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An algorithm is presented for the estimation of the fundamental frequency (F0) of speech or
musical sounds. It is based on the well-known autocorrelation method with a number of
modifications that combine to prevent errors. The algorithm has several desirable features. Error
rates are about three times lower than the best competing methods, as evaluated over a database of
speech recorded together with a laryngograph signal. There is no upper limit on the frequency
search range, so the algorithm is suited for high-pitched voices and music. The algorithm is
relatively simple and may be implemented efficiently and with low latency, and it involves few
parameters that must be tuned. It is based on a signal model~periodic signal! that may be extended
in several ways to handle various forms of aperiodicity that occur in particular applications. Finally,
interesting parallels may be drawn with models of auditory processing. ©2002 Acoustical Society
of America. @DOI: 10.1121/1.1458024#

PACS numbers: 43.72.Ar, 43.75.Yy, 43.70.Jt, 43.66.Hg@DOS#

I. INTRODUCTION

The fundamental frequency (F0) of a periodic signal is
the inverse of its period, which may be defined as the small-
est positive member of the infinite set of time shifts that
leave the signal invariant. This definition applies strictly only
to a perfectlyperiodic signal, an uninteresting object~sup-
posing one exists! because it cannot be switched on or off or
modulated in any way without losing its perfect periodicity.
Interesting signals such as speech or music depart from pe-
riodicity in several ways, and the art of fundamental fre-
quency estimation is to deal with them in a useful and con-
sistent way.

The subjective pitch of a sound usually depends on its
fundamental frequency, but there are exceptions. Sounds
may be periodic yet ‘‘outside the existence region’’ of pitch
~Ritsma, 1962; Pressnitzeret al., 2001!. Conversely, a sound
may not be periodic, but yet evoke a pitch~Miller and Tay-
lor, 1948; Yost, 1996!. However, over a wide range pitch and
period are in a one-to-one relation, to the degree that the
word ‘‘pitch’’ is often used in the place ofF0 , andF0 esti-
mation methods are often referred to as ‘‘pitch detection al-
gorithms,’’ or PDA ~Hess, 1983!. Modern pitch perception
models assume that pitch is derived either from the period-
icity of neural patterns in the time domain~Licklider, 1951;
Moore, 1997; Meddis and Hewitt, 1991; Cariani and Del-
gutte, 1996!, or else from the harmonic pattern of partials
resolved by the cochlea in the frequency domain~Goldstein,
1973; Wightman, 1973; Terhardt, 1974!. Both processes
yield the fundamental frequency or its inverse, the period.

Some applications give forF0 a different definition,
closer to their purposes. For voiced speech,F0 is usually

defined as the rate of vibration of the vocal folds. Periodic
vibration at the glottis may produce speech that is less per-
fectly periodic because of movements of the vocal tract that
filters the glottal source waveform. However, glottal vibra-
tion itself may also show aperiodicities, such as changes in
amplitude, rate or glottal waveform shape~for example, the
duty cycle of open and closed phases!, or intervals where the
vibration seems to reflect several superimposed periodicities
~diplophony!, or where glottal pulses occur without an obvi-
ous regularity in time or amplitude~glottalizations, vocal
creak or fry! ~Hedelin and Huber, 1990!. These factors con-
spire to make the task of obtaining a useful estimate of
speechF0 rather difficult.F0 estimation is a topic that con-
tinues to attract much effort and ingenuity, despite the many
methods that have been proposed. The most comprehensive
review is that of Hess~1983!, updated by Hess~1992! or
Hermes~1993!. Examples of recent approaches are instanta-
neous frequency methods~Abe et al., 1995; Kawaharaet al.,
1999a!, statistical learning and neural networks~Barnard
et al., 1991; Rodet and Doval, 1992; Doval, 1994!, and au-
ditory models~Duifhuis et al., 1982; de Cheveigne´, 1991!,
but there are many others.

Supposing that it can be reliably estimated,F0 is useful
for a wide range of applications. SpeechF0 variations con-
tribute to prosody, and in tonal languages they help distin-
guish lexical categories. Attempts to useF0 in speech recog-
nition systems have met with mitigated success, in part
because of the limited reliability of estimation algorithms.
Several musical applications needF0 estimation, such as au-
tomatic score transcription or real-time interactive systems,
but here again the imperfect reliability of available methods
is an obstacle.F0 is a useful ingredient for a variety of signal
processing methods, for example,F0-dependent spectral en-
velope estimation~Kawaharaet al., 1999b!. Finally, a fairly
recent application ofF0 is as metadata for multimedia con-
tent indexing.

a!Portions of this work were presented at the 2001 ASA Spring Meeting and
the 2001 Eurospeech conference.

b!Electronic mail: cheveign@ircam.fr
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The present article introduces a method forF0 estima-
tion that produces fewer errors than other well-known meth-
ods. The name YIN~from ‘‘yin’’ and ‘‘yang’’ of oriental
philosophy! alludes to the interplay between autocorrelation
and cancellation that it involves. This article is the first of a
series of two, of which the second~Kawaharaet al., in
preparation! is also devoted to fundamental frequency esti-
mation.

II. THE METHOD

This section presents the method step by step to provide
insight as to what makes it effective. The classic autocorre-
lation algorithm is presented first, its error mechanisms are
analyzed, and then a series of improvements are introduced
to reduce error rates. Error rates are measured at each step
over a small database for illustration purposes. Fuller evalu-
ation is proposed in Sec. III.

A. Step 1: The autocorrelation method

The autocorrelation function~ACF! of a discrete signal
xt may be defined as

r t~t!5 (
j 5t11

t1W

xjxj 1t, ~1!

wherer t(t) is the autocorrelation function of lagt calculated
at time indext, andW is the integration window size. This
function is illustrated in Fig. 1~b! for the signal plotted in
Fig. 1~a!. It is common in signal processing to use a slightly
different definition:

r t8~t!5 (
j 5t11

t1W2t

xjxj 1t. ~2!

Here the integration window size shrinks with increasing
values oft, with the result that the envelope of the function
decreases as a function of lag as illustrated in Fig. 1~c!. The
two definitions give the same result if the signal is zero out-
side@ t11, t1W#, but differ otherwise. Except where noted,
this article assumes the first definition~also known as
‘‘modified autocorrelation,’’ ‘‘covariance,’’ or ‘‘cross-
correlation,’’ Rabiner and Shaffer, 1978; Huanget al., 2001!.

In response to a periodic signal, the ACF shows peaks at
multiples of the period. The ‘‘autocorrelation method’’
chooses the highest non-zero-lag peak by exhaustive search
within a range of lags~horizontal bars in Fig. 1!. Obviously
if the lower limit is too close to zero, the algorithm may
erroneously choose the zero-lag peak. Conversely, if the
higher limit is large enough, it may erroneously choose a
higher-order peak. The definition of Eq.~1! is prone to the
second problem, and that of Eq.~2! to the first~all the more
so as the window sizeW is small!.

To evaluate the effect of a tapered ACF envelope on
error rates, the function calculated as in Eq.~1! was multi-
plied by a negative ramp to simulate the result of Eq.~2!
with a window sizeW5tmax:

r t9~t!5H r t~t!~12t/tmax! if t<tmax,

0, otherwise.
~3!

