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Abstract

Log-linear and log-log regressions are one of the most used statistical model. However,

handling zeros in the dependent and independent variable has remained obscure de-

spite the prevalence of the situation. In this paper, we discuss how to deal with this

issue. We show that using Pseudo-Poisson Maximum Likelihood (PPML) is a good prac-

tice compared to other approximate solutions. We then introduce a new complementary

solution to deal with zeros consisting in adding a positive value specific to each obser-

vation that avoids some numerical issues faced by the former.
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1 INTRODUCTION

Econometric specifications often involve log-transformations for three main reasons.

(1) A log-log relationship leads to an elasticity β .1 (2) The log can also linearize a

theoretical model (e.g., a Cobb Douglas production function) or appear in a structural

model (e.g, demand estimation using data aggregated at the market level). (3) It can

be used to reduce heteroskedasticity within feasible generalized least squares proce-

dure.

However, it often occurs that the variable taken in log contains non-positive values.

For instance, a company can employ no worker, a product can have zero sales in a

given market, or two countries have zero trade in a given year. Measurement errors

can also generate non-positive values. In this case, the log is undefined and a fix is

needed. Although this problem is quite common, the solution to be adopted is still

unclear. For instance, the question “Log transformation of values that include 0 (zero)

for statistical analyses?” on the forum of ResearchGate has been opened in 2014. This

question has received 89 contributions and has been read about 64.000 times (at the

time of April 2019), revealing the magnitude of the issue, which goes way beyond the

economic field.2. Among these 89 contributions, there are 38 different users proposing

their “personal approach” to this issue, which we classified in six categories (detailed in

the next sections) in Graph 1 to show the absence of consensus. This suggests that the

best practice may have failed to reach a broad audience. In addition, some methods

used in practice can be misleading.

1Indeed,in a log-log regression such that log(y) = β log(x) + ε, we have ∂ log(y)
∂ log(x) =

∂ y
∂ x

x
y = β .

2See https://www.researchgate.net/post/Log_transformation_of_values_that_
include_0_zero_for_statistical_analyses2. Six months earlier, in November 2018, this
thread had received 77 answers and had been read 48.000 times. The 33% increase in viewership
reveals an ongoing interest in this issue.

2

 https://www.researchgate.net/post/Log_transformation_of_values_that_include_0_zero_for_statistical_analyses2
 https://www.researchgate.net/post/Log_transformation_of_values_that_include_0_zero_for_statistical_analyses2


19

6

5

5

2

1

0 5 10 15 20
mean of freq

Add a positive constant to the observations

Poisson regression (PPML)

Other transformations (inverse hyperbolic sine, box cox, …)

Mixture models (tobit, zero-inflated model, …)

Delete zero observations

Estimate in level instead of log (OLS regression)

Figure 1: Number of “personal solutions” by category on the ResearchGate forum

This paper’s contribution is to clarify this practical issue in a didactic way. To do so,

we discuss the best practices to handle non-positive values in the independent variable

and the dependent variables when one wants to estimate a log or a log-log regression.

First, we review the common naive methods that may be used by practitioners and that

generate biases. Second, we explain why PPML is a good solution to handle this issue

without bias. Third, we propose a new solution that can easily be implemented and

where the coefficient β can directly be interpreted as a (semi-) elasticity. It consists in

adding a positive value specific to each observation, in the spirit of what is commonly

done in practice. This method can complement PPML proposed by Santos Silva and

Tenreyro (2006) when the latter faces computational difficulties with large dependent

variables. Finally, we extend the framework to log-log regressions where the indepen-

dent variable can contain zeros.

2 COMMON MISCONCEPTIONS AMONG PRACTITIONERS

Several solutions were adopted by practitioners to work around this issue. A first so-

lution is to delete the non-positive observations (Young and Young (1975)). However,

this radical solution might introduce in turn selection bias if the occurrence of non-

positive values is not random and if the number of concerned observation is high. For
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instance, when analyzing the link between doctor visits and health, healthy patients

are more likely to have zero appointments with their doctor during an observation pe-

riod. Deleting these observations would change the scope of the study, narrowing it to

the less healthy patients.

