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Preface

‘In statistics, just like in the industry of consumer goods, there are producers
and consumers. The goods are statistical methods. These come in various kinds
and ‘brands’ and in great and often confusing variety. For the consumer, the
appler of statistical methods, the choice between alternative methods is often
difficult and too often depends on personal and irrational factors.

The advice of producers cannot always be trusted implicitly. They are apt—
a8 is only natural—to praise their own wares. The advice of consumers—based
on experience and personal impressions—cannot be trusted either. It is well
known among applied statisticlans that in many flelds of applied science, e.g.
in industry, experience, especially ‘experience of a lifetime’, compares unfavour-
ably with objective scientific research: tradition and aversion from innovation
are usually strong impediments for the introduction of new methods, even if
these are better than the old ones. This also holds for statistics’

(J. HEMELRIJK 1961).

DuriNg the preparation of the courses for final year students, mostly
of pharmacology, in Edinburgh and London on which this book is
based, I have often been struck by the extent to which most textbooks,
on the flimsiest of evidence, will dismiss the substitution of assumptions
for real knowledge as unimportant if it happens to be mathematically
convenient to do so. Very few books seem to be frank about, or perhaps
even aware of, how little the experimenter actually knows about the
distribution of errors of his observations, and about facts that are
assumed to be known for the purposes of making statistical calculations.
Considering that the purpose of statistics is supposed to be to help in
the making of inferences about nature, many texts seem, to the
experimenter, to take a surprisingly deductive approach (if assump-
tions @, b, and ¢ were true then we could infer such and such). It is also
noticeable that in the statistical literature, as opposed to elementary
textbooks, a vast number of methods have been proposed, but remark-
ably few have been assessed to see how they behave under the condi-
tions (small samples, unknown distribution of errors, etc.) in which
they are likely to be used.

These considerations, which are discussed at greater length in the
text, have helped to determine the content and emphasis of the methods
in this book. Where possible, methods have been advocated that
involve a minimum of untested assumptions. These methods, which
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occur mostly in Chapters 7-11, have the secondary advantage that
they are much easier to understand at the present level than the
methods, such as Student’s ¢ test and the chi-squared test (also described
and exemplified in this book) which have, until recently, been the main
sources of misery for students doing first courses in statistics.

In Chapter 12 and also in § 2.7 an attempt has been made to deal
with non-linear problems, as well as with the conventional linear ones.
Statistics is heavily dominated by linear models of one sort and another,
mainly for reasons of mathematical convenience. But the majority of
physical relationships to be tested in practical science are not straight
lines, and not linear in the wider sense described in § 12.7, and attempts
to make them straight may lead to unforeseen hazards (see §12.8),
so it is unrealistic not to discuss them, even in an elementary book.

In Chapters 13 and 14, calibration curves and assays are discussed.
The step by step description of parallel line assays is intended to
bridge the gap between elementary books and standard works such as
that of Finney (1964).

In Chapter 5 and Appendix 2 some aspects of random (‘stochastic’)
processes are discussed. These are of rapidly increasing importance to
the practical scientist, but the textbooks on the subject have always
seemed to me to be among the most incomprehensible of all statistics
books, partly, perhaps, because there are not really any elementary
ones. Again I have tried to bridge the gap.

The basic ideas are described in Chapters 1-4. They may be boring,
but the ideas in them are referred to constantly in the later chapters
when these ideas are applied to real problems, so the reader is earnestly
advised to study them.

There is still much disagreement about the fundamental principles
of inference, but most statisticians, presented with the problems
described, would arrive at answers similar to those presented here,
even if they justified them differently, so I have felt free to choose the
justifications that make the most sense to the experimenter.

I have been greatly influenced by the writing of Professor Donald
Mainland. His Elementary medical statistics (1963), which is much more
concerned with statistical thinking than statistical arithmetic, should
be read not only by every medical practitioner, but by everyone who
has to interpret observations of any sort. If the influence of Professor
Mainland’s wisdom were visible in this book, despite my greater
concern with methods, I should be very happy.

I am very grateful to many statisticians who have patiently put up
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with my pestering over the last few years. If I may, invidiously,
distinguish two in particular they would be Professor Mervyn Stone
who read most of the typescript and Dr. A. G. Hawkes who helped
particularly with stochastic processes. I have also been greatly helped
by Professor D. R. Cox, Mr. I. D. Hill, Professor D. V. Lindley, and
Mr. N. W. Please, as well as many others. Needless to say, none of
these people has any responsibilities for errors of judgment or fact that I
have doubtless persisted with, in spite of their best efforts. I am also
very grateful to Professor C. R. Oakley for permission to quote ex-
tensively from his paper on the purity-in-heart index in § 7.8.

University College London D.C.
April 1970

STATISTICAL TABLES FOR USE WITH THIS BOOK

The appendix contains those tables referred to in the text that are
not easily available elsewhere. Standard tables, such as normal distri-
bution, Student’s ¢, variance ratio, and random sampling numbers,
are 8o widely available that they have not been included. Any tables
should do. Those most referred to in the text are Fisher and Yates
Statistical tables for biological, agricultural and medical research (6th
edn 1963, Oliver and Boyd), and Pearson and Hartley Biometrika
tables for statisticians (Vol. 1, 3rd edn 1966, Cambridge University
Press). The former has more about experimental designs; the latter
has tables of the Fisher exact text for a 2 X 2 contingency table (see § 8.2),
but anyone doing many of these should get the full tables: Finney,
Latscha, Bennett, and Hsu 7Tables for testing significance in a 2X2
table (1963, Cambridge University Press). The Cambridge elementary
statistical tables (Lindley and Miller, 1968, Cambridge University Press)
give the normal, ¢, chi-squared, and variance ratio distributions, and
some random sampling numbers.
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1. Is the statistical way of thinking
worth bothering about?

‘I wish to propose for the reader’s favourable consideration a doctrine which
may, I fear, appear wildly paradoxical and subversive. The doctrine in question
is this: that it is undesirable to believe a proposition when there is no ground
whatever for supposing it true. I must of course, admit that if such an opinion
became common it would completely transform our social life and our political
system: since both are at present faultless, this must weigh against it. I am also
aware (what is more serious) that it would tend to diminish the incomes of
clairvoyants, bookmakers, bishops and others who live on the irrational hopes of
those who have done nothing to deserve good fortune here or hereafter. In spite
of these grave arguments, I maintain that a case can be made out for my paradox,
and I shall try to set it forth.’

BERTRAND RuUssELL, 1935
(On the Value of Sceplicism)

1.1. How to avoid making a fool of yourself. The role of statistics

IT is widely held by non-statisticians, like the author, that if you do
good experiments statistics are not necessary. They are quite right.
At least they are right as long as one makes an exception of the import-
ant branch of statistics that deals with processes that are inherently
statistical in nature, so-called ‘stochastic’ processes (see Chapters 3
and 5 and Appendix 2). The snag, of course, is that doing good experi-
ments is difficult. Most people need all the help they can get to prevent
them making fools of themselves by claiming that their favourite
theory is substantiated by observations that do nothing of the sort.
And the main function of that section of statistics that deals with
tests of significance is to prevent people making fools of themselves.
From this point of view, the function of significance tests is to prevent
people publishing experiments, not to encourage them. Ideally, indeed,
significance tests should never appear in print, having been used, if at
all, in the preliminary stages to detect inadequate experiments, so that
the final experiments are so clear that no justification is needed.

The main aim of this book is to produce a critical way of thinking
about experimentation. This is particularly necessary when attempting
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to measure abstract quantities such as pain, intelligence, or purity in
heart (§ 7.8). As Mainland (1964) points out, most of us find arithmetic
easier than thinking. A particular effort has therefore been made to
explain the rational basis of as many methods as possible. This has
been made much easier by starting with the randomization approach
to significance testing (Chapters 6-11), because this approach is easy to
understand, before going on to tests like Student’s ¢ test. The numerical
examples have been made as self-contained as possible for the benefit
of those who are not interested in the rational basis.

Although it is difficult to achieve these aims without a certain
amount of arithmetic, all the mathematical ideas needed will have
been learned by the age of 15. The only difficulty may be the occa-
sional use of longer formulae than the reader may have encountered
previously, but for the vast majority of what follows you do not need
to be able to do anything but add up and multiply. Adding up is so
frequent that a special notation for it is described in detail in §2.1.
You may find this very dull and boring until familiarity has revealed its
beauty and power, but do not on any account miss out this section.
In a few sections some elementary caloulus is used, though anything at
all daunting has been confined to the appendices. These parts can be
omitted without affecting understanding of most of the book. If you
know no caloulus at all, and there are far more important reasons for
no biologist being in this position than the ability to understand the
method of least squares, try Silvanus P. Thompson’s Calculus made Easy
(1965).

A list of the uses and scope of statistical methods in laboratory and
clinical experimentation is necessarily arbitrary and personal. Here is
mine.

(1) Statistical prudence (Lancelot Hogben’s phrase) encourages the
design of experiments in a way that allows conclusions to be drawn from
them. Some of the ideas, such as the central importance of randomiza-
tion (see §§ 2.3, 6.3, and Chapters 8-11) are far from intuitively obvious
to most people at first.

(2) Some processes are inherently probabilistic in nature. There is no
alternative to a statistical approach in these cases (see Chapter 5 and
Appendix 2).

(3) Statistical methods allow an estimate (usually optimistic, see
§ 7.2) of the uncertainty of the conclusions drawn from inexaot observa-
tions. When results are assessed by hopeful intuition it is not uncommon
for more to be inferred from them than they really imply. For example,
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Schor and Karten (1966) found that, in no less than 72 per cent of a
sample of 149 articles selected from 10 highly regarded medical journals.-
conclusions were drawn that were not justified by the results presented.
The most common single error was to make a general inference from
results that could quite easily have arisen by chance.

(4) Statistical methods can only cope with random errors and in
real experiments systematic errors (bias) may be quite as important as
random ones. No amount of statistics will reveal whether the pipette
used throughout an experiment was wrongly calibrated. Tippett (1944)
put it thus: ‘I prefer to regard a set of experimental results as a biased
sample from a population, the extent of the bias varying from one kind
of experiment and method of observation to another, from one experi-
menter to another, and, for any one experimenter, from time to time.’
It is for this reason, and because the assumptions made in statistical
analysis are not likely to be exactly true, that Mainland (1964) em-
phasizes that the great value of statistical analysis, and in particular
of the confidence limite discussed in Chapter 7, is that ‘they provide
a kind of minimum estimate of error, because they show how little a
particular sample would tell us about its population, even if it were a
strictly random sample.’

(5) Even if the observations were unbiased, the method of calculating
the results from them may introduce bias, as discussed in §§ 2.6 and
12.8 and Appendix 1. For example, some of the methods used by
biochemists to calculate the Michaelis constant from observations of the
initial velocity of enzymic reactions give a biased result even from
unbiased observations (see §12.8). This is essentially a statistical
phenomenon. It would not happen if the observations were exact.

(6) The important point to realize is that by their nature statistical
methods can never prove anything. The answer always comes out as
a probability. And exactly the same applies to the assessment of
results by intuition, except that the probability is not calculated but
guessed.

1.2. What is an experiment? Some basic ideas

Statistics originally meant state records (births, deaths, etc.) and its
popular meaning is still much the same. However, as is often the case,
the soientific meaning of the word is much narrower. It may be illus-
trated by an example.

Imagine a solution containing an unknown concentration of a drug.
If the solution is assayed many times, the resulting estimate of
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concentration will, in general, be different at every attempt. An
unknown true value such as the unknown true concentration of the
drug is called a parameter. The mean value from all the assays gives an
estimate of this parameter. An approximate experimental estimate
(the mean in this example) of a parameter is called a statistic It is
calculated from a sample of observations from the population of all
possible observations.

In the example just discussed the individual assay results differed
from the parameter value only because of experimental error. However,
there is another slightly different situation, one that is particularly
common in the biological sciences. For example, if identical doses of
a drug are given to a series of people and in each case the fall in blood
sugar level is measured then, as before, each observation will be differ-
ent. But in this case it is likely that most of the difference is real.
Different individuals really do have different falls in blood sugar level,
and the scatter of the results will result largely from this fact and only
to a minor extent from experimental errors in the determination of the
blood sugar level. The average fall of blood sugar level may still be of
interest if, for example, it is wished to compare the effects of two
different hypoglycaemic drugs. But in this case, unlike, the first, the
parameter of which this average is an estimate, the true fall in blood
sugar level, is no longer a physical reality, whereas the true concentra-
tion was. Nevertheless, it is still perfectly all right to use this average as
an estimate of a parameter (the value that the mean fall in blood
sugar level would approach if the sample size were increased indefin-
itely) that is used simply to define the distribution (see §§ 3.1 and
4.1) of the observations. Whereas in the first case the average of all
the assays was the only thing of interest, the individual values being
unimportant, in the second case it is the individual values that are of
importance, and the average of these values is only of interest in so far
as it can be used, in conjunction with their scatter, to make predictions
about individuals,

In short, there are two problems, the older one of estimating a true
value by imperfect methods, and the now common problem of measur-
ing effects that are really variable (e.g. in different people) by relatively
very accurate methods. Both these problems can be treated by the
same statistical methods, but the interpretation of the results may be
different for each.

With few exceptions, scientific methods were applied in medicine and
biology only in the nineteenth century and in education and the social
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sciences only very recently. It is necessary to distinguish two sorts of
scientific method often called the observational method and the
experimental method. Claude Bernard wrote: ‘we give the name observer
to the man who applies methods of investigation, whether simple or
complex, to the study of phenomena which he does not vary and which
he therefore gathers as nature offers them. We give the name experi-
menter to the man who applies methods of investigation, whether
simple or complex, so as to make natural phenomena vary.” In more
modern terms Mainland (1964) writes: ‘the distinctive feature of an
experiment, in the strict sense, is that the investigator, wishing to
compare the effects of two or more factors (independent variables)
assigns them Aimself to the individuals (e.g. human beings, animals or
batches of a chemical substance) that comprise his test material.’
For example, the type and dose of a drug, or the temperature of an
enzyme system, are independent variables.

The observational method, or survey method as Mainland calls it,
usually leads to a correlation; for example, a correlation between
smoking habits and death from lung cancer, or between educational
attainment and type of school. But the correlation, however perfect
it may be, does not give any information at all about causation,t such
as whether smoking causes lung cancer. The method lends itself only
too easily to the confusion of sequence with consequence. ‘It is the
post hoc, ergo propter hoc of the doctors, into which we may very easily
let ourselves be led’ (Claude Bernard).

This very important distinction is discussed further in §§ 12.7 and
12.9. Probably the most useful precaution against the wrong interpreta-
tion of correlations is to imagine the experiment that might in principle
be carried out to decide the issue. It can then be seen that bias in the
results is controlled by the randomization process inherent in experi-
ments. If all that is known is that pupils from type A schools do better
than those from type B schools it could well have nothing to do with
the type of school but merely, for example, be that children of educated
parents go to type A school and those of uneducated parents to type B
schools. If proper experimental methods were applied in the situations
mentioned above the first step would be to divide the population (or a
random sample from it) by a random process, into two groups. One
group would be instructed to smoke (or to go to a particular sort of
school), the other group would be ¢nstructed not to smoke (or go to

t It is not even necessarily true that zero correlation rules out causation, because
lack of correlation does not neceesarily imply independence (see § 12.9).
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a different sort of school). The difficulty in the medical and social
sciences is usually that an experiment may be considered unethical.
Since it can hardly be assumed a priori that there is an equal chance of
smoking having good or bad effects on health, it is not possible to
snstruct a group of people to smoke, though it should be perfectly
acceptable to leave one randomly selected group to its normal habits
(including smoking by some of the group) and to instruct the other
group to stop smoking.

Often the situation is not as bad as this, however. There is genuine
doubt about the relative merits of different sorts of school, and, very
often, about different sorts of therapy, so in these cases it is not merely
ethical to do a proper experiment, but it would be unethical, though
not unusual, not to do the experiment.

1.3. The nature of scientific inference

We are concerned with the establishment of new knowledge about the
real world. Therefore it will do no harm to mention something of the
logical foundations of inference before starting on methods.

The earliest natural philosophers based their work largely on
deductive arguments from axioms. The only criterion for a valid set of
axioms is that it should not be possible to deduce contradictory con-
clusions from them, i.e. that the axioms should be consistent. Even if
this is so it has no bearing on whether or not the axioms are true.

Later it came to be supposed that knowledge of the natural world
could only be obtained by induction of general theories from particular
observations, and not, as had previously been assumed, by deduction of
the particular case from a general axiom.

The process of induction must clearly be subject to uncertainties,
but it was not until much later that these uncertainties were investigated
and attempts made to measure them. During the seventeenth century
the study of probability theory was started by Fermat and Pascal. This
was, and still is, a branch of mathematics, wholly deductive in nature.

Probability theory and experimental method grew up alongside
each other, but largely separately. One of the first attempts at a
synthesis came when astronomers wanted to find out whether the stars
were distributed randomly, or in some sort of order. What was needed
was a method for determining the probability of a hypothesis being true
given some experimental observations relevant to it. For example:
(1) the hypothesis that the stars are randomly distributed; (2) the
hypothesis that morphine is a better analgesic than aspirin; or (3)
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the hypothesis that state schools provide a better education than
private schools.

The use to which natural scientists wanted to put probability theory
was, it seems, of a quite different kind from that for which the theory
was designed. All that probability theory would answer were questions
suchas: Given certain premises about the thorough shuffling of the pack
and the honesty of the players, what is the probability of drawing four
consecutive aces? This is a statement of the probability of making
some observations, given an hypothesis (that the cards are well shuffled,
and the players honest), a deductive statement of direct probability.
What was needed was a statement of the probability of the hypothesis,
given some observations—an inductive statement of inverse probability.

An answer to the problem was provided by the Rev. Thomas Bayes
in his K'ssay towards solving a Problem in the Doctrine of Chances published
in 1763, two years after his death. Bayes’ theorem states:

posterior probability of a hypothesis = constant X likelihood
of hypothesis X prior probability of the hypothesis (1.3.1.)

In this equation prior (or a priori) probability means the probability
of the hypothesis being true before making the observations under
consideration, the posterior (or a posteriors) probability is the probability
after making the observations, and the likelthood of the hypothesis is
defined as the probability of making the given observations if the
hypothesis under consideration were in fact true. This technical
definition of likelihood will be encountered again later.

The wrangle about the interpretation of Bayes’ theorem continues
to the present day. Is ‘the probability of an hypothesis being true’ a
meaningful idea? The great mathematician Laplace assumed that if
nothing were known of the merits of rival hypotheses then their prior
probabilities should be considered equal (‘the equipartition of ignor-
ance’). Later it was suggested that Bayes’ theorem was not really
applicable except in a small proportion of cases in which valid prior
probabilities were known. This view is still probably the most common,
but there is now a strong school of thought that believes the only
sound method of inference is Bayesian. An uncontroversial use of
Bayes’ theorem, in medical diagnosis, is mentioned in § 2.4.

Fortunately, in most, though not all, cases the practical results are
the same whatever viewpoint is adopted. If the prior probabilities of
several mutually exclusive hypotheses are known or assumed to be
equal then the hypothesis with the maximum posterior probability



8 Statistical thinking ? §1.3

will also be that with the maximum likelihood. In fact a popular
procedure is to ignore the prior probability altogether and to select the
hypothesis with the maximum likelihood. This procedure avoids
altogether the making of statements of inverse probability that many
people think to be invalid, but loses something in interpretability.
The probability considered is the probability of the observations calcu-
lated assuming the hypothesis in question to be true—a statement of
direct probability.

It has been argued strongly by Karl Popper that scientific inference
i8 & wholly deductive process. A hypothesis is framed by inspired guess-
work. It consequences are deduced and then tested experimentally. This
is certainly just how things should be done. But, as A. J. Ayer points
out, the experiment is only useful if it is supposed that it will give the
same result when it is repeated, and the argument leading to this
supposition is the sort of inductive inference with which much of
statistics is concerned.



2. Fundamental operations and
definitions

‘Considering how many fools can calculate, it is surprising that it should be
thought either a difficult or a tedious task for any other fool to learn how to
master the same tricks. Si1LvaNUs P. THOMPSON

2.1. Functions and operators. A beautiful notation for adding up

Functional notation

Ir the value of one variable, say y, depends on the value of another,
say z, then y is said to be a function of z. For example, the response to a
drug is a function of the dose. The usual algebraic way of saying this is
y = f(x) where f denotes the function. This equation is read ‘y equals a
function of z’. If it is required to distinguish different functions of the
same variable then different symbols are chosen to represent each
function. For example, y, = g(z), ¥, = ¢(x). If the function f were the
square root, g were the logarithm, and ¢ the tangent then the above
equations could be written in a less abstract form as y = 4/z, y, = log
z, and y,; = tan z. This notation can be extended to several variables.
If the value of y dependson the value of two different variables, x,
and z, say, this could be denoted y = f(z,, z,). An example of such a
function is y = z,24-2,.

Needless to say, the symbols, f, g, and ¢ do not stand for numbers
and, for example, it is very important to distinguish y = f(x) from
‘y equals f times z’. In the present case f, g, and ¢ stand for operations
carried out on the argument z in just the same way as the symbol
‘4’ stands for the operation of addition of the quantities on each side
of the plus sign, or the symbol d/dx stands for ‘find the differential
coefficient with respect to z’.

In the following pages this operational notation is used frequently.
For example, 8(z) will stand for ‘the estimated standard deviation of
z’ (not ‘s times x’).1 The square of the standard deviation is called the

t See § 2.8 for the definitions. Although it is commonly used, this is not really e
consistent use of the notation. The sample standard deviation, &(z), is not a function of
a single variable z, but of the whole set of z values making up the sample. And in the

case of the population standerd deviation, o(z), o is really an operator on the probability
distribution of z (see Appendix 1).
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variance. The variance of z is thus [¢(x)]?, which is usually written
83(z). The situation may look even more confusing if it is wished to
denote the estimated standard deviation of a quantity like z, —z,, i.e.
a measure of the scatter of the values of the quantity z, —x,. Using the
notation given above this number would be written 8(z; —z,), but this
is not the same as s(z,)—s(z;); 8 is an operator not a number. To add
to the difficulties it is quite common for s(z) or f(z) to be abbreviated
to s and f, the argument, z, being understood. So in this case s and f
do stand for numbers; the numbers s(z) and f(z). Brackets rather than
parentheses are sometimes used to make the notation clearer so the
standard deviation of z; —z, is written s[z, —z,].

Two important operators are those used to denote the formation of
sums and products, viz. £ and II (Greek capitals, sigma and pi). For
example, Zx means find the sum of all the values of z, and Iz means
find the product of all the values of x. These operations occur often
and are discussed in more detail below.