Error rates were measured on a small database of speech~see
Sec. III for details! and plotted in Fig. 2 as a function of

FIG. 1. ~a! Example of a speech waveform.~b! Autocorrelation function
~ACF! calculated from the waveform in~a! according to Eq.~1!. ~c! Same,
calculated according to Eq.~2!. The envelope of this function is tapered to
zero because of the smaller number of terms in the summation at largert.
The horizontal arrows symbolize the search range for the period.

FIG. 2. F0 estimation error rates as a function of the slope of the envelope
of the ACF, quantified by its intercept with the abscissa. The dotted line
represents errors for which theF0 estimate was too high, the dashed line
those for which it was too low, and the full line their sum. Triangles at the
right represent error rates for ACF calculated as in Eq.~1! (tmax5`). These
rates were measured over a subset of the database used in Sec. III.

2 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 A. de Cheveigné and H. Kawahara: YIN, an F0 estimator
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tmax. The parametertmax allows the algorithm to be biased
to favor one form of error at the expense of the other, with a
minimum of total error for intermediate values. Using Eq.~2!
rather than Eq.~1! introduces a natural bias that can be tuned
by adjusting W. However, changing the window size has
other effects, and one can argue that a bias of this sort, if
useful, should be applied explicitly rather than implicitly.
This is one reason to prefer the definition of Eq.~1!.

The autocorrelation method compares the signal to its
shifted self. In that sense it is related to the AMDF method
~average magnitude difference function, Rosset al., 1974;
Ney, 1982! that performs its comparison using differences
rather than products, and more generally to time-domain
methods that measure intervals between events in time
~Hess, 1983!. The ACF is the Fourier transform of the power
spectrum, and can be seen as measuring the regular spacing
of harmonics within that spectrum. The cepstrum method
~Noll, 1967! replaces the power spectrum by the log magni-
tude spectrum and thus puts less weight on high-amplitude
parts of the spectrum~particularly near the first formant that
often dominates the ACF!. Similar ‘‘spectral whitening’’ ef-
fects can be obtained by linear predictive inverse filtering or
center-clipping~Rabiner and Schaffer, 1978!, or by splitting
the signal over a bank of filters, calculating ACFs within
each channel, and adding the results after amplitude normal-
ization ~de Cheveigne´, 1991!. Auditory models based on au-
tocorrelation are currently one of the more popular ways to
explain pitch perception~Meddis and Hewitt, 1991; Cariani
and Delgutte, 1996!.

Despite its appeal and many efforts to improve its per-
formance, the autocorrelation method~and other methods for
that matter! makes too many errors for many applications.
The following steps are designed to reduce error rates. The
first row of Table I gives the gross error rate~defined in Sec.
III and measured over a subset of the database used in that
section! of the basic autocorrelation method based on Eq.~1!
without bias. The next rows are rates for a succession of
improvements described in the next paragraphs. These fig-
ures are given for didactic purposes; a more formal evalua-
tion is reported in Sec. III.

B. Step 2: Difference function

We start by modeling the signalxt as a periodic function
with periodT, by definition invariant for a time shift ofT:

xt2xt1T50, ;t. ~4!

The same is true after taking the square and averaging over a
window:

(
j 5t11

t1W

~xj2xj 1T!250. ~5!

Conversely, an unknown period may be found by forming
the difference function:

dt~t!5(
j 51

W

~xj2xj 1t!
2, ~6!

and searching for the values oft for which the function is
zero. There is an infinite set of such values, all multiples of
the period. The difference function calculated from the signal
in Fig. 1~a! is illustrated in Fig. 3~a!. The squared sum may
be expanded and the function expressed in terms of the ACF:

dt~t!5r t~0!1r t1t~0!22r t~t!. ~7!

The first two terms are energy terms. Were they constant, the
difference functiondt(t) would vary as the opposite of
r t(t), and searching for a minimum of one or the maximum
of the other would give the same result. However, the second
energy term also varies witht, implying that maxima of
r t(t) and minima ofdt(t) may sometimes not coincide. In-
deed, the error rate fell to 1.95% for the difference function
from 10.0% for unbiased autocorrelation~Table I!.

The magnitude of this decrease in error rate may come
as a surprise. An explanation is that the ACF implemented
according to Eq.~1! is quite sensitive to amplitude changes.
As pointed out by Hess~1983, p. 355!, an increase in signal
amplitude with time causes ACF peak amplitudes to grow
with lag rather than remain constant as in Fig. 1~b!. This
encourages the algorithm to choose a higher-order peak and
make a ‘‘too low’’ error ~an amplitude decrease has the op-
posite effect!. The difference function is immune to this par-

TABLE I. Gross error rates for the simple unbiased autocorrelation method
~step 1!, and for the cumulated steps described in the text. These rates were
measured over a subset of the database used in Sec. III. Integration window
size was 25 ms, window shift was one sample, search range was 40 to 800
Hz, and threshold~step 4! was 0.1.

Version Gross error~%!

Step 1 10.0
Step 2 1.95
Step 3 1.69
Step 4 0.78
Step 5 0.77
Step 6 0.50

FIG. 3. ~a! Difference function calculated for the speech signal of Fig. 1~a!.
~b! Cumulative mean normalized difference function. Note that the function
starts at 1 rather than 0 and remains high until the dip at the period.
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ticular problem, as amplitude changes cause period-to-period
dissimilarity to increase with lag in all cases. Hess points out
that Eq.~2! produces a function that is less sensitive to am-
plitude change@Eq. ~19! also has this property#. However,
using d(t) has the additional appeal that this function is
more closely grounded in the signal model of Eq.~4!, and
paves the way for the next two error-reduction steps, the first
of which deals with ‘‘too high’’ errors and the second with
‘‘too low’’ errors.

C. Step 3: Cumulative mean normalized difference
function

The difference function of Fig. 3~a! is zero at zero lag
and often nonzero at the period because of imperfect period-
icity. Unless a lower limit is set on the search range, the
algorithm must choose the zero-lag dip instead of the period
dip and the method must fail. Even if a limit is set, a strong
resonance at the first formant~F1! might produce a series of
secondary dips, one of which might be deeper than the pe-
riod dip. A lower limit on the search range is not a satisfac-
tory way of avoiding this problem because the ranges of F1
andF0 are known to overlap.

The solution we propose is to replace the difference
function by the ‘‘cumulative mean normalized difference
function:’’

dt8~t!5H 1, if t50,

dt~t!Y F ~1/t!(
j 51

t

dt~ j !G otherwise.
~8!

This new function is obtained by dividing each value of the
old by its average over shorter-lag values. It differs from
d(t) in that it starts at 1 rather than 0, tends to remain large
at low lags, and drops below 1 only whered(t) falls below
average@Fig. 3~b!#. Replacingd by d8 reduces ‘‘too high’’
errors, as reflected by an error rate of 1.69%~instead of
1.95%!. A second benefit is to do away with the upper fre-
quency limit of the search range, no longer needed to avoid
the zero-lag dip. A third benefit is to normalize the function
for the next error-reduction step.