A second solution uses log-like transformations that can be applied with non-positive

observations. A popular one is the inverse hyperbolic sine transformation introduced

by Johnson (1949), and developed by Burbidge et al. (1988).3 The inverse hyperbolic

sine transformation writes f (y) = log(y +(y2+1)0.5), which tends toward log(2y) as

y increases. Its similarity with the log function has led some to believe that they can

be used interchangeably. However, for small y , this transformation can behave differ-

ently than the log function. Besides, as shown in Bellemare and Wichman (2019), the

interpretation of the estimated coefficients is not trivial and the underlying elasticity

is potentially biased or undefined.4 Moreover, if the underlying model naturally writes

in log, then this transformation is still an approximation that is likely to bias the es-

timated coefficients. For recent applications of this method, see McKenzie (2017) or

Card and DellaVigna (2017).

A third solution is to add a positive constant c to all observations Y so that Y + c > 0

(see for instance MaCurdy and Pencavel (1986), Rogowski and Newhouse (1992) or

Criscuolo et al. (2019)). It is not easy to find papers clearly stating that they im-

plemented this transformation. We think that concretely, many practitioners use this

solution without even mentioning it because they think that adding a very small con-

stant is not going to be harmful. However, the choice of the constant is discretionary

and likely to bias the coefficient estimates. Contrary to linear regressions, log-linear

regressions are not robust to linear transformation of the dependent variable. This

is due to the non-linear nature of the log function. Log transformation expands low

values and squeezes high values. Therefore, adding a constant will distort the (linear)

relationship between zeros and other observations in the data. The magnitude of the

bias generated by the constant actually depends on the range of observations in the

data. For that reason, adding the smallest possible constant is not necessarily the best

worst solution. A variant of that solution consists in adding a constant value only to

the problematic observations that are non-positive. Then, the model is often estimated

rather by adding a dummy variable to indicate such a treatment, but this alternative

3An extended concave version of this transformation has recently been provided by Ravallion (2017).
4In particular, he shows that if one estimates f (y) = α + β x + ε, then the elasticity writes ζ̂y x =

β̂ x .
p

y2+1
y . This elasticity is not defined for y = 0, and to interpret β as the elasticity, one needs x = 1

and large values of y .
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practice generates the same kind of trouble.5

To understand how this solution biases the estimated coefficients, consider the follow-

ing model. Let us denote N the number of observations. For observation i, we denote

the dependent variable by yi and the explanatory variables by the vector x i of size K×1.

The vector of parameters is β . There is also a constant denoted α. εi is zero-mean error

term assumed to be independently distributed from one another, independent from x i,

and that E(εi|x i) = 0. Suppose that one wants to estimate the following functional

form.

log(yi) = α+ x ′iβ + εi (2.1)

If there exists at least one yi = 0, this function is not defined. The popular fix consists

in adding a constant to the dependent variable, that we denote by ∆. Exponentiating

on both sides, and rearranging, we get

yi +∆= ex p(α+ x ′iβ + εi) +∆ (2.2)

So that

log(yi +∆) = log(exp(α+ x ′iβ + εi) +∆) (2.3)

We can re-arrange to get6

log(yi +∆) = α+ x ′iβ + εi + log

�

1+
∆

exp(α+ x ′iβ + εi)

�

(2.4)

In practice, this is equivalent to running the following regression with ordinary least

squares with a new error term ωi

log(yi +∆) = α+ x ′iβ +ωi (2.5)

with ωi = εi + log

�

1+
∆

exp(α+ x ′iβ + εi)

�

(2.6)

Ordinary least squares provides unbiased coefficients ifE(ωi|x i) = 0. However, log
�

1+ ∆
exp(α+x ′iβ+εi)

�

is unobserved and correlated with x i. This is in contradiction with the hypothesis that

ωi is exogenous. 7

5Johnson and Rausser (1971) propose a solution where the constant variable that is added to non-
positive observations is treated as an additional parameter to be estimated simultaneously with other
parameters. However, their method is not built to obtain unbiased values of the other parameters, it
just maximizes the fit of the model.

