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Abstract Method

This poster presents a scalable granular acoustic fingerprinting
system. An acoustic fingerprinting system uses condensed

Introduction

Acoustic fingerprinting systems have many practical uses
cases. They follow the scheme depicted in Figure 1. Ideally,

a fingerprinting system only needs a short audio fragment to
find a match in large set of reference audio. One of the
challenges Is to design a system in a way that the reference
database can grow to contain millions of entries. Another
challenge is that a robust fingerprinting should handle noise
and other modifications well, while limiting the amount of false
positives and processing time [1]. These modifications typically
include dynamic range compression, equalization, added
background noise and artifacts introduced by audio coders

or A/D-D/A conversions.

The whole process is depicted

peak extraction algorithm.

fingerprints, three peaks are
combined, as in Figure 2c.
The effects on a fingerprint
extracted from reference audio
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Fig 1. General acoustic fingerprinting scheme.

Over the years several efficient acoustic fingerprinting methods
have been introduced [2,3]. These methods perform well,

even with degraded audio quality and with industrial sized
reference databases. However, these systems are not
designed to handle queries with modified time-scale or pitch
although these distortions can be present in replayed material.
During radio broadcasts songs are occasionally played faster to
make them fit into a time slot. During a DJ-set pitch-shifting

and time-stretching are present almost continuously. To
correctly identify audio in these cases as well, a fingerprinting
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Fingerprint construction: to form

and a fingerprint extracted from

The proposed method is inspired by three works|[2,4,6].
Combining key components of those works results in a design

representations of audio signals, acoustic fingerprints, to of a granular acoustic fingerprinter that is robust to noise and system (see Figure 4,5,6,7).

identify short audio fragments in large audio substantial compression, has a scalable method for fingerprint

databases. The system presented here is shown to answer storage and matching, and allows time-scale modification and S =g i

queries quickly and reliably even when queries are subjected to pitch-shifting. P2 A\, e ’ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

time-scale and pitch modifications. The design of this system is = 7 _ﬁ |

the main contribution of this research. The method presented here uses local maxima in a spectral R
representation[2]. It combines three event points, and takes A o [
time ratios to form time-scale invariant fingerprints[4]. It T - W

leverages the Constant-Q transtorm, and only stores frequency 0™ H 0w
differences for pitch-shift invariance[6]. The fingerprints are
designed with an exact hashing matching algorithm in mind[2].

in Figure 2.

Feature extraction: the first step Is to transform the audio to a
spectral representation. The Constant-Q transform is used to
get an equal amount of frequency bins in each octave. This Is
depicted in Figure 2a. The next step is to locate peaks within
the time-frequencyplane (Fig 2b). This is done using a 2D

Results & Conclusions

The system has been evaluated using a freely available
data set of 30,000 songs and compared with a baseline
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Fig 5. The effect various effects on
retrieval performance.

Fig 4. The effect of time-stretching
on retrieval performance.
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Fig 7. The effect of pitch shift
on retrieval performance.
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Fig 6. The effect of time-scale
modification on retrieval performance.

This work presented a practical acoustic fingerprinting
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even when the fragment has been pitch-shifted and time-
stretched with respect to the reference audio. If a match

s found the system reports where in the reference audio
a query matches, and how much time/frequency has been
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Fig 3. The effect of time-scale and pitch

modifications on a fingerprint.

between the time ditferences and the differences between the
frequency components are invariant. These constants are
employed in the fingerprint hash. To add discriminative power
to the hash, coarse frequency location indicators are included
as well. These hashes are stored in a B-tree:

z:ii) s t1; f13t3 —t1id

Matching: to match a query with the reference audio,

o modified. To achieve this, the system uses local maxima in
a Constant-Q spectrogram. It combines event points into
groups of three, and uses time ratios to form a time-scale
invariant fingerprint component. To form pitch-shift in-
variant fingerprint components only frequency differences
are stored. For retrieval, an exact hashing matching algo-
rithm Is used.

system robust against pitch-shifting and time-stretching is
desired.

Some fingerprinting systems have been developed that take
pitch-shifts into account [6]. Others are designed to handle both
pitch and time-scale modification[8,9]. To find a match, these
computationally expensive systems iterate the whole database.
To the best of our kowledge, a description of a practical
fingerprinting system that allows substantial pitch-shift and time-
scale modification can only be found in [7], and in this work.
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fingerprints, and their corresponding hashes, are extracted.

For each hash, matching reference audio items are fetched
from the datastore. Random matches are removed from this
resultset by only keeping reference audio items that are present
multiple times. To limit the amount of false positives, alignment
In time Is checked. Also, a match is only marked as valid if the
time stretch-factor and pitch-shift factor between query and
reference audio are constant. Finally, if a match is found, the
reference audio identifier is returned.
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Fig 2e. Fingerprint hases in the
reference database. Here, the
query is time-strethed.
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Fig 2a. Step 1, Constant-Q transform

Fig 2b. Step 2, Extract event points

Fig 2c. Step 3, Connect the event

Fig 2d. Step 4, Each fingerprint is

of the incoming audio. from the spectrogram with a tiled

2D peak extraction algorithm.

points in sets of three. Each triplet
forms a fingerprint.

Hashed. The hashes are matched
with the reference database.

Fig 2. The Panako fingerprinting system combines triplets of peaks in a
Constant-Q spectrogram to form fingerprints.
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Availability & Reproducability

The Panako software is available on http://panako.be under the AGPL. Panako is tested on Debian and Mac OS X,
but should work on every platform with a recent Java Runtime Environment.

The dataset used in the validation is freely available from Jamendo.com, a website where artists share their work
freely, under various creative commons licenses.

To reproduce the results, scripts are available to download the audio dataset, generate query files, store the
reference audio and query the system. Supporting tools to analyse the query results are available as well.
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