Factorial notation

Another operation that will ocour in the following pages is written
n!, which is read as ‘factorial »’. When n is an integer this has the
value n(n—1)(n—2)...1. For example, 4! =4X3X2x1 =24, A
more general definition (the gamma function) is valid also for non-
integers and occurs often in more advanced work than is dealt with
here. In the light of this more general definition, as well as for reasons of
convenience that will be apparent later, 0! (factorial zero) is defined as
having the value 1.

The use of the summation operator

The operation of adding up occurs very often. The arithmetic is
familiar, but the notation used may not be. In the following pages the
summation operator is used often. Frequently it is written with a full
panoply of superscript and subscripts. This makes the operation
unambiguous, at the expense of looking a bit complicated. It is very
well worth while (for far wider reasons than merely understanding this
book) making sure that you can add up, so the temptation to skip this
section should be resisted. The use of the product operator II is ana=
logous, + being replaced by Xx.

Given a set of observations, for example » replicate observations on
the same animal of the fall in blood pressure in response to a drug, an
observation can be denoted y,. This symbol stands for the fth fall in
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blood pressure. There are n observations 8o in general an observation is
y,wheres = 1, 2,..., n. If n = 5, for example, then the five observations
are symbolized y,, ¥3, ¥a, ¥4, ¥5. Note that the subscript ¢+ has not neces-
sarily got any partioular experimental significanoe. It is merely a method
for counting, or labelling, the individual observations.

The observations can be laid out in a table thus:

Yi Y2 Ys--Ya-
Mathematicians would refer to such a table as a one-dimensional array
or a vector, but ‘table’ is a good enough name for now.
The instruction to add up all values of y from the first value to the
nth value is written

{=n L)
sum = Yy, or, more briefly, 3y
{=1 {m

‘.
1
This expression symbolizes the number

sum = y;+¥Y3+Ys+...+VYa.
Similarly,

t=8
,Zf' stands for the number y;+y,+ ys.

Thus the arithmetic mean of » values of y is

{=n

2

i=1
n

7=

Notice that after the summation operation, the counting, or sub-
scripted, variable, 4, does not appear in the result.

A slightly more complicated situation arises when the observations
can be olassified in two ways. For example, if n readings of blood
pressure (y) were taken on each of k¥ animals the results would probably
be arranged in a table like this:

Animal (value of j)
1 2 3 .. k

1 Y Y%ia Y3 s Y&
2 Ya1  Yaza Y25 -+ Y2
observation 3 yql yzzg ]/'33 sese y?,‘

(value of 1) i H : :
n Yni Yna Ynz .o YUnk
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Two subscripts, say ¢ and j, are now needed, one for keeping count of
the observations and one for the animals. ¢ takes the values 1, 2, 3,...,
n; and j takes the values 1, 2, 3,..., k. The ith observation on the jth
animal is thus represented by the symbol y,,. In more general terms,
Yy stands for the value of y in the ith row and jth column of a table
(or two-dimensional array, or matriz) such as that shown above.

For example, a table with 3 columns and 4 rows could be written

Yuu Y2 Yis 2 4 3
Ya1 Y23 Ya3 and a particular table 1 6 4
Ya1 Yaz Yas oOf this size could be 5 7 6
Y41 Y42 Yas 8 4 b

In this case n = 4 and k = 3 and the n X k table contains nk = 12 obser-
vations.

The row and column totals and means can be represented by an
extension of the notation used above. For example the total of the
observations in the jth column, which may be called T, for short,
would be written

i=n

T, =‘2.'lu = Yy+Y2t+Yat -+ Yns (2.1.1)
=1

Thus the total of the firat column is 7, = ¢, +¥a1+ Y1+ -+ ¥m
(=16 in the example). The mean of the readings in the jth column (the
mean fall in blood pressure in the jth animal in the example given
above), which is usually called 7 ,, is thus

{=n
2 _T, (2.1.2)

n n

¥,=

Again notice that after summing over the values of i (i.e. adding
up the numbers in a specified column) the answer does not involve 1,
but does still involve the specified column number j. The symbol ¢, the
subscript operated on, is replaced by a dot in the symbols 7' ; and 7 .

In an exactly similar way the total for the ith row, T'; , is written

jmk

T, =jZ Yy =Yut¥aut¥et. +t¥u (2.1.3)
=1
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For example, for the second row T; = yy;+ 429+ ...+¥ax (=11 in
the example). The mean value for the ith row is

i=k
. ﬂ_gf_”. (2.1.4)
Yi. = k - k

Using the numbers in the 4 x 3 table above, the totals and means
are found to be

Column number (value of j) Row totals Row
means
=k
1 2 3 T, = Zyy g.=T./k
jml
im=k
Row 1 yiu=2 Yig=+4 yia=3 Ty, =12 Yiy=9 § =93
=1
=k )
number 2 ya=1 Y22 = 6 yag = 4 Ty = ,2 Yoy = 11 §3, = 11/3
=1
1=k
(value 3 Yap =5 Yaa=1 Yaa= 6 Ty, = X yyy=18 §, = 18/8
of 1) ;-:
4 Ya=28 Yo = 4 YVa =8 T.. =12 Y= 17§ =178
=]
Column totals Grand total
i=n t=n i=n i=n (-nl-—:t
T,= Ly, T, =23y Lym Ta=Z2Zyn | Z X yy=85
fm] {=]1 i= t=1 i=]14§=1
= 16 21 =18
Column means
§,=T4n Ga=16/4 G,=21/4 §a=18/4

The grand total of all the observations in the table illustrates the
meaning of a double summation sign. The grand total (@, sayt) could
be written as the sum of the row totals

G 2‘3"(7’«.)-
t=1

Inserting the definition of 7', from (2.1.3) gives
Z ( 2 yu)
=1

Equally, the grand total could be written as the sum of the column
totals

i=k
G = ,ZI(T")

t+ It would be more consistent with earlier notation to replace both suffixes by dotas
and call the grand total 7'.., but the symbol @ is often used instead.
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which, inserting the definition of 7', from (2.1.1), becomes

I=k fian
- 3(Zw)
i=1 \i{al

Since the grand total is the same whichever order the additions are
carried out in, the parentheses are superfluous and the operation is
usually symbolized

{=ni= J=k =

G=3% z.'/u or 3 z.'/u or simply 33y.

(=14=1 i=1 =1

What to do if you get stuck
If it is ever unclear how to manipulate the summation operator

simply write out the sum term by term and apply the ordinary rules of
algebra. For example, if & denotes a constant then

ka' == kzx‘ (2.1.5)
i=1 f=1

because the left-hand side, written out in full, is kx,+kx,+...+-kz,
= k(z,+23+...+,), which is the right-hand side. Thus if k is the same
for every z it can be ‘taken outside the summation sign’. However
Zk,, in which each z is multiplied by a different constant, is k;x,
+kgry+ ...+ k42, which cannot be further simplified.

It follows from what has been said that if the quantities to be added
do not contain the subscript then the summation becomes a simple
multiplication. If all the z, = 1 in (2.1.5) then

f=n

S k= ktk+t..+k =nk (2.1.6)

{al
and furthermore, if £ = 1,
S1=n. (2.1.7)
Another useful result is

'il (Z—y)) = (@1—92)+ (Fa—a)F .+ @)
= (234 2o+ +2) — (W1 + Y2+ ..+ Yn)

—Sz—3 . (2.1.8)

=1 i=1

These results will be used often in later sections.
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2.2. Probability

The only rigorous definition of probability is a set of axioms defining
its properties, but the following discussion will be limited to the less
rigorous level that is usual among experimenters. For practical pur-
poses the probability of an event is & number between zero (implying
impossibility) and one (implying certainty). Although statisticians
differ in the way they define and interpret probability, there is complete
agreement about the rules of probability described in § 2.4. In most of
this book probability will be interpreted as a proportion or relative
Jrequency. An excellent discussion of the subject can be found in
Lindley (1965, Chapter 1).

The simplest way of defining probability is as a proportion, viz.
‘the ratio of the number of favourable cases to the total number of
equiprobable cases’. This may be thought unsatisfactory because the
concept to be defined is introduced as part of its own definition by the
word ‘equiprobable’, though & non-numerical ordering of likeliness
more primitive than probability would be sufficient to define ‘equally
likely’, and hence ‘random’. Nevertheless when the reference set of
‘the total number of equiprobable cases’ is finite this description is
used and accepted in practice. For example if 55 per cent of the popula-
tion of college students were male it would be asserted that the prob-
ability of a single individual chosen from this finite population being
male is 0-55, provided that the probability of being chosen was the
same for all individuals, i.e. provided that the choice was made at
random.

When the reference population is infinite the ratio just discussed
cannot be used. In this case the frequency definition of probability is
more useful. This identifies the probability P of an event as the limiting
value of the relative frequency of the event in a random sequence of
trials when the number of trials becomes very large (tends towards
infinity). For example, if an unbiased coin is tossed ten times it would
not be expected that there would be exactly five heads. If it were tossed
100 times the proportion of heads would be expected to be rather
closer to 0-5 and as the number of tosses was extended indefinitely the
proportion of heads would be expected to converge on exactly 0-5.
This type of definition seems reasonable, and is often invoked in
practice, but again it is by no means satisfactory as a complete,
objective definition. A random sequence cannot be proved to converge
in the mathematical sense (and in fact any outcome of tossing a true

3
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coin a million times is possible), but it can be shown to converge in a
statistical sense.

Degrees of belief

It can be argued persuasively (e.g. Lindley (1965, p. 29)) that it is
valid and sometimes necessary to use a subjective definition of prob-
ability as a numerical measure of one’s degree of belief or strength of
conviction in a hypothesis (‘personal probability’). This is required in
many applications of Bayes’ theorem, which is mentioned in §§ 1.3 and
2.4 (see also § 6.1, para. (7)). However the application of Bayes’ theorem
to medical diagnosis (§ 2.4) does not involve subjective probabilities,
but only frequencies.

2.3. Randomization and random sampling

The selection of random samples from the population under study
is the basis of the design of experiments, yet is an extraordinarily
difficult job. Any sort of statistical analysis (and any sort of intuitive
analysis) of observations depends on random selection and allocation
having been properly done. The very fundamental place of randomiza-
tion is particularly obvious in the randomization significance tests
described in Chapters 8-11.

It should never be out of mind that all calculations (and all intuitive
assessments) belong to an eniirely imaginary world of perfect random
selection, unbiased measurement, and often many other ideal properties
(see § 11.2). The assumption that the real world resembles this imagin-
ary one is an extrapolation outside the scope of statistics or mathe-
matics. As mentioned in Chapter 1 it is safer to assume that samples
have some unknown bias.

For example, an anti-diabetic drug should ideally be tested on a
random sample of all diabetics in the world—or perhaps of all dia-
betics in the world with a specified form and severity of the disease,
or all diabetics in countries where the drug is available. In fact, what is
likely to be available are the diabetic patients of one, or a few,
hospitals in one country. Selection should be done sirictly at random
(see below) from this restricted population, but extension of inferences
from this population to a larger one is bound to be biased to an un-
known extent.

It is, however, quite easy, having obtained a sample, to divide it
strictly randomly (see below) into several groups (e.g. groups to receive
new drug, old drug, and control dummy drug). This is, nevertheless,
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very often not done properly. The hospital numbers of the patients will
not do, and neither will their order of appearance at a clinic. It is very
important to realize that ‘random’ is not the same thing as ‘haphazard’.
If two treatments are to be compared on a group of patients it is not
good enough for the experimenter, or even a neutral person, to allocate
a patient haphazardly to a treatment group. It has been shown re-
peatedly that any method involving human decisions is non-random.
For all practical purposes the following interpretation of randomness,
given by R. A. Fisher (1851, p. 11), should be taken as a fundamental
principle of experimentation: . not determined arbitrarily by
human choice, but by the actual manipulation of the physical apparatus
used in games of chance, cards, dice, roulettes, etc., or, more ex-
peditiously, from a published collection of random sampling numbers
purporting to give the actual results of such manipulation.’

Published random sampling numbers are, in practice, the only
reliable method. Samples selected in this way (see below) will be re-
ferred to as selected strictly at random. Superb discussions of the crucial
importance of, and the pitfalls involved in random sampling have been
given by Fisher (1951, especially Chapters 2 and 3) and by Mainland
(1963, especially Chapters 1-7). Every experimenter should have read
these. They cannot be improved upon here.

How to select samples strictly at random using random number tables

This is, perhaps, the most important part of the book. There are
various ways of using random number tables (see, for example, the
introduction to the tables of Fisher and Yates (1963)). Two sorts of
tables are commonly encountered, and those of Fisher and Yates (1863)
will be used as examples. The first is a table of random digits in which
the digits from 0 to 9 occur in random order. The digits are usually
printed in groups of two to make them easier to read, but they can be
taken as single digits or as two, three, etc. digit numbers. If taken in
groups of three the integers from 000 to 999 will occur in random order
in the tables. The second form of table is the table of random permuta-
tions. Fisher and Yates (1963) give random permutations of 10 and 20
integers. In the former the integers from 0 to 9, and in the latter the
integers from 0 to 19, occur in random order, but each number appears
once only in each permutation.

To divide a group of subjects into several sub-groups strictly at
random the easiest method is to use the tables of random permutations,
as long as the total number of subjects is not more than 20 (or whatever
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is the largest size of random permutation available). Suppose that 15
subjects are to be divided into group of size n,, n;, and n5. First number
the subjects 0 to 14 in any convenient way. Then obtain a random
permutation of 15 by taking the first random permutation of 20
from the tables and deleting the numbers 15 to 19. (This permutation in
the table should then be crossed out so that it is not used again— use
each once only.) Then allocate the first n, of the subjects to the first
group, the next n, to the second group, and the remainder to the third
group. For example, if the random permutation of 15 turned out to be
1, 6,8,5,10,12,11,9, 2,0, 3, 14, 7, 4, 13 (the first permutation from
Fisher and Yates (1963), p. 142)) and the 15 subjects were to be divided
randomly into groups of 5, 4, and 6 subjects then subjects 1, 6, 8, 5, and
10 would go in the first group, 12, 11, 9, and 2 in the second group, and
the rest in the third group.

For larger numbers of subjects the tables of random digits must be
used. For example, to divide 24 subjects into 4 groups of 6 the procedure
is as follows. First number the subjects in any convenient way with the
numbers 00 to 23. Take the digits in the table in groups of two. The
table then gives the integers from 00 to 99 in random order. One
procedure would be to delete all numbers from 24 to 99, but it is more
economical to delete only 96, 97, 98, and 99 (i.e. those equal to or larger
than 96, which is the biggest multiple of 24 that is not larger than 100).
Now the remaining numbers are a random sequence of the integers
from 00 to 95. From each number between 24 and 47 subtract 24; from
each number between 48 and 71 subtract 48; and from each number
between 72 and 95 subtract 72 (or, in other words, divide every number
in the sequence by 24 and write down the remainder). For example, if
the number in the table is 84 then write down 22; or in place of 56
write down 07. (The numbers from 96 to 99 must, of course, be omitted
because their presence would give the numbers 00 to 03 a larger chance
than the others of occurring.) Some numbers may appear several times
but repetitions are ignored. If the final sequence were 21, 04, 07, 13, 02,
02, 04, 09, 00, 23, 14, 13, 11, etc., then subjects 21, 04, 07, 13, 02, 09 are
allocated to the first group, subjects 00, 23, 14, 11, etc. are allocated to
the second group, and so on.

The method is simpler for the random block experiments described
in §§11.6 and 11.7. Blocks are never likely to contain more than 20
treatments so the order in which the treatments occur in each block is
taken from a random permutation found from the tables of random
permutations as above. For example, if there are four treatments in
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each block number them 0 to 3, and for each block obtain a random
permutation of the numbers 0 to 3, by deleting 4 to 9 from the tabulated
random permutations of 10, crossing out each permutation from the
table as it is used.

The selection of a Latin square at raudom is more complicated
(see § 11.8).

2.4. Three rules of probability

The words and and or are printed in bold type when they are being
used in a restricted logical sense. For our purposes E, and E; means
that both the event E; and the event E, occur, and E, or E, means that
either E, or E; or both occur (in general, that at least one of several
events occurs). More explanation and details of the following rules can
be found, for example, in Mood and Graybill (1963), Brownlee (1965),
or Lindley (1965).

(1) The addition rule of probability
This states that the probability of either or both of two events, E,
and E,, occurring is

PE, or E;] = P[E,]+ P[E,]—P[E, and E,]. (2.4.1)

If the events are mutually exclusive, i.e. if the probability of E; and
E; both occurring is zero, P[E, and E;] = 0, then the rule reduces to

P[E, or E;] = P[E,]+ P[E,] (2.4.2)
the sum of probabilities. Thus, if the probability that a drug will
decrease the blood pressure is 0-9 and the probability that it will have
no effect or increase it is 0-1 then the probability that it will either
(a) increase the blood pressure or (b) have no effect or decrease it is,
since the events are mutually exclusive, simply 0-94-0-1 = 1-0.
Because the events considered are exhaustive, the probabilities add up
to 1-0, It is certain that one of them will occur. That is

P[E occurs] = 1—P[E does not occur]. (2.4.3)

This example suggests that the rule can be extended to more than two
events, For example the probability that the blood pressure will not
change might be 0-04 and the probability that it will decrease might be
0-06. Thus
P[no change or decrease] = 0-04+0-06 = 0-1 as before,
Plno change or increase] = 0-04+0-9 = 0-94,
P[no change or decrease or increase] = 0-04+4-0:06+40-9 = 1-0.
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The simple addition rule holds because the events considered are
mutually exclusive. In the last case only they are also exhaustive. An
example of the use of the full equation (2.4.1) is given below.

(2) The multiplication rule of probability

It is possible that the probability of event E; happening depends on
whether E; has happened or not. The conditional probability of E,
happening given that E, has happened is written P[E,|E,], which is
usually read ‘probability of E, given E;’.

The probability that both E; and E, will happen is

P(E, and E;] = P[E,]. P[E,|E,]
= P[E,]. P[E,|E,]. (2.4.4)

If the events are independent in the probability sense (different
from the functional independence) then, by definition of independence,

P[E1|E2] = P[E1]
and similarly P[E;|E,] = P[E,] (2.4.5)
8o the multiplication rule reduces to
P[E, and E,] = P[E,].P[E,], (2.4.6)

the product of the separate probabilities. Events obeying (2.4.5) are
said to be independent. Independent events are necessarily uncor-
related but the converse is not necessarily true (see § 12.9).

A numerical illustration of the probability rules. If the probability
that a British college student smokes is 0-3, and the probability that
the student attends London University is 0-01, then the probability
that a student, selected at random from the population of British
college students, is both a smoker and attends London University can
be found from (2.4.6) ast

Pfsmoker and London student] = P[smoker] x P[London student]
= 0-3x0-01 = 0-003
as long as smoking and attendence at London University are in-
dependent so that, from (2.4.5),
Pfsmoker] = P[smoker|London student]

t Notice that P [smoker], could be written as P [smoker | British college student).
All probabilities are really conditional (on membership of a specified population). See,
for example, Lindley (1965).



§24 Operations and definitions 21
or, equivalently,

P[London student] = P[London student|smoker].

The first of these conditions of independence can be interpreted in
words as ‘the probability of a student being a smoker equals the
probability that a student is a smoker given that he attends London
University’, that is to say ‘the proportion of smoking students in the
whole population of British college students is the same as the propor-
tion of smoking students at London University’, which in turn implies
that the proportion of smoking students is the same at London as at
any other British University (which is, no doubt, not true).

Because smoking and attendance at London University are not
mutually exclusive the full form of the addition rule, (2.4.1), must be
used. This gives

P[smoker or London student] = 0-340:01—(0-3 X 0-01) = 0-307.

The meaning of this can be made clear by considering random samples,
each of 1000 British college students. On the average there would be
300 smokers and 10 London students in each sample of 1000. There
would be 3 students (1000 x 0:003) who were both smokers and London
students if the implausible condition of independence were met (see
above). Therefore there would be 297 students (300 —3) who smoked but
were not from London, and 7 students (10—3) who were from London
but did not smoke. Therefore the number of students who either
smoked (but did not come from London), or came from London (but
did not smoke), or both came from London and smoked, would be
2974743 = 307, as calculated (1000 x 0-307) from (2.4.1).

(3) Bayes’ theorem, illustrated by the problem of medical diagnosis

Bayes’ theorem has already been given in words as (1.3.1) (see
§ 1.3). The theorem applies to any series of events H,, and is a simple
consequence of the rules of probability already stated (see, for example,
Lindley (1965, p. 19 et seq.)). The interesting applications arise when the
events considered are hypotheses. If the jth hypothesis is denoted
H, and the observations are denoted Y then (1.3.1) can be written
symbolically as

P(H|Y] = kxP[Y|H] x PH] , (2.4.7)
posterior likelthood of prior probability
probability hypothesis 5 of hypothesis §

of hypothesis 5
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where k is a proportionality constant. If the set of hypotheses con-
sidered is exhaustive (one of them must be true), and the hypotheses are
mutually exclusive (not more than one can be true), the addition
rule states that the probability of (hypothesis 1) or (hypothesis 2) or
. . . (which must be equal to one, because one or another of the
hypotheses is true) is given by the total of the individual probabilities.
This allows the proportionality constant in (2.4.7) to be found. Thus
S P[H,|Y] = kZ(P[Y|H,].P{H,]) = 1 and therefore

all §

1
k =‘§,(P[Y|H/]-P[H/]). (2.4.8)

Bayes’ theorem has been used in medical diagnosis. This is an un-
controversial application of the theorem because all the probabilities
can be interpreted as proportions. Subjective, or personal, probabilities
are not needed in this case (see § 2.2)

If a patient has a set of symptoms 8 (the observations) then the
probability that he is suffering from disease D (the hypothesis) is,
from (2.4.7),

P[D|S] = kx P[S|D]x P[D]. (2.4.9)

In this equation the prior probability of a patient having disease D,
P[D], is found from the proportion of patients with this disease in the
hospital records. In principle the likelihood of D, i.e. the probability
of observing the set of symptoms 8 if a patient in fact has disease D,
P(S|D], could also be found from records of the proportion of patients
with D showing the particular set of symptoms observed. However, if
a realistic number of possible symptoms is considered the number of
different possible sets of symptoms will be vast and the records are not
likely to be extensive enough for P[8|D] to be found in this way. This
difficulty has been avoided by assuming that symptoms are independent
of each other so that the simple multiplication rule (2.4.6) can be
applied to find P[S|D] as the product of the separate probabilities of
patients with D having each individual symptom, i.e.

P[S| D] = P{S,|D]x P{S,| D] X... X P[S,| D], (2.4.10)

where S stands for the set of n symptoms (S, and S, and . . . and
8,) and P[S,|D], for example, is found from the records as the propor-
tion of patients with disease D who have symptom 1. Although the
assumption of independence is very implausible this method seems
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to have given some good results (see, for example, Bailey (1967,
Chapter 11).

A numerical example

The simplest (to the point of naivety) example of the above argu-
ment is the case when only one disease and one symptom is considered.
The example is modified from Wallis and Roberts (1956).