D. Step 4: Absolute threshold

It easily happens that one of the higher-order dips of the
difference function@Fig. 3~b!# is deeper than the period dip.
If it falls within the search range, the result is a subharmonic
error, sometimes called ‘‘octave error’’~improperly because
not necessarily in a power of 2 ratio with the correct value!.
The autocorrelation method is likewise prone to choosing a
high-order peak.

The solution we propose is to set an absolute threshold
and choose the smallest value oft that gives a minimum of
d8 deeper than that threshold. If none is found, the global
minimum is chosen instead. With a threshold of 0.1, the error
rate drops to 0.78%~from 1.69%! as a consequence of a
reduction of ‘‘too low’’ errors accompanied by a very slight
increase of ‘‘too high’’ errors.

This step implements the word ‘‘smallest’’ in the phrase
‘‘the period is the smallest positive member of a set’’~the

previous step implemented the word ‘‘positive’’!. The thresh-
old determines the list of candidates admitted to the set, and
can be interpreted as the proportion of aperiodic power tol-
erated within a ‘‘periodic’’ signal. To see this, consider the
identity:

2~xt
21xt1T

2 !5~xt1xt1T!21~xt2xt1T!2. ~9!

Taking the average over a window and dividing by 4,

1/~2W! (
j 5t11

t1W

~xj
21xj 1T

2 !

51/~4W! (
j 5t11

t1W

~xj1xj 1T!211/~4W!

3 (
j 5t11

t1W

~xj2xj 1T!2. ~10!

The left-hand side approximates the power of the signal. The
two terms on the right-hand side, both positive, constitute a
partition of this power. The second is zero if the signal is
periodic with periodT, and is unaffected by adding or sub-
tracting periodic components at that period. It can be inter-
preted as the ‘‘aperiodic power’’ component of the signal
power. Witht5T the numerator of Eq.~8! is proportional to
aperiodic power whereas its denominator, average ofd(t)
for t between 0 andT, is approximately twice the signal
power. Thus,d8(T) is proportional to the aperiodic/total
power ratio. A candidateT is accepted in the set if this ratio
is below threshold. We’ll see later on that the exact value of
this threshold does not critically affect error rates.

E. Step 5: Parabolic interpolation

The previous steps work as advertised if the period is a
multiple of the sampling period. If not, the estimate may be
incorrect by up to half the sampling period. Worse, the larger
value of d8(t) sampled away from the dip may interfere
with the process that chooses among dips, thus causing a
gross error.

A solution to this problem is parabolic interpolation.
Each local minimum ofd8(t) and its immediate neighbors is
fit by a parabola, and the ordinate of the interpolated mini-
mum is used in the dip-selection process. The abscissa of the
selected minimum then serves as a period estimate. Actually,
one finds that the estimate obtained in this way is slightly
biased. To avoid this bias, the abscissa of the corresponding
minimum of the raw difference functiond(t) is used in-
stead.

Interpolation of d8(t) or d(t) is computationally
cheaper than upsampling the signal, and accurate to the ex-
tent thatd8(t) can be modeled as a quadratic function near
the dip. Simple reasoning argues that this should be the case
if the signal is band-limited. First, recall that the ACF is the
Fourier transform of the power spectrum: if the signalxt is
bandlimited, so is its ACF. Second, the ACF is a sum of
cosines, which can be approximated near zero by a Taylor
series with even powers. Terms of degree 4 or more come
mainly from the highest frequency components, and if these
are absent or weak the function is accurately represented by
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lower order terms~quadratic and constant!. Finally, note that
the period peak has the same shape as the zero-lag peak, and
the same shape~modulo a change in sign! as the period dip
of d(t), which in turn is similar to that ofd8(t). Thus,
parabolic interpolation of a dip is accurate unless the signal
contains strong high-frequency components~in practice,
above about one-quarter of the sampling rate!.

Interpolation had little effect on gross error rates over
the database~0.77% vs 0.78%!, probably becauseF0’s were
small in comparison to the sampling rate. However, tests
with synthetic stimuli found that parabolic interpolation re-
duced fine error at allF0 and avoided gross errors at high
F0 .

F. Step 6: Best local estimate

The role of integration in Eqs.~1! and ~6! is to ensure
that estimates are stable and do not fluctuate on the time
scale of the fundamental period. Conversely, any such fluc-
tuation, if observed, should not be considered genuine. It is
sometimes found, for nonstationary speech intervals, that the
estimate fails at a certain phase of the period that usually
coincides with a relatively high value ofd8(Tt), whereTt is
the period estimate at timet. At another phase~time t8! the
estimate may be correct and the value ofd8(Tt8) smaller.
Step 6 takes advantage of this fact, by ‘‘shopping’’ around
the vicinity of each analysis point for a better estimate.

The algorithm is the following. For each time indext,
search for a minimum ofdu8(Tu) for u within a small interval
@ t2Tmax/2, t1Tmax/2#, whereTu is the estimate at timeu
andTmax is the largest expected period. Based on this initial
estimate, the estimation algorithm is applied again with a
restricted search range to obtain the final estimate. Using
Tmax525 ms and a final search range of620% of the initial
estimate, step 6 reduced the error rate to 0.5%~from 0.77%!.
Step 6 is reminiscent of median smoothing or dynamic pro-
gramming techniques~Hess, 1983!, but differs in that it takes
into account a relatively short interval and bases its choice
on quality rather than mere continuity.

The combination of steps 1–6 constitutes a new method
~YIN ! that is evaluated by comparison to other methods in
the next section. It is worth noting how the steps build upon
one another. Replacing the ACF~step 1! by the difference
function ~step 2! paves the way for the cumulative mean
normalization operation~step 3!, upon which are based the
threshold scheme~step 4! and the measured8(T) that selects
the best local estimate~step 6!. Parabolic interpolation~step
5! is independent from other steps, although it relies on the
spectral properties of the ACF~step 1!.

III. EVALUATION

Error rates up to now were merely illustrative. This sec-
tion reports a more formal evaluation of the new method in
comparison to previous methods, over a compilation of da-
tabases of speech recorded together with the signal of a
laryngograph~an apparatus that measures electrical resis-
tance between electrodes placed across the larynx!, from
which a reliable ‘‘ground-truth’’ estimate can be derived. De-
tails of the databases are given in the Appendix. The laryn-

gographF0 estimate was derived automatically and checked
visually, and estimates that seemed incorrect were removed
from the statistics. This process removed unvoiced and also
irregularly voiced portions~diplophony, creak!. Some studies
include the latter, but arguably there is little point in testing
an algorithm on conditions for which correct behavior is not
defined.

When evaluating the candidate methods, values that dif-
fered by more than 20% from laryngograph-derived esti-
mates were counted as ‘‘gross errors.’’ This relatively per-
missive criterion is used in many studies, and measures the
difficult part of the task on the assumption that if an initial
estimate is within 20% of being correct, any of a number of
techniques can be used to refine it. Gross errors are further
broken down into ‘‘too low’’~mainly subharmonic! and ‘‘too
high’’ errors.