6We use the following: log(a+ b) = log
�

a
�

1+ b
a

��

7Indeed, for the kth variable COV(x ik,ωi) = COV
�

x ik,εi + log
�

1+ ∆
exp(α+x ′iβ+εi)

��

=
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One may nonetheless believe this bias to be negligible for small values of the constant

∆. Through Monte Carlo simulation, we show this to be inexact. We draw 100 000

observations from a Poisson distribution Poisson(λi), where the conditional moment

E(yi|x i) = λi, and λi is parameterized as λi = exp(1 + x i,1). x1 is drawn from a

standard uniform distribution. We vary ∆ on the regression log(yi+∆) = x iβ+α+εi.

Figure 2 presents the relative absolute bias of the estimates as a function of the value of

∆: 100×| β̂−ββ |. It shows that there may exist an optimal∆∗ but that it is not necessarily

the smallest possible value for ∆, contrary to common belief. Moreover, the size of the

bias may be substantial.
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Figure 2: Bias against ∆

3 RECOMMENDED PRACTICE

This section presents what, we argue, should be considered a good practice. Although

this is not their original goal, Santos Silva and Tenreyro (2006) proposed to use Pois-

son Pseudo Maximum Likelihood (PPML) as a potential solution. They consider the

COV
�

x ik, log
�

1+ ∆
exp(α+x ′iβ+εi)

��

6= 0
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following process.8

yi = ai exp(α+ x ′iβ) with E(ai|x i) = 1 (3.1)

This process is motivated by several features. First, it provides the same interpretation

to β as a semi-log model.9 Second, this data generating process provides a logical

rationalization of zero values in the dependent variable. This situation can arise when

the multiplicative error term, ai, is equal to zero. It corresponds to the case where εi →
−∞ in a log-model such as log(yi) = α+ x ′iβ + εi

10, which contradicts the existence

of a finite conditional expectation of the error term. Third, estimating this model with

PPML does not encounter the computational difficulty when yi = 0. Indeed, under

the assumption that E(ai|x i) = 1, we have E(yi − exp(α + x ′iβ)|x i) = 0. We want

to minimize the quadratic error of this moment, leading to the following first-order

conditions:

N
∑

i=1

�

yi − exp(α+ x ′iβ)
�

x ′i = 0 (3.2)

As it clearly appears, these conditions are defined even when yi = 0. These first-order

conditions are numerically equivalent to those of a Poisson (Gourieroux et al. (1984)).

Furthermore, as originally intended in Santos Silva and Tenreyro (2006), this solution

is robust to heteroscedasticity in ai. This estimation can be easily implemented with

standard econometric software. For instance, in Stata, the package ppml (Santos Silva

and Tenreyro (2015)) is straightforward to use and can account for fixed effects when

they are not too many of them. The package ppmlhdfe (Correia et al. (2019)) allows

one to deal with high-dimensional fixed effects. A recent example of application can

be found in Head and Mayer (2019).

To exemplify the method, we simulate data with yi = 0 from a Poisson distribution

Poisson(λi), where λi is parameterized as λi = exp(−1+ 0.5x i,1 + 1.5x i,2). x1 and x2

are drawn from standard uniform distributions. We compare the estimated coefficients

obtained by PPML with those obtained when we added a constant ∆ = 0.01, or a

constant∆= 1 to yi, as suggested by McCune et al. (2002) for count-data observations.

8Moreover, other processes than those considered in this paper can generate zero values in the depen-
dent variable. Santos Silva et al. (2015) propose a procedure to discriminate between these competing
specifications.

9To be clear, with yi = ai exp(α+x ′iβ), then ∂ y
∂ x

1
y = β , the model directly identifies the semi-elasticity.

To obtain an elasticity, one has just to consider yi = ai exp(α+ log(x i)β), then ∂ y
∂ x

x
y = β .

10Or, equivalently, that ai → 0 if we note εi = log(ai)
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Table 1 presents the results. The coefficients obtained from PPML provides the lowest

bias among all three options.