Suppose that a diagnostic test for cancer has a probability of 0-96
of being positive when the patient does have cancer. If § stands for the
event that the test is positive and § for the event that it is negative
(the data), and if D stands for the event that the patient has canoer,
and D for the event that he has not (the two hypotheses) then in
symbols P[S|D] = 0-96 (the likelihood of D if 8 observed). Because
the test is either positive or not a slight extension of (2.4.3) gives
P[S| D] = 1—P[8|D] = 0-04 (the likelikood of D if § is observed). The
proportion of patients with cancer giving a negative test (false nega-
tives) is 4 per cent. Suppose also that 95 per cent of patients without
cancer give a negative test, P[S| D] = 0-95. Similarly P[S|D] = 1—0-95
= 0-0B, i.e. 5 per cent of patients without cancer give a positive test
(false positives). As diagnostic tests go, these proportions of false
results are not outrageous. But now consider what happens if the test
is applied to a population of patients of whom 1 in 200 (0-5 per cent)
suffer from cancer, i.e. P[D)] = 0-005 (the prior probability of D) and
P[D] = 1—0-005 = 0-995 (from (2.4.3) again). What is the probability
that a patient reacting positively to the test actually has cancer?
In symbols this is P[D|S], the posterior probability of D after observing
8, and from (2.4.7) or (2.4.9), and (2.4.8) it is, using the probabilities
assumed above,

P[S|D).PD]
P[S|D).P[ D]+ P[S|D).P[ D]
0-96 X 0-005
= (0-96 X 0-005)+(0-05 x 0-995)

0-0048
= 0-0048+0-04975

0-0048
~ 0-05455

= 0-0880. (2.4.11)

PD|S) =
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In other words, only 8:80 per cent of positive reactors actually have
cancer, and 100 —8-80 = 91-2 per cent do not have cancer. Not such
& good performance. It remains true that 96 per cent of those with
cancer are detected by the test, but a great many more without cancer
also give positive tests.

It is easy to see how this arises without the formality of Bayes’
theorem. Suppose that 100000 patients are tested. On average 500
(=100000 x 0-005) will have cancer and 99500 will not have cancer.
Of the 500 with cancer, 500 X 0-96 = 480 will give positive reactions on
average. Of the 99500 without cancer, 99500 X 0-05 = 4975 will give
positive reactions on average (a much smaller proportion, but a much
larger number than for the patients with cancer). Of the total number
of positive reactors, 480-+4975 = 5455, the number with cancer is
480 and the proportion with cancer is 480/5455 = 0-0880 as above.
If these numbers are divided by the total number of patients, 100000,
they are seen to coincide with the probabilities calculated by Bayes’
theorem in (2.4.11),

2.5, Averages

If a number of replicate observations is made of a variable quantity
it is commonly found that the observations tend to cluster round some
central value. Some sort of average of the observations is taken as an
estimate of the true or population value (see § 1.2) of the quantity that
is being measured. Some of the possible sorts of average will be defined
now. It can be seen that there is no logical reason for the automatic
use of the ordinary unweighted arithmetic mean, (2.5.2). If the distri-
bution of the observations is not symmetrical it may be quite inappro-
priate, and nonparametric methods usually use the median (see §§
4.5, 6.2, and 7.3 and Chapters 9, 10, and 14).

The arithmetic mean
The general form is the weighted arithmetic sample mean (using the
notation described in § 2.1),
Twz,
Zw, )

i= (2.5.1)
This provides an estimate, from a sample of observations, of the
unknown population mean value of x (as long as the sample was taken
strictly at random, see § 2.3). The population mean is the mean of all
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the values of z in the population from which the sample was taken and
will be denoted u (see § Al.1 for a more rigorous definition).

The weight of an observalion. The weight, w,, associated with the ith observa-
tion, z,, is a measure of the relative importance of the observation in the final
result. Usually the weight is taken as the reciprocal of the variance (see § 2.6 and
(2.7.12)), so the observations with the smallest scatter are given the greatest
weight. If the observations are uncorrelated, this procedure gives the best
estimate of the population mean, i.e. an unbiased estimate with minimum variance
(maximum precision). (See §§ 12.1 and 12.7, Appendix 1, and Brownlee (1965,
pP. 96).) From (2.7.8) it is seen that halving the variance is equivalent to doubling
the number of observations. Both double the weight. See § 13.4 for an example.

Weights may also be arbitrarily decided degrees of relative importance. For
example, if it is decided in examination marking that the mark for an essay
paper should have twice the importance of the marks for the practical and oral
examinations, a weighted average mark could be found by assigning the essay
mark (say 70 per cent) of a weight of 2 and the practical and oral marks (say
30 and 40 per cent) a weight of one each. Thus

(2 X 70)+ (1 X 30)+ (1 X 40)
2+1+1

If the weights had been chosen as 1, 0-5, and 0-5 the result would have been
exactly the same.

T = = 525.

The definition of the weighted mean has the following properties.
(a) If all the weights are the same, say w, = w, then the ordinary
unweighted arithmetic mean is found; (using (2.1.5) and (2.1.6)),

ol i i 3 (2.5.2)

In the above example the unweighted mean is Zz,/N = (70+30+40)/3
= 46-7.

(b) If all the observations (values of z,) are the same, then Z has this
value whatever the weights.

(c) If one value of x has a very large weight compared with the
others then  approaches that value, and conversely if its weight is zero
an observation is ignored.

The geometric mean

The unweighted geometric mean of N observations is defined as the
Nth root of their product (cf. arithmetic mean which is the Nth part of

their sum).

{=N 1/N

£=(H%)- (2.5.3)
=1
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It will now be shown that this is the sort of mean found when the
arithmetic mean of the logarithms of the observations is calculated
(a8, for example, in § 12.6), and the antilog of the result found.

Call the original observations z,, and their logarithms z,, so

z; = log 2,

— I (1
Arithmetic mean of log z = £ = (log z) = 'EZ! — ( 35 z,)

log(ITz,) because the sum of the logs is the log of the
=N product

= log {/(Iz,)}
= log (geometric mean of z)
or, taking antilogs,
antilog (arithmetic mean of log z) = geometric mean of z.  (2.5.4)

This relationship is the usual way of calculating the geometrio mean.
For the figures used above the unweighted geometric mean is the cube
root of their product, (70X 30Xx40)}/® = 43-8. The geometric mean
of a set of figures is always less than their arithmetic mean, as in this
case. If even a single observation is zero, the geometric mean will be
zero.

The median

The population (or true) median is the value of the variable such that
half the values in the population fall abevg it and half above it (i.e.
it is the value biseoting the area under the distribution ourve, see
Chapters 3 and 4). It is not necessarily the same as the population mean
(see § 4.5). The population median is estimated by the

sample median = central observation. (2.5.5)

This is uniquely defined if the number of observations is odd. The
median of the 5 observations 1, 4, 8, 7, 6, is seen, when they are ranked
in order of increasing size giving, 1, 4, 6, 7, 9, to be 6. If there is an even
number of observations the sample median is taken half-way between
two central observations; for example the sample median of 1, 4, 6, 7,
9, 12 is 6§.
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The mode

The sample mode is the most frequently observed value of a variable.
The population mode is the value corresponding to the peak of the
population distribution curve (Chapters 3 and 4). It may be different
from the mean and median (see § 4.5).

The arithmetic mean as a least squares estimate

This section anticipates the discussion of estimation in § 2.8, Chapter 12, and
§ A1.3. The arithmetic mean of a sample is said to be a least squares estumate
(see Chapter 12) because it is the value that best represents the sample in the
sense that the sum of the squares of the deviations of the observations from the
arithmetic mean, X(z,—%)?, is smaller than the sum of the aquares of the deviations
from any other value. This can be shown without using calculus as follows.

Supposee, as above, that the sample consists of N observations, z;, zg, ..., zy. It
is required to find a value of m that makes X(z;—m)? as small as possible. This
follows immediately from the algebraic identity

T(z,—m)® = Z(z,—Z)+ N(Z—m)>. (2.5.8)

The values of m that minimizes this is clearly m = £, the arithmetic mean,
because this makes the last term zero; as small at it can be. For the example
following (2.5.2), the sum of squares

Z(z,—%£)? = (70 —46-7)2 1 (30 —46-7)2 - (40 —46-7)2 = 866-7,

and a few trials will show that inserting any value other than 48-7 makes the sum
of squares larger than 866-7.

The intermediate steps in establishing (2.5.8) are easy. By deflnition of the
arithmetic mean N£ = Xz, so the right-hand side of (2.5.6) can be written,
completing the squares and using (2.1.8), as

(23 —22 &+ )+ NP2 —2NEm+ Nm?
= Xz} —2&%2,+ N2+ N2 —2Nim+ Nm?
= Xz} -2NB+ N34 Ni2 —2Nim -+ Nm?
= L2 —2NZm+ Nm?
= Z(z?—2ma,+m?) = Z(z,—m)?

as stated in (2.5.6).

Using calculus the same result can be reached more elegantly. The usual way of
finding a minimum in calculus is to differentiate and equate the result to zero
(see Thompson (1965, p. 78)). This process is deacribed in detail, and illustrated,
in Chapter 12. In this case Z(x;—m)? is to be minimized with respect to m.
Differentiating Z(z;—m)? = Tz —2mZz,+ Nm3, remembering that the z, are
constants for a given sample, and equating to zero, gives

d
d—"‘{2(3|—m)’] = —2%z;+2Nm = 0. (2.6.7)
Therefore 2Nm = 2Xz,

and m=ZXxIN =23

as found above.
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2.8. Measures of the variability of observations

When replicate observations are made of a variable quantity the
scatter of the observations, or the extent to which they differ from
each other, may be large or may be small. It is useful to have some
quantitative measure of this scatter. See Chapter 7 for a discussion
of the way this should be done. As there are many sorts of average
(or ‘measures of location’), so there are many measures of scatter.
Again separate symbols will be used to distinguish the estimates of
quantities calculated from (more or less small) samples of observations
from the true values of these quantities, which could only be found if
the whole population of possible observations were available.

The range

The difference between the largest and smallest observations is the
simplest measure of scatter but it will not be used in this book.

The mean deviation

If the deviation of each observation from the mean of all observations
is measured, then the sum of these deviations is easily proved (and this
result will be needed later on) to be always zero. For example, consider
the figures 5, 1, 2, and 4 with mean = 3. The deviations from the
mean are respectively +2, —2, —1I, and 4-1 so the total deviation is
zero. In general (using (2.1.6), (2.1.8), and (2.5.2)),

N

3 (x,—%) = Zx,—Ni& = Ni—Ni = 0. (2.6.1)

i=l

If, however, the deviations are all taken as positive their sum (or mean)
18 a measure of scatter.

The standard deviation and vartance

The standard deviation is also known, more descriptively, as the
root mean square deviation. The population (or true) value will be
denoted a(z). It is defined more exactly in § Al.2. The estimate of the
population value calculated from a more or less small sample of, say,
N observations, the sample standard deviation, will be denoted s(x).
The square of this quantity is the estimated (or sample) variance (or
mean square deviation) of x, var(x) or s*(z). The population (or true)
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variance will be denoted va:(x) or o?(x). The estimates are calculated as

=55

(2.6.2)

278 I(z—2)?

var(z) or 8%(z) = N1

The standard deviation and variance are said to have N —1 degrees of
freedom. In calculating the mean value of (z;,—Z)2, N —1, rather than N,
is used because the sample mean Z has been used in place of the popula-
tion mean x. This would tend to make the estimate too small if N were
used (the deviations of the observations from x will tend to be larger
than the deviations from #; this can be seen by putting m = u in
(2.5.6)). It is not difficult to show that the use of N—1 corrects this
tendency (see § A1.3).1 It also shows that no information about scatter
can be obtained from a single observation if x4 is unknown (in this case
the number of degrees of freedom, on which the accuracy of the estimate
of the scatter depends, will be N —1 = 0). If u were known even a
single observation could give information about scatter, and, as
expected from the foregoing remarks, the estimated variance would be
a straightforward mean square deviation using N not N —1.

E(:ci—y)z.
N

8% (x) = (2.6.3)

A numerical example of the calculation of the sample standard
deviation is provided by the following sample of N = 4 observations
with arithmetic mean = 12/4 = 3.

t If the ‘obvious’ quantity, N, were used as the denominator in (2.6.2) the estimate
of 02 would be biased even if the observations themselves were perfectly free of bias
(systematic errors). This sort of bias results only from the way the observations are
treated (another example occurs in § 12.8). Notice also that this implies that the mean
of & very large number of values of X(x—£)3/N would tend towards too small a value,
viz. vas(z) X (N —1)/N, a8 the number of values, each calculated from a small sample,
increases; whereas the same formula applied to a single very large sample would tend
towards vas(z) itself as the size of the sample (N) increases. These results are proved in
§ Al1.3. It should be mentioned that unbiasedness is not the only criterion of a good
statistic and other criteria give different divisors, for example N or N+ 1.
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z z,—I (z—%)?

b +2 +4

1 —2 +4

2 —1 +1

4 +1 +1

Totals 12 0 10

Thushf(z.—i)’ = 10 so, from (2.6.2), 8(z) = 4/(10/3) = 1-83.

i=]

The coefficient of variation
This is simply the standard deviation expressed as a proportion (or
percentage) of the mean (as long as the mean is not zero of course).

C(z) = ig:—) (sample value),

o(z) var(x) .
€(z) = T = J [ 2 ] (population value), (2.6.4)

where u is the population mean value of 2 (and of #). C(z) is an estimate,
from a sample, of €(z).

Whereas the standard deviation has the same dimensions (seconds,
metres, etc.) as the mean, the coefficient of variation is a dimensionless
ratio and gives the relative size of the standard deviation. If the scatter
of means (see § 2.7) rather than the scatter of individual observations,
were of interest C(£) would be calculated with s(Z) in the numerator.

In the numerical example above C(z) = s(z)/Z = 1-83/3 = 0-61, or
100 C(x) = 100 0-61 = 61 per cent.

The working formula for the sum of squared deviations

When using & desk calculating machine it is inconvenient to form
the individual deviations from the mean and the sum of squared devia-
tions is usually found by using the following identity. Using (2.1.6) and
(2.1.8),

2(z,—%)? = Z(zf—2x,F+%%) = Tz —2&Tx,4 N2,
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Now, since Xz, = N, this becomes
2} —~2NB 4 N# = Za?— N2
and thus

N
imN iaN 2
2:1(171—5')2 =3 z; — (2=)

f=]

(2.6.5)

In the above example Xz} = 52412423442 = 46 and therefore
Z(x;—)? = 46—123/4 = 46—36 = 10, as found above.

The covariance

This quantity is a measure of the extent to which two variables are
correlated. Uncorrelated events are defined as those that have zero
covariance, and statistically independent events are necessarily un-
oorrelated (though uncorrelated events may not be independent—see
§ 12.9).

The true, or population, covariance of z with y will be denoted
cov(z,y), and the estimate of this quantity from a sample of observa-
tions is

ZE—2)y—4)

cov(zy) = —x—|

(2.6.6)

The numerator is called the sum of products. That the value of this
expresgion will depend on the extent to which y increases with z is
clear from Fig. 2.6.1 in which, for example, ¥y might represent body
weight and x calorie intake. Each point represents one pair of observa-
tions.

If the graph is divided into quadrants drawn through the point
Z, § it can be seen that any point in the top right or in the bottom left
quadrant will contribute a positive term (z—&Z)(y—§) to the sum of
products, whereas any point in the other two quadrants will contribute
a negative value of (x—zZ)(y—¢). Therefore the points shown in Fig.
2.6.2(a) would have a large positive covariance, the points in
Fig. 2.6.2.(b) would have a large negative covariance, and those in
Fig. 2.6.2(c) would have near zero covariance.

4
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The working formula for the sum of products

A more convenient expression for the sum of products can be found
in a way exactly analogous to that used for the sum of squares (2.6.5).

It is
. (Zx)(Zy)
Ze—E)y—9) = Tay——p (2.6.7)
yr |
(x—Z) is negative | (z—7) is positive
(y—¥) is positive : (y—¥) is positive o
|
| o o
|
|
|
_ |
] S O
(r—Z) is negative [o] I (x—Z) is positive
(y—1¥) is negative : (y—¥) is negative
o
° f
{
(o]
(o] o |
1
|
1 .
x x
Fia. 2.6.1. Illustration of covariance. For eleven of the thirteen observations,

the product (¢, —£)(y,—¢) is positive; for the other two it is negative.

(a) (b) (¢)
yr 1 y | Yr |
| (o] | |
| og %0 00, o
| o | Oln O
i __._.__.o.fbo_o____ !7 _.__S_a'_o - — yb—_o———:_o__o__._
000:6 odo N ©0i% o
[ o) fo) |
000 | | Oo Ol (o]
. . ! , ! .
x I x x x x
Frae. 2.6.2. Illustration of covariance: (a) positive covariance as in Fig. 2.6.1;

(b) negative covariance; (¢) near zero covariance.
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2.7. What is a standard error? Variances of functions of the
observations. A reference list

Prediction of variances without direct measurement

A problem that recurs continually is the prediction of the scatter of
some function calculated from the observations, using the internal
evidence of one experiment.

Suppose, for example, that it is wished to know what degree of
confidence can be placed in an observed sample mean, the mean, Z, of a
single sample of, say, N values of z selected from some specified popula-
tion (see §1.2). A numerical example is given below. The sample
mean, Z, is intended as an estimate of the population mean, u. How good
an estimate is it ¥ The direct approach would be to repeat the experi-
ment many times, each experiment consisting of (a) making N observa-
tions (i.e. selecting N values of z from the population) and (b) calculat-
ing their mean, . In this way a large set of means would be obtained.
It would be expected that these means would agree with each other
more olosely (i.e. would be more closely grouped about the population
mean u) than a large set of single observations. And it would be
expected that the larger the number (N) of observations averaged to
find each mean, the more closely the means would agree with each other.
If the set of means was large enough their distribution (see Chapter 4)
oould be plotted. Its mean would be 4, as for the x values (=‘means of
samples of size N = 1’), but the standard deviation of the population
of £ values, o(Z) say, would be less than the standard deviation, o(z),
of the population of z values, as shown in Fig. 2.7.1. The closeness with
which the means agree with each other is a measure of the confidence
that could be placed in a single mean as an estimate of u. And this
closeness can be measured by calculating the variance of the set of
sample means; using the means (£ values) as the set of figures to which
(2.6.2) is applied, giving var(Z), or s%(Z), as an estimate of ¢%(%), as
illustrated below.

If (2.6.2) was applied to a set of observations (z values), rather than
a set of sample means, the result would be var(z), an estimate of the
scatter of repeated observations. As it has been mentioned that a set
of means would be expected to agree with each other more closely
than a set of single observations, it would be expected that vat(Z)
would be smaller than va4(x), and this is shown to be so below ((2.7.8)).
The standard deviation of the mean, s(f) = 4/var(Z), is often called the
sample standard error of the mean to distinguish it from s(z), the sample
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standard deviation of z, or ‘sample standard deviation of the observa-
tions’. This term is unnecessary and sample standard deviation of the
mean is a preferable name for s(Z).

The sample standard deviation of the observations, s(z), is the
quantity of interest if one wants to estimate the scatter of z values
(single observations from the population). In other words, it measures
the inherent variability of the population. Taking a larger sample

=40
0-8r 0-8r # ;
i
07 (a) 07+ (b) |
i
i
_g 06} 0-6r i
1
5 05} =40 0-5F i a(Z)=0-3
£ *5 :
F 04+ ’ 0-4f -
2 | oo
E o3k ' e(zr)=10 4l HE
t ! t
1 3
0-2r i ' o-2f b
i i bl
0-1r : : 0-1F [
H 1
00 1 1 : : n 1 i ; E 1 J
1 2 3 4 5 8 72 3 4 5 6
k3 I

F1e. 2.7.1. (a) Distribution of observations (z values) in the population.
The area under the curve between any two z values is the probability of an
observation falling between these two values, so the total area under the curve is
1-0 (see Chapter 4 for details). This particular distribution is Gaussian but the
results in this chapter are valid for any distribution (though the standard devia-
tion has a simple interpretation only when the distribution is Gaussian). The
mean value of z is 4:0 and the standard deviation, o(x), is 1-0. (b) The distribution
of  values. £ is the mean of a sample of four x values from the population repre-
sented in (a). The area under this curve must be 1-0, like the distribution in (a).
To keep the area the same, the distribution must be taller, because it is narrower
{i.e. the £ values have less scatter than the x values). The ordinate and abscissa
are drawn on the same scale in (a) and (b). The mean value of £ is 4-0 and its
standard deviation, o(£) (the ‘standard error of the mean’), is 0-5.

makes s(z) a more accurate estimate of the population value, o(z).
On the other hand, the sample standard deviation of the mean, s(%),
is the quantity of interest if one wants to estimate the accuracy of a
sample mean, Z. It is used if the object of making the observations is
to estimate the population mean, rather than to estimate the inherent
variability of the population. Taking a larger sample makes s(Z) smaller,
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on the average, because it is an estimate of o(£) (the population
‘standard error’), which is smaller than o(x).

The standard deviation of the mean may sometimes be measured, for
special purposes, by making measurements of the sample mean (see
Chapter 11, for example). It is the purpose of this section to show that
the result of making repeated observations of the sample mean (or of
any other function calculated from the sample of observations), for
the purpose of measuring their scatter, can be predicted indirectly.
If the scatter of the means of four observations were required it could
be found by observing many such means and calculating the variance
of the resulting figures from (2.6.2), but alternatively it could be
predioted using 2.7.8) (below) even if there were only four observations
altogether, giving only a single mean. An illustration follows.

A numerical example to illustrate the idea of the standard deviation of the
mean

Suppose that one were interested in the precision of the mean found
by averaging 4 observations. It could be found by determining the
mean several times and seeing how closely the means agreed. Table
2.7.1 shows three sets of four observations. (It is not the purpose of this
section to show how results of this sort would be analysed in practice.

TaBLE 2.7.1.

Three random samples, each with N = 4 observations, from a population
with mean u = 4-00 and standard deviation o(x) = 1-00

Sample 1 Sample 2 Sample 3

z values 3.99 5-88 3-79

3-38 2:45 328

3-89 2:21 407

6-36 5-96 321
Sample mean, 2 4-40 4-12 3-58 Grand mean = 4:04
Sample standard
deviation, #(x) 1-33 2:08 0-420

That is dealt with in Chapter 11.) The observations were all selected
randomly from a population known (because it was synthetic, not
experimentally observed) to have mean u = 4-00 and standard
deviation g{z) = 1-00, as shown in Fig. 2.7.1(a)
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The sample means, Z, of the three samples, 4:40, 4:12, and 3-58, are all
estimates of 4 = 4-00. The grand sample mean, 4-04; is algo an estimate
of 4 = 400 (see Appendix 1). The standard deviations, s(z), of each
of the three samples, 1-33, 2:08, and 0-420, are all estimates of
the population standard deviation, a(z) = 1:00 (a better estimate
could be found by averaging, or pooling, these three estimates as
described in § 11.4). The population standard deviation of the mean
can be estimated directly by calculating the standard deviation of the
sample of three means (4-40, 4-12, 3-58) using (2.6.2). This gives

4-40 —4-04)%+-(4-12 —4-04)34-(3-58 —4-04
= [ 12407 4y’

= 0'420.

