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Genetic basis of ruminant headgear
and rapid antler regeneration
Yu Wang*, Chenzhou Zhang*, Nini Wang*, Zhipeng Li*, Rasmus Heller*, Rong Liu*,
Yue Zhao*, Jiangang Han*, Xiangyu Pan, Zhuqing Zheng, Xueqin Dai, Ceshi Chen,
Mingle Dou, Shujun Peng, Xianqing Chen, Jing Liu, Ming Li, Kun Wang, Chang Liu,
Zeshan Lin, Lei Chen, Fei Hao, Wenbo Zhu, Chengchuang Song, Chen Zhao,
Chengli Zheng, Jianming Wang, Shengwei Hu, Cunyuan Li, Hui Yang,
Lin Jiang, Guangyu Li, Mingjun Liu, Tad S. Sonstegard,
Guojie Zhang, Yu Jiang†, Wen Wang†, Qiang Qiu†

INTRODUCTION:All pecoran families, except
the Moschidae, have cranial appendages or
headgear, a unique structure among mam-
mals that has a different morphology in each
family (ossicones in giraffids, pronghorns in
pronghorn, antlers in cervids, and horns in
bovids). Moreover, the deer antler is the only
completely regenerable organ found in mam-
mals, thus providing a unique model for regen-
erative biology. Antlers also have extremely
rapid growth rates (~1.7 cm/day in red deer),

with rates of cell proliferation that surpass
even cancerous tissue growth. Cervids also
have low cancer rates. The relation between a
tight regulation of antler growth and inhibi-
tion of oncogenesis in deer may provide in-
sights for cancer prevention and therapy in
humans and other organisms.

RATIONALE:We obtained 221 transcriptomes
from bovids and cervids and sequenced three
genomes representing the two pecoran lin-

eages that convergently lack headgear. Com-
paring the data with a large set of ruminant
genomes, including nine cervids, we detect
genetic changes (lineage-specific positively
selected genes and conserved elements) in
pecorans with headgear (PWH), particularly
cervids. Using the observed genetic changes
and gene expression in headgear, we explore
the genomic basis of ruminant headgear ori-
gin and antler regeneration.

RESULTS:We find that highly or specifically
expressed genes in horns and antlers are most

frequently coexpressed in
bone, skin, nerve tissues,
and testis. Many genes
under positive selection in
PWH(e.g.,OLIG1,OTOP3),
PWH-specific genes asso-
ciated with highly con-

served elements (e.g., HOXD gene cluster,
SNAI2, TWIST1, SOX9), and genes highly or
specifically expressed in headgear (RXFP2,
SOX10,NGFR) are involved in neural functions.
In addition, RXFP2, which is specifically ex-
pressed in headgear and testis, was conver-
gently pseudogenized in the headgearless
lineages ofMoschidae andHydropotinae. The
expression profile of antler is more correlated
with osteocarcinoma than with normal bone
tissue expression profiles. A number of proto-
oncogenes (FOS, REL, FAM83A) and tumor
suppression genes have been positively selected
in cervids, especially several cofactor genes
(PML,NMT2, andCD2AP) and regulator genes
(ELOVL6, S100A8, ISG15,CNOT3, andCCDC69)
of the p53 tumor suppressor, suggesting that
these adaptive changes may enhance cancer
resistance in deer.

CONCLUSION: Together, the phylogeny, gene
expression profiles, and convergent headgear
losses support a single evolutionary origin of the
ruminant headgear. Pecoran headgear likely
share a common cellular origin from neural
crest stem cells, and the determination of the
chondrogenic and neural lineages is important
for headgear development. In addition, cervid-
specific genetic changes in tumor suppressor
and proto-oncogenes imply that the regen-
erative properties of antler tissue exploit onco-
genesis pathways. Our study reveals genetic
mechanisms underlying the evolutionary, de-
velopmental, and histological origin of rumi-
nant headgear, as well as antler regeneration.
The identified genes and their unique muta-
tions provide guidelines for future functional
studies of headgear development, regeneration
of mammalian organs, and oncogenesis.▪
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Neural crest cellular origin of ruminant headgear and the tight control of rapid antler
regeneration and low cancer risk in cervids. (Left) Phylogenomic relationships of the
six ruminant families. Anatomic features of family-specific headgear are depicted, showing that
headgear of ruminants share tissue and cellular origins. (Upper right) The gene expression
profile of antler correlates more strongly with osteocarcinoma than with normal bone tissue.
(Lower right) The balance between rapid antler regeneration, which depends on genes in
the oncogenic pathway, and reduced cancer risk, which may involve adaptive evolution of
tumor suppressor genes.
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Genetic basis of ruminant headgear
and rapid antler regeneration
Yu Wang1*, Chenzhou Zhang2*, Nini Wang1*, Zhipeng Li3*, Rasmus Heller4*,
Rong Liu5,6*, Yue Zhao1*, Jiangang Han7*, Xiangyu Pan1, Zhuqing Zheng1,
Xueqin Dai5,6, Ceshi Chen5,6, Mingle Dou1, Shujun Peng1, Xianqing Chen2, Jing Liu1,
Ming Li1, Kun Wang2, Chang Liu2, Zeshan Lin2, Lei Chen2, Fei Hao8, Wenbo Zhu2,
Chengchuang Song1, Chen Zhao1, Chengli Zheng9, Jianming Wang9, Shengwei Hu10,
Cunyuan Li10, Hui Yang8, Lin Jiang7, Guangyu Li3, Mingjun Liu11, Tad S. Sonstegard12,
Guojie Zhang6,13,14,15, Yu Jiang1†, Wen Wang2,6,14†, Qiang Qiu2†

Ruminants are the only extant mammalian group possessing bony (osseous) headgear.
We obtained 221 transcriptomes from bovids and cervids and sequenced three genomes
representing the only two pecoran lineages that convergently lack headgear. Comparative
analyses reveal that bovid horns and cervid antlers share similar gene expression
profiles and a common cellular basis developed from neural crest stem cells. The rapid
regenerative properties of antler tissue involve exploitation of oncogenetic pathways, and
at the same time some tumor suppressor genes are under strong selection in deer. These
results provide insights into the evolutionary origin of ruminant headgear as well as
mammalian organ regeneration and oncogenesis.