In itself the error rate is not informative, as it depends on
the difficulty of the database. To draw useful conclusions,
different methods must be measured on the same database.
Fortunately, the availability of freely accessible databases
and software makes this task easy. Details of availability and
parameters of the methods compared in this study are given
in the Appendix. In brief, postprocessing and voiced–
unvoiced decision mechanisms were disabled~where pos-
sible!, and methods were given a common search range of 40
to 800 Hz, with the exception of YIN that was given an
upper limit of one-quarter of the sampling rate~4 or 5 kHz
depending on the database!.

Table II summarizes error rates for each method and
database. These figures should not be taken as an accurate
measure of the intrinsic quality of each algorithm or imple-
mentation, as our evaluation conditions differ from those for
which they were optimized. In particular, the search range
~40 to 800 Hz! is unusually wide and may have destabilized
methods designed for a narrower range, as evidenced by the
imbalance between ‘‘too low’’ and ‘‘two high’’ error rates for
several methods. Rather, the figures are a sampling of the
performance that can be expected of ‘‘off-the shelf’’ imple-
mentations of well-known algorithms in these difficult con-
ditions. It is worth noting that the ranking of methods differs
between databases. For example methods ‘‘acf’’ and ‘‘nacf’’
do well on DB1~a large database with a total of 28 speak-
ers!, but less well on other databases. This shows the need
for testing on extensive databases.

YIN performs best of all methods over all the databases.
Averaged over databases, error rates are smaller by a factor
of about 3 with respect to the best competing method. Error
rates depend on the tolerance level used to decide whether an
estimate is correct or not. For YIN about 99% of estimates
are accurate within 20%, 94% within 5%, and about 60%
within 1%.

IV. SENSITIVITY TO PARAMETERS

Upper and lowerF0 search bounds are important param-
eters for most methods. In contrast to other methods, YIN
needs no upper limit~it tends, however, to fail forF0’s be-
yond one quarter of the sampling rate!. This should make it
useful for musical applications in whichF0 can become very
high. A wide range increases the likelihood of ‘‘finding’’ an
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incorrect estimate, and so relatively low error rates despite a
wide search range are an indication of robustness.

In some methods@spectral, autocorrelation based on Eq.
~2!#, the window size determines both the maximum period
that can be estimated~lower limit of the F0 search range!,
and the amount of data integrated to obtain any particular
estimate. For YIN these two quantities are decoupled~Tmax

andW!. There is, however, a relation between the appropriate
value for one and the appropriate value for the other. For
stability of estimates over time, the integration window must
be no shorter than the largest expected period. Otherwise,
one can construct stimuli for which the estimate would be
incorrect over a certain phase of the period. The largest ex-
pected period obviously also determines the range of lags
that need to be calculated, and together these considerations
justify the well known rule of thumb:F0 estimation requires
enough signal to covertwice the largest expected period. The
window may, however, be larger, and it is often observed that
a larger window leads to fewer errors at the expense of re-
duced temporal resolution of the time series of estimates.
Statistics reported for YIN were obtained with an integration
window of 25 ms and a period search range of 25 ms, the
shortest compatible with a 40 Hz lower bound onF0 . Figure
4~a! shows the number of errors for different window sizes.

A parameter specific to YIN is the threshold used in step
4. Figure 4~b! shows how it affects error rate. Obviously it
does not require fine tuning, at least for this task. A value of
0.1 was used for the statistics reported here. A final param-
eter is the cutoff frequency of the initial low-pass filtering of
the signal. It is generally observed, with this and other meth-
ods, that low-pass filtering leads to fewer errors, but obvi-
ously setting the cutoff below theF0 would lead to failure.
Statistics reported here were for convolution with a 1-ms
square window~zero at 1 kHz!. Error rates for other values
are plotted in Fig. 4~c!. In summary, this method involves
comparatively few parameters, and these do not require fine
tuning.

V. IMPLEMENTATION CONSIDERATIONS

The basic building block of YIN is the function defined
in Eq. ~1!. Calculating this formula for everyt andt is com-

putationally expensive, but there are at least two approaches
to reduce cost. The first is to implement Eq.~1! using a
recursion formula over time~each step adds a new term and
subtracts an old!. The window shape is then square, but a
triangular or yet closer approximation to a Gaussian shape
can be obtained by recursion~there is, however, little reason
not to use a square window!.

A second approach is to use Eq.~2! which can be cal-
culated efficiently by FFT. This raises two problems. The
first is that the energy terms of Eq.~7! must be calculated
separately. They are not the same asr t8(0), but rather the

TABLE II. Gross error rates for severalF0 estimation algorithms over four databases. The first six methods are
implementations available on the Internet, the next four are methods developed locally, and YIN is the method
described in this paper. See Appendix for details concerning the databases, estimation methods, and evaluation
procedure.

Method

Gross error~%!

DB1 DB2 DB3 DB4 Average ~low/high!

pda 10.3 19.0 17.3 27.0 16.8 ~14.2/2.6!
fxac 13.3 16.8 17.1 16.3 15.2 ~14.2/1.0!
fxcep 4.6 15.8 5.4 6.8 6.0 ~5.0/1.0!
ac 2.7 9.2 3.0 10.3 5.1 ~4.1/1.0!
cc 3.4 6.8 2.9 7.5 4.5 ~3.4/1.1!
shs 7.8 12.8 8.2 10.2 8.7 ~8.6/0.18!

acf 0.45 1.9 7.1 11.7 5.0 ~0.23/4.8!
nacf 0.43 1.7 6.7 11.4 4.8 ~0.16/4.7!
additive 2.4 3.6 3.9 3.4 3.1 ~2.5/0.55!
TEMPO 1.0 3.2 8.7 2.6 3.4 ~0.53/2.9!

YIN 0.30 1.4 2.0 1.3 1.03 ~0.37/0.66!

FIG. 4. Error rates of YIN:~a! as a function of window size,~b! as a
function of threshold, and~c! as a function of low-pass prefilter cutoff fre-
quency~open symbol is no filtering!. The dotted lines indicate the values
used for the statistics reported for YIN in Table II. Rates here were measured
over a small database, a subset of that used in Sec. III. Performance does not
depend critically on the values of these parameters, at least for this database.
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sum of squares over the first and lastW2t samples of the
window, respectively. Both must be calculated for eacht, but
this may be done efficiently by recursion overt. The second
problem is that the sum involves more terms for smallt than
for large. This introduces an unwanted bias that can be cor-
rected by dividing each sample ofd(t) by W2t. However,
it remains that large-t samples ofd(t) are derived from a
smaller window of data, and are thus stable than small-t
samples. In this sense the FFT implementation is not as good
as the previous one. It is, however, much faster when pro-
ducing estimates at a reduced frame rate, while the previous
approach may be faster if a high-resolution time series of
estimates is required.

Real-time applications such as interactive music track-
ing require low latency. It was stated earlier that estimation
requires a chunk of signal of at least 2Tmax. However, step 4
allows calculations started att50 to terminate as soon as an
acceptable candidate is found, rather than to proceed over the
full search range, so latency can be reduced toTmax1T. Fur-
ther reduction is possible only if integration time is reduced
below Tmax, which opens the risk of erroneously locking to
the fine structure of a particularly long period.