Now according to (2.7.9) (see below), if we had an infinite number of
% values instead of only 3, their standard deviation would be
o(Z) = o(z)//N = 1:00[4/4 = 0-5 (see Fig. 2.7.1(b)), and 8(£) = 0-420is
a sample estimate of this quantity. And, furthermore, if we had only one
sample of observations it would still be possible to estimate indirectly
a(£) = 0-5, by using (2.7.9). For example, with only the first group,
8(Z) = 8(z)/+/N = 1-33/4/4 = 0-665 could be found as an estimate of
o(Z) = 0-500, i.e. as a prediction of what the scatter of means would
be if they were repeatedly determined. (This prediction refers to
repeated samples from the same population. If the repeated samples
were from different populations the prediction would be an under-
estimate, a8 described in Chapter 11.)

A reference list

The problem dealt with throughout this section has been that of
predicting what the scatter of the values of various functions of the
observations (such as the mean) would be if repeated samples were
taken and the value of the function calculated from each. The aim is
to predict this, given a single sample containing any number of observa-
tions that happen to be available (not fewer than two of course).

The relationships listed below will be referred to frequently later on.
The derivations should really be carried out using the definition of
the population variance (§ A1.2 and Brownlee (1965, p. 57)), but it
will, for now, be sufficient to use the sample variance (2.6.2). The
results, however, are given properly in terms of population variances.
The notation was defined in §§ 2.1 and 2.6.
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Variance of the sum or difference of two variables. Given the variance of
the values of a variable z, and of another variable y, what is the pre-
dicted variance of the figures found by adding an z value to a y value?
From, (2.6.2),

(=N —_
2 (= +y)—(e+y)F

var(r+y) = =} N1 .

Now, since (z+y) = Z(z,+y,)/N = Zz,/N+Zy [N = i+§ (from 2.1.8),
this can be rearranged giving

Z[(x,—z)+ (v~

var(z+y) = N1
. Z[(x,—Z)24(y— )2+ 2(x,— %)y, —9)]
- N—1
_ Z(x—2P Z(y,—9)? 22, —2)(yi—9)
T N-—-1 N-—1 N—-1

suggesting, from (2.6.2) and (2.6.6), the general rule
var(z+y) = vai(x)+rvar(y)+2 cov(z,y). (2.7.1)

By a similar argument the variance of the difference between two
variables is found to be

var(x—y) = var(x)tvai(y)—2 cov(z,y). (2.7.2)

Thus if the variables are uncorrelated, i.e. if cov(z,y) = 0, then the
variance of either the sum or the difference is simply the sum of the
separate variances

vas(x+y) = var(x—y) = var(x)+var(y). (2.7.3)

If variables are independent they are necessarily uncorrelated (see
§§ 2.4 and 12.9), so (2.7.3) is valid for independent variables.

Variance of the sum of N variables. By a simple extension of the above
argument for two variables, if z,, z,, ..., zy are N uncorrelated vari-
ables then (2.7.3) can be generalized giving

vas(Zz,) = var(t,+ 25+ ...+ xy)
= vat(Z,)+var(zy)+ ...+ var(zy)
Zvas(x,;), or Nvas(x), (2.7.4)

f
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the second form being appropriate (cf. (2.1.6)) if all the x; have the

same variance, va+(x).

The effect of multiplying each x by a constant factor. If a is a constant
then, by (2.6.2), the variance of the set of figures found by multiplying
each of a set of x values by the same figure, a, will be

I (ax,—az)? _ Ifa(x,—3)]? _ a’.E(z,—:’:)?

verlas) = - ST N1~ NI
suggesting the general rule
vat(az) = a?vas(x); (2.7.5)
and similarly from (2.6.6),
cov(azx, by) = ab cov(z.y) (2.7.6)

where a and b are constants.

The effect of adding a constant to each z. By similar arguments to those
above it can be seen, from (2.6.2), that adding a constant has no effect
on the scatter.

var(a+zx) = var(x). (2.7.7)

The variance of the mean of N observations and the standard error. This
relationship, the answer to the problem of how to estimate indirectly
the scatter of repeated observations of the mean discussed, with a
numerical example, at the beginning of this section, follows from those
already given.

_ Iz, 1
vai(I) = vm(?) = 172"‘“(2374) (from (2.7.5))
N
= Z—v—va(x) (from (2.7.4))
and therefore the variance of the mean is
.. var(2)
vasr(z) = N (2.7.8)

and the standard deviation of the mean (the standard error, see discussion
above) is

o(F) = V[rar(d)] = 2. (2.7.9)
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Notice that var(z), being an average (like £), will be more or less the
same whatever size sample is used to estimate it (though a larger
sample will give a more precise value), whereas var(Z) becomes smaller
a8 the number of observations averaged increases, as expected from the
discussion at the beginning of this section and from (2.7.8).

The variance of a linear function of the observations. A linear function of the
observations z,, 23, ..., Z, is deflned as

n
L = apt+ a2+ ag7g+... +3x7p =ap+ X a,
[LBY

where the a, are constants. From (2.7.7) it can be seen that a, has no effect on the
variance and can be ignored. Using (2.7.4) it can be seen that, if the observations
are uncorrelated,
vas(Ll) = vas(Zag) = Tvas(azx)

and using (2.7.5) this becomes

vas(L) = Z(afvas(zy)), (2.7.10)

or vas(L) = vas(z).Za?

if the variances of all the z, are the same, vas(z) say.

If the 2z, do not have zero convariances (are not uncorrelated) a more general
form is necessary. Using (2.7.5), (2.7.5), and an extension of (2.7.1) this is found
to be

vas(L) = Zadvar(z)+2X Tam, cov(z,, z,), (2.7.11)
i 4
(£ 2]

where the second term is the sum of all possible pairs of covariances. For example
if L = a,2; + agzg+ asr,, then vas(L) = a2 vas(z,)+ad vas(zz)+ad vas(zs)+2a,a9
cov(2y,29) + 2a,85 cov(2y,2q) + 2020, cov(Z3,23).

The variance of the weighted arithmetic mean. The variance of the weighted mean,
defined in (2.5.1), follows from (2.7.5) and (2.7.10).

Twa) 1 _ vlvas(a)]
vad (Z_‘W‘) = (zw‘),uan(Zw.z.) = (ZW')’ .

Now if w0, = 1/vas(z,), as discussed in § 2.5, then Z[w? vas(z)] = Zw, 80

Zwa, 1
= —y 2.7.12
W“( Zw, ) Zw, ( )

and if all the weight (variances) are the same this reduces to (2.7.8).

The approxzimate variance of any function. The variance of any function f(z,,
X3, .oy Z,) Of the uncorrelated variables z;, z,, ..., z, i8 given approrimately
(taking only the linear terms in a Taylor series expansion of f) by

1

2 a 2
wu(j)z(g-) var(z)+ (g") var(xg)+...+ (;;{) vai(z,). (2.7.13)
a n
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if the variances are reasonably small relative to the means, so that the function
can be represented approximately by a straight line in the range over which each
z varies. The derivatives should be evaluated at the true mean value of the =
variables. If the # variables are correlated then terms involving their covariances
must be added as shown below. For discussion and the derivation see, for example,
Lindley (1965, p. 184), Brownlee (1965, p. 144), and Kendall and Stuart (1963,
p. 281).

If f is a linear function then (2.7.13) reduces to (2.7.10), which is exact. If f 1s
not linear then the result is only approximate and furthermore f will rot have the
same distribution of errors as the « variables so if, for example, the 2 values were
normally distributed (see § 4.2) f would not be normally distributed, so its vari-
ance, even if it were exact, could not be interpreted in any simple way.

The variance of log . If the true mean value of z is 4 and then using the version
of (2.7.13) for a single variable givea

d log.z\? vas(z)
az vas(x) = A

emp
Therefore the standard deviation of log. is approximately equal to the coefficient
of variation of z, €(x), defined by (2.6.4). If the standard deviation of z increases
in proportion to the true mean value of , so that the coeficient of variation of «
is constant, the standard deviation of logyss will be approximately constant
(cf. §§11.2 and 12.2).

= €¥(=). (2.7.14)

vartog)(

The variance of the product of two variables, x,x,. In this case an exact result
can be derived for the variance of values of z,2,, given the variances of , and of
3. Suppose that x; and x; are independent of each other, and have population
means u, and a5 respectively. Thent

vas(®,2a) = vas(@)).var(za)+ud var(@) +u? var(z,),

If this result is divided through by (u;4,)3, it can be expressed in terms of co-
efficienta of variation, deflned in (2.6.4), as

€ (zy25) = €¥(z,).€%(x3) +€%(2,) +€3(22). (2.7.15)

It is interesting to compare this with the result of applying the approximate
formula, (2.7.13), viz.

3 2
vao(xlxa)z(a:;xz) vao(x1)+(az;za) vat(zg)
1 2

= p3 var(r)) + pu? var(zg);
or, again dividing through by (u,u3)? to get the result in terms of coefficients of
variation,

CA(xxa) € (x,) + € (2,).

t+ Proof. From appendix equation (Al.2.2), va#(z,2;) = E(z}zd) —[E(z,25)]*. Now
E(x125) = pyug and E(ziz]) = E(z}).E(z}) if, as supposed, z, and zg are independent.
Also, from (A1.2.2), E(x3) = vat(z,)+pu,, sad similarly for 2. Thus
var(z,2;) = E(23).E(z3) —piul
= (vas(z,) +pi)(vas(ze) +-p3) —pipd
= vai(z,).vas(zg)+ pivas(z,)+ plvai(zg)
a8 stated above.
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By comparison with (2.7.15) it appears that use of the approximate formula
involves neglecting the term €?(z;).€%(z;). The approximation involved can be
illustrated by two numerical examples.

First, suppose that both z, and x; have coefficients of variation of 50 per cent,
Le. €(z;) = 0-6, €(z4) = 0-5. In this case (2.7.15) gives

€(zy25) = +/[(0-6%9 X 0-5%)+ 0-5%4-0-6%] = 4/(0-0625 4 0-254-0:28) = 0-750,
i.e. 75:0 per cent. The approximate form gives '
€ (2123) = 4/(0-62+0-52) = 0-707,

L.e. 70-7 per cent. S8econdly, consider more accurate observations, say 100 €(z,)
= § per cent and 100 €¥(z;) = 5 per cent. Similar calculations show that (2.7.15)
gives 100 ¥ (z,x3) = 7-076 per cent, whereas the approximate form gives 100
€(zy23) =~ T-071 per cent. The more accurate the observations, the better the
approximate version will be,

The variance of the ratio of two variables, z,/z;. Using (2.7.18) gives, in terms of
coefficiente of variation, the approximate result

€z, [2;) =~ €*(z,) +€3(z3). (2.7.18)

An exact treatment for the ratio of two normally distributed variables is given in
§ 13.5 and exemplifled in §§ 13.11-13.15.

The variance of the reciprocal of a variable, 1/z. According to (2.7.13),

2
um(l/z)z(d—(;;/f—)) variz) = 22, (2.7.17)

Bmpu ut

The weight (see § 2.5) to be attached to a value of 1/z is therefore approximately
proportional to the fourth power of z if va+(z) is constant! This explains why
plots involving reciprocal transformations may give bad results (see § 12.8
for detalls) if not correctly weighted.

Correlated variables. In the simplest case of two correlated variables, z; and z,,
the appropriate extension of (2.7.13) is

ar\? ar\? of @
vao[f(z,,z,)]z( f) vai(zy) -+ (;”7;{) vaa(zz)+2(-—f- —1) cov(Zy,2g). (2.7.18)

a_zl 2 8::1 a-’ﬂg

This relationship is referred to in § 13.5. For a linear function this reduces to the
two variable case of (2.7.11). The n variable extension of (2.7.18) involves all
possible pairs of  variables in the same way as (2.7.11).

Sum of a variable number of random variables. Let S denote the sum of a randomly
variable number of random variables

m
S = Xz,

where £, are independent variables with coefficient of variation €(z) and m is a
random variable with ooefficient of variation €(m). If each S is made up of a
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random sample (of variable size) from the population of £ values, then it is shown
in § Al.4 that the coefficient of variation of S is

€(S) = J («;"Mwm)), (2.7.19)

where 4, is the population mean value of m (size of the sample). This result is
illustrated on p. 58.



3. Theoretical distributions: binomial
and Poisson

THE variability of experimental results is often assumed to be of a
known mathematical form (or distribution) to make statistical analysis
easy, though some methods of analysis need far more assumptions than
others. These theoretical distributions are mathematical idealizations.
The only reason for supposing that they will represent any phenomenon
in the real world is comparison of real observations with theoretical
predictions. This is only rarely done.

3.1. The idea of a distribution

If it were desired to discover the proportion of European adults who
drink Scotch whisky then the population snvolved is the set of all
European adults. From this population a strictly random sample
(see § 2.3) of, say, twenty-five Europeans might be examined and
the proportion of whisky drinkers in this sample taken as an estimate
of the proportion in the population.

A similar statistical problem is encountered when, for example, the
true concentration of a drug solution is estimated from the mean of a
few experimental estimates of its concentration. Although it is con-
venient still to regard the experimental observations as samples from a
population, it is apparent that in this case, unlike that discussed in the
previous paragraph, the population has no physical reality but consists
of the infinite set of all valid observations that might have been made.

The first example illustrates the idea of a discontinuous probability
distribution (it is not meant to illustrate the way in which a single
sample would be analysed). If very many samples, each of 25 Euro-
peans, were examined it would not be expected that all the samples
would contain exactly the same number of whisky drinkers. If the
proportion of whisky drinkers in the whole population of European
adults were 0-3 (i.e. 30 per cent) then it might reasonably be expected
that samples containing about 7 or 8 cases would appear more frequently
than samples containing any other number because 0-3 x 25 = 7-5.
However samples containing about 5 or 10 cases would be frequent,
and 3 (or fewer) or 13 (or more) drinkers would appear in roughly 1 in
20 samples. If a sufficient number of samples were taken it should be
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possible to discover something approaching the true proportion of
samples containing r drinkers, r being any specified number between
0 and 25. These figures are called the probability distribution of the
proportion of whisky drinkers in a sample of 25 and since this propor-
tion is a discontinuous variable (the number of drinkers per sample
must be a whole number) the distribution is described as discontinuous.
The distribution is usually plotted as a block histogram as shown in
Fig. 3.4.1 (p. 52), the block representing, say, 6 drinkers extending
from 5-5 to 6-5 along the abscissa.

The second example, concerning the estimation of the true concentra-
tion of a drug solution, leads to the idea of a continuous probability
distribution. If many estimates were made of the same concentration
it would be expected that the estimates would not be identical. By
analogy with the discontinuous case just discussed it should be possible,
if a large enough number of estimates were made, to find the proportion
of estimates having any given value. However, since the concentration
is a continuous variable the problem is more difficult because the
proportion of estimates having exactly any given value (e.g. exactly
12 ug/ml, that is 12-00000000...ug/ml) will obviously in principle be
indefinitely small (in fact experimental difficulties will mean that the
answer can only be given to, say, three significant figures so that in
practice the concentration estimate will be a discontinuous variable).
The way in which this difficulty is overcome is discussed in § 4.1.

3.2. Simple sampling and the derivation of the binomial
distribution through examples

The binomial distribution predicts the probability, P(r), of observing
any specified number (r) of ‘successes’ in a series of n sndependent trials
of an event, when the outcome of a trial can be of only two sorts
(‘success’ or ‘failure’), and when the probability of obtaining a ‘success’
is constant from trial to trial. If the conditions of independence and
constant probability are fulfilled the process of taking a sample (of n
trials) is described as simple sampling. When there are more than two
possible outcomes a generalization of the binomial distribution known
a8 the multinomial distribution is appropriate. Often it will not be
possible a priori to assume that sampling is ssmple and when this is so
it must be found out by experiment whether the observations are
binomially distributed or not.

The example in this section is intended to illustrate the nature of the
binomial distribution. It would not be a well-designed experiment to
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test a new drug because it does not include a control or placebo group.
Suitable experimental designs are disoussed in Chapters 8-11.

Suppose that n trials are made of a new drug. In this case ‘one trial
of an event’ is one administration of the drug to a patient. After each
trial it is recorded whether the patient’s condition is apparently better
(outcome B) or apparently worse (outcome W). It is assumed for the
moment that the method of measurement is sensitive enough to rule
out the possibility of no change being observed.

The derivation of the binomial distribution specifies that the prob-
ability of obtaining a success shall be the same at every trial. What
exactly does this mean ? If the n trials were all conducted on the same
patient this would imply that the patient’s reaction to the drug must
not change with time, and the condition of independence of trials
implies that the result of a trial must not be affected by the result of
previous trials. The result would be an estimate of the probability of
the drug producing an improvement in the single patient tested.
Under these conditions the proportion of successes in repeated sets of n
trials should follow the binomial distribution.

At first sight it might be thought, because it is doubtleas true that
the probability of a success outcome B, will differ from patient to
patient, that if the n trials were conducted on n different patients,
the proportion of sucocesses in repeated sets of n trials would not follow
the binomial distribution. This would quite probably be so if, for
example, each set of n patients was selected in a different part of the
country. However, if the sets of n patients were selected strictly at
random (see § 2.3) from a large population of patients, then the propor-
tion of patients in the population who will show outoome B (i.e. the
probability, given random sampling, of outcome B) would not change
between the selection of one patient and the next, or between the
selection of one sample of n patients and the next. Therefore the
conditions of constant probability and independence would be met in
spite of the fact that patients differ in their reactions to drugs. Notioce
the critical importanoce of strictly random selection of samples, already
emphasized in §2.3.

From the rules of probability discussed in § 2.4 it is easy to find
the probability of any specified result (number of successes out of n
trials) if #(B), the true (population) proportion of cases in which the
patient improves, is known. This is a deductive, rather than inductive,
procedure. A true probability is given and the probability of a particular
result caloulated. The reverse process, the inference of the population
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proportion from a sample, is discussed later in § 7.7 and exemplified
by the assay of purity in heart by the Oakley method, described in
§17.8.

Two different drugs will be considered.

1. Suppose that drug X is completely inactive, but nevertheless
50 per oent of patients, in the long run, improve spontaneously, i.e.

P(B) = 05 and P(W) = 1—P(B) = 0-5. (3.2.1)

2. Suppose that drug Y is effective, and that the percentage of
patients improving in the long run is increased to 90 per ocent. Thus

#(B) = 0-9 and Z(W) = 1—Z(B) = 0-1. (3.2.2)

In both cases, because the outcomes B and W are mutually exclusive,
the special case of the addition rule (2.4.2) gives #(B or W) =
P(B)+P (W), and because B and W are exhaustive (the only possible
outcomes) #(B or W) = 1.

Two trial administrations of the drug (n = 2)

Out of two trials 0, 1, or 2 successes might be observed. The possible
outcomes of the two trials are shown in Table 3.2.1 and from these
probabilities, P(r), of observing r successes (r = 0, 1, or 2), arecalculated
using the multiplication rule, (2.4.6), and the addition rule (2.4.2).

TasLe 3.2.1

1st 2nd Prob. of P(r) when P(r) when
r trial trial outcome, P(r) PB) = 06 2B) =09
0 w w P (W) xP (W) 0-26 0-01
1 w B P (W) xPB) 0-26 0-09 018
1 B w PB)XP(W) 026 0-09
2 B B 2(B)x2(B) 025 0-81

Total 1.0 10

It can be seen that i P(r) = 1-0 in each case, as it should by the

rm=0
addition rule, because it is certain that r will take some value between

0 and n.
It is also clear from the table that the calculations are affected by
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TABLE 3.2.2
P(r) when P(r) when
r 1st 2nd 3rd P(B) = 06 PB) = 09
trial trial trial (Drug X) (Drug Y)
0 w w W 0-125 0-001
1 w w B 0-125 0-009
1 W B w 0-125}0-378 0:009 }0-027
1 B w w 0-128 0-009
2 B B w 0-125 0-081
2 B w B 0-125} 0-376 0:081;0-243
2 w B B 0-128 0-081
3 B B B 0-1256 0-729
Total 1-000 1-000

3.3. Hlustration of the danger of drawing conclusions from
smail samples

Suppose that it is wished to compare the treatments, X and Y, used in the
previous section (see (3.2.1) and (3.2.2)). An experiment is performed by testing
three subjects with treatment X and three subjects with treatment Y, the subjects
being randomly selected from the population of subjects, and randomly allocated
to X or Y using random number tables (see § 2.3). The probabilities of obtaining
r successes in each set of 3 trials have already been given in Table 3.2.2 and
are reproduced in Table 8.8.1 together with the products which, by the multi-
plication rule, give the probabilities of observing both (r succeases with X) and
(r successes with Y).

TABLE 3.8.1

P(r) when #(B) = 0-5 P(r) when 2(B) = 0-9 product
r (treatment X) (treatment Y)
0 0-125 0-001 0-:0001256
1 0-376 0-027 0-010125
2 0-376 0-243 0-091125
3 0-125 0-729 0-018225

Totals 1-000 1-000 0-1196

The sum of the products, 0-1196, gives, by the addition rule, the probability
of obtaining either (0 successes with both drugs) or (1 success with both) or
(2 successes with both) or (3 successes with both). Thus in 11-96 per cent of experi-
ments in the longrun, treatment X will appear to be equi-effective with treatment
Y, though in fact the latter is considerably better.

Furthermore, in some experiments X will actually produce a betler result than
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Y. By enumerating the ways in which this can happen, and applying the addition
and multiplication rules, the probability of this outcome is seen to be

(0-375 % 0-001)+0-375(0-027 4 0-001)4-0-125(0-243 4-0-027 4 0-001) = 0-04475.

For example, the second term is the probability of obtaining both (2 successes
with X) and (either 0 or 1 successes with Y). The treatments will be placed in the
wrong order of effectiveness in 4:475 per cent of trials in the long run.

The result of these calculations is the prediction that in the long run X will
appear to be as good as, or even better than Y in 11-061-4-475 = 164 per cent of
experiments. It would thus be quite likely that a good new treatment would
remain undetected if an experiment were conducted with samples as emall as
those in this illustration. The hazards of small samples are dealt with further in
§ 7.7 and in § 7.8, which describes the use of the binomial for the assay of purity
in heart.

