β̂0 + β̂1µ1 + β̂2
(
µ2 + T−1δ

)
= µy + β̂2T

−1δ,

and hence neglecting terms of T−2 or smaller, the forecast error for M1 is:

̂̂εT+1|T+1 = yT+1 − ̂̂yT+1|T+1

≈ β2δ
(
1− T−1

)
+ β1η1,T+1 + β2η2,T+1 + εT+1, (66)

so the forecast error bias is given by:

E
[̂̂
εT+1|T+1

]
≈ β2δ

(
1− T−1

)
.

The MSFE for M1 is:
E
[̂̂
ε
2

T+1|T+1

]
= β22δ

2
(
1− T−1

)2
+ β21 + β22 + σ2ε . (67)
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Omitting x2 from the forecasting equation leads to a forecast error of:

ε̂T+1|T+1 = yT+1 − ŷT+1|T+1

≈ β2δ + (γ0 − γ̃0) + (γ1 − γ̃1) η1,T+1 + vT+1 (68)

with a MSFE for M2 given by:

E
[̂
ε
2
T+1|T+1

]
= β22δ

2 + σ2ε + σ2ν

(
1 +

2

T

)
(69)

where σ2ν is given in (48).

A.7 Derivations for the equations reported in §6.3 and §6.4

Following a similar strategy as the previous analysis, including the intercept for comparability where
β̂0 = µy − β̂1µ1 − β̂2µ2, then the forecast for M1 is:

ŷT+1|T+1 = β̂0 + β̂1
˜̃x1,T+1|T + β̂2

˜̃x2,T+1|T = µy + β̂2δ + β̂1η1,T+1 + β̂2η2,T+1,

so that the forecast error for M1 is:

ε̂T+1|T = yT+1 − ŷT+1|T

=
(
β2 − β̂2

)
δ + β1∆η1,T+1 + β2∆η2,T+1 + εT+1 +

(
β1 − β̂1

)
η1,T +

(
β2 − β̂2

)
η2,T ,

with E
[̂
εT+1|T

]
= 0 when the parameter estimates are unbiased. The MSFE for M1 is:

E
[̂
ε
2
T+1|T

]
= 2

(
β21 + β22 + 2ρβ1β2

)
+ σ2ε

[
1 + T−1

(
2 +

δ2

(1− ρ2)

)]
. (70)

Next we compute the random walk forecast for M2 so γ1 = β1 + β2ρ and γ0 = µy, leading to the
forecast given by:

ỹT+1|T = γ̃0 + γ̃1 (x1,T − µ1) ,

and the forecast error for M2 is:

ε̃T+1|T = yT+1 − ỹT+1|T

= β2δ + β1∆η1,T+1 + β2∆η2,T+1 + εT+1 + (β1 − γ̃1) η1,T + β2η2,T , (71)

which is now biased for β2δ 6= 0. The MSFE for M2 is:

E
[̃
ε
2
T+1|T

]
= 2β21 + β22

(
δ2 + 1 + ρ2

)
+ 4ρβ1β2 + σ2ε

(
1 + T−1 + T−2ψ2

)
. (72)

From (12):

MSFE3 = MSFE1 + (1− pα[ψ])

[
β22
(
δ2 + ρ2 − 1

)
+ σ2ε

(
−δ2

T (1− ρ2)
− T−1 + T−2ψ2

)]
(73)
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B Supplementary Tables

Table 9: T = 100, Ratio M2 reports MSFE2
MSFE1

and Ratio M3 reports MSFE3
MSFE1

Case Model ψ2 = 0 ψ2 = 1 ψ2 = 4 ψ2 = 9 ψ2 = 16

Stationary Ratio M2 0.990 1.000 1.030 1.079 1.149
(δ2 = 0) Ratio M3 α = 0.001 0.990 1.000 1.026 1.048 1.035

α = 0.05 0.991 1.000 1.014 1.012 1.003
α = 0.16 0.992 1.000 1.008 1.004 1.001

out-of-sample shift Ratio M2 0.827 1.008 1.551 2.457 3.724
known future Ratio M3 α = 0.001 0.827 1.008 1.497 1.895 1.651
regressors α = 0.05 0.836 1.007 1.267 1.217 1.056

α = 0.16 0.855 1.005 1.152 1.081 1.013
out-of-sample shift Ratio M2 1.000 1.000 1.000 1.000 1.000
unknown future Ratio M3 α = 0.001 1.000 1.000 1.000 1.000 1.000
regressors α = 0.05 1.000 1.000 1.000 1.000 1.000
mean forecast α = 0.16 1.000 1.000 1.000 1.000 1.000
out-of-sample shift Ratio M2 0.997 1.002 1.013 1.024 1.033
unknown future Ratio M3 α = 0.001 0.997 1.002 1.012 1.015 1.008
regressors α = 0.05 0.997 1.002 1.006 1.004 1.001
random walk forecast α = 0.16 0.997 1.001 1.004 1.001 1.000
in-sample shift Ratio M2 1.010 1.009 1.008 1.007 1.007
unknown future Ratio M3 α = 0.001 1.010 1.009 1.008 1.005 1.002
regressors α = 0.05 1.010 1.008 1.004 1.001 1.000
mean forecast α = 0.16 1.008 1.006 1.002 1.000 1.000
in-sample shift Ratio M2 0.931 0.994 1.155 1.386 1.661
unknown future Ratio M3 α = 0.001 0.931 0.994 1.140 1.237 1.158
regressors α = 0.05 0.934 0.995 1.075 1.058 1.014
random walk forecast α = 0.16 0.942 0.996 1.043 1.021 1.003
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Table 10: Forecasts for T + 1|T where break occurs at T + 1. DGP contains lagged dependent variable
with persistence of 0.5. ψ = (0, 0, 0, 0, 0, 0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4). N = 15, so there are n =
8 relevant regressors and N − n = 7 irrelevant regressors. Pool (1) given by an equally weighted
average of (iv,a) Robust RW, (iii) in-sample forecast for X , and (vi,b) Direct y forecast using an AR(1).
Intercept forced and not included in measure of potency. Bold indicates minimum MSFE for selection
with unknown regressors, with underline highlighting next smallest MSFE and italic highlighting third
smallest MSFE.