The valued8(T) may be used as a confidence indicator
~large values indicate that theF0 estimate is likely to be
unreliable!, in postprocessing algorithms to correct theF0

trajectory on the basis of the most reliable estimates, and in
template-matching applications to prevent the distance be-
tween a pattern and a template from being corrupted by un-
reliable estimates within either. Another application is in
multimedia indexing, in which anF0 time series may have to
be down-sampled to save space. The confidence measure al-
lows down-sampling to be based on correct rather than in-
correct estimates. This scheme is implemented in the
MPEG7 standard~ISO/IEC–JTC–1/SC–29, 2001!.

VI. EXTENSIONS

The YIN method described in Sec. II is based on the
model of Eq.~4! ~periodic signal!. The notion of model is
insightful: an ‘‘estimation error’’ means simply that the
model matched the signal for an unexpected set of param-
eters. Error reduction involves modifying the model to make
such matches less likely. This section presents extended
models that address situations where the signal deviates sys-
tematically from the periodic model. Tested quantitatively
over our speech databases, none of these extensions im-
proved error rates, probably because the periodic model used
by YIN was sufficiently accurate for this task. For this reason
we report no formal evaluation results. The aim of this sec-
tion is rather to demonstrate the flexibility of the approach
and to open perspectives for future development.

A. Variable amplitude

Amplitude variation, common in speech and music,
compromises the fit to the periodic model and thus induces
errors. To deal with it the signal may be modeled as a peri-
odic function with time-varying amplitude:

xt1T /at1T5xt /at . ~11!

If one supposes that the ratioa5at1T /at does not depend
on t ~as in an exponential increase or decrease!, the value of
a may be found by least squares fitting. Substituting that
value in Eq.~6! then leads to the following function:

dt~t!5r t~0!@12r t~t!2/r t~0!r t1t~0!#. ~12!

Figure 5 illustrates the result. The top panel displays the
time-varying signal, the middle a functiond8(t) derived ac-
cording to the standard procedure, and the bottom the same
function derived using Eq.~12! instead of Eq.~6!. Interest-
ingly, the second term on the right of Eq.~12! is the square
of the normalized ACF.

With two parameters the model of Eq.~12! is more
‘‘permissive’’ and more easily fits an amplitude-varying sig-
nal. However, this also implies more opportunities for ‘‘un-
expected’’ fits, in other words, errors. Perhaps for that reason
it actually produced a slight increase in error rates~0.57% vs.
0.50% over the restricted database!. However, it was used
with success to process the laryngograph signal~see the Ap-
pendix!.

B. Variable F0

Frequency variation, also common in speech and music,
is a second source of aperiodicity that interferes withF0

estimation. WhenF0 is constant a lagt may be found for

FIG. 5. ~a! Sine wave with exponentially decreasing amplitude.~b! Differ-
ence function calculated according to Eq.~6! ~periodic model!. ~c! Differ-
ence function calculated according to Eq.~12! ~periodic model with time-
varying amplitude!. Period estimation is more reliable and accurate using
the latter model.
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which (xj2xj 1t)
2 is zero over the whole integration win-

dow of d(t), but with a time-varyingF0 it is identically zero
only at one point. On either side, its value (xj2xj 1t)

2 varies
quadratically with distance from this point, and thusd(t)
varies with the cube of window size,W.

A shorter window improves the match, but we know that
the integration window must not be shortened beyond a cer-
tain limit ~Sec. IV!. A solution is to split the window into two
or more segments, and to allowt to differ between segments
within limits that depend on the maximum expected rate of
change. Xu and Sun~2000! give a maximum rate ofF0

change of about66 oct/s, but in our databases it did not
often exceed61 oct/s ~Fig. 10!. With a split window the
search space is larger but the match is improved~by a factor
of up to 8 in the case of two segments!. Again, this model is
more easily satisfied than that of Eq.~4!, and therefore may
introduce new errors.

C. Additive noise: Slowly varying DC

A common source of aperiodicity is additive noise
which can take many forms. A first form is simply a time-
varying ‘‘DC’’ offset, produced for example by a singer’s
breath when the microphone is too close. The deleterious
effect of a DC ramp, illustrated in Fig. 6~b!, can be elimi-
nated by using the following formula, obtained by setting the
derivative ofdt(t) with respect to the DC offset to zero:

dt~t!5r t~0!1r t1t~0!22r t~t!1F (
j 5t11

t1W

~xj2xj 1t!G2

~13!

as illustrated in Fig. 6~c!.
Again, this model is more permissive than the strict pe-

riodic model and thus may introduce new errors. For that
reason, and because our speech data contained no obvious
DC offsets, it gave no improvement and instead slightly in-
creased error rates~0.51% vs 0.50%!. However, it was used
with success to process the laryngograph signal, which had
large slowly varying offsets.

D. Additive noise: Periodic

A second form of additive noise is a concurrent periodic
sound, for example, a voice or an instrument, hum, etc. Ex-
cept in the unlucky event that the periods are in certain
simple ratios, the effects of the interfering sound can be
eliminated by applying a comb filter with impulse response
h(t)5d(t)2d(t1U) whereU is the period of the interfer-
ence. If U is known, this processing is trivial. IfU is un-
known, both it and the desired periodT may be found by the
joint estimation algorithm of de Cheveigne´ and Kawahara
~1999!. This algorithm searches the~t,n! parameter space for
a minimum of the following difference function:

ddt~t,n!5 (
j 5t11

t1W

~xj2xj 1t2xj 1n1xj 1t1n!2. ~14!

The algorithm is computationally expensive because the sum
must be recalculated for all pairs of parameter values. How-
ever, this cost can be reduced by a large factor by expanding
the squared sum of Eq.~14!:

ddt~t,n!5r t~0!1r t1t~0!1r t1n~0!1r t1t1n~0!

22r t~t!22r t~n!12r t~t1n!

12r t1t~n2t!22r t1t~n!22r t1n~t!. ~15!

The right-hand terms are the same ACF coefficients that
served for single period estimation. If they have been precal-
culated, Eq.~15! is relatively cheap to form. The two-period
model is again more permissive than the one-period model
and thus may introduce new errors. As an example, recall
that the sum of two closely spaced sines is equally well in-
terpreted as such~by this model!, or as an amplitude-
modulated sine~by the periodic or variable-amplitude peri-
odic models!. Neither interpretation is more ‘‘correct’’ than
the other.

E. Additive noise: Different spectrum from target

Suppose now that the additive noise is neither DC nor
periodic, but that its spectral envelope differs from that of the
periodic target. If both long-term spectra are known and
stable, filtering may be used to reinforce the target and
weaken the interference. Low-pass filtering is a simple ex-
ample and its effects are illustrated in Fig. 4~c!.