3.4. The general expression for the binomial distribution and for
its mean and variance

The probability, P(r), of observing r successes out of n trials when the
probability of a success is #, and the probability of a failure is therefore
1—2 from (2.4.3)), can be inferred by generalization of the deductions
in §3.2. It is

P(r) = (1 —P)-" (3.4.1)

if the order in which the successes occur is specified. Commonly the
order is of no interest, and therefore, by the addition rule, this must
be multiplied by the number of ways in which r successes can ocour in
n trials namely

n!

i (3.4.2)

which is the number of possible combinations of r objects selected from
n.t Thus, when the order of the successes ignored,

!
P(r) = ”(n—"_rﬁm(l—a)n-'. (3.4.3)

The proof that the sum of these probabilities, for all possible values
of r from 0 to n, is 1 follows from the fact that (3.4.3) is a term in the

t This quantity is often denoted by the symbol (), or by "C,. It is the number of
possible ways of dividing n objects into two groups containing r and n —r objects (‘suc-
ceases’ and ‘failures’ in the present case). The n objects can be arranged in n! different
orders (permutations), and in each case the first r selected for one group, the remaining
n—r for the other. However the r! permutations of the objects within the first group,
and the (n —r)! permutations within the second group, all result into the same division
into two groups, hence the denominator of (3.4.2).
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expansion (2+2)", where 2 = 1—2, by the binomial theorem. Thus

S Pir) = (24 PP = 1" = 1.
ra0

Example 1. If n =3 and £ = 0-5, then the probability of one
success (r = 1) out of three trials is, using (3.4.3),

3!
P(1) = ——-0-5'0:6% = 3x0-126 = 0-375
112!
as found already in Table 3.2.2.
Ezxample 2. If n = 3 and # = 0-9, then the probability of three
trials all being successful (r = 3) is , similarly,

3!
P(3) = ——-0-93 0:1° = 1 x0-729 = 0-72
(3) = 3751%® x 0-729 = 0-729

as found in Table 3.2.2 (because 0! = 1, see § 2.1, p. 10).

Estimation of the mean and variance of the binomial distribution

When it is required to estimate the probability of a success from
experimental results the obvious method is to use the observed propor-
tion of successes in the sample, r/n, a8 an estimate of #. Conversely,
the average number of successes in the long run will be n# as exempli-
fied in § 3.2 (this can be found more rigorously using appendix equation
(ALL.1)).

If many samples of n were taken it would be found that the number
of successes, r, varied from sample to sample (see § 3.2). Given a number
of values of r this scatter could be measured by estimating their variance
in the usual way, using (2.6.2). However, in the case of the binomial
distribution (unlike the Gaussian distribution) it can be shown (see
eqn (A1.2.7)) that the variance that would be found in this way can be
predicted even from a single value of r, using the formula

vai(r) = nP(1—-P) (3.4.4)

into which the experimental estimate of 2, viz. r/n, can be substituted.

The meaning of this equation can be illustrated numerically. Take
the case of n = 2 trials when £ = 0-5, which was illustrated in § 3.2.
The mean number of successes in 2 trials (long run mean of r) will be
u = nP = 2x0-5 = 1. Suppose that a sample of 4 sets of 2 trials were
performed, and that the results were r =0, r =1, r =1, and r = 2
successes out of 2 trials (that is, by good luck, the results were exactly
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The agreement is only exact because the sample happened to be perfectly
representative of the population. If the calculations are based on small
samples the estimate of variance obtained from (3.4.4) will agree
approximately, but not exactly, with the estimate from (2.6.2). A
similar situation arises in the case of the Poisson distribution and a
numerical example is given in § 3.7.

Results are often expressed as the proportion (r/n), rather than
the number (r), of successes out of n trials. The varianoe of the propor-
tion of successes follows directly from the rule (2.7.5) for the effect of
multiplying a variable (r in this case) by a constant (1/n in this case).
Thus, from (3.4.4),

vai(r) _ P(1—-P)

n3 n

vai(rfn) = (3.4.5)

The use of these expreasions is illustrated in Fig. 3.4.1 in which the
abscissa is given in terms both of r and of r/n. As might be supposed
from Fig. 3.2.1-3.2.4, the binomial distribution is only symmetrical if
# = 0-5. However, Fig. 3.4.1 shows that as n increases the distribution
becomes more nearly symmetrical even when & s 0-5. The binomial
distribution in Fig. 3.4.1 is seen to be quite closely approximated by the
superimposed continuous and symmetrical Gaussian distribution (see
Chapter 4), which has been constructed to have the same mean and
variance as the binomial.

3.5. Random events. The Poisson distribution
Genesis of the distribution. Relationship to the binomial

The Poisson distribution describes the ocourrence of purely random
events in a continuum of space or time. The sort of events that may be
described by the distribution (it is & matter for experimental observa-
tion) are the number of ocells visible per square of haemocytometer,
the number of isotope disintegrations in unit time, or the number of
quanta of acetylcholine released at a nerve-ending in response to a
stimulus. The Poisson distribution is used as a criterion of the random-
ness of events of this sort (see § 3.6 for examples). It can be derived in
two ways.

First, it can be derived directly by considering random events, when
(3.5.1) follows (using the multiplication rule for independent events,
(2.4.6)) from the assumption that events ocourring in non-overlapping
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intervals of time or space are independent. This derivation is given in
§ A2.2 (Chapter 5 should be read first). The independence of time
intervals is part of the definition of random events (see Chapter 5§ and
Appendix 2).

Secondly, the Poisson distribution can be derived from the binomial
distribution (§ 3.4). In the examples cited the number of ‘successes’
(e.g. disintegrations per second) can be counted, but it does not obviously
make sense to talk about the ‘number of trials of the event’. Consider
an interval of time At seconds long (or an interval of space) divided into
n small intervals. If the true (or population, or long-term) average
number of events in At seconds is called s, then the probability of one
event occurring (‘success’) in a small interval of length At/n is &
= m[n.t Because of the independence of time intervals the n intervals
are like n independent trials with a constant probability # = m[n of
success at each trial, just like n tosses of a coin. These properties of
independence and constancy define (plausibly enough) what is meant by
‘random’. If n is finite, the number of successes in n trials is therefore
given by the binomial distribution, (3.4.3), with # = m/n. In order to
consider very short time intervals let n—co (and thus #—0) in eqn
(3.4.3), 8o that # = nP remains fixed. The result is (3.5.1), a limiting
form of the binomial distribution in which neither n» nor £, but only s
appears. The derivation is discussed by Feller (1957, p. 146), Mood and
Graybill (1963, p. 70), and Lindley (1965, p. 73). It is easy to follow if it
is remembered that as n—00, lim (1 —a/n)* = e~. See Thompson (1965,
Chapter 14) if it is not remembered.

The distribution gives the true probability of observing r events per
unit of time (or space) as

r

P(r) = Pl (3.5.1)

where s is the true mean number of events per unit of time or space.
(It is shown in Appendix 1, (A1.1.7), that = is the population mean
value of r.) This is a discontinuous distribution because r must be an

t You may object that s could be bigger than n, giving a probability bigger than 1!
But the argument only applies to very short intervals so that ws << n and the chance of
more than one event occurring in a short interval (length At/n) is negligible. For example,
if At = 1 hour (3600 8) and m = 36 eventsa/h, then if n = 3600 it follows that # = 36/
3600 = 0-01. On average, 99 out of 100 1s intervals contain no event (‘failure’), 1 in
100 contains 1 event (‘succesa’) and a negligible proportion contains more than one
event. The ‘negligible proportion’ is dealt with more rigorously in Appendix 2. It be-
comes zero if the intervals are made infinitely short, which is why we let n— oo in the
derivation.
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integer. It has the basic property of all probability distributions that it
should be certain (P = 1) that one or other of the possible outcomes
(r =0, r = 1,...) will be observed. From the addition rule (2.4.2),
this means that Pr = 0 or r = 1 or...c0] is the sum of the separate
probabilities i.e., from (3.5.1),

® 0 gp” 3
SPr)=em3 = e‘"'(l—{-m-{—g-{—...) =g mem =1, (3.5.2)
=0 rmQ? ¢ .

(See Thompson (1965, p. 118) if you do not recognize the expansion of
e™.)

The variance of the Poisson distribution

According to (3.4.4) the variance of the number of ‘successes’, r, for
the binomial distribution, is vai(r) = n#(1 —2). Because m = nP
this can be written m(l —2), and because, as discussed above, the
Poisson distribution can be derived from the binomial by letting #—0,
the variance of the Poisson becomes simply

var(r) = m, (3.5.3)

the same as the mean. As in the case of the binomial distribution,
but not the normal distribution, this allows an estimate of variance
to be made with even a single observation of r (a single estimate of m),
as well a8 by the conventional method of estimation. This is illustrated
numerically in § 3.7.

3.86. Some biological applications of the Poisson distribution
Cell distribution

If the number of cells per unit area of a counting chamber were
observed to be Poisson-distributed this would imply that the cells
were independent and randomly distributed, for example that they
have no tendency to clump.

Thus, if the number of red cells present in the volume represented by
one small square of a haemocytometer is r, and the number of squares
observed to contain r cells is f, then, using the observations in Table
3.6.1, the estimated mean number of cells per square is the total number
of cells divided by the total number of squares, i.e.
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The Poisson distribution (3.5.1) gives the probability of a square
containing r cells as P(r) = e "sm'/r!, where s, the mean number of
oells per square, is estimated by 7. For example, the probability of a
square containing 3 cells is predicted to be

6-625)3
P(3) = e'°'°’5(—3-‘—-)—z0-064.

Multiplying this probability by the number of squares counted (80)
gives the predicted frequency (f.a10) Of squares containing 3 oells, viz.
80 % 0-064 = 5-1, i.e. about 5 squares. The rest of the values are given
in Table 3.6.1. The observed distribution is slightly more clumped
than the calculated Poisson distribution. In § 8.6, p. [133], a test is
carried out to see whether this tendency can be reasonably be attributed
to random errors. For this purpose some categories are pooled as indi-
cated by the brackets in Table 3.6.1.

TABLE 3.6.1

r obs. freq. (f) calc. freq. Ir

0 0 0 0

1 0 1 0

2 1}4 2}8 2

3 3 ) 9

4 5 9 20

5 10 11 50

8 15 18 90

7 20 12 140

8 17 10 136

9 8 7 54

10 3 5 30

11 0 3 0

12 0]0 2]5 0

OrF MOor'c
Totals 80 80 531
Bacterial dilutions

If samples of a dilute suspension of bacteria are subcultured into
several replicate tubes then bacterial growth will result in those tubes
in which the added sample contained one or more viable bacteria. The
proportion of tubes showing growth is therefore an estimate of the
probability that a sample contains one or more organisms, P(r>1).
If the bacteria in the sample suspensions were randomly and independently
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distributed throughout the suspending medium the number of bacteria
in unit volume of solution (r) would follow the Poisson distribution;
this enables an estimate of the mean number of cells per sample (s)
to be made from the observed proportion of subcultures showing
growth (P(r>1) = p, say).

From (3.5.1) the probability of the sample being sterile (r = 0)
is P(0) = e-* and therefore, by (2.4.3)(cf. (3.5.2)),

p=Pr=2l)=1—-P0)=1—e""

By solving this for m the mean number of viable organisms per sample
is estimated to be
m = —log,(1—p)

(remember log.e* = z). For example, if 40 per cent of cultures are non-
sterile, p is 0-4 and m = —log,(1—0-4) = 0-51 organisms per sample.
The error of this estimate depends on the number of suboultures on
which the estimate of p is based and is usually quite large.

The quantal release of acetylcholine at nerve terminals

In a low-calcium, high-magnesium medium the muscle end-plate (or
post-synaptic) potential elicited by nerve stimulation is redueed in size
because the number of quanta of acetylcholine released is reduced. A
certain proportion of stimuli produce no response at all (‘failures’).

The number of quanta of acetylcholine released per stimulus has
been found to be Poisson distributed (see Martin 1966). In other
words, the proportion of stimuli causing release of r quanta, P(r), is
observed to be predicted well by (3.5.1). This is illustrated by an example
given by Katz (1966). The mean response to a single quantum (mean of
78 spontaneous miniature end-plate potentials) was 0-4 mV. The mean
of the responses to 198 nerve impulses was 0-933 mV, the individual
responses tending to be either zero (‘failures’, r = 0) or integer
multiples of 0-4 mV corresponding to the release of an integral number
(r) of quanta. Assuming that the response (mV) is proportional to the
number of quanta released, the mean number released is estimated to
be m = 0-933/0-4 = 2:33 quanta per stimulus. The proportion of
stimuli releasing r quanta is therefore predicted, from (3.5.1), to be
2:33"¢-3-33/r| The predicted number of impulses out of 198 releasing r
quanta is simply 198 times this proportion. The results in Table 3.6.2
show that the Poisson prediction agrees well with observations.
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TABLE 3.6.2

Comparison of observed and Poisson distributions of the number of quanta
of acetyl choline released per stimulus (Katz, 1966 ; based on Boyd and

Martin, 1956)
r predicted frequency observed
number of 198 m'e™"/r! frequency
quanta
0 19 18
1 44 44
2 52 556
3 40 38
4 24 25
5 11 12
(i} 5 5
7 2 2
8 1 1
9 0 0
Total 198 198

The predicted frequencies are only approximate because the observed
mean m has been substituted for the population mean, », in (3.5.1).

The observed frequencies also are only approximate because the response to a
single quantum is itself quite variable (standard deviation 0-086 mV, coefficient
of variation 100 x 0-086/0-4 = 21-5 per cent, so the responses (in mV) to 0, 1, 2
. . . quanta overlap somewhat. Also, if the response is large, the depolarization
(in mV) is no longer directly proportional to the number of quanta. The detalls
are discussed by Martin (1966) and Katz (19668). When corrections are made for
these factors the observed distribution of responses (in mV) is fitted closely by
the calculated distribution.

Furthermore, assuming a Poisson distribution of r, » can be estimated
from the observed number of failures, viz. 18 (from Table 3.6.2), because
P(0) = e~ (from 3.5.1)). Thus m = —log,P(0) = log,1/P(0) = log,
198/18 = 24 quanta per stimulus, agreeing quite well with the
independent estimate 2-33 quanta, which was found above without
assuming a Poisson distribution.

Estimation of the quantal conlent, m, by the ‘coefficients of variation method’
If the depolarization produced by a single quantum (miniature end plate
potential) is denoted 2z, and the quantal content is m as above, then the end plate
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potential can be represented (when S is small enough for the z, to be additive) by

S= Tz, (8.6.1)

which is the sum of a variable number (m) of random variables (z). It is stated in
(2.7.19), and proved in § Al.4, that if the miniature end-plate potentials are
independent of each other (which is probably s0), and if the end-plate potential, S,
is produced by a random sample (of variable size, m) from the population of
single quanta (which is less certain), then the square of coefficient of variation
of the end-plate potential size is given by

€(z)

€(S) = +€3(m), (8.8.2)

where €(z) and €(m) are the population coefficients of variation of £ and m
deflned in (2.6.4). This result does not depend on assuming any particular diatri-
bution for either £ or m (see § Al.4).

Suppose, for example, that m is binomially distributed, which might beexpected
if the nerve impulse caused there to be a constant probability 2 of releasing each
of a population of N quanta, so the true mean number of quanta released is
m = NP asin § 3.4, and, on average, a proportion & of the population is released.
According to (3.4.4), vai(m) = NP(1—P) = m(l —P) and therefore €3(m)
= vat(m)[m? = (1 —P)[m. Substituting this into (3.6.2) gives

[ J L
Solving for m, gives, in this case of binomial distribution of m,
€(z)+1-2
- o= s (3.6.4)

The case where m is Poisson-distributed is obtained when & tends to zero (see
§ 3.5), or directly from (3.6.2) using vat(m) = w from (3.5.8), i.e. €%(m) = 1/m,
giving

€Iz)+1
= @6 . (3.6.5)
This, and the other results in this section, are discussed in the review by Martin
(1966). An estimate of s is obtained by substituting the experimental estimates of
€ () and €(S) into (3.8.5).

Equations (3.6.4) and (3.6.5) do not entirely account for the experimenta
observations and it was pointed out by del Castillo and Katz (see Martin 1966)
that if we drop the rather unreasonable assumption that all the quanta have the
same probability of release, then ¥3(m) will be less than the binomial value
(1 —2)/m, which in turn is less than the Poisson value, 1/m. It can be shown
(e.g. Kendall and Stuart (1963, p. 127)) that if each quantum has a different
probability (#,) of release, and that if these probabilities are constant from one
nerve impulse to the next, then €3(m) = (1—P —vas(P)/P)/m where P is the
mean probability of a quantum being released (i.e. Z#,/N) and va+(#P) is the
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variance of the #, values (zero in the binomial case when all the & are identical).
If this is subsetituted in (3.8.2), solving for » gives

W)+ 1—P —var(P)P
= , 3.6.8
m €S) ( )

which is smaller than is given by either (3.6.4) or (3.6.5). In the case where N
is very large (3.8.8), like (3.6.4), tends to the Poisson form (3.6.5) despite the
variability of 2.

As an example consider the observations discussed above. The observed values
for the response to one quantum was Z = 0-4 mV with standard deviation 0-:086
mV, Le.coefficient of variation C(¢g) = 0:086/0-4 = 0-215. The observed mean end-
plate potential was § = 0:933 mV with a standard deviation of 0634 mV (this
value is taken for the purposes of illustration, the original figure not being
available) and hence C(S) = 0-634/0-933 = 0-680. If m were Poisson-distributed
its mean value could be estimated from (3.6.5) as

0-216°+1 1048
0-880°  0-462

m= = 2:28,

which agrees quite well with estimate (viz. 2.4) from the proportion of failures,
which also assumes a Poisson distribution, and the direct estimate 0-933/0-4
= 2:33 which does not.

The number of spontaneous miniature end-plate potentials in unit time

The number of single quanta released in unit time is observed to
follow the Poisson distribution, i.e. quanta appear to be released
spontaneously in a random fashion. This phenomenon is discussed in
Chapter 5, after continuous distributions have been dealt with, so
the continuous distribution of intervals between random events can be
discussed.

3.7. Theorsetical and observed variances: a numerical example
concerning random radioisotope disintegration

The number of unstable nuclei disintegrating in unit time is observed
to be Poisson-distributed over periods during which decay is negligible
(see Appendix A2.5), and disintegration is therefore a random process
in time.

Since the variance of the Poisson distribution (3.5.3) is estimated
by the mean number of disintegrations per unit time, the uncertainty
of a count depends only on the number of disintegrations counted and
not on how long they took to count, or on whether one long count or
several shorter counts were done. The example is based on one given by
Taylor (1957). The values of x listed are n = 10 replicate counts, each
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over a period of 5 min, of a radioactive sample. The decay over the
period of the experiment is assumed to be negligible. The z values are

10536 10636 10398 10393 10586
10381 10479 10401 10262 10403

The total number of counts is £z = 104475 oounts/50 min, mean count
Z# = Zz/n = 10447-5 counts/5 min, and oount-rate = 10447-5/8 =
2089-5 oounts/min. What is the uncertainty in the count-rate? Ite
variance can be calculated in two ways.

(a) Theoretical Poisson variance

The number of counts observed in a 50-min unit of time was 104475
80 if the number of counts in unit were Poisson-distributed the estimate
of the varianoe of the variable ‘number of counts in 50 minutes’ would
be 104475 (from (3.5.3)). In this case the total number of counts was the
sum of ten 5-min counts. In general, according to (2.7.4), vas(Tz) = n
vas(z), 80 if z is the number of counts in 5 min, the variance of a
single 5-min oount is estimated to be

var(Zz) 104475
10

If there had only been one 5-min count, say the first one, ite variance
would have been estimated as 10536, a similar figure.

However, what is really wanted is the variance of the count-rate
per minute, determined from 50 min of counting in the experiment,
not the variance of a §-min count. The count-rate is Zx/50 counts/min.
In general, from (2.7.5), vas(ax) = a?vas(z), where a is a constant
(1/80 in this case), therefore

) var(Xx) 104475
VAN\B0/ T T0* T 500

The standard deviation of the mean count-rate (2089-5 counts/min) is
therefore 4/(41:79) = 6-46 counts/min.

If there had been only a single 5-min oount, say 10536, the mean
count-rate would have been 10536/5 = 2107-2 counts/min, and, by a
similar argument, its estimated standard deviation would have been
4/(10536/5%) = 20-6 counts/min. Thus when the number of observa-
tions is reduced tenfold, the standard deviation of the mean goes up by
1/(10), a8 expected from (2.7.9) (6.46 X 4/(10) = 20-4).

It can be seen that the uncertainty in the count depends only on the

var(z) = = 10447-5.

41:79.
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total number of counts. If it is known that the count-rate has a Poisson
distribution (as it will have if the counter is functioning correctly) its
uncertainty can be estimated without having to do replicate observa-
tions.

Observed variance

In this particular case there are replicate counts so the variance of
an observation (a 5-min count) can be estimated in the usual way
using (2.6.2),

T(z—£)? 111038
-1 = 9

var(z) = = 12437-5.

This is quite close to the estimate of 10447-5 found above. Because

there are ten 5-min counts the estimate of count-rate will be based on

the mean of these, the variance of which is estimated, using (2.7.8), to be
var(z) 124375

) = = = 1243-75.
var(Z¥) n 10

And the variance of the mean count-rate per minute will be, from
(2.7.5),

(x) var(f) 124375
vari—-j) = = =

= = 49-75.
b 62 25

By using the scatter of replicate counts, the standard deviation of
the count-rate (2089-5 counts/min) is therefore estimated to be
4/49-76 = 7-05 counts/min. This estimate, which has not involved any
assumption about the distribution of the observations, agrees well with
the estimate (6-46 counts/min) calculated assuming that the count-rate
was Poisson-distributed. This suggests that the assumption was not
far wrong. With either estimate the coefficient of variation of the
count-rate, by (2.6.4), comes out to about 0-3 per cent.

The effect of allowing for background count-rate

Counting equipment registers a background rate even when there
is no sample in it and this must be subtracted from the sample count-
rate. There is uncertainty in the background count as well as the
sample count and this must be allowed for.

To illustrate what happens when the sample count-rate is not
much above the background rate suppose that 20 000 background
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counts were recorded in 10 min. The net count is thus 2089-5—2000
= 89-5 counts/min.
By arguments similar to those above:

estimated variance of background count/min = var(oount/10) = var
(count)/102 = count/10? = 20000/100 = 200.

The estimated variance of the net count-rate (sample minus back-
ground) is required. Because the counts are independent this is, by
(2.7.3), the sum of the variances of the two count-rates

var(sample —background) = var(sample)-var(background)
= 49-75-4 200 = 249-75,

and the estimated standard deviation of the net count-rate (89-5
counts/min) is therefore 4/(249-75) = 15-8 counts/min. The coefficient
of variation of the net count, by (2.6.4), is now quite large (17-7 per
cent), and if the net count had been much smaller the difference be-
tween sample and background would have been completely swamped
by the counting error (for a fuller discussion see Taylor (1957)).