(i) known regressors (ii) in-sample mean (iii) in-sample forecast ((iv) robust forecast (v) AR(1) forecast (vi) direct forecast (vii) Pool selection
(a) RW (b) RW with diff

α (%) GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select (a) RW (b) AR(1) (1) Potency Gauge
No break

0.1 1.519 1.128 1.528 1.758 1.590 1.678 2.359 1.474 1.617 2.655 1.694 1.755 2.816 2.118 2.015 5.368 1.438 1.720 1.848 1.506 1.541 0.346 0.012
1 1.388 1.626 2.366 1.484 1.579 1.782 2.164 2.116 1.513 0.487 0.028
5 1.381 1.634 2.374 1.518 1.635 1.822 2.258 2.797 1.521 0.604 0.073

10 1.378 1.630 2.381 1.550 1.650 1.813 2.255 3.342 1.506 0.645 0.116
16 1.397 1.640 2.380 1.577 1.704 1.840 2.295 3.807 1.521 0.681 0.164
32 1.430 1.666 2.413 1.650 1.856 1.806 2.266 4.564 1.530 0.760 0.296
50 1.481 1.675 2.428 1.674 1.906 1.836 2.324 5.009 1.533 0.829 0.435

Break in relevant regressors
ι 0.1 2.110 1.545 6.748 17.678 17.561 17.662 18.292 17.649 17.702 18.451 18.140 18.083 18.525 18.607 18.396 20.730 17.632 18.074 18.371 17.651 17.723 0.344 0.012

1 3.631 17.653 18.309 17.661 17.652 18.224 18.690 18.869 17.726 0.484 0.028
5 2.553 17.585 18.330 17.755 17.763 18.303 18.774 19.736 17.751 0.599 0.074

10 2.321 17.534 18.477 17.847 17.713 18.383 18.861 20.355 17.737 0.643 0.116
16 2.217 17.541 18.477 17.948 17.898 18.421 18.956 20.906 17.789 0.680 0.164
32 2.120 17.567 18.474 18.027 18.019 18.395 18.936 21.838 17.763 0.759 0.294
50 2.085 17.558 18.465 18.165 18.340 18.441 19.004 22.174 17.823 0.825 0.437

λ 0.1 1.638 1.245 2.598 4.669 4.455 4.534 4.806 4.124 4.354 5.244 4.103 4.366 5.357 4.379 4.554 7.669 4.083 4.494 4.502 4.294 4.253 0.344 0.012
1 1.879 4.520 4.817 4.125 4.265 4.302 4.588 5.046 4.176 0.484 0.028
5 1.667 4.507 4.822 4.149 4.279 4.311 4.622 5.826 4.157 0.601 0.074

10 1.589 4.484 4.864 4.189 4.249 4.309 4.618 6.238 4.130 0.645 0.116
16 1.592 4.502 4.863 4.234 4.347 4.340 4.664 6.799 4.160 0.681 0.163
32 1.598 4.544 4.877 4.308 4.515 4.342 4.691 7.628 4.183 0.760 0.296
50 1.613 4.553 4.875 4.338 4.587 4.355 4.715 8.058 4.180 0.828 0.436

Break in irrelevant regressors
ι 0.1 2.130 1.128 1.566 1.754 1.587 1.674 2.332 1.505 1.619 2.647 1.691 1.743 2.808 2.112 2.001 5.353 1.436 1.745 1.847 1.504 1.535 0.344 0.012

1 1.443 1.624 2.346 1.493 1.584 1.779 2.165 2.157 1.508 0.482 0.029
5 1.548 1.630 2.359 1.582 1.687 1.825 2.254 2.827 1.524 0.599 0.073

10 1.605 1.626 2.387 1.634 1.728 1.813 2.265 3.257 1.504 0.643 0.115
16 1.697 1.635 2.368 1.703 1.842 1.853 2.313 3.812 1.536 0.681 0.163
32 1.859 1.663 2.425 1.811 2.052 1.806 2.261 4.560 1.541 0.761 0.295
50 2.000 1.672 2.469 1.899 2.217 1.836 2.323 5.017 1.557 0.826 0.436

λ 0.1 1.653 1.128 1.539 1.758 1.590 1.674 2.346 1.487 1.620 2.653 1.694 1.748 2.814 2.117 2.009 5.367 1.438 1.746 1.848 1.506 1.539 0.344 0.012
1 1.408 1.627 2.356 1.490 1.586 1.781 2.164 2.158 1.515 0.485 0.029
5 1.439 1.634 2.374 1.544 1.648 1.820 2.247 2.798 1.523 0.602 0.073

10 1.433 1.631 2.390 1.573 1.665 1.817 2.267 3.331 1.506 0.645 0.115
16 1.491 1.639 2.384 1.615 1.740 1.849 2.308 3.866 1.528 0.682 0.164
32 1.534 1.667 2.424 1.690 1.901 1.803 2.259 4.519 1.531 0.760 0.295
50 1.605 1.677 2.449 1.736 1.991 1.838 2.328 5.068 1.541 0.828 0.436

Break in all regressors
ι 0.1 2.707 1.545 6.843 17.993 17.878 17.975 18.595 17.931 17.956 18.775 18.404 18.383 18.847 18.860 18.706 21.057 17.922 18.316 18.656 17.957 18.002 0.345 0.012

1 3.685 17.937 18.622 17.917 17.879 18.432 18.903 19.190 17.965 0.486 0.029
5 2.726 17.896 18.630 18.094 18.041 18.552 18.994 19.997 18.015 0.603 0.073

10 2.554 17.854 18.827 18.241 18.054 18.637 19.097 20.589 18.011 0.644 0.116
16 2.502 17.860 18.770 18.287 18.126 18.628 19.124 21.325 17.999 0.681 0.163
32 2.574 17.891 18.755 18.473 18.360 18.649 19.181 22.209 18.011 0.761 0.296
50 2.616 17.885 18.762 18.578 18.726 18.710 19.256 22.603 18.069 0.828 0.436

λ 0.1 1.765 1.245 2.612 4.718 4.503 4.579 4.848 4.166 4.388 5.292 4.130 4.396 5.405 4.401 4.583 7.720 4.120 4.541 4.536 4.337 4.287 0.344 0.012
1 1.899 4.565 4.866 4.155 4.292 4.324 4.594 5.066 4.206 0.485 0.028
5 1.713 4.550 4.876 4.201 4.319 4.331 4.629 5.833 4.189 0.603 0.074

10 1.668 4.535 4.929 4.236 4.305 4.347 4.654 6.268 4.169 0.644 0.116
16 1.674 4.551 4.921 4.280 4.375 4.355 4.677 6.905 4.179 0.680 0.164
32 1.693 4.597 4.935 4.355 4.549 4.358 4.700 7.674 4.199 0.760 0.295
50 1.735 4.603 4.941 4.386 4.644 4.388 4.739 8.059 4.206 0.829 0.435
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Table 11: Forecasts for T + 2|T + 1 where break occurs at T + 1. DGP contains lagged dependent
variable with persistence of 0.5. ψ = (0, 0, 0, 0, 0, 0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4). N = 15, so there are
n = 8 relevant regressors and N − n = 7 irrelevant regressors. Pool (1) given by an equally weighted
average of (iv,a) Robust RW, (iii) in-sample forecast for X , and (vi,b) Direct y forecast using an AR(1).
Intercept forced and not included in measure of potency. Bold indicates minimum MSFE for selection
with unknown regressors, with underline highlighting next smallest MSFE and italic highlighting third
smallest MSFE.