Table 1: Comparison of the PPML with misconceived tricks on simulated data
Real Coefficients OLS:∆= 0.01 OLS:∆= 1 PPML

x1 0.500 0.874∗∗∗ (0.0806) 0.221∗∗∗ (0.0168) 0.470∗∗∗ (0.0336)
x2 1.500 2.969∗∗∗ (0.0764) 0.728∗∗∗ (0.0164) 1.550∗∗∗ (0.0349)
α -1.000 -3.393∗∗∗ (0.0611) 0.122∗∗∗ (0.0121) -1.026∗∗∗ (0.0301)
Observations 10000 10000 10000 10000

Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In some cases, this method faces computational difficulties, as evidenced in Santos Silva

and Tenreyro (2011). For instance, when the dependent variable has some large val-

ues, the PPML does not converge in Stata. Santos Silva and Tenreyro (2011) suggest to

normalize the dependent variable to solve this issue. However, standards normaliza-

tion does not always work, which could lead to misleading conclusions. We exemplify

this in the next Session.

4 A NEW COMPLEMENTARY SOLUTION

We provide a new complementary solution which by-passes this issue and provides ro-

bustness against computational biases generated by arbitrary normalization methods.

Given that the most intuitive way to handle zeros amounts to adding a positive constant

to the data points, our solution consists in adding an optimal positive value ∆i (which

varies over observations) that does not generate correlation between the error term

and the regressors. This solution does not require the deletion of observations or the

estimation of a supplementary parameter or the addition of a discretionary constant.

It only relies on the independence between the error term and the covariates.

Consider the following data generating process such that E(εi) = 0 and εi independent

from x i,

log(yi) = α+ x ′iβ + εi (4.1)

We now exponentiate and add a constant ∆i to the model,

yi +∆i = exp (α+ x ′iβ + εi) +∆i (4.2)

8



If we let ∆i = exp (x ′iβ), then the previous equation can be rewritten as

yi + exp(x ′iβ) = exp(α+ x ′iβ + εi) + exp(x ′iβ) = exp(x ′iβ)(1+ exp(α+ εi)) (4.3)

And since yi + exp (x ′iβ) is strictly non-negative for any observation, we get :

log(yi + exp (x ′iβ)) = x ′iβ + log(1+ exp (α+ εi)) (4.4)

Let us denote ηi = log(1+ exp (α+ εi)), then we only need to estimate 11

log(yi + exp (x ′iβ)) = x ′iβ +ηi (4.5)

This new residual term does not depend on the independent variables by virtue of the

independence assumption 12. Therefore, the parameter β can be identified using all

observations, included those where y = 0. Note that ηi does not have a zero mean

expected value. However, we can write ξi = ηi−λ where λ is a constant non-negative

value such that E(ξi) = 0. Thus, by independence:

E
�

log(yi + exp (x ′iβ))− x ′iβ −λ
�

= 0 (4.6)

E
�

x i(log(yi + exp (x ′iβ))− x ′iβ −λ)
�

= 0 (4.7)

These moments suggest estimation through the non-linear generalized method of mo-

ment. We show in Appendix A that there is a unique solution to this set of empirical

moments. In practice, it is very easy to implement using any standard statistical soft-

ware.

For instance, with Stata, this can be executed with the following command:

gmm (log(y+exp({xb:x}))-{xb:}-{lambda}), instruments(x) wmatrix(robust)

where y and x respectively represent the dependent and the list of independent vari-

ables. wmatrix(robust) is an option to obtain robust standard errors. In instruments,

one can also add instrumental variables.

Unfortunately, the moments imply that α cannot be identified directly. However, given

11 ηi is related to ai by the equality ηi = log(1+ exp(α+ εi)) = log(1+ exp(α)ai)
12This estimator is not robust to heteroskedasticity in εi that may depend on a variable x i . Indeed,

heteroskedasticity would contradict the independence assumption.
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λ̂ and ξ̂, one can recover η̂i. In turn, we have :

exp(ηi) = 1+ exp(α+ εi) ⇐⇒ log(exp(ηi)− 1) = α+ εi (4.8)

which leads to the OLS closed form solution:

α̂=

∑N
n=1 log

�

exp(ξ̂i + λ̂)− 1
�

N
(4.9)

We also provide in Appendix B Stata code to obtain the coefficient α.

We illustrate this method using simulated data. We generate the following process:

yi = exp(x1 + x2)ai where ai is the error term. It is a uniform on [0,2] with its value

replaced with zero if the draw was below 0.4 and replaced by two if the draw was

above 1.6. Table 2 displays the results. It shows that the new proposed solutions

provides correct estimates, as does PPML (presented in the next Section), whereas

adding ∆= 0.01 or ∆= 1 to all data points biases the results.