R
uminants are the only group of extant
mammals with osseous cranial append-
ages, which are collectively termed head-
gear (1). Osseous headgear are exclusively
found in the pecorans (all ruminants,

excluding Tragulidae), a group that radiated

~23.3 million to 20.8 million years (Ma) ago (2)
(Fig. 1). Each family in the pecoran group ex-
hibits a distinct headgear morphology (3). The
ossicones of Giraffidae consist of bony protu-
berances covered only by skin and hair. The
pronghorns of Antilocapridae are composed of
bone covered by skin, hair, and an annually de-
ciduous forked keratinous sheath. The horns of
Bovidae also have a bony core but are covered by
a nondeciduous, nonforked keratinous sheath.
The antlers of Cervidae are wholly deciduous,
regenerating annually as an outgrowth of bone
from the frontal skull. Despite this variation, all
these types of pecoran headgear (including those
of extinct species) share characteristic features,
such as their frontal cranial position and a bony
core covered by integument (fig. S1). The evo-
lutionary origin of headgear, specifically whether
headgear evolved only once or multiple times,
has been a matter of considerable scientific dis-
cussion (1). Resolving this has proved challeng-
ing because of the lack of consensus regarding
the family-level phylogeny of the ruminants.

Results

A comprehensive phylogenetic analysis of the
ruminants (2) resolved the family-level topology
and shows that the most phylogenetically par-
simonious hypothesis is a single origin of head-
gear in pecorans followed by two independent
losses (Fig. 1). Multiple independent origins
would be at odds with the rapid radiation of the
five Pecora families, which took place during an
~2.5-million-year interval (23.3 to 20.8 Ma ago),
and furthermore it is difficult to explain why
headgear would have evolved multiple times in
pecorans yet be absent in all other mammalian

taxa. TheRuminant Genome Project (2) provides
an opportunity to investigate the genomic back-
ground of ruminant headgear evolution and ad-
dress its implications in organ regeneration.

Shared gene recruitment in horns
and antlers

The evolutionary origin of any new organ typi-
cally depends on the recruitment of genes that
were originally expressed in other tissues (4).
To identify genes recruited in bovid horns, we
compared 181 transcriptomes obtained in this
study—representing 16 tissues and including
7 transcriptomes of goat horn sprouts, 61 of other
goat tissues, 3 of sheep horn sprouts, and 110 of
other sheep tissues—and added 49 published
sheep transcriptomes (5) (table S1). In addition,
transcriptomes from two fetal sheep horn buds
and adjacent frontal skin tissues were sequenced
to identify differentially expressed genes (DEGs)
between these two tissue types at this important
developmental stage. For cervid antlers, we se-
quenced 20 roe deer (Capreolus capreolus) and
20 sika deer (Cervus nippon) samples represent-
ing 16 tissues, including neonatal antlers (table
S1). Genes specifically expressed in headgear
tissues (hereafter headgear-specific genes) were
defined as those that have a t index exceeding
0.8 and are expressed most strongly or second
most strongly in headgear tissues (5). We identi-
fied 624 horn-specific genes (table S2), and these
were most highly coexpressed in bone, skin,
testis, and brain tissues (Fig. 2A and fig. S2A).
We also identified 761 antler-specific genes that
were most highly coexpressed in the same four
tissues (Fig. 2A, fig. S2B, and table S3). In addi-
tion, 201 headgear-specific expression geneswere
shared by both antler and horn tissues (fig. S3A),
and these genes were enriched in bone develop-
ment, skin development, and neurogenesis path-
ways (Fisher's exact test, adjusted P value <
1 × 10−5) (fig. S3B and table S4). TheDEGs (table S5)
between fetal sheephorn budandadjacent frontal
skin tissues were enriched in nerve development
pathways (fig. S4 and table S6). Histological anal-
ysis of cattle fetal horn buds suggested that, in
contrast to the frontal skin of polled fetuses, neu-
ral tissue exists only in the horn buds (6). Overall,
the gene expression results suggest that the de-
velopment of both kinds of headgear considered
here (horns and antlers) depends on similar gene
expression profiles, largely recruited from nerve,
bone, and skin tissues.

A common genetic and cellular basis
of headgear

To identify the genetic basis of headgear evolu-
tion, we used the branch-site likelihood ratio
test (5) to detect positively selected genes shared
only by pecoranswith headgear (PWH). A total of
240 genes were identified as positively selected
in PWH (table S7). Enriched functional Gene
Ontology (GO) categories of these genes included
biomineral tissue development (Fisher's exact
test, adjusted P value = 4.9 × 10−2) (table S8),
providing further evidence that the evolution of
osseous headgear depends on bone development.
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Among these genes, we found that OTOP3 was
under positive selection in PWH along with a
headgear-specific gene (fig. S5 and tables S2, S3,
and S7). OTOP3 is a member of the otopetrin
gene family, which regulates biomineralization
processes (7). Of the eight Pecora-specific amino
acid mutations in the OTOP3 protein, four are
located in the otopetrin functional domain
(PF03189) (fig. S5). OTOP3 is expressed in the
neural crest of Xenopus embryos, suggesting a
role in neural crest function (8).OLIG1 (fig. S6),
another positively selected gene in PWH, is also
related to neural crest differentiation pathways
(9). A previous study showed that a 212–base pair
(bp) duplication (~65 kbp) flanking the OLIG1
gene region is the causal mutation of polled
cattle, i.e., cattle that completely lack horns (10).
We detected nine distinct amino acid changes
in OLIG1 in the inferred common ancestor of
Pecora, resulting in domain structure changes as
revealed by protein structure homology model-
ing (fig. S6). Given that the frontal cranial bones
are derived from cells of the cranial neural crest
(11), changes in the OTOP3 and OLIG1 genes
likely played crucial roles in the evolution and
development of pecoran headgear (Fig. 2B).
We also identified 8732 lineage-specific highly

conserved elements (HCEs) (≥20 bp) (table S9)
in PWH using the phylogenetic hiddenMarkov

model approach (5). The PWH-specific HCE-
associated genes are enriched in the signaling
pathway regulating the pluripotency of stem cells
(Fisher's exact test, adjusted P value = 2.5 × 10−9)
and transforming growth factor–b (TGF-b) (Fish-
er’s exact test, adjusted P value = 3.5 × 10−7)
(table S10). The TGF-b signaling pathway plays
an important role in bone formation and the
regulation of cranial neural crest cell prolifera-
tion during frontal bone development (12). The
PWH-specific HCE-associated genes SNAI2,
TWIST1, SOX9, and the HOXD gene cluster are
involved in neural crest cellmigration (9) (Fig. 2B
and table S9). Specifically, we identified a PWH-
specific 25-bpHCE 15 kbp downstream from the
HOXD gene cluster (fig. S7A) that serves as a
master regulator in neural crest patterning, par-
ticularly in the cranial region (13). Further anal-
ysis indicates that this element resulted from a
3.6-kbp Pecora-specific transposable element in-
sertion (fig. S7, B and C) located in the candidate
region causing the four-horned phenotype in
sheep (14). These results suggest that the evolu-
tion of PWH-specific regulatory elements may
also play a role in reprogramming neural crest
cells to develop into headgear.
In addition, we found that six neural crest cell