(i) known regressors (ii) in-sample mean (iii) in-sample forecast ((iv) robust forecast (v) AR(1) forecast (vi) direct forecast (vii) Pool selection
(a) RW (b) RW with diff

α (%) GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select (a) RW (b) AR(1) (1) Potency Gauge
No break

0.1 1.497 1.090 1.392 1.691 1.573 1.629 2.300 1.474 1.532 2.911 1.683 1.723 3.081 2.018 1.984 5.493 1.450 1.753 1.842 1.501 1.503 0.344 0.012
1 1.313 1.582 2.302 1.487 1.541 1.733 2.027 2.125 1.491 0.481 0.027
5 1.296 1.590 2.294 1.521 1.600 1.759 2.112 2.684 1.495 0.601 0.074

10 1.311 1.594 2.291 1.568 1.666 1.769 2.135 2.904 1.502 0.645 0.114
16 1.362 1.620 2.325 1.604 1.741 1.802 2.179 3.459 1.526 0.684 0.163
32 1.440 1.634 2.321 1.671 1.853 1.816 2.225 4.221 1.536 0.765 0.297
50 1.484 1.642 2.317 1.646 1.878 1.843 2.252 4.677 1.532 0.827 0.437

Break in relevant regressors
ι 0.1 2.518 1.661 7.683 43.373 39.504 40.018 12.516 19.880 25.317 43.421 6.423 14.839 43.320 2.531 8.732 18.419 19.386 25.675 18.350 31.740 23.049 0.400 0.013

1 4.148 40.163 12.533 18.716 21.753 11.314 5.321 23.821 20.332 0.516 0.027
5 2.787 40.398 12.551 16.566 17.910 9.213 3.911 22.812 17.986 0.622 0.074

10 2.440 40.781 12.691 15.438 16.215 8.755 3.597 22.471 17.144 0.665 0.113
16 2.446 41.280 12.703 14.415 14.813 8.624 3.464 22.407 16.539 0.695 0.163
32 2.369 41.986 12.701 12.786 12.595 8.303 3.298 22.474 15.452 0.771 0.293
50 2.416 42.422 12.720 11.921 11.458 8.173 3.177 22.502 14.888 0.831 0.438

λ 0.1 1.846 1.331 3.997 12.918 11.963 11.924 6.356 7.394 8.893 13.246 3.986 6.793 13.339 2.426 5.422 10.006 7.153 9.186 7.161 10.025 8.351 0.357 0.013
1 2.513 11.983 6.351 7.278 8.106 5.727 4.160 9.050 7.661 0.486 0.028
5 1.918 12.117 6.342 6.899 7.305 5.005 3.399 9.225 7.066 0.607 0.075

10 1.793 12.236 6.340 6.797 7.056 4.816 3.198 9.318 6.884 0.648 0.114
16 1.776 12.346 6.393 6.726 6.880 4.724 3.105 9.599 6.760 0.689 0.161
32 1.813 12.558 6.379 6.421 6.483 4.637 3.009 10.403 6.540 0.766 0.295
50 1.809 12.661 6.410 6.339 6.286 4.609 2.958 10.548 6.419 0.830 0.438

Break in irrelevant regressors
ι 0.1 2.429 1.090 1.449 1.689 1.569 1.601 4.075 1.493 1.570 3.254 1.677 1.732 3.853 2.011 1.992 9.067 1.445 1.721 1.835 1.496 1.507 0.341 0.012

1 1.512 1.571 4.118 1.546 1.688 1.742 2.072 2.225 1.517 0.477 0.026
5 1.611 1.589 4.200 1.697 1.878 1.807 2.211 2.704 1.538 0.597 0.073

10 1.696 1.587 4.305 1.823 2.057 1.817 2.238 3.090 1.564 0.641 0.112
16 1.841 1.604 4.336 1.918 2.203 1.831 2.303 3.576 1.575 0.682 0.163
32 2.108 1.623 4.429 2.042 2.500 1.892 2.463 4.499 1.613 0.765 0.294
50 2.296 1.640 4.518 2.204 2.743 1.937 2.571 5.058 1.653 0.826 0.435

λ 0.1 1.783 1.090 1.416 1.692 1.573 1.628 2.768 1.470 1.554 3.112 1.682 1.714 3.411 2.017 1.969 6.356 1.449 1.693 1.841 1.500 1.504 0.342 0.012
1 1.395 1.579 2.779 1.512 1.591 1.745 2.045 2.154 1.507 0.477 0.027
5 1.389 1.589 2.805 1.586 1.676 1.763 2.114 2.682 1.507 0.600 0.073

10 1.447 1.597 2.863 1.662 1.791 1.797 2.166 3.037 1.531 0.647 0.114
16 1.562 1.613 2.879 1.710 1.894 1.804 2.197 3.494 1.550 0.684 0.164
32 1.639 1.630 2.918 1.819 2.059 1.811 2.230 4.379 1.565 0.765 0.296
50 1.740 1.640 2.938 1.891 2.169 1.850 2.288 4.781 1.581 0.827 0.435

Break in all regressors
ι 0.1 3.269 1.662 7.546 43.937 40.014 40.392 7.302 19.097 24.667 44.548 6.439 14.575 44.941 2.534 8.448 9.857 19.580 25.658 18.506 32.094 22.820 0.402 0.013

1 4.190 40.684 7.335 17.558 20.883 11.236 5.293 23.933 20.062 0.514 0.027
5 2.843 40.926 7.482 14.542 16.130 9.014 3.755 22.638 17.297 0.622 0.073