4. Theoretical distributions. The
Gaussian (or normal) and other
continuous distributions

‘When it was first proposed to establish laboratories at Cambridge, Todhunter,
the mathematician, objected that it was unnecessary for students to see experi-
ments performed, since the results could be vouched for by their teachers, all of
them men of the highest character, and many of them clergymen of the Church of
England.’

BERTRAND RusseLL 1981
(The Scientific Outlook)

4.1. The representation of continuous distributions in general

So far only discontinuous variables have been dealt with. In many
cases it is more convenient, though, because only a few significant
figures are retained, not striotly correct, to treat the experimental
variables as continuous. For example, changes in blood pressure,
muscle tension, daily urinary excretion, etc. are regarded as potentially
able to have any value. The difficulties involved in dealing with
this situation have already been mentioned in § 3.1 and will now be
elucidated.

The discontinuous distributions so far discussed have been repre-
sented by histograms in which the height (along the ordinate) of the
blocks was a measure of the probability or frequency of observing a
particular value of the variable (along the abscissa). However, if one
asks ‘What is the probability (or frequenocy) of observing a muscle ten-
gsion of exactly 2-0000 .. .g?, the answer must be that this probability
is infinitesimally small, and cannot therefore be plotted on the ordinate.
What can sensibly be asked is ‘What is the probability (or frequency)
of observing a muscle tension between, say, 1-5 and 2-5 g #’. This fre-
quency will be finite, and if many observations of tension are made a
histogram can be plotted using the frequency (along the ordinate) of
making observations between 0 and 0-5 g, 0-5 and 1-0 g, eto., as shown
in Fig. 4.1.1. If there were enough observations it would be better to
reduce the width of the classes from 0-5 g to, say, 0-1 g as shown in
Fig. 4.1.2. This gives a smoother-looking histogram, but because there
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The area of a block, i.e. the probability of z falling in the interval of
width dx (between x and z-dx), must now be written

dP = f(x)dz, (4.1.1)

where the function f(z) is the ordinate of the curve shown in Fig. 4.1.3
(i.e. the height of the block), and z is the oontinuous variable (e.g.
blood pressure or muscle tension) the distribution of which is being
defined (see, e.g., Thompson, 1965, if the notation of (4.1.1) is not
understood). The function f(z) is known as the probability density
function (or simply density) of z. A value of this function is called the
probability density of a particular value of z. It is not the probability
of that value of z, but merely a function that defines a curve such that
the area under the curve represents probability. For example, the
uniformly shaded area in Fig. 4.1.3, as a proportion of the whole
area under the curve, is the probability that a value of z will lie
between two specified values, z, and z;,. The summation of the in-
finitesimal blocks of which this area is made up is handled mathe-
matically by integration so this area can be written as the integrated
form of (4.1.1),

Pz, <a<z) = [ Sk (4.1.2)

Similarly, the probability that a value of z greater than z; will be
observed is equal to the area above the point z,. How far along the
z-axis the distribution curve extends depends on the particular distri-
bution under consideration. The curve may reach the axis at some
finite minimum or maximum value of z, implying that observations
less or greater than this value are impossible; or the curve may, like
the Gaussian (or normal) distribution, be asymptotic to the z-axis so
that any value of z is allowed, through the probability of observing
values far removed from the mean soon becomes small. In the latter
case the probability of observing a value of x equal to or less than z,
(the area under the distribution curve below z,) would be written

Pl<z,) = J‘_" f(@)dz. (4.1.3)

This area is said, in statistical jargon, to be the lower tail of the distri-
bution. It can be called p, or F(z,), and is vertically shaded in Fig.
4.1.3. It depends, of course, on the value of z, chosen, i.e. it is a function
of z,.
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A more satisfactory way of writing the same thing is to use a special
symbol, say Z, to distinguish z considered as a random variable, from
a particular value of the random variable, denoted simply z. The
probability of observing a value of the variable (e.g. muscle tension)equal
to or less than some specified value z (e.g. 2:0 g) as in (4.1.3), is written
in this notation ast

PZ <z)= fx J(x)dz = F(z), or p. (4.1.4)

This is referred to as the distribution function of z, or as the cumulative
distribution. The area below z in Fig. 4.1.3, F(z), is plotted against =
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F1a. 4.1.4. Distribution function, F(z), for the distribution shown in Fig.

4.1.8. The probability of observing a value of z or less is plotted against . The

area between ; and z; in Fig. 4.1.3 18 F(x3) — F(z;) = 0988 —0-894 = 0-094, the
probability of an observation falling between z; and z,.

in Fig. 4.1.4. Examples of cumulative distributions occur in §§ 5.1 and
14.2. The area, F(x), approaches 1-0 as x becomes very large, i.e. it is
almost certain that the variable (e.g. muscle tension) will be less than

t Another, mathematically better, way of writing exactly the same thing
z
PEC2)= f Jiv)dv.
-

The variable v does not appear in the final answer.
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a specified very large value (e.g. 100 kg). Differentiating (4.1.4) shows
that the distribution function is related to the probability density, as

suggested by (4.1.1), thus

dﬂz) = f(2). (4.1.5)

4.2. The Gaussian, or normal, distribution. A case of wishful
thinking ?

The assumption that the errors in real experimental observations
can be described by the normal distribution (4.2.1) has dominated
large areas of statistics for many years. The assumption is virtually
always untested, and the extent to which it is mere wishful thinking
will be discussed in this section, after the distribution has been defined,
and in § 6.2, where the merite of methods not involving the assumption
of Gaussian errors are oonsidered.

Definstion of the distribution

The Gaussian distribution, often, but inappropriately, known as
the normal distribution, is defined by the probability density function
(800 § 4.1)

1
o\/(%)exp[—(z—y)’/%’], (4.2.1)

f@)=
where = has its usual value, and x4 and o are oonstants. The factor
1/04/(2n) is a constant such that the total area under the ourve
(from £ = —o0 to z = + o) is 1-0. The notation exp(z) is used to
stand for e when the exponent, z, is a long expression that would be
inconvenient to write as a superscript. If f(z) is plotted against z the
graph comes out as shown in Fig. 4.2.1.

It is a symmetrical bell-shaped curve asymptotic to, i.e. never quite
reaching, the z-axis. Being continuous it represents an infinite popula-
tion (see § 4.1). The constant u is the population meant and also the
population median and mode because the distributionissymmetricaland
unimodal; see §§ 2.6 and 4.5. The constant ¢ measures the width} of

t This is proved in § Al.l.

{ The distance from u to the point of inflection (maximum slope) on each side of
the mean. Differentiating (4.2.1) twice with respect to z and equating to zero gives
& = <4 0. The population variance is defined in § Al1.2.
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the ourve as shown in Fig. 4.2.1, i.e. it is a measure of the scatter of the
values of z, and is the population standard deviation of 2. An estimate
of o could be made from a sample of observations, taken from the
population represented by Fig. 4.2.1, using (2.6.2). The distribution is
completely defined by the two parameters u and o.

13 the widespread use of the normal distribution justified?
‘Everybody flrmly believes in it [the normal distribution] because the mathe-
maticians imagine that it is a fact of observation, and observers that it is a
theory of mathematics’ (quoted by Poincaré 1892),

From the point of view of someone trying to interpret real observa-
tions (and who else is statistics for ?) the only possible justification for
the common assumption of normality would be the experimental

04
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F1a. 4.2.1. GQGaussian (‘normal’) distribution. 46 per cent of the observations

in the population are more than two population standard deviations from the

mean (the shaded area is 4:6 per cent of the total area). The value 4-6 does not

apply to samples or, in general, to distributions other than the Gaussian (see
§§ 4.4 and 4.5).

demonstration that the methods based on this assumption give results
that are correct, or at least sufficiently nearly correct for the purpose in
hand.

The truth is that no such demonstration exists. The many textbooks,
elementary and not so elementary, describing methods that mostly
depend on this assumption evade this awkward fact in a variety of
ways. The more advanced books usually say something like ‘If x were
normally distributed then . . . would follow’, which is true but not
very helpful in real life. In more elementary books one often finds
(to quote two) remarks such as ‘It is not infrequently found that a
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population represented in this way [i.e. by a Gaussian curve] is suffi-
ciently accurately specified for the purpose of the inquiry’, or ‘Many of
the frequency functions applicable to observed distribution do have a
normal form’. Such remarks are, at least as far as most laboratory
investigations are concerned, just wishful thinking. Anyone with
experience of doing experiments must know that it is rare for the
distribution of the observations to be investigated. The number of
observations from a single population needed to get an idea of the form
of the distribution is quite large—a hundred or two at least—so this is
not surprising. In the vast majority of cases the form of the distribution
is gimply not known: and, in an even more overwhelming majority of
cases there is no substantial evidence regarding whether or not the
Gaussian curve, is & sufficiently good approximation for the purposes of
the inquiry. It is simply not known how often the assumption of
normality is seriously misleading. See § 4.6 for tests of normality.

That most eminent amateur statistician, W. S. Gosset (‘Student’, see
§ 4.4), wrote, in a letter dated June 1929 to R. A. Fisher, the great
mathematical statistician, ‘. . . although when you think about it you
agree that ‘“‘exactness’’ or even appropriate use depends on normality,
in practice you don’t consider the question at all when you apply your
tables to your examples: not one word.’

For these reasons some methods have been developed that do not
rely on the assumption of normality. They are discussed in § 6.2. How-
ever, many problems can still be tackled only by methods that involve
the normality assumption, and when such a problem is encountered
there is a strong temptation to forget that it is not known how nearly
true the assumption is. A possible reason for using the Gaussian method
in the absence of evidence one way or the other about the form of the
distribution, is that an important use of statistical methods is to
prevent the experimenter from making a fool of himself (see Chapters
1, 8, and 7). It would be a rash experimenter who presented results that
would not pass a Gaussian test, unless the distribution was definitely
known to be not Gaussian.

It is commonly said that if the distribution of a variable is not
normal, the variable may be transformed to make the distribution
normal (for example, by taking the logarithms of the observations, see
§ 4.5). As pointed out above, there are hardly ever enough observations
to find out whether the distribution is normal or not, so this approach
can rarely be used. Transformations are discussed again in §§ 4.6, 11.2
(p. 176) and § 12.2 (p. 221).



72 Theoretical distributions §4.2

Various other reasons are often given for using Gaussian methods.
One is that some Gaussian methods have been shown to befairly immune
to some sorts of deviations from normality, if the samples are not too
small. Many methods involve the estimation of means and there is an
ingenious bit of mathematics known as the central limit theorem that
states that the distribution of the means of samples of observations will
tend more and more nearly to the Gaussian form as the sample size
increagses whatever (almost) the form of the distribution of the observa-
tions themselves (even if it is skew or discontinuous). These remarks
suggest that when one is dealing with reasonably large samples,
Gaussian methods may be used as an approximation. The snag is that
it is impossible to say, in any particular case, what is a ‘reasonable’
number of observations, or how approximate the approximation will
be.

Further discussion of the assumptions made in statistical caloulations
will be found particularly in §§ 6.2 and 11.2.

4.3. The standard normal distribution

Applications of the normal distribution often involve finding the
proportion of the total area under the normal curve that lies between
particular values of the abscissa z. This area must be obtained by
evaluating the integral (4.1.2), with the normal probability density
function (4.2.1) substituted for f(z). The integral cannot be explicitly
solved. The answer comes out as the sum of an infinite number of terms
(obtained by expanding the exponential). In practice the only convenient
method of obtaining areas is from tables. For example, the Biometrika
Tables, Pearson and Hartley (1966, Table 1), give the area under the
standard normal distribution (defined below) below u (or the area
above —u which is the same), i.e. the area between — oo and u (see
below). In this table « and the area are denoted X and P(X) respectively.
Fisher and Yates (1963, Table I1,, p. 45) give the area above u (= area
below —u), the value of u being denoted z in this table.}

If tables had to be constructed for a wide enough range of values of
u and o to be useful they would be very voluminous. Fortunately
this is not necessary since it is found that the area lying within any
given number of standard deviations on either side of the mean is the

t Tables of Student’s ¢ (see § 4.4) give, on the line for inflnite degrees of freedom, the
area below —u plus the area above + 4, i.e. the area in both tails of the distribution of u.
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same whatever the values of the mean and standard deviation. For
example it is found that:

(1) 68-3 per cent of the area under the curve lies within one standard
deviation on either side of the mean. That is, in the long run, 68-3
per cent of random observations from a Gaussian population would
be found to differ from the population mean by not more than one
population standard deviation.

(2) 95-4 per cent of the area lies within two standard deviations (or
96-0 per cent within +1:965). The 4-6 per cent of the area outside
=4 20 is shaded in Fig. 4.2.1.

(3) 99-7 per cent of the area lies within three standard deviations.
Only 0-3 per cent of random observations from a Gaussian population
are expected to differ from the mean by more than three standard
deviations.

It follows that all normal distributions can be reduced to a single
distribution if the abscissa is measured in terms of deviations from the
mean, expressed as a number of population standard deviations. In
other words, instead of considering the distribution of z itself it is
simpler to consider the distribution of

z—p
[

U= (4.3.1)

The distribution of u is called the standard normal distribuiion.
It is still & normal distribution because u is linearly related to the
normally distributed z (4 and o being constants for any particular
distribution), but it necessarilyt always has a mean of zero and a
standard deviation of 1:0. The numerator, x—gu, is & normally distri-
buted variable with a population mean of zero (because the long run
average value of z is u) and variance ¢2. To illustrate this consider a
normally distributed variable x with population mean u = 6 and
population standard deviation ¢ = 3. It can be seen from Fig. 4.3.1 that
the distribution of (x—u), i.e. of (x—6), has a mean of zero but a
standard deviation unchanged at 3 (of. (2.7.7)), and that when this
quantity is divided by o the standard normal distribution (mean = 0
standard deviation = 1) results.

+ Bee §§ Al.l1 and Al.2. The standard form of a distribution is defined in § A1.2.
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In terms of the standard normal distribution the areas (obtainable
from the tables referred to above) become

(1) 68-3 per cent of the area lies between ¥ = —1 and » = +1
(and thus 15-85 per cent lies below —1, and 15-85 per cent above

+1),
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F1a. 4.8.1. Relation of normal distribution to standard normal distribution.
(a) z is normally distributed with population mean 4 = 6 and population standard
deviation ¢ = 3. (b) (x —u) is normally distributed with population mean = 0
and population standard deviation = 3. (¢) u = (x—p)fo = a—:—;—ﬁ in this case
is normally distributed with population mean = 0 and population standard
deviation = 1.
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(2) 95 per cent of the area lies between 4 = —1-96 and v = 4 1-96,
(3) 99-7 per cent of the area lies between 4 = —3 and u = +3.

In order to convert an observation z into a value of u = (z—u)/a, it
i, of course, necessary to know the values of 4 and ¢. In real life the
values of 4 and ¢ will not generally be known, only more or less acourate
estimates of them, viz. ¥ and &, will be available. If the normal distribu-
tion is to be used for induction as well as deduction this fact must be
allowed for, and the method of doing this is discussed in the next
section.

4.4. The distribution of t (Student’s distribution)
The variable ¢ is defined as

_Z=H,
b= 8(x)

(4.4.1)

where z is any normally distributed variable and s(z) is an estimate
of the standard deviation of x from a sample of observations of x
(see § 2.6). Tables of its distribution are referred to at the end of the
section, It is the same as u defined in (4.3.1), except that the deviation
of a value of z from the true mean (u) is expressed in units of the
estimated or sample standard deviation of z, g(z) (eqn (2.6.2)), rather
than the population standard deviation ¢(z). As in § 4.3 the numerator,
(x—p), is & normally distributed variable with population mean zero
(because the long run average value of z is u, see Appendix, eqn
(A1.1.8), and estimated standard deviation s(z).

The ‘distribution of £’ means, as usual, a formula, too complicated
to derive here, for caloulating the frequency with which the value of ¢
would be expected to fall between any specified limits; see example
below. The distribution of ¢ was found by W. S. Gosset, who wrote
many papers on statistical subjects under the pseudonym ‘Student’, in
a classical paper called ‘The probable error of a mean’ which was
published in 1908.

Gosset was not a professional mathematician. After studying
chemistry and mathematics he went to work in 1899 as a brewer at the
Guinness brewery in Dublin, and he worked for this firm for the rest of
his life. His interest in statistics had strong practical motives. The
majority of statistical work being done at the beginning of the century
involved large samples and the drawing of oconclusions from small
samples was regarded as a very dubious process. Gosset realized that
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the methods used for dealing with large samples would need modification
if th results were to be applicable to the small samples he had to
work'in the laboratory.

Gosset spent a year (1906-7) away from the brewery, mostly working
in the Biometric Laboratory of University College London with
Karl Pearson, and in 1908 published a paper on the distribution of &.

As an example, suppose that the normally distributed variable of
interest is %, the mean of a sample of 4 observations selected randomly
from a population of normally distributed values of x with population
mean pu and population standard deviation o(x). The population
standard deviation of £ (or ‘standard error’, see §2.7) will be o(%)
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Fia. 4.4.1. Conlinuous line. Distribution of Student’s ¢ with 8 degrees of
freedom. Ninety-flve per cent of values lie between —3:182 and + 3-182 (see text
for example). The 5§ per cent of the area outside these values is shaded. Broken
line. Standard Gaussian (normal) distribution. 96 per cent of u values lie
between ¥ = —1-98 and w = +1-96. The b5 per cent of the area outside these
values is shaded vertically. As the sample size (degrees of freedom) become very
large, the ¢t distribution becomes identical with the standard normal distribution.

= o(z)[y/4 (by (2.7.9)) and the population mean of £ will be u, the
same a8 for z. (See Appendix 1, (A1.2.3).) Therefore if a very large
number of samples of 4 were taken, and if for each u = (Z—pu)/o(£)
(from the definition (4.3.1)) were calculated, it would be found that in
the long run 95 per cent of the values of » would lie between u = —1-96
and u = +1-96, a8 discussed in § 4.3 and illustrated in Fig. 4.4.1.
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However, if o(x) were not known, an estimate of it, s(x), could be
caloulated from each sample of 4 observations using (2.6.2) as in the
example in § 2.7, and from each sample 8(£) = s(x)/1/4 obtained by
(2.7.9). For each sample ¢ = (£—u)/s(Z) (from the definition (4.4.1))
could be now caloulated. The values of £ would be the same as those
used for caloulating u, but the value of 8() would differ from sample
to sample, whereas the same population value, o(Z), would be used in
caloulating every value of ). The extra variability introduced by
variability of s(Z) from sample to sample means that ¢ varies over a
wider range than %, and it can be found from the tables referred to
below, that it would be expected that, in the long run, 95 per cent of
the values of ¢ would lie between —3-182 and -+-3-182, as illustrated in
Fig. 4.4.1.

Notice that both the distributions in Fig. 4.4.1 are based on observa-
tions from the normal distribution with population standard deviation
o. The distribution of ¢, unlike that of u, is not normal, though it ¢s
based on the assumption that z is normally distributed.

Although the definition of ¢ (4.4.1) takes acoount of the uncertainty
of the estimate of o(z), it still involves knowledge of the true mean u
and it might be thought at first that this is a big disadvantage. It will
be found when tests of significance and confldence limits are discussed
that, on the contrary, everything necessary can be done by giving u« a
hypothetical value,

The use of tables of the distribution of t

The extent to which the distribution of ¢ differs from that of « will
clearly depend on the size of the sample used to estimate s(z). The
appropriate measure of sample size, as discussed in § 2.6, is the number
of degrees of freedom associated with s(z). If #(x) is calculated from a
sample of N observations the number of degrees of freedom associated
with s(z) is N—1 as in §2.6. Clearly, ¢ with an infinite number of
degrees of freedom is the same a8 u, because in this case the estimate
8(x) is very accurate and becomes the same as a(x).

Fisher and Yates (1963, Table 3, p. 46, ‘The distribution of ¢’) denote
the number of degrees of freedom n and tabulate values such that ¢
has the specified probability of falling above the tabulated value or
below minus the tabulated value. Looking in the table for n = 4—1
= 3 and P = 0-05 gives { = 3-182 as discussed in the example above,
and illustrated in Fig. 4.4.1 in which the 5 per cent of the area outside
t = 4-3-182 is shaded. .


David
Cross-Out
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The Biometrika Tables of Pearson and Hartley (1966, Table 12,
p. 146, ‘Percentage points of the ¢ distribution’) give the same sort of
table. The number of degrees of freedom is denoted » and the probability
2Q, Q being the shaded area in one tail of Fig. 4.4.1.

4.6. Skew distributions and the lognormal distribution

In § 4.2 it was stressed that the normal distribution is a mathe-
matical convenience that cannot be supposed to represent real life
adequately, and that it is very rare in experimental work for the
distribution of observation to be known. In those cases where the
distribution has been investigated it has often been found to be non-
normal. Distributions may be more flat-topped or more sharp-topped
than the normal distribution, and they may be unsymmetrical. Un-
symmetrical distributions may have positive skew as in Fig. 4.5.1
(an even more extreme case is the exponential distribution Fig. 5.1.2),
or negative skew, as in the mirror image of Fig. 4.5.1.

maode

i

median

0-05+
mean

003}

Probability density

0-01+

Fi1a. 4.5.1. The lognormal distribution; a positively skewed probability
distribution. The mean value of z is greater than the median, and the mode is
less than the median. The 50 per cent of the area that lies (by definition) below
the median is shaded. For the lognormal distribution, in general, mode = antilog,o
(4 —2-30260%) (= 581 in this example), median = antilog,op (= 10-0 in this
example), mean = antilog,o(u+1-16136%) (= 131 in this example), where
4 and o are mean and variance of the (normal) distribution of the log;oz shown in
Fig. 4.56.2. Reproduced from Documenta Geigy scienlific tables, 8th edn, by per-
mission of J. R. Geigy S.A., Basale, Switzerland.

In the case of symmetrical distributions (such as the normal) the
population mean, median, and mode (see § 2.5) are all the same, but this
is not so for unsymmetrical distributions. For example, when the
distribution of z has a positive skew, as in Fig. 4.5.1, the population
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mean is greater than the population median which is in turn larger
than the population mode. There is no particular reason to prefer the
mean to the median or mode as a measure of the ‘average’ value of the
variable in a case like this. A reason for preferring the median is men-
tioned below (see also Chapter 14). The distribution of personal incomes
has a positive skew so the most frequent income (the mode) is less than
the mean income, and more people earn less than the mean income than
earn more than the mean income, because incomes above the mean are,

mode, median,mean

2 &
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e
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?
&
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F1a. 4.56.2. The distribution of log;ox, when z is lognormally distributed as

shown in Fig. 4.6.1. This distribution is normal (by definition of the lognormal

distribution). In this example the mean (= median = mode) of log;ox is

p# = 1-0, and the standard deviation of log;ox is 0 = 0-32. See text and Chapter

14. Reproduced from Documenta Geigy scientific tables, 6th edn by permission of
J. R. Geigy 8.A., Basle, Switzerland.

on the whole, further from the mean than incomes below it, i.e. more
than 50 per cent of the area under the curve is below the mean, as
shown by the shading in Fig. 4.5.1.