migration-related genes (SOX10, SNAI1, SNAI2,
TFAP2A, NGFR, and COL11A2) are specifically

expressed in headgear (tables S2 and S3). SOX10,
SNAI1, and TFAP2A are highly expressed in fetal
sheep horn buds but not in adjacent skin tissue
(fig. S4 and table S5). Notably, SOX10 andNGFR
are used as marker genes of neural crest cells
(15), and our immunohistochemical analysis
confirmed that SOX10- and NGFR-positive cells
are present in the embryonic horn bud of sheep
(fig. S8). In addition, two headgear-specific genes,
FOXL2 andTWIST1, are related to horn abnormal-
ities (16, 17) (tables S2 and S3) and both interact
with SOX9, a marker gene for the determination
of the chondrogenic lineage in the cranial neural
crest (18). From the results of our comparative
genomic analysis and previous findings regard-
ing horn-related genes (10, 14, 16, 17), we conclude
that pecoran headgear likely share a common
cellular origin in neural crest stem cells (Fig. 2B).
This supports a single evolutionary origin for
pecoran headgear despite their morphologi-
cal diversity.

Convergent pseudogenization led to
secondary loss of headgear

Wesupplemented the 51 ruminant genomes in the
RuminantGenome Project (2) with a high-quality
reference genome from a secondarily antlerless
species, the Chinese water deer (Hydropotes
inermis) of the cervid subfamily Hydropotinae
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Fig. 1. Phylogenomic placement of species without headgear in the Ruminantia and Cervidae. (Left) The phylogenomic relationships of the
six ruminant families from (2). (Right) Maximum-likelihood tree for the nine studied cervid species obtained using 3,316,385 four-fold degenerate sites.
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(fig. S9 and tables S11 to S13), and two contig-
level genomes of Moschidae species (Moschus
chrysogaster and M. leucogaster) (table S14).
From the high-confidence phylogenetic tree ob-
tained with whole-genome data (Fig. 1), it is clear
that Moschidae and Hydropotinae have inde-
pendently lost their headgear. To explain this
convergent feature and learnmore about genes
controlling headgear, we investigated pseudo-
genization in the shape of premature stop codons
and frameshifts in both of these lineages (Fig. 1
and tables S15 and S16). Of 289 pseudogenes
identified in these two distant lineages, RXFP2
was the only headgear-specific gene that was
convergently pseudogenized, although themuta-
tions occur at different sites of the RXFP2 gene
in these lineages (fig. S10). RXFP2, which our
transcriptomic data indicate was recruited from
testis tissue into horn and antler, is highly ex-
pressed in the fetal sheep horn bud (fig. S10) and
has two PWH-specific HCEs in its intron region,
one of them with a binding motif for the horn-
specific gene ARNT (fig. S11). Previous studies
identified RXFP2 as a sexually selected gene as-
sociated with hornmorphology in bighorn sheep

(Ovis canadensis) (19, 20). Additionally, a 1.8-kbp
insertion in the 3′ untranslated region (3′UTR) of
RXFP2 is associated with lack of horns in sheep
(21). Collectively, these results indicate that
pseudogenization of RXFP2 is the most likely
functional mechanism behind the convergent
secondary loss of headgear in theMoschidae and
Hydropotinae lineages.

Neural processes involved in
antler regeneration

Thedeer antler is the only completely regenerable
organ found in mammals and thus provides a
unique model for regenerative biology. Antler
regeneration is a stem cell–based process (22),
and we demonstrated that antler stem cells may
originate from cranial neural crest cells, which
have the potential to rapidly proliferate and dif-
ferentiate into cartilage and neural cells (Fig. 2B).
Notably, growing antlers are richly innervated
by sensory fibers, and resection of the antler
pedicle sensory nerve markedly reduces antler
regeneration and stunts antler size (23). Both
antler-specific expression genes (table S3) and
cervid-specific HCE-associated genes (table S17)

are enriched in annotation terms associated
with the axon guidance pathway, particularly
the genes coding for key guidance molecules
for axon growth: slits, ephrins, and semaphorins
(Fig. 3A and tables S18 and S19). In addition, the
top eight rapidly evolving genes in cervids with
adjacentHCEs are all related to neural functions
(fig. S12 and table S20). We also found that the
nerve growth factor receptor (NGFR) gene is
strongly and specifically expressed in antlers
(table S3). This is consistent with findings that
neural growth factors promote the growth of
antler nerves (24), and these lines of evidence
corroborate the involvement of neural processes
in annual antler regeneration.

Similarities between antler growth and
cancer cell growth programs

Antlers grow extremely quickly, as exemplified
by red deer antlers, which have average growth
rates of 1.7 cm/day and can reach a weight of up
to 30 kg (25). These antlers regrow annually
(from spring to summer) owing to very fast cell
proliferation (Fig. 3B) that surpasses even can-
cerous tissue growth (25). Antler growth mainly
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Fig. 2. Gene recruitment and cellular origin of ruminant headgear.
(A) Genes recruited to headgear from different organs. Bone, skin, testis,
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shades of gray, respectively. (B) Diagram of neural crest cell genes
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dashed arrows indicate the pathway known to be related to other cell
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the headgear of the ruminant ancestor, mainly containing bone,
skin, and nerve tissues.
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proceeds by chondrocyte proliferation and ossi-
fication (Fig. 3C) and thus provides a research
model for osteosarcoma. We found a higher cor-
relation between the gene expression profiles
of antler and osteosarcoma (r = 0.67 to 0.78)
than between those of antler and normal bone
tissues (r = 0.33 to 0.47) (fig. S13), showing sim-
ilar patterns of developmental programs in antler
growth and oncogenesis.
We found evidence that three proto-oncogenes

(FOS, FAM83A, and REL) were under positive
selection in the cervid ancestor (fig. S14 and table
S21). Of these, FOS acts as a downstream growth
factor signaling pathway that regulates cell pro-
liferation and differentiation. Overexpression of
FOS induces osteosarcoma formation inmice via
the transformation of chondroblasts and osteo-
blasts (26). Additionally, FAM83A has been iden-
tified as an oncogene involved in the epidermal
growth factor receptor (EGFR) signaling path-
way (27). We also observed antler-specific expres-
sion of five growth factor and receptor genes
(FGF19, FGF21, FGFBP3, PDGFD, and PDGFRL)
that play important roles in driving cancer cell
proliferation and survival (28) (table S3). In addi-
tion, a cervid-specificHCE is located in the 3′UTR
ofNOVA1, which is believed to activate telomerase
and promote tumor growth in vivo (29) (figs. S15
and S16 and table S17). Taken together, these cell
growth–associated cervid-specific changes and

the expression of tumor promoters in antlers
(Fig. 3D) indicate that the rapid proliferation of
cells required for rapid antler growth has simi-
larities with cancer cell growth programs.