If spectra of target and noise differ only on a short-term
basis, one of two techniques may be applied. The first is to
split the signal over a filter bank~for example, an auditory
model filter bank! and calculate a difference function from

FIG. 6. ~a! Sine wave with linearly increasing DC offset.~b! Difference
function calculated according to Eq.~6!. ~c! Difference function calculated
according to Eq.~13! ~periodic model with DC offset!. Period estimation is
more reliable and accurate using the latter model.
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each output. These functions are then added to obtain a sum-
mary difference function from which a periodicity measure is
derived. Individual channels are then removed one by one
until periodicity improves. This is reminiscent of Licklider’s
~1951! model of pitch perception.

The second technique applies an adaptive filter at the
input, and searches jointly for the parameters of the filter and
the period. This is practical for a simple filter with impulse
responseh(t)5d(t)6d(t1V), whereV and the sign deter-
mine the shape of the power transfer function illustrated in
Fig. 7. The algorithm is based on the assumption that some
value ofV and sign will advantage the target over the inter-
ference and improve periodicity. The parameterV and the
sign are determined, together with the periodT, by searching
for a minimum of the function:

ddt8~t,n!5r t~0!1r t1t~0!1r t1n~0!1r t1t1n~0!

62r t~t!22r t~n!72r t~t1n!

72r t1t~n2t!22r t1t~n!62r t1n~t!, ~16!

which ~for the negative sign! is similar to Eq. ~15!. The
search spaces forT andV should be disjoint to prevent the
comb-filter tuned toV from interfering with the estimation of
T. Again, this model is more permissive than the standard
periodic model, and the same warnings apply as for other
extensions to that model.

F. Additive noise: Same spectrum as target

If the additive noise shares the same spectral envelope as
the target on an instantaneous basis, none of the previous
methods is effective. Reliability and accuracy can neverthe-
less be improved if the target is stationary and of sufficiently
long duration. The idea is to make as many period-to-period
comparisons as possible given available data. Denoting asD
the duration, and setting the window sizeW to be at least as
large as the maximum expected period, the following func-
tions are calculated:

dk~t!5 (
j 51

D2kW

~xj2xj 2t!
2, k51,...,D/W. ~17!

The lag~t! axis of each function is then ‘‘compressed’’ by a
factor of D/W2k, and the functions are summed:

d~t!5 (
k51

D/W

dk„t/~D/W2k!…. ~18!

This function is the sum of (D/W)(D/W21)/2 differences.
For tÞT each difference includes both a deterministic part
~target! and a noise part, whereas fort5T they only include
the noise part. Deterministic parts add in phase while noise
parts tend to cancel each other out, so the salience of the dip
at t5T is reinforced. Equation~18! resembles~with differ-
ent coefficients! the ‘‘narrowed autocorrelation function’’ of
Brown and Puckette~1989! that was used by Brown and
Zhang ~1991! for musicalF0 estimation, and by de Chev-
eigné~1989! and Slaney~1990! in pitch perception models.

To summarize, the basic method can be extended in sev-
eral ways to deal with particular forms of aperiodicity. These
extensions may in some cases be combined~for example,
modeling the signal as a sum of periodic signals with varying
amplitudes!, although all combinations have not yet been
explored. We take this flexibility to be a useful feature of the
approach.

VII. RELATIONS WITH AUDITORY PERCEPTION
MODELS

As pointed out in the Introduction, the autocorrelation
model is a popular account of pitch perception, but attempts
to turn that model into an accurate speechF0 estimation
method have met with mitigated success. This study showed
how it can be done. Licklider’s~1951! model involved a
network of delay lines~the t parameter! and coincidence-
counting neurons~a probabilistic equivalent of multiplica-
tion! with temporal smoothing properties~the equivalent of
integration!. A previous study~de Cheveigne´, 1998! showed
that excitatory coincidence could be replaced by inhibitory
‘‘anti-coincidence,’’ resulting in a ‘‘cancellation model of
pitch perception’’ in many regards equivalent to autocorrela-
tion. The present study found that cancellation is actually
more effective, but also that it may be accurately imple-
mented as a sum of autocorrelation terms.

Cancellation models~de Cheveigne´, 1993, 1997, 1998!
require both excitatory and inhibitory synapses with fast
temporal characteristics. The present study suggests that the
same functionality might be obtained with fast excitatory
synapses only, as illustrated in Fig. 8. There is evidence for
fast excitatory interaction in the auditory system, for ex-
ample in the medial superior olive~MSO!, as well as for fast
inhibitory interaction, for example within the lateral superior
olive ~LSO! that is fed by excitatory input from the cochlear
nucleus, and inhibitory input from the medial trapezoidal
body. However, the limit on temporal accuracy may be lower
for inhibitory than for excitatory interaction~Joris and Yin,
1998!. A model that replaces one by the other without loss of
functionality is thus a welcome addition to our panoply of
models.

Sections VI D and VI E showed how a cascade of sub-
tractive operations could be reformulated as a sum of auto-
correlation terms. Transposing to the neural domain, this
suggests that the cascaded cancellation stages suggested by
de Cheveigne´ and Kawahara~1999! to account for multiple
pitch perception, or by de Cheveigne´ ~1997! to account for

FIG. 7. Power transfer functions for filters with impulse responsed t

2d t1t ~full line! and d t1d t1t ~dashed line! for t51 ms. To reduce the
effect of additive noise onF0 estimation, the algorithm searches for the
value of t and the sign that maximize the power of the periodic target
relative to aperiodic interference. The dotted line is the spectrum of a typical
vowel.
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concurrent vowel identification, might instead be imple-
mented in a single stage as a neural equivalent of Eq.~15! or
~16!. Doing away with cascaded time-domain processing
avoids the assumption of a succession of phase-locked neu-
rons, and thus makes such models more plausible. Similar
remarks apply to cancellation models of binaural processing
~Culling and Summerfield, 1995; Akeroyd, 2000; Breebart
et al., 2001!.

To summarize, useful parallels may be drawn between
signal processing and auditory perception. The YIN algo-
rithm is actually a spin-off of work on auditory models. Con-
versely, addressing this practical task may be of benefit to
auditory modeling, as it reveals difficulties that are not obvi-
ous in modeling studies, but that are nevertheless faced by
auditory processes.

VIII. DISCUSSION

Hundreds ofF0 estimation methods have been proposed
in the past, many of them ingenious and sophisticated. Their
mathematical foundation usually assumes periodicity, and
when that is degraded~which is when smart behavior is most
needed! they may break down in ways not easy to predict. As
pointed out in Sec. II A, seemingly different estimation meth-
ods are related, and our analysis of error mechanisms can
probably be transposed, mutatis mutandis, to a wider class of
methods. In particular, every method is faced with the prob-
lem of trading off too-high versus too-low errors. This is
usually addressed by applying some form of bias as illus-
trated in Sec. II A. Bias may be explicit as in that section, but
often it is the result of particular side effects of the algorithm,
such as the tapering that resulted with Eq.~2! from limited
window size. If the algorithm has several parameters, credit
assignment is difficult. The key to the success of YIN is

probably step 3 that allows it to escape from the bias para-
digm, so that the two types of error can be addressed inde-
pendently. Other steps can be seen as either preparing for this
step~steps 1 and 2! or building upon it~steps 4 and 6!.