10 2.710 41.378 7.548 12.821 13.877 8.734 3.612 22.479 16.245 0.665 0.113
16 2.675 41.690 7.741 11.586 12.398 8.503 3.458 22.911 15.496 0.692 0.163
32 2.906 42.439 7.806 9.664 10.130 8.335 3.421 23.272 14.325 0.772 0.293
50 3.077 42.958 7.910 8.747 8.893 8.337 3.428 22.711 13.646 0.834 0.438

λ 0.1 2.047 1.331 3.988 13.031 12.064 12.054 5.226 7.300 8.818 13.665 3.991 6.796 13.940 2.423 5.417 8.149 7.195 9.255 7.191 10.095 8.346 0.356 0.013
1 2.497 12.097 5.218 7.117 8.012 5.698 4.111 8.977 7.634 0.487 0.027
5 1.921 12.230 5.232 6.594 7.056 4.990 3.369 9.115 6.987 0.607 0.075

10 1.863 12.305 5.288 6.348 6.693 4.914 3.292 9.228 6.793 0.648 0.114
16 1.891 12.445 5.344 6.237 6.488 4.781 3.153 9.646 6.644 0.684 0.163
32 1.920 12.649 5.385 5.851 5.898 4.670 3.027 10.526 6.334 0.765 0.296
50 1.986 12.747 5.416 5.661 5.705 4.648 3.011 10.695 6.201 0.829 0.435
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Table 12: Forecasts for T + 1|T where break occurs at T + 1. DGP contains lagged dependent variable
with persistence of 0.5. ψ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4). N = 15, so there are n = 5 relevant
regressors andN−n = 10 irrelevant regressors. Intercept forced and not included in measure of potency.
Pool (1) given by an equally weighted average of (iv,a) Robust RW, (iii) in-sample forecast for X , and
(vi,b) Direct y forecast using an AR(1). Pool (2) given by an equally weighted average of (iv,a) Robust
RW and (iii) in-sample forecast for X . Bold indicates minimum MSFE for selection with unknown
regressors, with underline highlighting next smallest MSFE and italic highlighting third smallest MSFE.

(i) known regressors (ii) in-sample mean (iii) in-sample forecast ((iv) robust forecast (v) AR(1) forecast (vi) direct forecast (vii) Pool selection
(a) RW (b) RW with diff

α (%) GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select (a) RW (b) AR(1) (2) (1) Potency Gauge
No break

0.1 1.514 1.093 1.363 2.142 1.904 1.940 3.134 1.706 1.787 3.445 2.019 2.106 3.613 2.589 2.621 6.228 1.670 1.935 2.179 1.794 1.853 1.760 0.753 0.008
1 1.244 1.941 3.137 1.723 1.783 2.070 2.643 2.225 1.819 1.733 0.919 0.020
5 1.241 1.956 3.144 1.764 1.843 2.068 2.680 3.164 1.827 1.727 0.969 0.068

10 1.293 1.966 3.144 1.808 1.914 2.131 2.751 3.624 1.872 1.755 0.973 0.115
16 1.330 1.971 3.140 1.845 1.963 2.151 2.765 4.058 1.897 1.765 0.975 0.165
32 1.411 2.006 3.172 1.927 2.154 2.165 2.794 4.984 1.952 1.797 0.990 0.292
50 1.455 2.043 3.193 1.978 2.222 2.199 2.851 5.577 1.974 1.803 0.993 0.440

Break in relevant regressors
ι 0.1 1.883 1.321 3.761 21.348 21.222 21.301 22.152 21.303 21.371 22.491 22.016 22.146 22.556 22.599 22.727 25.568 21.312 21.739 22.197 21.379 21.663 21.495 0.744 0.009

1 1.861 21.215 22.165 21.322 21.366 22.053 22.656 22.251 21.599 21.445 0.914 0.020
5 1.616 21.204 22.178 21.481 21.588 22.150 22.770 23.577 21.723 21.514 0.965 0.068

10 1.640 21.204 22.292 21.549 21.683 22.152 22.771 24.091 21.740 21.521 0.971 0.115
16 1.692 21.219 22.299 21.695 21.837 22.173 22.780 24.692 21.801 21.556 0.974 0.164
32 1.733 21.237 22.268 21.723 22.018 22.220 22.851 25.808 21.839 21.570 0.989 0.293
50 1.799 21.245 22.237 21.776 22.143 22.343 23.017 26.260 21.907 21.600 0.993 0.437

λ 0.1 1.601 1.156 1.887 5.763 5.457 5.499 6.150 4.910 5.081 6.712 4.852 5.139 6.833 5.172 5.457 9.405 4.877 5.309 5.370 5.209 5.018 5.010 0.749 0.008
1 1.363 5.482 6.156 4.917 4.990 4.958 5.302 5.599 4.867 4.903 0.918 0.020
5 1.335 5.516 6.161 4.971 5.087 4.980 5.348 6.661 4.904 4.915 0.968 0.068

10 1.379 5.531 6.196 5.021 5.161 5.037 5.416 7.080 4.947 4.940 0.972 0.114
16 1.398 5.542 6.197 5.073 5.244 5.065 5.443 7.646 4.988 4.963 0.976 0.164
32 1.471 5.591 6.204 5.152 5.428 5.098 5.499 8.618 5.048 4.997 0.990 0.293
50 1.534 5.631 6.201 5.166 5.474 5.163 5.587 9.172 5.074 5.003 0.993 0.438

Break in irrelevant regressors
ι 0.1 2.358 1.093 1.451 2.128 1.893 1.943 3.080 1.780 1.862 3.419 2.006 2.086 3.587 2.566 2.583 6.192 1.663 1.939 2.169 1.786 1.872 1.767 0.745 0.008

1 1.329 1.931 3.090 1.759 1.820 2.052 2.621 2.239 1.817 1.724 0.914 0.020
5 1.451 1.946 3.096 1.870 1.972 2.062 2.670 3.184 1.862 1.736 0.966 0.068

10 1.578 1.956 3.120 1.957 2.091 2.130 2.748 3.641 1.915 1.761 0.970 0.114
16 1.700 1.960 3.107 2.052 2.220 2.141 2.754 4.042 1.948 1.777 0.974 0.165
32 1.981 1.991 3.179 2.265 2.547 2.160 2.784 4.959 2.028 1.817 0.989 0.293
50 2.145 2.029 3.258 2.418 2.811 2.185 2.824 5.567 2.101 1.849 0.993 0.439