Regulation of antler growth may confer
cancer resistance

Cancer frequencyrecords fromboththePhiladelphia
and SanDiego zoos indicate that cancer incidence
rates are ~5 times lower in cervids than in other
mammals (0.4 to 0.8% and 2.1 to 4.6%, respec-
tively) (30, 31). This tentatively suggests that the
precisely regulated cell growth regulators required
for controlled rapid antler regenerationmay con-
fer protection against the development of cancers
in cervids because of specific genetic changes
relevant to cancer avoidance. Accordingly, Kyoto
Encyclopedia ofGenes andGenomes (KEGG) anal-
ysis of DEGs between antler and osteosarcoma
shows enrichment for cancer- andmetabolism-
related pathways (fig. S13B and table S22).
We also observed that many tumor suppres-

sor genes are under positive selection (table S21)
and strongly expressed in antlers. Among these,
the tumor suppressor gene PML has 11 cervid-
specific nonsynonymous changes and carries the
strongest signal of positive selection detected in
cervids (Fig. 4A and table S21). PML is a transcrip-
tional coactivator of p53, and its overexpression
enhances p53 transcriptional activation and leads

to cell growth arrest (32). TheTP53 (encoding the
protein p53) signaling pathway plays a central
role in regulating cell division and preventing
tumor formation (33). We observed that three
p53 cofactor genes (PML, NMT2, and CD2AP)
and five p53 regulator genes (ELOVL6, S100A8,
ISG15, CNOT3, and CCDC69) were under posi-
tive selection in the cervid lineage and expressed
in antlers (Fig. 4B and table S21).We also noticed
that TP53 itself was identified as a rapidly evolv-
ing gene in the cervid lineage from the evolu-
tionary analysis of 51 ruminant genomes (2).
In addition to the TP53 pathway–related genes,

we also observed several other tumor suppres-
sor genes that were under selection in the cervid
lineage and expressed in antlers. One such gene,
ADAMTS18 (Fig. 4A), belongs to the ADAMTS
family, which encompasses disintegrin and
metalloproteinase-like proteinases that inhibit
growth of carcinoma cells by controlling the
structure and function of the extracellularmatrix
(ECM) and regulating the tumormicroenviron-
ment (34). The components and function of the
ECM are known to play an important role in can-
cer resistance in the nakedmole-rat (35). In addi-
tion, the ADAMTS family members ADAMTS2,
ADAMTS4,ADAMTS12,ADAMTS14,ADAMTS17,
and ADAMTS18 are not only all antler-specific
genes (fig. S17) but are alsomore highly expressed
in antler than in osteosarcoma (fig. S13C).
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Fig. 3. Oncogenesis and
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(D) pathways. (B) Annual
antler regeneration
cycle. Antlers are shed in
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rapidly in summer. Antlers
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(C) The anatomy of the
antler. The source and
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photo are listed in
table S26.
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Finally, several genes involved inDNAdamage
response pathways showed signatures of cervid-
specific evolution in our transcriptomic and com-
parative genomic analyses. TP73 and TP53I13
suppress tumors through their roles in the p53-
mediated DNA damage response pathway (36)
and are specifically expressed in antlers (table S3).
Moreover, we found that three more DNA dam-
age response genes (SLF1, RHNO1, and DDB2)
were under positive selection in the cervid lin-
eage (table S21).
The cervid-specific expression and genetic

changes in these tumor suppressor and DNA
repair genesmay play important roles in the fine-
tuned regulation of rapid antler regeneration,
while at the same time preventing the onset of
cancers. Further detailed functional studiesmay
therefore be of great scientific significance in
demonstrating themechanisms underlying rapid
but controlled cell growth and exploring the po-
tential of cervids as a cancer model.

Discussion

Headgear, or cranial appendages (antlers in cervids,
horns in bovids, pronghorns in pronghorn, and
ossicones in giraffids), are conspicuous anddiverse
features of the Pecora lineagewithin Ruminantia
and are unique among all mammals. Headgear
evolution is still debated, partly because of dif-
ferences in the evolutionary scenarios suggested
by different phylogenic trees, coupled with the
notable differences in headgear anatomy and
development (1). Therefore, it has been proposed
that pecoran headgear could havemultiple inde-
pendent origins. We show that the most parsi-

monious explanation is a single headgear origin
(2). Our comparative genomic and transcriptomic
analyses indicate that horns and antlers are very
similar in their gene expression profiles and that
pecoran headgear share cellular origins from
neural crest stem cells. Moreover, the headgear-
specific gene RXFP2 was convergently pseudo-
genized in secondarily headgearless lineages,
corroborating the single evolutionary origin hy-
pothesis by providing a simple genetic mecha-
nism for the otherwise puzzling convergent loss
of headgear. Notably, the extremely rapid growth
and peculiar regeneration of cervid antlers are
biological features of interest. For instance, an
incision in an antler tine results in a slight scar
that in the following year leads to a small tine,
whereas injury to the pedicle leads to perma-
nent inhibition of either pedicle or antler growth
(37, 38). Furthermore, it has been shown that
electrical stimulation of antler nerves increases
antler length and weight (39), suggesting that
neural tissue plays an important role in antler
regeneration. This link was corroborated by the
neural associations of several antler-specific genes
and cervid-specific HCE-associated genes identi-
fied in this study. Further integrated functional,
physiological, and transcriptomic analyses of a
wider range of samples during various antler
growth stages are warranted to clarify the roles
of these antler-specific neural genes in develop-
ment and their potential utility in regenerative
medicine and in vitro organ regeneration.
The antler is an exclusivelymale trait in cervids

(except reindeer), which has been strongly se-
lected by sexual selection, and some speciesmost

likely became extinct as a result of exaggerated
antler size (40). Our data suggest that fast-growing
cervid antlers have expression profiles that are
more similar to those of osteosarcoma than to
those of normal bone tissues (fig. S13). On the
other hand, cervids havemuch lower cancer inci-
dence than other mammals (30, 31). It is conceiv-
able that natural selection might have selected
for efficient cancer-defensemechanisms in deer.
It has previously been shown that elephants have
a reduced cancer risk because of functional du-
plicates of themaster tumor suppressor TP53 (41).
In contrast, cervids have a single copy of TP53,
but other genes (PML,NMT2, CD2AP, ELOVL6,
S100A8, ISG15,CNOT3, andCCDC69) functioning
in the p53 pathway are under positive selection,
suggesting that cervids may have evolved an
enhanced TP53 signaling pathway to constrain
tumor growth. Elephants and deermay therefore
have independently evolved different strategies
to avoid cancer by targeting the same central
tumor-controlling p53 regulatory pathway. We
also found evidence that other tumor suppres-
sor genes and proto-oncogenes have been under
strong positive selection in cervids and/or are
strongly and specifically expressed in the antler
(e.g., ADAMTS18, FOS, REL, and FAM83A). Our
study reveals the genetic mechanisms underly-
ing the evolutionary, developmental, and histo-
logical origins of pecoran headgear and provides
insights into the molecular mechanisms of re-
generation of deer antler and its relevance to
cancer resistance. The identified genes and
their specific mutations provide a starting
point for future functional studies of headgear
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development, regenerationofmammalianorgans,
and oncogenesis.