Parabolic interpolation~step 5! gives subsample resolu-
tion. Very accurate estimates can be obtained using an inter-
val of signal that is not large. Precisely, to accurately esti-
mate the periodT of a perfectly periodic signal,and to be
sure that the true period is not instead greater thanT, at least

FIG. 8. ~a! Neural cancellation filter~de Cheveigne´, 1993, 1997!. The gating
neuron receives excitatory~direct! and inhibitory ~delayed! inputs, and
transmits any spike that arrives via the former unless another spike arrives
simultaneously via the latter. Inhibitory and excitatory synapses must both
be fast~symbolized by thin lines!. Spike activity is averaged at the output to
produced slowly varying quantities~symbolized by thick lines!. ~b! Neural
circuit with the same properties as in~a!, but that only requires fast excita-
tory synapses. Inhibitory interaction involves slowly varying quantities
~thick lines!. Double ‘‘chevrons’’ symbolize that output discharge probabil-
ity is proportional to the square of input discharge probability. These circuits
should be understood as involving many parallel fibers to approximate con-
tinuous operations on probabilities.

FIG. 9. Histograms ofF0 values over the four databases. Each line corre-
sponds to a different speaker, either male~full lines! or female~dotted lines!.
The bin width is one semitone~

1
12 of an octave!. The skewed or bimodal

distributions of database 3 are due to the presence of material pronounced in
a falsetto voice.

FIG. 10. Histograms of rate ofF0 change for each of the four databases.
Each line is an aggregate histogram over all speakers of the database. The
rate of change is measured over a 25-ms time increment~one period of the
lowest expectedF0!. The bin width is 0.13 oct/s. The asymmetry of the
distributions reflects the well-known declining trend ofF0 in speech.
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2T11 samples of data are needed. If this is granted, there is
no theoretical limit to accuracy. In particular, it is not limited
by the familiar uncertainty principleDTDF5const.

We avoided familiar postprocessing schemes such as
median smoothing~Rabiner and Schaffer, 1978! or dynamic
programming~Ney, 1982; Hess, 1983!, as including them
complicates evaluation and credit assignment. Nothing pre-
vents applying them to further improve the robustness of the
method. The aperiodicity measured8(T) may be used to
ensure that estimates are corrected on the basis of their reli-
ability rather than continuityper se.

The issue of voicing detection was also avoided, again
because it greatly complicates evaluation and credit assign-
ment. The aperiodicity measured8t seems a good basis for
voicing detection, perhaps in combination with energy. How-
ever, equating voicing with periodicity is not satisfactory, as
some forms of voicing are inherently irregular. They prob-
ably still carry intonation cues, but how they should be quan-
tified is not clear. In a companion paper~Kawaharaet al., in
preparation!, we present a rather different approach toF0

estimation and glottal event detection, based on instanta-
neous frequency and the search for fixed points in mappings
along the frequency and time axes. Together, these two pa-
pers offer a new perspective on the old task ofF0 estimation.

YIN has been only informally evaluated on music, but
there are reasons to expect that it is appropriate for that task.
Difficulties specific to music are the wide range and fast
changes inF0 . YIN’s open-ended search range and the fact
that it performs well without continuity constraints put it at
an advantage over other algorithms. Other potential advan-
tages, yet to be tested, are low latency for interactive systems
~Sec. V!, or extensions to deal with polyphony~Sec. VI D!.
Evaluation on music is complicated by the wide range of
instruments and styles to be tested and the lack of a well-
labeled and representative database.

What is new? Autocorrelation was proposed for period-
icity analysis by Licklider~1951!, and early attempts to ap-
ply it to speech are reviewed in detail by Hess~1983!, who
also traces the origins of difference-function methods such as
the AMDF. The relation between the two, exploited in Eq.
~7!, was analyzed by Ney~1982!. Steps 3 and 4 were applied
to AMDF by de Cheveigne´ ~1990! and de Cheveigne´ ~1996!,
respectively. Step 5~parabolic interpolation! is a standard
technique, applied for example to spectrum peaks in theF0

estimation method of Duifhuiset al. ~1982!. New are step 6,
the idea of combining steps as described, the analysis of why
it all works, and most importantly the formal evaluation.

IX. CONCLUSION

An algorithm was presented for the estimation of the
fundamental frequency of speech or musical sounds. Starting
from the well-known autocorrelation method, a number of
modifications were introduced that combine to avoid estima-
tion errors. When tested over an extensive database of speech
recorded together with a laryngograph signal, error rates
were a factor of 3 smaller than the best competing methods,
without postprocessing. The algorithm has few parameters,
and these do not require fine tuning. In contrast to most other
methods, no upper limit need be put on theF0 search range.

The method is relatively simple and may be implemented
efficiently and with low latency, and may be extended in
several ways to handle several forms of aperiodicity that oc-
cur in particular applications. Finally, an interesting parallel
may be drawn with models of auditory processing.
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APPENDIX: DETAILS OF THE EVALUATION
PROCEDURE

1. Databases

The five databases comprised a total of 1.9 h of speech,
of which 48% were labeled as regularly voiced. They were
produced by 48 speakers~24 male, 24 female! of Japanese
~30!, English~14!, and French~4!. Each included a laryngo-
graph waveform recorded together with the speech.

~1! DB1: Fourteen male and 14 female speakers each spoke
30 Japanese sentences for a total of 0.66 h of speech, for
the purpose of evaluation ofF0-estimation algorithms
~Atake et al., 2000!. The data include a ‘‘voiced–
unvoiced’’ mask that was not used here.

~2! DB2: One male and one female speaker each spoke 50
English sentences for a total of 0.12 h of speech, for the
purpose of evaluation ofF0-estimation algorithms~Bag-
shaw et al., 1993!. The database can be downloaded
from the URL ^http://www.cstr.ed.ac.uk/
˜pcb/fda–eval.tar.gz&.

~3! DB3: Two male and two female speakers each pro-
nounced between 45 and 55 French sentences for a total
of 0.46 h of speech. The database was created for the
study of speech production, and includes sentences pro-
nounced according to several modes: normal~141!, head
~30!, and fry ~32! ~Vu Ngoc Tuan and d’Alessandro,
2000!. Sentences in fry mode were not used for evalua-
tion because it is not obvious how to defineF0 when
phonation is not periodic.
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~4! DB4: Two male speakers of English and one male and
one female speaker of Japanese produced a total of 0.51
h speech, for the purpose of deriving prosody rules for
speech synthesis~Campbell, 1997!.

~5! DB5: Five male and five female speakers of English
each pronunced a phonetically balanced text for a total
of 0.15 h of speech. The database can be downloaded
from ^ftp://ftp.cs.keele.ac.uk/pub/pitch/Speech&.

Ground-truthF0 estimates for the first four databases
were extracted from the laryngograph signal using YIN. The
threshold parameter was set to 0.6, and the schemes of Secs.
VI A and VI C were implemented to cope with the large
variable DC offset and amplitude variations of the laryngo-
graph signal. Estimates were examined together with the
laryngograph signal, and a reliability mask was created
manually based on the following two criteria:~1! any esti-
mate for which theF0 estimate was obviously incorrect was
excluded and~2! any remaining estimate for which there was
evidence of vocal fold vibration was included. The first cri-
terion ensured that all estimates were correct. The second
aimed to include as many ‘‘difficult’’ data as possible. Esti-
mate values themselves were not modified. Estimates had the
same sampling rate as the speech and laryngograph signals
~16 kHz for DB1, DB3, and DB4, 20 kHz for database DB2!.