λ 0.1 1.685 1.093 1.387 2.141 1.903 1.937 3.112 1.733 1.818 3.441 2.017 2.108 3.608 2.585 2.618 6.224 1.670 1.948 2.177 1.794 1.870 1.769 0.754 0.008
1 1.274 1.940 3.117 1.736 1.797 2.065 2.637 2.224 1.823 1.733 0.918 0.020
5 1.296 1.957 3.131 1.801 1.887 2.066 2.675 3.166 1.845 1.735 0.969 0.068

10 1.359 1.966 3.138 1.855 1.961 2.136 2.762 3.615 1.891 1.760 0.972 0.115
16 1.418 1.966 3.131 1.918 2.047 2.149 2.767 4.039 1.926 1.775 0.975 0.165
32 1.527 2.005 3.169 2.016 2.248 2.164 2.792 4.981 1.975 1.800 0.990 0.293
50 1.604 2.041 3.207 2.109 2.396 2.207 2.860 5.575 2.031 1.827 0.993 0.439

Break in all regressors
ι 0.1 2.695 1.321 3.734 22.011 21.883 21.957 22.797 21.878 21.951 23.174 22.579 22.687 23.236 23.142 23.233 26.269 21.923 22.355 22.796 22.016 22.211 22.066 0.753 0.008

1 1.883 21.873 22.815 21.879 21.900 22.608 23.216 22.816 22.127 22.003 0.920 0.020
5 1.793 21.876 22.815 22.160 22.245 22.703 23.304 24.199 22.297 22.096 0.968 0.068

10 1.911 21.876 23.012 22.362 22.416 22.741 23.340 24.596 22.346 22.116 0.972 0.115
16 2.025 21.890 22.957 22.479 22.628 22.738 23.318 25.399 22.399 22.144 0.975 0.165
32 2.236 21.895 22.917 22.554 22.824 22.804 23.426 26.377 22.409 22.132 0.990 0.293
50 2.451 21.915 22.928 22.681 23.024 22.892 23.549 26.941 22.453 22.138 0.993 0.440

λ 0.1 1.756 1.156 1.904 5.858 5.548 5.594 6.230 4.977 5.145 6.808 4.901 5.180 6.928 5.213 5.487 9.503 4.947 5.343 5.433 5.289 5.069 5.068 0.751 0.008
1 1.400 5.578 6.242 4.968 5.046 5.015 5.362 5.681 4.923 4.964 0.918 0.020
5 1.386 5.605 6.250 5.045 5.162 5.031 5.395 6.732 4.963 4.976 0.967 0.068

10 1.438 5.623 6.297 5.105 5.239 5.085 5.453 7.170 5.001 4.997 0.972 0.115
16 1.486 5.638 6.287 5.163 5.336 5.105 5.470 7.708 5.040 5.015 0.975 0.165
32 1.580 5.682 6.297 5.214 5.496 5.158 5.550 8.653 5.090 5.040 0.990 0.293
50 1.665 5.725 6.308 5.255 5.579 5.220 5.637 9.310 5.122 5.047 0.993 0.440
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Table 13: Forecasts for T+2|T+1 where break occurs at T+1. DGP contains lagged dependent variable
with persistence of 0.5. ψ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4). N = 15, so there are n = 5 relevant
regressors andN−n = 10 irrelevant regressors. Intercept forced and not included in measure of potency.
Pool (1) given by an equally weighted average of (iv,a) Robust RW, (iii) in-sample forecast for X , and
(vi,b) Direct y forecast using an AR(1). Bold indicates minimum MSFE for selection with unknown
regressors, with underline highlighting next smallest MSFE and italic highlighting third smallest MSFE.

(i) known regressors (ii) in-sample mean (iii) in-sample forecast ((iv) robust forecast (v) AR(1) forecast (vi) direct forecast (vii) Pool selection
(a) RW (b) RW with diff

α (%) GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select (a) RW (b) AR(1) (1) Potency Gauge
No break

0.1 1.495 1.056 1.302 2.078 1.893 1.918 3.002 1.747 1.793 3.730 2.040 2.073 3.898 2.512 2.530 6.381 1.706 1.940 2.180 1.799 1.759 0.756 0.008
1 1.176 1.909 3.004 1.758 1.790 2.078 2.587 2.254 1.741 0.920 0.020
5 1.190 1.931 2.990 1.812 1.882 2.086 2.617 2.871 1.756 0.969 0.067

10 1.225 1.938 2.992 1.875 1.966 2.103 2.637 3.455 1.775 0.974 0.114
16 1.295 1.949 3.028 1.912 2.043 2.168 2.707 3.883 1.805 0.978 0.164
32 1.395 1.974 3.028 1.987 2.221 2.193 2.767 4.668 1.833 0.988 0.293
50 1.436 2.003 3.029 1.966 2.239 2.201 2.768 5.175 1.819 0.994 0.440

Break in relevant regressors
ι 0.1 2.159 1.431 3.984 52.259 47.182 47.823 27.793 24.191 26.788 53.270 7.632 11.630 53.390 2.918 5.653 31.625 23.137 26.309 22.385 36.993 23.294 0.791 0.009

1 2.056 47.937 27.823 23.269 23.928 8.960 3.661 24.724 21.100 0.925 0.020
5 1.779 48.423 27.822 21.339 21.640 8.555 3.367 25.248 20.129 0.968 0.068

10 1.764 48.996 27.870 20.207 20.288 8.669 3.344 25.741 19.727 0.975 0.115
16 1.856 49.522 27.854 19.308 19.344 8.921 3.415 25.865 19.506 0.979 0.162
32 1.975 50.351 27.864 17.909 17.561 9.155 3.473 26.920 18.934 0.990 0.293
50 2.057 51.027 27.758 17.125 16.514 9.526 3.636 27.131 18.660 0.994 0.441

λ 0.1 1.720 1.193 2.463 15.844 14.523 14.583 10.698 8.939 9.706 16.555 4.756 6.176 16.701 2.871 4.398 14.213 8.601 9.636 8.676 11.897 8.838 0.763 0.008
1 1.493 14.683 10.706 8.852 9.061 5.203 3.325 9.534 8.218 0.917 0.020
5 1.434 14.803 10.690 8.532 8.720 5.094 3.199 10.169 8.041 0.968 0.068

10 1.452 14.955 10.671 8.440 8.612 5.117 3.186 10.785 8.001 0.976 0.115
16 1.513 15.108 10.692 8.365 8.525 5.227 3.281 11.133 7.989 0.976 0.162
32 1.606 15.312 10.690 8.168 8.282 5.281 3.339 11.945 7.889 0.990 0.293
50 1.653 15.496 10.685 8.033 8.046 5.401 3.443 12.561 7.819 0.993 0.440