Materials and methods

We sequenced and collected 221 and 49 tran-
scriptomes, respectively, including 20 of roe deer,
20 of sika deer, 68 of goat, and 162 of sheep. RNA-
sequencing reads were aligned with HISAT2
v2.0.3 (42), and the gene expression levels were
quantifiedwith StingTie v1.2.2 (43). Tissue-specific
expressed geneswere calculatedwith the t index
method (44). The DEGs in the embryonic horn
bud were identified with DESeq2 v1.20.0 (45).
Immunohistochemical analysis was performed
to detect the expression of neural crest marker
genes NGFR and SOX10 in the embryonic horn
bud. The genome of the Chinese water deer
(H. inermis) was sequenced using 10X genomic
platform and assembled with Supernova soft-
ware v1.2.1 (46). Two contig-level assemblies of
Moschidae species were obtained by Illumina
HiSeq 2000 sequencing and assembled using
the SOAPdenovo software v2.04 (47). Pseudogenes
of the three headgearless genomes were iden-
tified with GeneWise v4.0 (48). Whole-genome
alignments of 54 ruminant species were carried
out with LAST vlast867 (49) and multiz v11.2 (50)
using goat as the reference genome. Positively
selected genes were identified by using the
branch-site model in PAML v4.9e (51). PWH-
specific HCEs were identified with phastCons
v1.4 (52). Elements showing accelerated evo-
lution in Cervidae were detected using phyloP
v1.4 with the CONACC mode and LRT test
method (52).

REFERENCES AND NOTES

1. E. B. Davis, K. A. Brakora, A. H. Lee, Evolution of ruminant
headgear: A review. Proc. Biol. Sci. 278, 2857–2865 (2011).
doi: 10.1098/rspb.2011.0938; pmid: 21733893

2. L. Chen et al., Large-scale ruminant genome sequencing
provides insights into their evolution and distinct traits.
Science 364, eaav6202 (2019).

3. G. A. Bubenik, A. B. Bubenik, Eds., Horns, Pronghorns, and
Antlers: Evolution, Morphology, Physiology, and Social
Significance (Springer, 1990).

4. O. W. Griffith, G. P. Wagner, The placenta as a model for
understanding the origin and evolution of vertebrate organs.
Nat. Ecol. Evol. 1, 0072 (2017). doi: 10.1038/s41559-017-0072;
pmid: 28812655

5. Materials and methods are available as supplementary
materials.

6. D. J. Wiener, N. Wiedemar, M. M. Welle, C. Drögemüller, Novel
features of the prenatal horn bud development in cattle
(Bos taurus). PLOS ONE 10, e0127691 (2015). doi: 10.1371/
journal.pone.0127691; pmid: 25993643

7. I. Hughes, M. Saito, P. H. Schlesinger, D. M. Ornitz, Otopetrin
1 activation by purinergic nucleotides regulates intracellular
calcium. Proc. Natl. Acad. Sci. U.S.A. 104, 12023–12028
(2007). doi: 10.1073/pnas.0705182104; pmid: 17606897

8. V. V. Novoselov, E. M. Alexandrova, G. V. Ermakova,
A. G. Zaraisky, Expression zones of three novel genes abut the
developing anterior neural plate of Xenopus embryo. Gene Expr.
Patterns 3, 225–230 (2003). doi: 10.1016/S1567-133X(02)
00077-7; pmid: 12711553

9. P. Betancur, M. Bronner-Fraser, T. Sauka-Spengler, Assembling
neural crest regulatory circuits into a gene regulatory network.
Annu. Rev. Cell Dev. Biol. 26, 581–603 (2010). doi: 10.1146/
annurev.cellbio.042308.113245; pmid: 19575671

10. D. F. Carlson et al., Production of hornless dairy cattle from
genome-edited cell lines. Nat. Biotechnol. 34, 479–481 (2016).
doi: 10.1038/nbt.3560; pmid: 27153274

11. G. Couly, S. Creuzet, S. Bennaceur, C. Vincent,
N. M. Le Douarin, Interactions between Hox-negative cephalic
neural crest cells and the foregut endoderm in patterning the

facial skeleton in the vertebrate head. Development 129,
1061–1073 (2002). pmid: 11861488

12. T. Sasaki et al., TGFb-mediated FGF signaling is crucial for
regulating cranial neural crest cell proliferation during frontal
bone development. Development 133, 371–381 (2006).
doi: 10.1242/dev.02200; pmid: 16368934

13. M. Gouti, J. Briscoe, A. Gavalas, Anterior Hox genes interact
with components of the neural crest specification network
to induce neural crest fates. Stem Cells 29, 858–870 (2011).
doi: 10.1002/stem.630; pmid: 21433221

14. J. W. Kijas, T. Hadfield, M. Naval Sanchez, N. Cockett,
Genome-wide association reveals the locus responsible for
four-horned ruminant. Anim. Genet. 47, 258–262 (2016).
doi: 10.1111/age.12409; pmid: 26767438

15. D. E. Wagner et al., Single-cell mapping of gene expression
landscapes and lineage in the zebrafish embryo. Science 360,
981–987 (2018). doi: 10.1126/science.aar4362;
pmid: 29700229

16. E. Pailhoux et al., A 11.7-kb deletion triggers intersexuality and
polledness in goats. Nat. Genet. 29, 453–458 (2001).
doi: 10.1038/ng769; pmid: 11726932

17. A. Capitan et al., A newly described bovine type 2 scurs
syndrome segregates with a frame-shift mutation in TWIST1.
PLOS ONE 6, e22242 (2011). doi: 10.1371/journal.
pone.0022242; pmid: 21814570

18. Y. Mori-Akiyama, H. Akiyama, D. H. Rowitch,
B. de Crombrugghe, Sox9 is required for determination of the
chondrogenic cell lineage in the cranial neural crest. Proc. Natl.
Acad. Sci. U.S.A. 100, 9360–9365 (2003). doi: 10.1073/
pnas.1631288100; pmid: 12878728