It is usually recommended that non-normal distributions be con-
verted to normal distributions by transforming the scale of z (see
§§ 4.2, 11.2, and 12.2). This should be done when possible, but in
most experimental investigations there is not enough information to
allow the correct transformation to be ascertained. In Chapter 14
an example is given of a variable (individual effective dose of drug)
with a positively skewed distribution (Fig. 14.2.1). In this particular
example the logarithm of the variable is found to be approximately
normally distributed (Fig. 14.2.3). In general, a variable is said to
follow the lognormal distribution, which looks like Fig. 4.5.1, if the
logarithm of the variable is normally distributed, as in Fig. 4.5.2.
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In Chapter 14 the median value of the variable (rather than the
mean) is estimated. The median is unchanged by transformation, i.e.
the population median of the (lognormal) distribution of z is the
antilog of the population median (= mean = mode) of the (normal)
distribution of log x, whereas the population mode of z is smaller, and
the population mean of x greater than this quantity (cf. (2.5.4)). For
example, in Fig. 4.5.2 the median = mean = mode of the distribution
of log,o z is 1-0, and the median of the distribution of x in Fig. 4.5.1
is antilog,, 1 = 10, whereas the mode is less than 10 and the mean larger
than 10.

Because of the rarity of knowledge about the distribution of observa-
tions in real life these theoretical distributions will not be discussed
further here, but they occur often in theoretical work and good accounts
of them will be found in Bliss (1967, Chapters 5-7) and Kendall and
Stuart (1963, p. 168; 1966, p. 93).

4.6. Testing for Gaussian distribution. Rankits and probits

If there are enough observations to be plotted as a histogram, like
Figs. 14.2.1 and 14.2.2, the probit plot described in §§ 14.2 and 14.3
can be used to test whether variables (e.g. z and log z in § 14.2) follow
. the normal distribution. For smaller samples the rankit method
described, for example, by Bliss (1967, pp. 108, 232, 337) can be used.
For two way classifications and Latin squares (see Chapter 11) there is
no practicable test. It must be remembered that a small sample gives
very little information about the distribution; but consistent non-
linearity of the rankit plot over a series of samples would suggest a
non-normal distribution. The N observations are ranked in ascending
order, the rankit corresponding to each rank looked up in tables (see
Appendix, Table A9). Each observation (or any transformation of the
observation that is to be tested for normality) is then plotted against
its rankit.

The rankit corresponding to the smallest (next to smallest, etc.) observation,
is defined as the long run average (expectation, see § Al.1) of the smallest (next
to smallest, etc.) value in & random sample of N standard normal deviates (values
of u, see § 4.3). Thus, if the observations (or their transformations) are normally
distributed, the observations and rankite should differ only in scale, and by
random sampling, so the plot should, on average, be straight.



5. Random processes. The exponential
distribution and the waiting time
paradox

6.1. The exponential distribution of random intervals

Dy~xaMI1o processes involving probability theory such as queues,
Brownian motion, and birth and deaths are called stochastic processes.
This subject is discussed further in Appendix 2. An example of interest
in physiology is the apparently random occurrence of miniature
post-junctional potentials at many synaptic junctions (reviewed by
Martin (1966)). It has been found that when the observed number (n)
of the time intervals between events (miniature end-plate potentials),
of duration equal to or less that ¢ seconds is plotted against ¢, the
curve has the form shown in Fig. 5.1.1. Similar results would be
obtained with the intervals between radiosotope disintegrations; see
§ A2.5.
The observations are found to be fitted by an exponential curve,

n = N(1—e~*T), (5.1.1)

where N = total number of intervals observed and 7' = mean duration
of all N intervals (an estimate of the population mean interval, J°).

If the events were occurring randomly it would be expected that the
number of events in unit time would follow the Poisson distribution, as
described in § § 3.5 and A2.2. How would the intervals between events
be expected to vary if this were so?

The true mean number of events in ¢ seconds (called s in § 3-5) is
t/9°, which may be written as Af, where A = 1/ is the true mean
number of events in 1 second. Thus J = 1/4 is the mean number of
seconds per event, i.e. the mean interval between events (see (Al.1.11)).
According to the Poisson distribution (3.5.1) the probability that no
event (r = 0) occurs within time ¢ from any specified starting point,
i.e. the probability that the interval before the first event is greater
than ¢, is P(0) = e~* = o~ %!, The first event must occur either at a
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time greater than, or at a time equal to or less than ¢. Because these
cannot both happen it follows from the addition rule, (2.4.3), that

P[interval>t]+ Plinterval <t] =1
and thus
Plinterval <t} = F(t) = 1—e~* (for t > 0). (6.1.2)
(The distribution function, F, was defined in (4.1.4).
1o
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Fi1a, 6.1.1. The cumulative exponential distribution (eqn. (5.1.2)). The

intervals between random events are observed to fall on a curve like this. The

abacissa is the interval duration expressed as a multiple of the population mean

interval, i.e. it i8 {/{J = Al. For example, if the population mean were J = 108

(i.e. A = 0-18"%), the graph shows that 63:2]1 per cent of intervals would be

10 8 or shorter, and that 50 per cent of intervals (by definition of the median)
would be equal to or less than 6-93 8, the population median.

Multiplying this probability by N predicts the number of intervals
shorter than ¢ as N(1—e~*!), as observed (see (5.1.1)).

This implies that the exponential distribution is the distribution of
the interval between any specified point of time and the point at
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which the next event occurs. And, in particular, it is the distribution of
the time interval between successive events (see § 5.2 and Appendix 2).
Because the intervals can be of any length this is a continuous distribu-
tion, unlike the Poisson, and it has probability density (see § 4.1), using
(5.1.2) and (4.1.5),

fit)= %—“—) = %(l—e““) = Ae~4¢ (for t > 0), (5.1.3)

=0 (for t < 0).
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Fi1a. 65.1.2. The exponential distribution (an extreme case of the positive

skew illustrated in Fig. 4.5.1). Fifty per cent of the area under the curve lies

below the median. The area up to ? is plotted against t in Fig. §.1.1. The abacissa

is plotted in the same way as in Fig. 5.1.1. (If the abscissa is multiplied by 9~

= 4~1 to convert it to time units, the probability density would be divided by J,
80 the area under the curve remained 1-0.)

This exponential distribution of the lengths of random intervals is
plotted in Fig. 5.1.2. It is an extreme form of positively skewed distri-
bution (see § 4.5), the mode being zero, the mean 1/A = J, and the
median 0-6939 (this is proved in Appendix 1, (Al.1.11) and (A1.1.14)).
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Fig. 5.1.1 is the cumulative form, F(t) (see (4.1.4)), of the exponential
distribution (of. Fig. 4.1.4, which is the cumulative form of the normal
distribution in Fig. 4.1.3). To obtain Fig. 5.1.1 from Fig. 5.1.2 notioe
that the probability of observing an interval < ¢ is given by the area
under the distribution curve (Fig. 5.1.2) below ¢, i.e. between 0 and ¢
(see § 4.1). This, using (4.1.4), is

t
P[0 < interval < ¢] = F(t) = f Ao~ Mdt = 1—e-%, (5.1.4)
]

whioh is (6.1.2) again. Further discussion will be found in Appendix 2.

A more complete discussion of the Poisson process would require
consideration of the distribution of the sum of n intervals. When this
is done it is seen that the observation of an exponential distribution
does not necessarily imply a Poisson distribution of events in unit time
unless the intervals are independent of each other. Independence has
been checked experimentally by Burnstock and Holman (1962). This
independence is one of the defining properties of the Poisson proocess
(see § 3.6 and Appendix 2).

5.2. The waiting time paradox

It was implied in § 6.1 that, for completely random events, the
average length of time from a randomly selected arbitrary point of
time (midday, for example) until the next event is the same (viz. J°)
as the average length of the interval between two events (both intervals
have the same exponential distribution). This is proved in § A2.6.
(An arbitrary point, in this context, means a point of time chosen by
any method that is independent of the occurrence of events.) It must
be so since the events in non-overlapping time intervals are supposed
independent, i.e. the process has no ‘memory’ of what has gone beforet.
Yet it seems ‘obvious’ that, since the arbitrarily selected time is equally
likely to fall anywhere in the interval between two events, the average
waiting time from the selected time to the next event must be }J.

For example, if buses were to arrive at a bus stop at random intervals,
with a mean interval of J = 10 min, then a person arriving at the
bus stop at an arbitrary time might be supposed, on the average, to
have to wait 5 min for the next bus.} In fact, the true average waiting
time would be 10 min.

% See §§ 3.5, A2.1 and A2.2 for details.

$ 5 min would be the right answer if the buses arrived regularly not randomly, a0
that all intervals were exactly 10 min.
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The subtle flaw in the argument for a waiting time of {9 lies in the
implicit assumption that the interval in which an arbitrarily selected
time falls is a random selection from all intervals. In faot, longer
intervals have a better chanoce of covering the selected time than
shorter ones, and it can be shown that the average length of the interval
in which an arbitrarily selected time falls is not the same as the average
length of all intervals, J, but is actually 29 (see § A2.7). Sinoe the
selected time may fall anywhere in this interval, the average waiting
time is half of 27, i.e. it is 7, the average length of all intervals, as
originally supposed. The paradox is resolved. In the bus example this
means that a person arriving at the bus stop at an arbitrary time would,
on average, arrive in & 20-min interval. On average, the previous bus
would have passed 10 min before his arrival (as long as this was not
too near the time when buses started running) and, on average, it
would be another 10 min until the next bus.

These assertions, which surprise most people at first, are discussed
(with examples of biological importance), and proved, in Appendix 2.



6. Cah your results be believed?
Tests of significance and the analysis
of variance

‘. . . before anything was known of Lydgate’s skill, the judgements on it had
naturally been divided, depending on a sense of likelihood, situated perhaps in
the pit of the stomach, or in the pineal gland, and differing in its verdicts, but not
less valuable as a guide in the total deficit of evidence.’

GEORGE ELIOT
(Middlemarch, Chap. 46)

6.1. The interpretation of tests of significance

THIS has already been discussed in Chapter 1. It was pointed out
that the function of significance tests is to prevent you from making a
fool of yourself, and not to make unpublishable results publishable.
Some rather more technical points can now be discussed.

(1) Asds to judgement

Tests of significance are only aids to judgement. The responsibility
for interpreting the results and making decisions always lies with the
experimenter whatever statistical calculations have been done.

The result of a test of significance is always a probability and should
always be given as such, along with enough information for the reader
to understand what method was used to obtain the result. Terms such
a8 ‘significant’ and ‘very significant’ should never be used. If the reader
is unlikely to understand the result of a significance test then either
explain it fully or omit reference to it altogether.

(2) Assumptions

Assumptions about, for example, the distribution of errors, must
always be made before a significance test can be done. Sometimes
some of the assumptions are tested but usually none of them are
(see §§ 4.2 and 11.2). This means that the uncertainty indicated by the
test can be taken as only a minimum value (see §§ 1.1 and 7.2). The
assumptions of tests involving the Gaussian (normal) distribution are
discussed in §§11.2 and 12.2. Other assumptions are discussed when
the methods are described.
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Some tests (nonparametric tests), which make fewer assumptions than
those based on a specified, for example normal, distribution (perametric
tests such as the ¢ test and analysis of variance), are described in the
following sections. Their relative merits are discussed in § 6.2. Note,
however, that whatever test is used, it remains true that if the test
indicates that there is no evidence that, for example, an experimental
group differs from a control group then the experimenter cannot
reasonably suppose, on the basis of the experiment, that a real difference
exists.

(3) The basis and the results of tests

No statements of inverse probability (see § 1.3) are, or at any rate
need be, made as a result of significance tests. The result, P, is always
the probability that certain observations would be made given a
particular hypothesis, i.e. if that hypothesis were true. It is not the
probability that a particular hypothesis is true given the observations.

It is often convenient to start from the hypothesis that the effect
for which one is looking does not exist.t This is called a null hypothesis.
For example, if one wanted to compare two means (e.g. the mean
response of a group of patients to drug A with the mean response of
another group, randomly selected from the same population, to drug B)
the variable of interest would be the difference between the two means.
The null hypothesis would be that the true value of the difference was
zero. The amount of scatter that would be expected in the difference
between means if the experiment were repeated many times can be
predicted from the experimental observations (see § 2.7 for a full
discussion of this process), and a distribution constructed with this
amount of scatter and with the hypothetical mean value of zero, as
illustrated in Fig. 6.1.1. From this it can be predicted what would
happen if the null hypothesis that the true difference is zero were true.
In practice it will be necessary to allow for the inexactness of the
experimental estimate of error by considering, for example, the
distribution of Student’s ¢, see §§ 4.4 and 9.4, rather than the distribu-
tion of the difference between means itself. If the differences are
supposed to have a continuous distribution, as in Fig. 6.1.1, it is clearly
not possible to calculate the probability of seeing exzactly the observed
difference (see § 4.1); but it is possible to calculate the probability of
seeing a difference equal to or larger than the observed value. In the
example illustrated this is P = 0-04 (the vertically shaded a.rea) and

t See p. 93 for a more critical discussion.
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this figure is described as the result of a one-tail significance test. Its
interpretation is discussed in (4) below. It is the figure that would be
used to test the null hypothesis against the alternative hypothesis that
the #rue difference is positive. When the alternative hypothesis is that
true difference is positive, the result of a one-tail test for the
difference between two means always has the following form.

If there were no difference between the true (population) means
then the probability of observing, because of random sampling
error, a difference between sample means equal to or greater
than that observed in the experiment would be P (assuming the
assumptions made in carrying out the test to be true).

Amount of
scatter inferred
from experiment

4 per cent of area

4 per cent of area
{one-tail P)

in opposite tail
" (included for
two-tail P} £

Probability density f(x)

1 L 1 ‘vll-lmull‘
<—Negative 0 Positive—={ Value of difference

differences differences between means
Hypothetical Observed
population difference
difference

Fra, 6.1.1. Baasis of significance testa. See text for explanation.

If the only possible alternative to the null hypothesis is that the
true difference is negative, then the interpretation is the same, except
that it is the probability (on the null hypothesis) of a difference being
equal to or less than the observed one that is of interest.

In practice, in research problems at least, the alternative to the null
hypothesis is usually not that the true difference is positive (or that it is
negative) but simply that it differs from zerot (in either direction),
because it is usually not reasonable to say in advanoce that only positive
(or negative) differences are possible (or that only positive differences
are of interest so the test is not required to detect negative differences).

t See also p. 93.
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If the alternative to the null hypothesis is the hypothesis that the true
difference between means is, say, positive, this implies that however
large a negative difference was observed it would be attributed to
chance rather than a true (population) negative difference (or at least
that it would be considered of no interest if real).

Suppose now that it cannot be specified beforehand whether the frue
difference between means is positive, zero, or negative. In the example
above there would be probability of 0-04 of seeing a difference at least
as large as the positive difference observed in the experiment if the null
hypothesis were true. But there would also be a probability of 0-04 (the
horizontally shaded area) of seeing & deviation from the null hypothesis
at least as extreme as that actually observed but in the opposite direc-
tion. The total probability of observing a deviation from the null
hypothesis (in either direction) at least as extreme as that actually
observed would be P = 0-04+0-04 = 0-08 if the null hypothesis were
true. This is the appropriate probability because, if it were resolved
to reject the null hypothesis as false every time an experiment gave a
difference between means as large as, or larger than that observed in
this experiment, then, if the null hypothesis were actually true it
would be rejected (wrongly) not in 4 per cent of repeated experiments,
but in 8 per cent. This is because negative observed differences in the
lower tail of Fig. 6.1.1, which would also lead to wrong rejection of the
null hypothesis, would be just as common, in the long run, as positive
differences. The probability is chosen so as to control the frequency of
this sort of error. This is discussed in more detail in subsection (6)
below.

The value P = 0-08 is described as the result of a fwo-tail test of
significance. Its interpretation is discussed in subsection (4) below. The
value of P is usuallyt twice that for a one-tail test. The result of a
two-tail test always has the following form.

If the null hypothesis were actually true then the probability of a
sample showing a deviation from it, in either direction, as
extreme,t or more extreme, than that observed in the experiment
would be P (assuming the assumptions made in carrying out the
test to be true).

t In the case of the normal distribution (§ 4.2), or any other distribution that is
etrical, whether continuous or discontinuous, for example the binomial distribution
with P = 0-5 (§§ 3-2 and 3-4) or Btudent’s distribution, (§ 4.4), one oould sayhere ‘.. . s
deviation from it, in either direction, as large as, or larger than, that observed in the
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Notice that P is not the probability that the null hypothesis is true
but the probability that certain observations would be made if it were.

Perhaps the best popular interpretation of P is that it is the ‘proba-
bility of the results occurring by chanoce’. Although this is inaccurate
and vague, and should therefore be avoided, it is not too misleading.

(4) Interpretation of the results
If P is very small the conclusion drawn is that either

(a) an unlikely event has taken place, the null hypothesis being
true. As Fisher (1951) said: ‘. . . no isolated experiment, how-
ever significant in itself, can suffice for the experimental demon-
stration of any natural phenomenon; for the “one chance in a
million”" will undoubtedly occur, with no less and no more than
its appropriate frequency, however surprised we may be that it
should occur to us,’ or

(b) the assumptions on which the test was based were faulty, for
example the samples were not drawn randomly, or

(c) the null hypothesis is not true, for example the true (population)
means in the above example are different, so that the drugs do
in fact differ in their effects on patients (see also subsection (7),
below).

Whether (b) can be ruled out, and what level of improbability
is enough to make one favour explanation (c¢) rather than (a), are

experiment . . . ' In general, this simpler statement is not possible, however. Two
other cases must be considered. (1) The sampling distribution (e.g. Fig. 6.1.1) is con-
tinuous but unsymmetrical (see § 4.5). In this case different sized poaitive and negative
deviations will be needed to cut off equal areas in the upper and lower tails (respectively)
of the distribution. It is the extremeness (i.e. rarity) of the deviation measured by the
area it cuts off in the tail of the distribution (rather than its size) that matters. The
two-tail probability is still twice the one-tail probability, however. (2) The sampling
distribution is both unsymmetrical and discontinuous (ae often happens in the very
important sort of testa known as randomization tests, see §§ 8.2, 9.2, 9.3, and 10.2-
10.4). A greater difficulty arises in this case because the most extreme observations in the
opposite tail of the distribution (that not containing the observation) will not generally
cut off an area exactly the same as that cut off by the observation in its own tail so P
for the two-tail test cannot be exactly twice that for the one-tail test. There is no
definite rule about what to do in this case. Most commonly & deviation is chosen in the
oppodite direction to that observed that cuts cuts off an area in the opposite tail not
greater than the value found in the one-tail test, so the two-tail P is not greater than
twice the one-tail P. However, it may be decided to choose & deviation that cuts off
an area in the oppoaite tail that is ae near as possible to that of the one-tail test. This
is exemplified at the end of § 8.2 where the deviations of a from the null hypothetical
value are stated, to show exactly what has been done. With smsll unequal samples
the most extreme posaible observation in the opposite tail may cut off an area far greater
than that in the one tail test. This problem is diecuseed in § 8.2.
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entirely matters for personal judgement. The calculations throw no
light whatsoever on these problems. It is often found in the biomedical
literature that P = 0-05 is taken as evidence for a ‘significant differ-
ence’. However 1 in 20 is not a level of odds at which most people would
want to stake their reputations as an experimenters and, if there is no
other evidence, it would be wiser to demand a much smaller value
before choosing explanation (c).

A twofold change in the value of P given by a test should make
little difference to the inference made in practice. For example,
P = 0-03 and P = 0-:06 mean much the same sort of thing, although
one is below and the other above the conventional ‘significance level’
of 0-05. They both suggest that the null hypothesis may not be true
without being small enough for this conclusion to be reached with any
great confidence.

In any case, as mentioned above, no single test is ever enough.
To quote Fisher (1951) again: ‘In relation to the test of significance, we
may say that a phenomenon is experimentally demonstrable when we
know how to conduct an experiment which will rarely fail to give us a
statistically significant result’.

(5) Generalization of the result

Whatever the interpretation of the statistical calculations it is
tempting to generalize the conclusion from the experimental sample to
other samples (e.g. to other patients); in fact this is usually the purpose
of the experiment. To do this it is necessary to assume that the new
samples are drawn randomly from the same population as that from
which the experimental samples were drawn. However, because of
differences of, for example, time or place this must usually remain an
untested assumption which will introduce an unknown amount of
bias into the generalization (see §§ 1.1 and 2.3).

(6) Types of error and the power of tests

If the null hypothesis is not rejected on the basis of the experimental
results (see subsection (7), below) this does not mean that it can be
accepted. It is only possible to say that the difference between two
means is not demonstrable, or that a biological assay is not demonstrably
snvalid. The converse, that the means are identical or that the assay is
valid, can never be shown. If it could it would always be possible to find
that there was, for example, ‘no difference between two means’ but
doing such a bad experiment that even a large real difference was not
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apparent. Although this may seem gloomy, it is only common sense.
To show that two population means are identical exactly, the whole
population, usually infinite, is obviously needed.

An example. The supposition that a large P value constitutes evidence
in favour of the null hypothesis is, perhaps, one of the most frequent
abuses of ‘significance’ tests. A nice example appears in a paper just
received. The essence of it is as follows. Differences between membrane
potentials before and after applying three drugs were measured.
The mean differences (d) are shown in Table 6.1.1.

TABLE 6.1.1

d stands for the difference between the membrane potentials (millivolts) in the
presence and absence of the specified drug. The mean of n such differences
is d, and the observed standard deviation of d is 8(d). The standard deviation
of the mean difference is 8(d) = s(d)/+/n and values of Student’s ¢ are calculated

as in § 10.6.
d a(d) n 8(d) ) P (approx)
Noradrenaline 2-7 10-1 40 1-60 1-7 0-1
Adrenaline 34 12-2 80 1-36 2:5 <0-02
Isoprenaline 39 10-8 60 1-39 2-8 <0:01

The potentials were about 90 mV so the percentage change is small,
but by doing many (n = 40-80) pairs of measurements, evidence was
found against the null hypothesis that adrenaline has no effect, using
the paired ¢ test (see § 10.6). Similarly it was inferred that isoprenaline
increases membrane potential. These inferences are reasonable, though
the order in which treatments were applied was not randomized. In
contrast, the P value for noradrenaline was 0-1 and the authors there-
fore inferred that ‘noradrenaline had no effect on membrane potential’,
i.e. that the null hypothesis was true. This is completely unjustified.
The apparent effect of noradrenaline, 2:7 mV, was not much smaller
than that for other drugs, and, although the significance test shows
that we cannot be sure that repeating the measurements would give
a similar result, it certainly does not show that we would not get
similar results. Suppose, perfectly plausibly, that 80 experiments had
been done with noradrenaline (as with adrenaline) instead of 40. And
suppose the mean difference was 2:7 mV and the standard deviation of
the differences was 10-1. In this case ¢ = 2:7/(10-1/4/80) = 2-4 giving
P < 0-02 a ‘significant’ result. The size of the difference d=27mV,
and the scatter of the observations s(d) = 10-1, is just the same as in
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Table 6.1.1, but despite this the authors would presumably have come
to the opposite conclusion. This is clearly absurd. But if the original
experiment with n = 40 differences had been interpreted as ‘no evidenoe
for a real effect of noradrenaline’ or ‘effect, if any, masked by experi-
mental error’ there would have been no trouble. It is reasonable that
the larger experiment should be capable of detecting differences that
escape detection in the smaller experiments.