Break in irrelevant regressors
ι 0.1 2.773 1.056 1.439 2.068 1.879 1.886 12.058 1.797 1.851 4.260 2.021 2.095 5.080 2.489 2.582 15.899 1.692 1.971 2.163 1.784 1.760 0.745 0.009

1 1.416 1.893 12.140 1.861 1.985 2.091 2.645 2.248 1.766 0.914 0.020
5 1.665 1.916 12.280 2.125 2.406 2.117 2.734 3.005 1.821 0.964 0.066

10 1.855 1.928 12.402 2.362 2.730 2.174 2.827 3.534 1.880 0.970 0.113
16 2.010 1.936 12.474 2.542 3.015 2.223 2.903 4.050 1.937 0.976 0.163
32 2.344 1.968 12.665 2.848 3.530 2.339 3.173 5.180 2.033 0.989 0.292
50 2.618 1.990 12.800 3.034 3.843 2.343 3.192 5.805 2.071 0.993 0.439

λ 0.1 1.901 1.056 1.353 2.079 1.891 1.909 5.144 1.749 1.793 4.019 2.037 2.087 4.378 2.509 2.558 8.512 1.703 1.906 2.177 1.796 1.755 0.753 0.008
1 1.230 1.907 5.169 1.789 1.842 2.076 2.584 2.249 1.748 0.918 0.020
5 1.352 1.929 5.220 1.933 2.039 2.095 2.622 2.925 1.787 0.968 0.068

10 1.430 1.942 5.291 2.054 2.204 2.098 2.608 3.551 1.813 0.971 0.116
16 1.480 1.953 5.294 2.141 2.345 2.127 2.655 3.840 1.840 0.976 0.164
32 1.703 1.979 5.410 2.286 2.581 2.213 2.829 4.848 1.890 0.987 0.293
50 1.804 2.001 5.442 2.386 2.743 2.200 2.783 5.354 1.898 0.995 0.439

Break in all regressors
ι 0.1 3.272 1.431 3.749 53.481 48.274 48.843 8.715 23.024 25.524 55.694 7.683 11.361 56.781 2.936 5.373 11.710 23.567 26.460 22.753 37.726 22.931 0.801 0.009

1 2.219 49.088 8.796 21.222 21.992 8.892 3.661 24.961 20.561 0.928 0.020
5 2.038 49.577 8.984 17.588 17.946 8.557 3.432 25.583 18.921 0.972 0.067

10 2.218 50.060 9.066 15.503 16.059 8.670 3.399 26.295 18.191 0.976 0.116
16 2.409 50.645 9.308 14.117 14.640 8.969 3.590 26.302 17.703 0.979 0.162
32 2.749 51.666 9.408 11.808 12.057 9.510 3.797 27.000 16.738 0.990 0.293
50 3.059 52.259 9.526 10.705 10.864 9.848 3.984 27.395 16.214 0.995 0.439

λ 0.1 2.046 1.193 2.504 16.058 14.712 14.795 6.917 8.755 9.555 17.222 4.767 6.168 17.653 2.868 4.395 10.126 8.680 9.695 8.733 12.023 8.815 0.765 0.009
1 1.550 14.867 6.909 8.569 8.805 5.157 3.275 9.468 8.142 0.919 0.020
5 1.522 15.014 6.939 7.978 8.183 5.084 3.171 10.330 7.875 0.969 0.067

10 1.575 15.132 6.998 7.681 7.933 5.136 3.182 10.865 7.770 0.974 0.115
16 1.664 15.284 7.060 7.581 7.834 5.270 3.295 11.210 7.769 0.978 0.165
32 1.828 15.572 7.136 7.061 7.192 5.358 3.416 12.159 7.505 0.990 0.294
50 1.927 15.699 7.177 6.837 6.950 5.423 3.447 12.463 7.392 0.994 0.441
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Table 14: Forecasts for T + 1|T where break occurs at T + 1. DGP contains lagged dependent variable
with persistence of 0.5. ψ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1). N = 15, so there are n = 5 relevant
regressors andN−n = 10 irrelevant regressors. Intercept forced and not included in measure of potency.
Pool (1) given by an equally weighted average of (iv,a) Robust RW, (iii) in-sample forecast for X , and
(vi,b) Direct y forecast using an AR(1). Bold indicates minimum MSFE for selection with unknown
regressors, with underline highlighting next smallest MSFE and italic highlighting third smallest MSFE.

(i) known regressors (ii) in-sample mean (iii) in-sample forecast ((iv) robust forecast (v) AR(1) forecast (vi) direct forecast (vii) Pool selection
(a) RW (b) RW with diff

α (%) GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select (a) RW (b) AR(1) (1) Potency Gauge
No break

0.1 1.532 1.098 1.126 1.142 1.058 1.119 1.648 1.059 1.126 1.767 1.128 1.130 1.962 1.194 1.150 2.958 1.059 1.151 1.387 1.060 1.094 0.177 0.012
1 1.131 1.107 1.654 1.065 1.123 1.157 1.184 1.327 1.095 0.209 0.021
5 1.240 1.088 1.665 1.076 1.177 1.220 1.288 1.731 1.111 0.294 0.069

10 1.294 1.078 1.677 1.081 1.218 1.239 1.337 1.956 1.117 0.352 0.112
16 1.307 1.088 1.671 1.091 1.248 1.257 1.373 2.200 1.121 0.409 0.160
32 1.406 1.093 1.700 1.107 1.312 1.294 1.443 2.585 1.129 0.540 0.291
50 1.470 1.093 1.720 1.112 1.381 1.312 1.489 2.847 1.141 0.650 0.438

Break in relevant regressors
ι 0.1 1.899 1.316 2.293 2.407 2.320 2.372 2.883 2.346 2.399 2.992 2.456 2.419 3.162 2.525 2.453 4.192 2.351 2.443 2.752 2.334 2.373 0.177 0.012

1 2.191 2.373 2.896 2.350 2.390 2.451 2.484 2.682 2.373 0.208 0.021
5 2.023 2.342 2.908 2.378 2.438 2.540 2.615 3.114 2.393 0.293 0.069

10 1.986 2.332 2.956 2.380 2.481 2.572 2.670 3.441 2.405 0.348 0.111
16 1.890 2.338 2.948 2.405 2.535 2.606 2.725 3.574 2.418 0.406 0.161
32 1.848 2.343 2.975 2.424 2.594 2.630 2.779 4.039 2.419 0.535 0.291
50 1.864 2.343 2.999 2.432 2.736 2.662 2.844 4.360 2.450 0.649 0.438