19. M. Kardos et al., Whole-genome resequencing uncovers
molecular signatures of natural and sexual selection in wild
bighorn sheep. Mol. Ecol. 24, 5616–5632 (2015). doi: 10.1111/
mec.13415; pmid: 26454263

20. S. E. Johnston et al., Life history trade-offs at a single locus
maintain sexually selected genetic variation. Nature 502,
93–95 (2013). doi: 10.1038/nature12489; pmid: 23965625

21. N. Wiedemar, C. Drögemüller, A 1.8-kb insertion in the 3′-UTR
of RXFP2 is associated with polledness in sheep. Anim. Genet.
46, 457–461 (2015). doi: 10.1111/age.12309; pmid: 26103004

22. C. Li, F. Yang, A. Sheppard, Adult stem cells and mammalian
epimorphic regeneration-insights from studying annual renewal
of deer antlers. Curr. Stem Cell Res. Ther. 4, 237–251 (2009).
doi: 10.2174/157488809789057446; pmid: 19492976

23. C. Li, P. W. Sheard, I. D. Corson, J. M. Suttie, Pedicle and antler
development following sectioning of the sensory nerves to
the antlerogenic region of red deer (Cervus elaphus). J. Exp.
Zool. 267, 188–197 (1993). doi: 10.1002/jez.1402670212;
pmid: 8409900

24. C. Li et al., Nerve growth factor mRNA expression in the
regenerating antler tip of red deer (Cervus elaphus). PLOS ONE
2, e148 (2007). doi: 10.1371/journal.pone.0000148;
pmid: 17215957

25. R. J. Goss, Deer Antlers: Regeneration, Function, and Evolution
(Academic Press, 1983).

26. Z. Q. Wang, J. Liang, K. Schellander, E. F. Wagner,
A. E. Grigoriadis, c-fos-induced osteosarcoma formation in
transgenic mice: Cooperativity with c-jun and the role of
endogenous c-fos. Cancer Res. 55, 6244–6251 (1995).
pmid: 8521421

27. S. Chen et al., FAM83A is amplified and promotes cancer
stem cell-like traits and chemoresistance in pancreatic cancer.
Oncogenesis 6, e300 (2017). doi: 10.1038/oncsis.2017.3;
pmid: 28287611

28. N. Turner, R. Grose, Fibroblast growth factor signalling: From
development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).
doi: 10.1038/nrc2780; pmid: 20094046

29. A. T. Ludlow et al., NOVA1 regulates hTERT splicing and cell
growth in non-small cell lung cancer. Nat. Commun. 9, 3112
(2018). doi: 10.1038/s41467-018-05582-x; pmid: 30082712

30. L. A. Griner, Pathology of Zoo Animals: A Review of Necropsies
Conducted Over a Fourteen-Year Period at the San Diego Zoo
and San Diego Wild Animal Park (Zoological Society of
San Diego, 1983).

31. L. S. Lombard, E. J. Witte, Frequency and types of tumors in
mammals and birds of the Philadelphia Zoological Garden.
Cancer Res. 19, 127–141 (1959). pmid: 13629476

32. M. Pearson, P. G. Pelicci, PML interaction with p53 and its role
in apoptosis and replicative senescence. Oncogene 20,
7250–7256 (2001). doi: 10.1038/sj.onc.1204856;
pmid: 11704853

33. E. R. Kastenhuber, S. W. Lowe, Putting p53 in context. Cell 170,
1062–1078 (2017). doi: 10.1016/j.cell.2017.08.028;
pmid: 28886379

34. H. Jin et al., Epigenetic identification of ADAMTS18 as a novel
16q23.1 tumor suppressor frequently silenced in esophageal,
nasopharyngeal and multiple other carcinomas. Oncogene
26, 7490–7498 (2007). doi: 10.1038/sj.onc.1210559;
pmid: 17546048

35. X. Tian et al., High-molecular-mass hyaluronan mediates the
cancer resistance of the naked mole rat. Nature 499, 346–349
(2013). doi: 10.1038/nature12234; pmid: 23783513

36. D. W. Meek, Tumour suppression by p53: A role for the DNA
damage response? Nat. Rev. Cancer 9, 714–723 (2009).
doi: 10.1038/nrc2716; pmid: 19730431

37. A. B. Bubenik, R. Pavlansky, Trophic responses to trauma in
growing antlers. J. Exp. Zool. 159, 289–302 (1965).
doi: 10.1002/jez.1401590302; pmid: 5883952

38. R. J. Goss, C. W. Severinghaus, S. Free, Tissue relationships in
the development of pedicles and antlers in the Virginia Deer.
J. Mammal. 45, 61–68 (1964). doi: 10.2307/1377295

39. G. A. Bubenik, A. B. Bubenik, E. D. Stevens, A. G. Binnington,
The effect of neurogenic stimulation on the development
and growth of bony tissues. J. Exp. Zool. 219, 205–216 (1982).
doi: 10.1002/jez.1402190210; pmid: 7061972

40. R. A. Moen, J. Pastor, Y. Cohen, Antler growth and extinction of
Irish elk. Evol. Ecol. Res. 1, 235–249 (1999).

41. L. M. Abegglen et al., Potential mechanisms for cancer
resistance in elephants and comparative cellular response to
DNA damage in humans. JAMA 314, 1850–1860 (2015).
doi: 10.1001/jama.2015.13134; pmid: 26447779

42. D. Kim, B. Langmead, S. L. Salzberg, HISAT: A fast spliced
aligner with low memory requirements. Nat. Methods 12,
357–360 (2015). doi: 10.1038/nmeth.3317; pmid: 25751142

43. M. Pertea et al., StringTie enables improved reconstruction of a
transcriptome from RNA-seq reads. Nat. Biotechnol. 33,
290–295 (2015). doi: 10.1038/nbt.3122; pmid: 25690850

44. N. Kryuchkova-Mostacci, M. Robinson-Rechavi, A benchmark
of gene expression tissue-specificity metrics. Brief. Bioinform.
18, 205–214 (2017). doi: 10.1093/bib/bbw008;
pmid: 26891983

45. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 15, 550 (2014). doi: 10.1186/s13059-014-0550-8;
pmid: 25516281

46. N. I. Weisenfeld, V. Kumar, P. Shah, D. M. Church, D. B. Jaffe,
Direct determination of diploid genome sequences. Genome
Res. 27, 757–767 (2017). doi: 10.1101/gr.214874.116;
pmid: 28381613

47. R. Luo et al., SOAPdenovo2: An empirically improved
memory-efficient short-read de novo assembler. Gigascience 1,
18 (2012). doi: 10.1186/2047-217X-1-18; pmid: 23587118