Table 2: Comparison of the best practice with the new solution on simulated data
Real Coefficients OLS:∆= 1 PPML Proposed Solution

x1 1.000 0.609*** (0.0230) 1.012*** (0.0251) 1.022*** (0.0308)
x2 1.000 0.609*** (0.0226) 1.024*** (0.0251) 1.012*** (0.0301)
α 0 0.547*** (0.0154) -0.0192 (0.0199)
λ 0.620*** (0.00982)
Observations 10000 10000 10000 10000

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

We further illustrate the numerical issue aforementioned. We draw 100 000 obser-

vations and three variables. x1 and x2 are standard normal, and the error term u

is normal with a standard deviation of ten. Then, the dependent variable is y =
exp(1 + x1 + 3x2 + u). By construction, the dependent variable can take large val-

ues. In Table 3, we apply PPML with two different normalization methods. In the first

one, we divide y by its mean value and in the second one, by its standard deviation.

In both cases, PPML does not provide adequate estimates while our solution does.

10



Table 3: Comparison of PPML and our solution when y takes on large values
Real Coefficients Normalized PPML Normalized PPML Proposed Solution

(mean) (s.d.)
x1 1.000 0.408 (0.517) 0.408 (0.517) 1.032*** (0.0364)
x2 3.000 0.929*** (0.224) 0.929*** (0.224) 2.966*** (0.0358)
α 1.000 -0.521 (0.758) -5.706*** (0.758)
λ 4.558*** (0.0193)
Observations 100000 100000 100000 100000

Robust standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

5 EXTENSION FOR INDEPENDENT VARIABLES

In many econometric applications, the main parameter of interest is an elasticity of

yi with respect to x i. This can be recovered by a log-log regression. In practice, it is

common to have both dependent and independent variables that are equal to zero for

some observations. Taking the log-transform of either of these variables is impossible.

We recommend to use the following approach. Let the parameter value β be a function

of the data x i, so that the β takes the value β(x i>0) if x i > 0 and the value β(x i=0) if

x i = 0. Note :

log(x i)β(x i) = 1(x i > 0) log(x i)β(x i>0) + (1− 1(x i > 0))β(x i=0)

All we need to do now is to estimate as in the previous section :

log(yi) = α+ 1(x i > 0) log(x i)β(x i>0) + (1− 1(x i > 0))β(x i=0) + εi (5.1)

This is akin to the semi-parametric approach consisting in providing a flexible formu-

lation of β such that it can vary with x i.

To illustrate this, we draw 10 000 observations from a process yi = exp(1.5 log(x i)+εi)
where εi ∼ χ2

1 and x i is drawn from the standard uniform. We assume that we only

have access to censored version of x i is equal to zero when x i < 0.1. Table 4 presents

the estimated coefficients with different methods.
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Table 4: Example of the use of β(x i=0) to account for zero values in the regressors

OLS PPML Proposed Solution
β(x i>0) 1.511∗∗∗ (0.0197) 1.465∗∗∗ (0.114) 1.500∗∗∗ (0.0204)
β(x i=0) -4.978∗∗∗ (0.0395) -4.892∗∗∗ (0.123) -4.655∗∗∗ (0.0467)
α 0.000752 (0.0188) 0.890∗∗∗ (0.0931)
λ 0.793∗∗∗ (0.00981)
Observations 10000 10000 10000

Robust Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

6 Conclusion

In this paper, we discuss the best practice to deal with zeros in log-linear and log-log

regressions. We first present some common misconceptions encountered in practice

that may generate arbitrary sources of bias. We then explain why the PPML estima-

tor provides a good solution. We also introduce a new solution to deal with zeros in

the spirit of adding a positive constant to the dependent variable, which is particularly

useful when PPML faces numerical issues. Finally, we discuss the case where the in-

dependent variable in a log-log regression also contains zeros. The conclusions can be

applied in many fields in and outside of economics.

References

BELLEMARE, M. F. AND C. J. WICHMAN (2019): “Elasticities and the Inverse Hyperbolic

Sine Transformation,” Working paper.

BURBIDGE, J. B., L. MAGEE, AND A. L. ROBB (1988): “Alternative Transformations to

Handle Extreme Values of the Dependent Variable,” Journal of the American Statisti-

cal Association, 83, 123–127.