λ 0.1 1.617 1.163 1.359 1.394 1.302 1.360 1.850 1.282 1.373 1.978 1.333 1.380 2.162 1.383 1.404 3.156 1.283 1.406 1.633 1.304 1.341 0.176 0.013
1 1.347 1.351 1.858 1.287 1.361 1.403 1.433 1.593 1.338 0.209 0.021
5 1.424 1.331 1.870 1.302 1.408 1.466 1.535 2.004 1.350 0.293 0.069

10 1.476 1.323 1.894 1.304 1.440 1.484 1.579 2.281 1.354 0.351 0.112
16 1.450 1.330 1.886 1.319 1.484 1.492 1.602 2.459 1.358 0.408 0.160
32 1.536 1.336 1.912 1.337 1.539 1.528 1.670 2.885 1.364 0.537 0.291
50 1.550 1.338 1.933 1.342 1.622 1.545 1.711 3.191 1.379 0.649 0.438

Break in irrelevant regressors
ι 0.1 2.398 1.098 1.188 1.141 1.057 1.119 1.623 1.075 1.126 1.765 1.128 1.130 1.960 1.193 1.149 2.953 1.059 1.149 1.387 1.059 1.093 0.176 0.012

1 1.194 1.107 1.639 1.075 1.133 1.162 1.190 1.330 1.099 0.208 0.021
5 1.414 1.088 1.650 1.092 1.190 1.221 1.285 1.752 1.113 0.294 0.069

10 1.537 1.080 1.683 1.096 1.263 1.230 1.330 1.962 1.123 0.349 0.111
16 1.658 1.087 1.678 1.107 1.290 1.256 1.370 2.196 1.125 0.409 0.160
32 1.979 1.093 1.752 1.144 1.409 1.282 1.423 2.591 1.136 0.538 0.291
50 2.213 1.093 1.815 1.170 1.560 1.310 1.484 2.873 1.160 0.647 0.436

λ 0.1 1.711 1.098 1.142 1.142 1.058 1.120 1.634 1.066 1.127 1.766 1.128 1.130 1.962 1.194 1.149 2.957 1.059 1.151 1.387 1.060 1.094 0.177 0.012
1 1.141 1.107 1.644 1.069 1.128 1.161 1.189 1.327 1.098 0.210 0.021
5 1.284 1.088 1.660 1.084 1.184 1.221 1.286 1.726 1.113 0.295 0.069

10 1.345 1.078 1.679 1.089 1.228 1.238 1.339 1.952 1.119 0.351 0.111
16 1.379 1.088 1.671 1.100 1.257 1.261 1.378 2.210 1.124 0.411 0.160
32 1.532 1.094 1.713 1.121 1.330 1.287 1.433 2.590 1.129 0.539 0.291
50 1.631 1.093 1.743 1.135 1.421 1.305 1.478 2.878 1.143 0.649 0.437

Break in all regressors
ι 0.1 2.729 1.316 2.364 2.449 2.362 2.418 2.902 2.396 2.445 3.035 2.492 2.459 3.204 2.559 2.493 4.239 2.390 2.491 2.791 2.376 2.415 0.177 0.012

1 2.253 2.415 2.923 2.392 2.441 2.502 2.538 2.726 2.420 0.209 0.021
5 2.228 2.383 2.932 2.427 2.483 2.584 2.658 3.143 2.434 0.294 0.069

10 2.220 2.370 3.015 2.435 2.543 2.604 2.708 3.433 2.443 0.351 0.112
16 2.150 2.376 2.993 2.459 2.585 2.624 2.737 3.664 2.445 0.410 0.160
32 2.397 2.384 3.045 2.486 2.676 2.694 2.858 4.098 2.458 0.539 0.291
50 2.567 2.386 3.107 2.503 2.884 2.696 2.874 4.386 2.484 0.650 0.438

λ 0.1 1.781 1.163 1.375 1.400 1.307 1.367 1.844 1.292 1.380 1.984 1.336 1.384 2.168 1.386 1.409 3.163 1.288 1.411 1.637 1.310 1.346 0.177 0.012
1 1.369 1.359 1.857 1.293 1.374 1.408 1.436 1.603 1.345 0.209 0.021
5 1.467 1.338 1.872 1.311 1.414 1.465 1.531 2.007 1.354 0.293 0.069

10 1.511 1.328 1.904 1.314 1.459 1.481 1.574 2.274 1.359 0.351 0.111
16 1.494 1.337 1.892 1.329 1.487 1.489 1.594 2.485 1.358 0.409 0.160
32 1.644 1.343 1.928 1.347 1.560 1.535 1.675 2.868 1.371 0.538 0.292
50 1.703 1.345 1.959 1.358 1.654 1.545 1.711 3.178 1.382 0.649 0.438
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Table 15: Forecasts for T + 2|T + 1 where break occurs at T + 1. DGP contains lagged dependent
variable with persistence of 0.5. ψ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1). N = 15, so there are n = 5
relevant regressors andN−n = 10 irrelevant regressors. Intercept forced and not included in measure of
potency. Pool (1) given by an equally weighted average of (iv,a) Robust RW, (iii) in-sample forecast for
X , and (vi,b) Direct y forecast using an AR(1). Pool (3) given by an equally weighted average of (iv,b)
Robust RW with Diff and (iii) in-sample forecast for X . Bold indicates minimum MSFE for selection
with unknown regressors, with underline highlighting next smallest MSFE and italic highlighting third
smallest MSFE.