48. E. Birney, M. Clamp, R. Durbin, GeneWise and Genomewise.
Genome Res. 14, 988–995 (2004). doi: 10.1101/gr.1865504;
pmid: 15123596

49. S. M. Kiełbasa, R. Wan, K. Sato, P. Horton, M. C. Frith, Adaptive
seeds tame genomic sequence comparison. Genome Res. 21,
487–493 (2011). doi: 10.1101/gr.113985.110; pmid: 21209072

50. M. Blanchette et al., Aligning multiple genomic sequences with
the threaded blockset aligner. Genome Res. 14, 708–715
(2004). doi: 10.1101/gr.1933104; pmid: 15060014

51. Z. Yang, PAML: A program package for phylogenetic analysis
by maximum likelihood. Comput. Appl. Biosci. 13, 555–556
(1997). doi: 10.1093/bioinformatics/13.5.555; pmid: 9367129

52. Y. Zhou, Y. Liang, K. H. Lynch, J. J. Dennis, D. S. Wishart, PHAST:
A fast phage search tool. Nucleic Acids Res. 39 (suppl.),
W347–W352 (2011). doi: 10.1093/nar/gkr485; pmid: 21672955

ACKNOWLEDGMENTS

We thank the High-Performance Computing Center (HPC) of
Northwest A&F University (NWAFU) for providing computing
resources. Funding: This project was supported by the National
Natural Science Foundation of China (31822052, 31572381) and
National Thousand Youth Talents Plan to Y.J.; Talents Team
Construction Fund of Northwestern Polytechnical University
(NWPU) to W.W. and Q.Q.; the National Program for Support
of Top-notch Young Professionals to Q.Q.; Strategic Priority
Research Program of CAS to W.W. (XDB13000000) and C.C.
(XDA16010405); 1000 Talent Project of Shaanxi Province to
W.W. and Q.Q.; Villum Foundation Young Investigator grant
(VKR023447) to R.H.; and Natural Science Foundation of China
(31501984), Natural Science Foundation of Jilin Province
(20170101158JC), and Central Public-Interest Scientific
Institution Basal Research Fund (Y2019GH13) to Z.L. Author
contributions: Q.Q., W.W., and Y.J. conceived of the project and
designed research; Y.W., C.Z., N.W., Y.Z., and J.H. performed
the majority of analysis with contributions from Z.L., R.H., X.P.,

Wang et al., Science 364, eaav6335 (2019) 21 June 2019 6 of 7

RESEARCH | RESEARCH ARTICLE | RUMINANT GENOMES
on June 20, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1098/rspb.2011.0938
http://www.ncbi.nlm.nih.gov/pubmed/21733893
http://dx.doi.org/10.1038/s41559-017-0072
http://www.ncbi.nlm.nih.gov/pubmed/28812655
http://dx.doi.org/10.1371/journal.pone.0127691
http://dx.doi.org/10.1371/journal.pone.0127691
http://www.ncbi.nlm.nih.gov/pubmed/25993643
http://dx.doi.org/10.1073/pnas.0705182104
http://www.ncbi.nlm.nih.gov/pubmed/17606897
http://dx.doi.org/10.1016/S1567-133X(02)00077-7
http://dx.doi.org/10.1016/S1567-133X(02)00077-7
http://www.ncbi.nlm.nih.gov/pubmed/12711553
http://dx.doi.org/10.1146/annurev.cellbio.042308.113245
http://dx.doi.org/10.1146/annurev.cellbio.042308.113245
http://www.ncbi.nlm.nih.gov/pubmed/19575671
http://dx.doi.org/10.1038/nbt.3560
http://www.ncbi.nlm.nih.gov/pubmed/27153274
http://www.ncbi.nlm.nih.gov/pubmed/11861488
http://dx.doi.org/10.1242/dev.02200
http://www.ncbi.nlm.nih.gov/pubmed/16368934
http://dx.doi.org/10.1002/stem.630
http://www.ncbi.nlm.nih.gov/pubmed/21433221
http://dx.doi.org/10.1111/age.12409
http://www.ncbi.nlm.nih.gov/pubmed/26767438
http://dx.doi.org/10.1126/science.aar4362
http://www.ncbi.nlm.nih.gov/pubmed/29700229
http://dx.doi.org/10.1038/ng769
http://www.ncbi.nlm.nih.gov/pubmed/11726932
http://dx.doi.org/10.1371/journal.pone.0022242
http://dx.doi.org/10.1371/journal.pone.0022242
http://www.ncbi.nlm.nih.gov/pubmed/21814570
http://dx.doi.org/10.1073/pnas.1631288100
http://dx.doi.org/10.1073/pnas.1631288100
http://www.ncbi.nlm.nih.gov/pubmed/12878728
http://dx.doi.org/10.1111/mec.13415
http://dx.doi.org/10.1111/mec.13415
http://www.ncbi.nlm.nih.gov/pubmed/26454263
http://dx.doi.org/10.1038/nature12489
http://www.ncbi.nlm.nih.gov/pubmed/23965625
http://dx.doi.org/10.1111/age.12309
http://www.ncbi.nlm.nih.gov/pubmed/26103004
http://dx.doi.org/10.2174/157488809789057446
http://www.ncbi.nlm.nih.gov/pubmed/19492976
http://dx.doi.org/10.1002/jez.1402670212
http://www.ncbi.nlm.nih.gov/pubmed/8409900
http://dx.doi.org/10.1371/journal.pone.0000148
http://www.ncbi.nlm.nih.gov/pubmed/17215957
http://www.ncbi.nlm.nih.gov/pubmed/8521421
http://dx.doi.org/10.1038/oncsis.2017.3
http://www.ncbi.nlm.nih.gov/pubmed/28287611
http://dx.doi.org/10.1038/nrc2780
http://www.ncbi.nlm.nih.gov/pubmed/20094046
http://dx.doi.org/10.1038/s41467-018-05582-x
http://www.ncbi.nlm.nih.gov/pubmed/30082712
http://www.ncbi.nlm.nih.gov/pubmed/13629476
http://dx.doi.org/10.1038/sj.onc.1204856
http://www.ncbi.nlm.nih.gov/pubmed/11704853
http://dx.doi.org/10.1016/j.cell.2017.08.028
http://www.ncbi.nlm.nih.gov/pubmed/28886379
http://dx.doi.org/10.1038/sj.onc.1210559
http://www.ncbi.nlm.nih.gov/pubmed/17546048
http://dx.doi.org/10.1038/nature12234
http://www.ncbi.nlm.nih.gov/pubmed/23783513
http://dx.doi.org/10.1038/nrc2716
http://www.ncbi.nlm.nih.gov/pubmed/19730431
http://dx.doi.org/10.1002/jez.1401590302
http://www.ncbi.nlm.nih.gov/pubmed/5883952
http://dx.doi.org/10.2307/1377295
http://dx.doi.org/10.1002/jez.1402190210
http://www.ncbi.nlm.nih.gov/pubmed/7061972
http://dx.doi.org/10.1001/jama.2015.13134
http://www.ncbi.nlm.nih.gov/pubmed/26447779
http://dx.doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pubmed/25751142
http://dx.doi.org/10.1038/nbt.3122
http://www.ncbi.nlm.nih.gov/pubmed/25690850
http://dx.doi.org/10.1093/bib/bbw008
http://www.ncbi.nlm.nih.gov/pubmed/26891983
http://dx.doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
http://dx.doi.org/10.1101/gr.214874.116
http://www.ncbi.nlm.nih.gov/pubmed/28381613
http://dx.doi.org/10.1186/2047-217X-1-18
http://www.ncbi.nlm.nih.gov/pubmed/23587118
http://dx.doi.org/10.1101/gr.1865504
http://www.ncbi.nlm.nih.gov/pubmed/15123596
http://dx.doi.org/10.1101/gr.113985.110
http://www.ncbi.nlm.nih.gov/pubmed/21209072
http://dx.doi.org/10.1101/gr.1933104
http://www.ncbi.nlm.nih.gov/pubmed/15060014
http://dx.doi.org/10.1093/bioinformatics/13.5.555
http://www.ncbi.nlm.nih.gov/pubmed/9367129
http://dx.doi.org/10.1093/nar/gkr485
http://www.ncbi.nlm.nih.gov/pubmed/21672955
http://science.sciencemag.org/