CARD, D. AND S. DELLAVIGNA (2017): “What do Editors Maximize? Evidence from Four

Leading Economics Journals,” Working Paper 23282, National Bureau of Economic

Research.

CORREIA, S., P. GUIMARÃES, AND T. ZYLKIN (2019): “ppmlhdfe: Fast Poisson Estimation

with High-Dimensional Fixed Effects,” arXiv e-prints.

12



CRISCUOLO, C., R. MARTIN, H. G. OVERMAN, AND J. VAN REENEN (2019): “Some Causal

Effects of an Industrial Policy,” American Economic Review, 109, 48–85.

GOURIEROUX, C., A. MONFORT, AND A. TROGNON (1984): “Pseudo Maximum Likeli-

hood Methods: Applications to Poisson Models,” Econometrica, 52, 701–20.

HEAD, K. AND T. MAYER (2019): “Brands in Motion, How Frictions Shape Multinational

Production,” American Economic Review, forthcoming.

JOHNSON, N. L. (1949): “Systems of Frequency Curves Generated by Methods of Trans-

lation,” Biometrika, 36, 149–176.

JOHNSON, S. R. AND G. C. RAUSSER (1971): “Effects of Misspecifications of Log-Linear

Functions When Sample Values Are Zero or Negative,” American Journal of Agricul-

tural Economics, 53, 120–124.

MACURDY, T. E. AND J. H. PENCAVEL (1986): “Testing between Competing Models of

Wage and Employment Determination in Unionized Markets,” Journal of Political

Economy, 94, S3–S39.

MCCUNE, B., J. B. GRACE, AND D. L. URBAN (2002): Analysis of Ecological Communities,

MjM Software Design.

MCKENZIE, D. (2017): “Identifying and Spurring High-Growth Entrepreneurship: Ex-

perimental Evidence from a Business Plan Competition,” American Economic Review,

107, 2278–2307.

RAVALLION, M. (2017): “A concave log-like transformation allowing non-positive val-

ues,” Economics Letters, 161, 130 – 132.

ROGOWSKI, J. A. AND J. P. NEWHOUSE (1992): “Estimating the indirect costs of teach-

ing,” Journal of Health Economics, 11, 153 – 171.

SANTOS SILVA, J. AND S. TENREYRO (2006): “The Log of Gravity,” The Review of Eco-

nomics and Statistics, 88, 641–658.

——— (2011): “poisson: Some convergence issues,” The Stata Journal, 11, 207 – 212.

——— (2015): “PPML: Stata module to perform Poisson pseudo-maximum likelihood

estimation,” Statistical Software Components.

SANTOS SILVA, J., S. TENREYRO, AND W. F. (2015): “Testing Competing Models for Non-

negative Data with Many Zeros,” Journal of Econometric Methods, 4, 1–18.

13



YOUNG, K. H. AND L. Y. YOUNG (1975): “Estimation of Regressions Involving Loga-

rithmic Transformation of Zero Values in the Dependent Variable,” The American

Statistician, 29, 118–120.

14



A Proof of Uniqueness

We want to minimize the following quadratic loss:

�

β̂ , λ̂
�

= argmin
(β ,λ)

¨

1
N

N
∑

i=1

�

x i(log(yi + exp (x ′iβ))− x ′iβ −λ)
�

«′¨
1
N

N
∑

i=1

�

x i(log(yi + exp (x ′iβ))− x ′iβ −λ)
�

«

(A.1)

Which has as first order condition :

0= (1/N)
N
∑

i

�

x i(log(yi + exp (x ′i β̂))− x ′i β̂ − λ̂)
�

(A.2)

With second order condition :

− (1/N)
N
∑

i

x ′i x i

�

yi

yi + exp(x ′iβ)

�

(A.3)

which is negative definite, as required.

B Calculating α

Stata code to obtain the constant α.

gmm ( log(y+exp({xb:x} ))-{xb:}-{lambda} ), instruments(x) wmatrix(robust)
gen lambda = [lambda]_cons
predict xi, res
gen eta_i = lambda + xi
gen alpha_epsilon = log(exp(eta_i)-1)
reg alpha_epsilon
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