It could be argued that applying the same method to
speech and laryngograph data gives YIN an advantage rela-
tive to other methods. Estimates were all checked visually,
and there was no evidence of particular values that could
only be matched by the same algorithm applied to the speech
signal. Nevertheless, to make sure, tests were also performed
on three databases using ground truth not based on YIN. The
laryngograph signal of DB1 was processed by the TEMPO
method of Kawaharaet al. ~1999a!, based on instantaneous
frequency and very different from YIN, and estimates were
checked visually as above to derive a reliability mask. Scores
are similar~Table III, column 2! to those obtained previously
~Table II, column 2!. Scores were also measured for DB2 and
DB5, using referenceF0 estimates produced by the authors
of those databases using their own criteria. The ranking of

methods is similar to that found in Table III, suggesting that
the results in that table are not a product of our particular
procedures.

2. Reference methods

Reference methods include several methods available on
the Internet. Their appeal is that they have been indepen-
dently implemented and tuned, are representative of tools in
common use, and are easily accessible for comparison pur-
poses. Their drawback is that they are harder to control, and
that the parameters used may not do them full justice. Other
reference methods are only locally available. Details of pa-
rameters, availability and/or implementation are given below.

ac: This method implements the autocorrelation method
of Boersma~1993! and is available with the Praat system at
^http://www.fon.hum.uva.nl/praat/&. It was called with the
command ‘‘To Pitch~ac!...0.01 40 15 no 0.0 0.0 0.01 0.0 0.0
800.’’

cc: This method, also available with the Praat system, is
described as performing a cross-correlation analysis. It was
called with the command: ‘‘To Pitch~cc!... 0.01 40 15 no 0.0
0.0 0.01 0.0 0.0 800.’’

shs: This method, also available with the Praat system,
is described as performing spectral subharmonic summation
according to the algorithm of Hermes~1988!. It was called
with the command: ‘‘To Pitch~shs!...0.01 40 4 1700 15 0.84
800 48.’’

pda: This method implements the eSRPD algorithm of
Bagshaw~1993!, derived from that of Medanet al. ~1991!,
and is available with the Edinburgh Speech Tools Library at
^http://www.cstr.ed.ac.uk/&. It was called with the command:
‘‘pda input–file -o out-put–file -L -d 1 -shift 0.001-length
0.1-fmax 800-fmin 40-lpfilter 1000 -n 0.’’ Examination of
the code suggests that the program uses continuity con-
straints to improve tracking.

fxac: This program is based on the ACF of the cubed
waveform and is available with the Speech Filing System at
^http://www.phon.ucl.ac.uk/resource/sfs/&. Examination of
the code suggests that the search range is restricted to 80–
400 Hz. It provides estimates only for speech that is judged
‘‘voiced,’’ which puts it at a disadvantage with respect to
programs that always offer an estimate.

fxcep: This program is based on the cepstrum method,
and is also available with the Speech Filing System. Exami-
nation of the code suggests that the search range is restricted
to 67–500 Hz. It provides estimates only for speech that is
judged ‘‘voiced,’’ which puts it at a disadvantage with re-
spect to programs that always offer an estimate.

additive: This program implements the probabilistic
spectrum-based method of Doval~1994! and is only locally
available. It was called with the command: ‘‘additive -0 -S
input–file -f 40 -F 800 -G 1000 -X -f0ascii -I 0.001.’’

acf: This program calculates the ACF according to Eq.
~1! using an integration window size of 25 ms, multiplied by
a linear ramp with interceptTmax535 ms~tuned for best per-
formance over DB1!, and chooses the global maximum be-
tween 1.25 to 25 ms~40 to 800 Hz!.

nacf: As ‘‘acf’’ but using the normalized ACF according
to Eq. ~12!.

TABLE III. Gross error rates measured using alternative ground truth. DB1:
manually checked estimates derived from the laryngograph signal using the
TEMPO method of Kawaharaet al. ~199b!. DB2 and DB5: estimates de-
rived independently by the authors of those databases.

Method

Gross error~%!

DB1 DB2 DB5

pda 9.8 14.5 15.1
fxac 13.2 14.9 16.1
fxcep 4.5 12.5 8.9
ac 2.7 7.3 5.1
cc 3.3 6.3 8.0
shs 7.5 11.1 9.4

acf 0.45 2.5 3.1
nacf 0.43 2.3 2.8
additive 2.16 3.4 3.7
TEMPO 0.77 2.8 4.6

YIN 0.29 2.2 2.4
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TEMPO : This program implements the instantaneous
frequency method developed by the second author~Kawa-
haraet al., 1999a!.

YIN : The YIN method was implemented as described in
this article with the following additional details. Equation~1!
was replaced by the following variant:

r t~t!5 (
j 5t2t/22W/2

t2t/21W/2

xjxj 1t , ~A1!

which forms the scalar product between two windows that
shift symmetrically in time with respect to the analysis point.
The window size was 25 ms, the threshold parameter was
0.1, and theF0 search range was 40 Hz to one quarter the
sampling rate~4 or 5 kHz depending on the database!. The
window shift was 1 sample~estimates were produced at the
same sampling rate as the speech waveform!.

3. Evaluation procedure

Algorithms were evaluated by counting the number of
estimates that differed from the reference by more than 20%
~gross error rate!. Reference estimates were time shifted and
downsampled as necessary to match the alignment and sam-
pling rate of each method. Alignment was determined by
taking the minimum error rate over a range of time shifts
between speech-based and laryngograph-based estimates.
This compensated for time shifts due to acoustic propagation
from glottis to microphone, or implementation differences.
Some estimation algorithms work~in effect! by comparing
two windows of data that are shifted symmetrically in time
with respect to the analysis point, whereas others work~in
effect! by comparing a shifted window to a fixed window. An
F0-dependent corrective shift should be used in the latter
case.

A larger search range gives more opportunities for error,
so search ranges must be matched across methods. Methods
that implement a voicing decision are at a disadvantage with
respect to methods that do not~incorrect ‘‘unvoiced’’ deci-
sions count as gross errors!, so the voicing decision mecha-
nism should be disabled. Conversely, postprocessing may
give an algorithm an advantage. Postprocessing typically in-
volves parameters that are hard to optimize and behavior that
is hard to interpret, and is best evaluated separately from the
basic algorithm. These recommendations cannot always be
followed, either because different methods use radically dif-
ferent parameters, or because their implementation does not
allow them to be controlled. Method ‘‘pda’’ uses continuity
constraints and postprocessing. The search range of ‘‘fxac’’
was 80–400 Hz, while that of ‘‘fxcep’’ was 67–500 Hz, and
these two methods produce estimates only for speech that is
judged voiced. We did not attempt to modify the programs,
as that would have introduced a mismatch with the publicly
available version. These differences must be kept in mind
when comparing results across methods.
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