Z.Z., J.L., M.L., K.W., C.L., Z.Lin, L.C., and C.S.; Z.L., C.Zheng,
J.W., S.H., C.Li, L.J., G.L., and M.Liu prepared the samples for
transcriptome and genome sequencing; R.L., X.C., F.H., X.D.,
C.C., M.D., S.P., W.Z., C.Zhao, and H.Y. took part in the cancer
gene analysis. Y.W. drafted the manuscript with input from
all authors, and Q.Q., W.W., Y.J., R.H., Z.L., G.Z., and T.S.S. revised
the manuscript. Competing interests: A provisional Chinese
patent application on potential application in the treatment and
prevention of cancer by way of the deer PML gene has been

filed by Northwest A&F University (application number
201910266652.2), where Y.W., Q.Q., Y.J., W.W., Z.L., and R.L. are
listed as inventors. All authors declare that they have no other
competing interests. Data and materials availability: All the raw
reads of transcriptomes have been deposited in the NCBI under
project number PRJNA438286 (the detailed SRA numbers are
provided in table S23). The assemblies for the Chinese water deer
(Hydropotes inermis) and two Moschidae species have been
deposited in the NCBI under project number PRJNA438286.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/364/6446/eaav6335/suppl/DC1
Materials and Methods
Figs. S1 to S18
Tables S1 to S26
References (53–95)

8 October 2018; accepted 16 May 2019
10.1126/science.aav6335

Wang et al., Science 364, eaav6335 (2019) 21 June 2019 7 of 7

RESEARCH | RESEARCH ARTICLE | RUMINANT GENOMES
on June 20, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/content/364/6446/eaav6335/suppl/DC1
http://science.sciencemag.org/


Genetic basis of ruminant headgear and rapid antler regeneration

Qiu
QiangCunyuan Li, Hui Yang, Lin Jiang, Guangyu Li, Mingjun Liu, Tad S. Sonstegard, Guojie Zhang, Yu Jiang, Wen Wang and 

Zeshan Lin, Lei Chen, Fei Hao, Wenbo Zhu, Chengchuang Song, Chen Zhao, Chengli Zheng, Jianming Wang, Shengwei Hu,
Zhuqing Zheng, Xueqin Dai, Ceshi Chen, Mingle Dou, Shujun Peng, Xianqing Chen, Jing Liu, Ming Li, Kun Wang, Chang Liu, 
Yu Wang, Chenzhou Zhang, Nini Wang, Zhipeng Li, Rasmus Heller, Rong Liu, Yue Zhao, Jiangang Han, Xiangyu Pan,

DOI: 10.1126/science.aav6335
 (6446), eaav6335.364Science 

, this issue p. eaav6202, p. eaav6335, p. eaav6312; see also p. 1130Science
the harsh conditions of the Arctic.

 take a close look at the reindeer genome and identify the genetic basis of adaptations that allow reindeer to survive inal.
etruminants and identify selection on cancer-related genes that may function in antler development in deer. Finally, Lin 

 describe specific evolutionary changes in theet al.Wang −−the so-called headgear−−the bony appendages on the head
xaminingmany taxa starting at approximately 100,000 years ago, coinciding with the migration of humans out of Africa. E

incomplete lineage sorting among major clades. Interestingly, they found evidence for large population reductions among
 phylogenetic analysis. From this analysis, they were able to resolve the phylogeny of many genera and document

 sequenced 44 species representing 6 families and performed a et al.relationships among ruminants, L. Chen 
digestive systems and headgear, including antlers and horns (see the Perspective by Ker and Yang). To understand the
and goats. However, their evolutionary relationships have been contentious, as have the origins of their distinctive 

Ruminants are a diverse group of mammals that includes families containing well-known taxa such as deer, cows,
Phylogeny and characteristics of ruminants

ARTICLE TOOLS http://science.sciencemag.org/content/364/6446/eaav6335

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2019/06/19/364.6446.eaav6335.DC1

CONTENT
RELATED 

http://science.sciencemag.org/content/sci/364/6446/eaav6202.full
http://science.sciencemag.org/content/sci/364/6446/eaav6312.full
http://science.sciencemag.org/content/sci/364/6446/1150.full

REFERENCES

http://science.sciencemag.org/content/364/6446/eaav6335#BIBL
This article cites 94 articles, 13 of which you can access for free

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title 
Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive 

(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

on June 20, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/content/364/6446/eaav6335
http://science.sciencemag.org/content/suppl/2019/06/19/364.6446.eaav6335.DC1
http://science.sciencemag.org/content/sci/364/6446/1150.full
http://science.sciencemag.org/content/sci/364/6446/eaav6312.full
http://science.sciencemag.org/content/sci/364/6446/eaav6202.full
http://science.sciencemag.org/content/364/6446/eaav6335#BIBL
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/


PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title 
Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive 

(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

on June 20, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

View publication statsView publication stats

http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/
https://www.researchgate.net/publication/333911464