(i) known regressors (ii) in-sample mean (iii) in-sample forecast ((iv) robust forecast (v) AR(1) forecast (vi) direct forecast (vii) Pool selection
(a) RW (b) RW with diff

α (%) GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select GUM DGP Select (a) RW (b) AR(1) (3) (1) Potency Gauge
No break

0.1 1.506 1.071 1.161 1.109 1.062 1.096 1.559 1.062 1.104 1.823 1.130 1.118 1.996 1.197 1.154 2.964 1.062 1.169 1.362 1.054 1.118 1.080 0.179 0.013
1 1.189 1.090 1.564 1.061 1.112 1.119 1.149 1.324 1.109 1.075 0.209 0.023
5 1.222 1.076 1.555 1.069 1.148 1.161 1.231 1.567 1.143 1.080 0.291 0.071

10 1.266 1.076 1.546 1.077 1.181 1.188 1.276 1.787 1.165 1.087 0.355 0.113
16 1.296 1.078 1.573 1.084 1.221 1.220 1.326 2.026 1.198 1.100 0.406 0.160
32 1.412 1.080 1.571 1.091 1.310 1.275 1.435 2.309 1.260 1.121 0.533 0.292
50 1.460 1.080 1.576 1.079 1.347 1.318 1.512 2.609 1.292 1.132 0.645 0.436

Break in relevant regressors
ι 0.1 2.182 1.436 3.603 4.440 4.066 4.213 3.489 2.578 3.882 5.177 1.622 3.715 5.561 1.528 3.616 4.705 2.504 4.003 2.664 3.849 3.690 3.786 0.182 0.013

1 3.153 4.191 3.503 2.517 3.558 3.372 3.230 3.973 3.288 3.528 0.220 0.022
5 2.492 4.221 3.537 2.397 3.083 2.798 2.598 3.892 2.638 3.092 0.315 0.069

10 2.237 4.235 3.571 2.317 2.869 2.548 2.339 3.940 2.349 2.889 0.377 0.111
16 2.067 4.256 3.587 2.276 2.657 2.382 2.178 4.044 2.140 2.729 0.424 0.159
32 2.140 4.302 3.641 2.186 2.630 2.146 2.023 4.204 1.969 2.551 0.544 0.293
50 2.089 4.325 3.636 2.147 2.582 2.044 1.961 4.415 1.857 2.447 0.656 0.436

λ 0.1 1.742 1.206 1.865 2.011 1.884 1.943 2.161 1.540 1.886 2.708 1.341 1.871 2.917 1.284 1.879 3.526 1.516 1.947 1.782 1.825 1.863 1.845 0.180 0.013
1 1.809 1.933 2.167 1.531 1.834 1.804 1.796 2.105 1.783 1.794 0.210 0.023
5 1.640 1.927 2.172 1.510 1.755 1.705 1.697 2.303 1.652 1.698 0.295 0.070

10 1.600 1.925 2.165 1.508 1.740 1.664 1.662 2.531 1.601 1.660 0.360 0.113
16 1.622 1.936 2.170 1.505 1.716 1.620 1.632 2.718 1.555 1.618 0.416 0.159
32 1.686 1.947 2.193 1.495 1.759 1.600 1.645 2.975 1.545 1.590 0.540 0.292
50 1.705 1.955 2.218 1.484 1.777 1.593 1.664 3.195 1.528 1.569 0.651 0.438

Break in irrelevant regressors
ι 0.1 2.793 1.071 1.194 1.111 1.062 1.096 2.917 1.067 1.116 2.354 1.129 1.124 3.169 1.196 1.179 4.273 1.062 1.191 1.361 1.053 1.122 1.079 0.178 0.013

1 1.304 1.086 2.976 1.071 1.174 1.139 1.212 1.381 1.143 1.084 0.209 0.022
5 1.603 1.072 3.091 1.118 1.343 1.221 1.398 1.738 1.245 1.102 0.288 0.069

10 1.779 1.074 3.204 1.146 1.465 1.277 1.523 2.032 1.319 1.121 0.348 0.111
16 1.928 1.084 3.258 1.171 1.563 1.327 1.621 2.310 1.377 1.137 0.410 0.157
32 2.353 1.079 3.462 1.229 1.885 1.416 1.848 2.872 1.542 1.194 0.536 0.290
50 2.612 1.084 3.578 1.254 2.086 1.476 1.972 3.178 1.645 1.237 0.646 0.437

λ 0.1 1.908 1.071 1.178 1.110 1.062 1.097 2.008 1.061 1.108 2.076 1.130 1.120 2.417 1.197 1.158 3.379 1.062 1.189 1.362 1.054 1.119 1.081 0.179 0.013
1 1.228 1.091 2.029 1.063 1.129 1.123 1.162 1.345 1.120 1.079 0.209 0.023
5 1.373 1.080 2.046 1.090 1.209 1.186 1.273 1.637 1.186 1.096 0.290 0.071

10 1.433 1.080 2.091 1.104 1.265 1.215 1.325 1.869 1.212 1.104 0.347 0.113
16 1.488 1.076 2.107 1.122 1.292 1.214 1.340 2.122 1.219 1.097 0.411 0.160
32 1.692 1.077 2.204 1.138 1.370 1.295 1.494 2.387 1.281 1.115 0.539 0.291
50 1.803 1.085 2.227 1.160 1.505 1.333 1.571 2.753 1.347 1.144 0.648 0.437

Break in all regressors
ι 0.1 3.306 1.436 3.684 4.521 4.138 4.300 2.887 2.519 3.938 5.951 1.625 3.777 7.064 1.529 3.691 4.064 2.533 4.104 2.687 3.913 3.748 3.839 0.181 0.014

1 3.278 4.274 2.950 2.405 3.686 3.382 3.268 4.068 3.342 3.567 0.221 0.023
5 2.713 4.283 3.153 2.201 3.091 2.821 2.710 3.927 2.639 3.050 0.311 0.069

10 2.581 4.292 3.257 2.087 2.927 2.527 2.431 4.083 2.363 2.809 0.373 0.112
16 2.589 4.336 3.434 2.002 2.784 2.416 2.334 4.134 2.196 2.667 0.426 0.157
32 2.853 4.379 3.583 1.888 2.798 2.214 2.238 4.542 2.067 2.460 0.546 0.291
50 3.067 4.411 3.730 1.829 2.821 2.135 2.235 4.935 2.017 2.357 0.657 0.438

λ 0.1 2.064 1.206 1.894 2.026 1.896 1.963 2.234 1.526 1.896 3.019 1.342 1.883 3.424 1.283 1.885 3.533 1.520 1.988 1.785 1.836 1.870 1.854 0.181 0.013
1 1.846 1.948 2.239 1.508 1.847 1.820 1.815 2.147 1.797 1.803 0.210 0.023
5 1.744 1.942 2.270 1.485 1.774 1.706 1.715 2.359 1.665 1.695 0.296 0.070

10 1.727 1.936 2.322 1.477 1.765 1.666 1.666 2.518 1.610 1.653 0.361 0.112
16 1.740 1.950 2.355 1.480 1.723 1.633 1.659 2.727 1.563 1.606 0.412 0.159
32 1.911 1.958 2.434 1.456 1.775 1.625 1.692 3.005 1.562 1.573 0.546 0.293
50 1.945 1.969 2.472 1.457 1.842 1.624 1.716 3.354 1.566 1.566 0.652 0.435
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