These ideas can be formalized by considering the power of a signi-
ficance test which is defined as the probability that the test will reject the
null hypothesis (e.g. that two population means are equal), this proba-
bility being considered as a function of the true difference between the
means. For example, if the null hypothesis was always rejected when-
ever a test gave P < 0-05 then, if the null hypothesis really were true it
would be rejected (wrongly) in 5 per cent of trials, as explained in
subsection (3) above (see subsection (7), below). The wrong rejection
of a correct hypothesis is called an error of the first kind, and, in this
case, the probability («) of an error of the first kind would be « = 0-05.
If in fact there was a difference between true population means,
and this real difference was, for example, equal in size to the true
standard deviation of the difference between means (see §§ 2.7 and
9-4) (i.e. the difference, although real, is similar in size to the experi-
mental errors), then it can be shown that a two-tail normal deviate
test} would reject the null hypothesis (this time correctly) in 17 per
cent of experiments. However, if the null hypothesis was accepted as
true every time it was not rejected then it would be wrongly acoepted
in 83 per cent of experiments. The wrongacceptance of a false hypothesis
is called an error of the second kind, and, in this case, the probability
(B) of this sort of error is § = 0-83.

The power curve for a two-tailed normal deviate test for the difference
between two means is shown in Fig. 6.1.2 and compared with the
power curve for the (non-existent) ideal test that would always acoept
true hypotheses and reject false ones. The power of even the best tests
to detect real differences that are similar in size to the experimental
error is quite small.

(7) Some more subtle poinis about significance tests
The critical reader will, no doubt, have some objections to the arguments
presented in this section. It is difficult to give a consensus of informed opinion

t At test (see § 9.4) in which the standard deviation is accurately known (e.g. because
the samples are large) so the standard normal deviate, u (see § 4.3), can be used in place
of t (see §4.4).
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Power of the test

(b)

0-5
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Power of test

J
0-0 m

Fia. 6.1.2. In both figures the abscissa gives the difference between the
population means (expressed as a multiple of the standard deviation of the
difference between means: see § 8.4). (a) The power curve for a two-tail normal
deviate test for difference between two means (see text) when a = 0-06, i.e. the
null hypothesis is rejected whenever P <0-05, so if it were actually true it would
be wrongly rejected in 5 per cent of repeated experiments. If the null hypothesis
were false, i.e. there is a difference between the population means (in this example,
a difference equal in size to one standard deviation of the difference between
means: see § 9.4) the null hypothesis would be rejected (correctly) in 17 per cent
of experiments and not rejected (wrongly) in f = 83 per cent of experiments.
(b) Power curve for the (non-existent) ideal test that always rejects a hypothesis
(population means equal) when it is false, and never rejects it when it is true.
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because, although there is much informed opinion, there is rather little consensus.
A personal view follows.

The first point concerns the role of the null hypothesis and the role of prior

knowledge, i.e. knowledge available before the experiment was done. It is widely
advocated nowadays (particularly by Bayesians, see §§ 1.3 and 2.4) that prior
information should be used in making statistical decisions. There is no doubt
that this is deairable. All relevant information should be taken into account in
the search for truth, and in some flelds there are reasonable ways of doing this.
But in this book the view is taken that attention must be restricted to the infor-
mation that can be provided by the experiment itself. This is forced on us because,
in the sort of amall-scale laboratory or clinical experiment with which we are
mostly concerned, no one has yet devised a way that is acceptable to the scientist,
as opposed to the mathematician, of putting prior information in a quantitative
form.
Now it has been mentioned already that in most real experiments it is unreal-
istic to suppose that the null hypothesist could ever be true, that two treatments
could be exactly equi-effective. So is it reasonable to construct an experiment
to test a null hypothesis? The answer is that it is a perfectly reasonable way of
approaching our aim of preventing the experimenter from making a fool of
himself if, as recommended above, we say only that ‘the experimen! provides
evidence against the null hypothesis’ (if P is small enough), or that ‘the experiment
does not provide evidence against the null hypothesis’ (if P is large enough).
The fact that there may be prior evidence, not from the experiment, against the
null hypothesis does not make it unreasonable to say that the experiment itself
provides no evidence against it, in those cases where the observations in the
experiment (or more extreme ones) would not have been unusual in the (admit-
tedly improbable) event that the null hypothesis was exactly true.

And, because it has been stressed that if there is no evidence against the null
hypothesis it does not imply that the null hypothesis is true, the inference from
a large P value does not contradict the prior ideas about the null hypothesis.
‘We may still be convinced on prior grounds that there is a real difference of some
sort, but as it is apparently not large enough, relative to the experimental error
and method of analysis, to be detected in the experiment, we have no idea of ite
size or direction. So the prior knowledge is of no practical importance.

Another point concerns the discussion of power. It has been recommended
that the result of significance test should be given as a value of P. It would be
silly to reject the null hypothesis automatically whenever P fell below arbitrary
level (0-05 say). Each case must be judged on ite merits. So what is the justifica-
tion for discussing in subsections (3) and (6) above, what would happen ‘if the
null hypothesis were always rejected when P < 0-06’? As usual, the aim is to
prevent the experimenter making a fool of himself. Suppose, in a particular case,
that a significance test gave P = 0-007, and the experimenter decided that, all
things considered, this should be interpreted as meaning that the experiment
provided evidence against the null hypothesis, then it is certainly of interest to
the experimenter to known what would be the consequences of acting consistently
in this way, in a series of imaginary repetitions of the experiment in question.
This does not in any way imply that given a different experiment, under differ-
ent circumstances, the experimenter should behave in the same way, l.e. use
P = 0-007 a8 a critical level.

t This remark applies to point hypotheses, i.e. those stating that means, populations,
ete., are sdentical. All the null hypotheses used in this book are of this sort.
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6.2. Which sort of test should be used, parametric or
nonparametric?

Parametric tests, such as the ¢ test and the analysis of variance are
those based on an assumed form of distribution, usually the normal
distribution, for the population from which the experimental samples
are drawn. Nonparametric tests are those that, although they involve
some assumptions, do not assume a particular distribution. A discussion
of the relative ‘advantages’ of the tests is ludicrous. If the distribution
is known (not assumed, but known; see § 4.6 for tests of normality),
then use the appropriate parametric test. Otherwise do not. Neverthe-
less the following observations are relevant.

Characteristics of nonparametric methods

(1) Fewer untested assumptions are needed for nonparametric me-
thods. This is the main advantage, because, as emphasized in § 4.2, there
is rarely any substantial evidence that observations follow a normal,
or any other, distribution. The assumptions involved in parametric
methods are discussed in § 11.2. Nonparametric methods do involve
some assumptions (e.g. that two distributions are of the same, but
unspecified, form), and these are mentioned in connection with in-
dividual methods.

(2) Nonparametric methods can be used for classification (Chapter 8)
or rank (Chapters 9-11) measurements. Parametric methods cannot.

(3) Nonparametric methods are usually easier to understand and use.

Characteristics of parametric methods

(1) Parametric methods are available for analysing for more sorts of
experimental results. For example there are, at the moment, no widely
available nonparametric methods for the more complex sort of analysis
of variance or curve fitting problems. This is not relevant when choosing
which method to use, because there is only a choice if a nonparametric
method is available.

(2) Many problems involving the estimation of population parameters
from a sample of observations have so far only been dealt with by
parametric methods.

(3) It is sometimes listed as an advantage of parametric methods that
if the assumptions they involve (see §11.2) are true; they are more
powerful (see § 6.1, para. (6)), i.e. more sensitive detectors of real
differences, than nonparametric. However, if the assumptions are not
true, which is normally not known, the nonparametric methods may
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well be more powerful, so this cannot really be considered an advantage.
In any case, even when the assumptions of parametric methods are
fulfilled the nonparametric methods are often only slightly less powerful.
In fact the randomization tests described in §§ 9.2 and 10.3 are as
powerful as parametric tests even when the assumptions of the latter
are true, at least for large samples.

There is a considerable volume of knowledge about the asymptotic
relative efficiencies of various tests. These results refer to infinite sample
sizes and are therefore of no interest to the experimenter. There is less
knowledge about the relative efficiencies of tests in small samples. In
any case, it is always necessary to specify, among other things, the
distribution of the observations before the relative efficiencies of tests
can be deduced; and because it is part of the problem that nothing is
known about this distribution, even the results for small samples are not
of much practical help. Of the alternative tests to be described, each
can, for certain sorts of distribution, be more efficient than the others.

There is, however, one rather distressing consequence of lack of
knowledge of the distribution of error, which is, of course, not abolished
by assuming the distribution known when it is not.

As an example of the problem, consider the comparison of the effects
of two treatments, A and B. The experimenter will be very pleased if a
large and consistent difference between the effects of A and B is
observed, and will feel, reasonably, that not many observations are
necessary. But it turns out that with very small samples it is impossible
to find evidence against the hypothesis that A and B are equi-effective,
however large, and however consistent, the difference observed be-
tween their effects, unless something is known about the distributions
of the observations. Suppose, for the sake of argument, that the
experimenter is prepared to accept P = 1/20 (two tail) as small
enough to constitute evidence against the hypothesis of equi-effective-
ness (see §6.1). If the experiment is conducted on two independent
samples, each sample must contain at least 4 observations (for all the
nonparametric tests described in Chapter 9, q.v., the minimum possible
two-tail P value with samples of 3 and 4 would be 2.314!/7! = 1/174,
however large and consistent the difference between the samples).
Similarly, if the observations are paired, at least 6 pairs of observations
are needed; with 5 pairs of observations the observations on the
nonparametric methods described in Chapter 10, q.v., can never give a
two-tail P less than 2.(})® = 1/16. (See also the discussion in §§ 10.5
and 11.9.)
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In contrast, the parametric methods can give a very low P with the
smallest samples if the difference between A and B is sufficiently large
and consistent. Nevertheless, these facts mean that it 18 a disadvantage not
to know the distribution of the observations. They do not constitute a
disadvantage of nonparametric tests. The problem is less acute with
samples larger than the minimum sizes mentioned.

In view of these remarks it may be wondered why parametric tests
are used at all when there are nonparametric alternatives. In fact they
are still widely used even now. This is partly because of familiarity.
The ¢ test and analysis of variance were in use for many years before
most nonparametric methods were developed. It probably also results
from the sacrifice of relevance to the real world for the sake of mathe-
matioal elegance. Methods based on the assumption of a normal distribu-
tion have been developed to cover a wide range of problems within a
single, admittedly elegant, mathematical framework.

It is not uncommon for those who are dubious about the assumptions
necessary for parametrio tests to be told something along the lines
‘experience has shown that the ¢ test (for example) will not mislead
us’. Unfortunately, as Mainland (1963) has pointed out, this is just
wishful thinking. There is no knowledge at all of the number of times
people have been misled by using the # test when they would not have
been misled by a nonparametric test (see §§ 4.2 and 4.8).

A plausible reason for using tests based on the normal distribution
is that some of them have been shown to be fairly insensitive to some
sorts of deviations from the assumptions on which they are based if the
samples are reasonably big. The tests are said to be fairly robust. But
this knowledge can usually be used only by intuition. One is never
sure how large is large enough for the purposes in hand. When the
nature and extent of deviations from the assumptions is unknown,
the amount of error resulting from assuming them true is also unknown.
It is much simpler to avoid as many as possible of the assumptions.

If a nonparametric test is available it should be used in pref-
erence to the parametric test, unless there is experimental evidence
about the distribution of errors.

In spite of what has just been said parametric methods are discussed
in the following chapters, even when nonparametric methods exist.
This is necessary as an approach to the more complex experimental
designs, curve-fitting problems, and biological assay for which there are



§6.2 Tests of significance and the analysis of variance 99

still hardly any nonparametric methods available, so parametric tests
or nothing must be used. Whichever test is used, it should be inter-
preted as suggested in §§ 1.1, 1.2, 6.1, and 7.2, the uncertainty indicated
by the test being taken as the minimum uncertainty that it is reasonable
to feel.

6.3. Randomization tests

The principle of randomization tests, also known as permutation
tests, is of great importance because these tests are among the most
powerful of nonparametric tests (see § 6.1 and 6.2). Moreover, they are
easier to understand, at the present level, than almost all other sorts
of test and they make very clear the fundamental importance of
randomization. Examples are encountered in §§ 8.2, 8.3, 9.2, 9.3,
10.2, 10.3, 10.4, 11.5, 11.7, and 11.9.

6.4. Types of sample and types of measurement

When comparing two groups the groups may be related or inde-
pendent. For example, to compare drugs A and B two groups could be
selected randomly (see § 2.3) from the population of patients, and one
group given A, the other B. The two samples are independent. Inde-
pendent samples are discussed in Chapters 8 and 9, and in §§11.4,
11.5, and 11.9. On the other hand, the two drugs might both be given,
in random order, to the same patient, or to a patient randomly selected
from a pair of patients who had been matched in some way (e.g. by
age, sex, or prognosis). The samples of observations on drug A and
drug B are said to be related in this case. This is usually a preferable
arrangement if it is possible; but it may not be possible because, for
example, the effects of treatments are too long-lasting, or because of
ignorance of what characteristics to match. Related samples are
discussed in Chapter 10 and in §§ 8.6, 11.6, 11.7, and 11.9.

The method of analysis will also depend on what sort of measure-
ments are made. The three basic types of measurement are (1) classifica-
tion (the nominal scale), (2) ranking (the ordinal scale), and (3) num-
erical measurements (the interval and ratio scales). For further details
see, for example, Siegel (1956a, pp. 21-30). If the best that can be
done is classification as, for example, improved or not improved, worse
or no change or better, passed or failed, above or below median, then
the methods of analysis in Chapter 8 are appropriate. If the measure-
ments cannot be interpreted in a quantitative numerical way but can
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be arranged (ranked) in order of magnitude (as, for example, with arbitrary
scores such as those used for subjective measurements of the intensity
of pain) then the rank methods described in §§ 9.3, 10.4, 10.5, 11.5,
11.7, and 11.9 should be used. For guantitative numerical measurements
the methods described in the remaining sections of Chapters 9-11 are
appropriate.

Methods for dealing with a single sample are discussed in Chapter 7
and those for more than two samples in Chapter 11.



7. One sample of observations. The
calculation and interpretation of
confidence limits

‘Eine Hauptursache der Armut in den Wissenschaften ist meist eingebildeter
Reichtum. Es is nicht ihr Ziel, der unendlichen Weisheit eine Tir zu Offnen,
sondern eine Grenze zu setzen dem unendlichen Irrtum.’t

t ‘One of the chief causes of poverty in science is usually imaginary wealth. The aim
of science is not to open a door to infinite wisdom, but to set a limit to infinite error’.

GALILEO in Brecht's Leben des Galilei

7.1. The representative value: mean or median?

IT is second nature to calculate the arithmetic mean of a sample of
observations as the representative central value (see §2.5). In fact this
is an arbitrary procedure. If the distribution of the observations were
normal it would be a reasonable thing to do since the sample mean
would be an estimate of the same quantity (the population mean
= population median) as the sample median (§§ 2.5 and 4.5), and it
would be a more precise estimate than the median. However, the
distribution will usually not be known, so there is usually no reason to
prefer the mean to the median. For more discussion of the estimation of
‘best’ values see §§ 12.2 and 12.8 and Appendix 1.

7.2. Precision of inferences. Can estimates of error be trusted?

The answer is that they cannot be trusted. The reasons why will
now be discussed. Having calculated an estimate of a population median
or mean, or other quantity of interest, it is necessary to give some sort
of indication of how precise the estimate is likely to be. Again it is
second nature to calculate the standard deviation of the mean—the
so-called ‘standard error’'—see § 2.7. This is far from ideal because
there is no simple way of interpreting the standard deviation unless the
distribution of observations is known. If it were normal then the
confidence limits, sometimes called confidence intervals, based on the
¢t distribution (§ 7.4) would be the ideal way of specifying precision
since it allows for the fact that the sample standard deviation is itself



102 The calculation and interpretation of confidence limits §7.2

only a more or less inaccurate estimate of the population value (see
§ 4.4).

As usual it must be emphasized that the distribution is hardly ever
known, so it will usually be preferable to use the nonparametric
confidence intervals for the median (§ 7.3), which do not assume a
normal distribution.

No sort of confidence interval, nonparametric or otherwise, can
make allowance for samples not having been taken in a strictly random
fashion (see §§1.1 and 2.3), or for systematic (non-random) errors.
For example, if a measuring instrument were wrongly calibrated so
that every reading was 20 per cent below its correct value, this error
would not be detectable and would not be allowed for by any sort of
confidence limits.

Therefore in the words of Mainland (1967a), confidence limits
‘provide a kind of minimum estimate of error, because they show how
little a particular sample would tell us about its population, even if
it were a strictly random sample’. It seems then that estimates cannot
be trusted very far. To quote Mainland (1867 b) again,

‘Any hesitation that I may have had about questioning error estimates in
biology disappeared when I recently learned more about error estimates in that
sanctuary of acientific precision—physics.

‘One of the moat disturbing things about scientific work is the failure of an
investigator to confirm results reported by an earlier worker. For example in
the period 1896 to 1961, some 15 observations were reported on the magnitude
of the astronomical unit (the mean distance from the earth to the sun). You will
find these summarized in a table . . . which lists the value obtained by each
worker and his estimates of plus or minus limits for the error of the estimate.
It is both entertaining and shocking to note that, in every case, a worker’s
estimate is ouigide the limits set by his immediate predecessor. Clearly there is
an unresolved problem here, namely, that experimenters are apparently unable
to arrive at realistic estimates of experimental errors in their work” (Youden
1963).

If we add to the problems of the physicist the variability of biological and

human material, and the nonrandomness of our samples from it, we may well
marvel at the confidence with which ‘‘confidence intervals’’ are presented.’

Confidence limits purport to predict from the results of one experi-
ment what will happen when the experiment is repeated under the
same (as nearly as possible) conditions (see § 7.8). But the experimentalist
will not need much persuading that the only way to find out what will
happen is actually to repeat the experiment and see. And on the few
occasions when this has been done in the biological field the results
have been no more encouraging than those just quoted. For example,
Dews and Berkson (1954) found that the internal estimates of error
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caloulated in individual biological assays were mostly considerably
lower than the true error found by actual repetition of the assay. As
Dews and Berkson point out, if the assays were performed at different
times or in different laboratories it would probably be said that there
were ‘inter-time’ or ‘inter-laboratory’ differences; and if there were
no such ‘obvious’ reasons for the interval error estimates being too
low, then probably ‘the animals would be stigmatized as ‘‘heterogen-
eous’’, with more than a hint that there had been too little incestuous
activity among them’. The moral is once again that confidence limits,
or other estimates of error calculated from the internal evidence of an
experiment, must be interpreted as lower bounds for the real error.

Nevertheless, on the grounds that a minimum estimate of error is
better than none at all, examples follow. Their interpretation is
discussed farther in § 7.9.

7.3. Nonparametric confidence limits for the median

Limits can be found very simply indeed, without any calculation
at all, using the table of Nair (1940) which is reproduced as Table Al.

Consider, for example, determinations of the glomerular filtration
rate (ml/min) from nine randomly selected dogs:

135 133 154 124 153 142 140 134 138.

The observations will be denoted in the usual way (§2.1), y,(s = 1, 2,
..., n) and n = 9. Now rank the observations in ascending order; 124,
133, 134, 135, 138, 140, 142, 153, 154. These observations will be
denoted y,,(+ = 1, 2,...9), the parenthesized subscript being used to
indicate that the observations have been ranked, i.e. y, simply denotes
the first observation written down, whereas y,,, indicates the smallest
of the observations. The sample estimate of the population median is
Y@ = 138 ml/min (using (2.5.5)). Reference to Table Al, for the
approximately 95 per cent confidence limits, and for a sample size
n =9, gives & value r = 2. This means that the second (i.e. the rth)
observation from each end, viz. 133 ml/min (= y,) and 153 ml/min
(= y@)), are to be taken as the confidence limits for the estimated
median, 138 ml/min. The table also gives, in the next column after r,
the figure 96-1, which indicates that these are actually 96:1 per cent
confidence limits. The fact that r has to be a whole number makes
it impossible to get exactly 95 per cent limits. There is a probability of
0-961 that the population median is between y 4, and y4, in the sense
explained in § 7.9.
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The reasoning behind the construction of Table Al is roughly as
follows (see Nair (1940) and Mood and Graybill (1963, p. 407)). Let m
denote the population (true) median. By definition of the median
(§ 2.5) the probability is 1/2 that an observation selected at random
from the population, which is assumed to follow any continuous
distribution, will be less than . The probability that ¢ observations
out of n fall below s follows directly from the binomial distribution
(3.4.3) with # = }, i.e.

n! (l)"
m 3) (7.3.1)
To find from this the probability that the rth ranked observation,
Yy in a sample of » observations, will be greater than the population
median, note that this will be the case if the sample contains either
+ = Oor1or..or (r—1) observations below the median, so, by using the
addition rule (2.4.2),

f=r-1 ! 1\"
Py, >m) = go %,(—:_ﬁ(g) : (7.3.2)

If a 95 per cent confidence limit is required, r is now chosen so as to
make this expression as near as possible to 0-025 (25 per cent). In the
above example this means taking r = 2 giving

2 3 (1)9 T
— —_ —_ — _— = N 1
W > m) = 2 o 5i\a) ~ sz torz — 01

i.e. it is unlikely that y 4, will be above the population median. Because
of the symmetry of the binomial distribution when & = } (§3.4)
this is also the probability that yg, < #; it is equally unlikely that
Yoy 18 less than the population median. Thus, in general, (7.3.2) also
gives P(y,_,+1y<#). So the probability of the event that either
m < Yq, OF m > yq, i8, again by the addition rule (2.4.2), 0-0195
+0-01956 = 0-039. If this event does not occur then it mustt be that

t If you find this argument takes you by surprise, in spite of its mathematical
impeccability, you may be relieved to find that this view is shared by some of the most
eminent mathematical statisticians. For example, Lindley (1969) says ‘The procedure
which transfers a distribution on z to one on § through a pivotal quantity such as z—0
has always seemed to me to be reminiscent of & conjuring trick: it all looks very plausible,
but you cannot see how it isdone . . .. As a young man I remember asking E. C. Fieller
to suggest a really difficult problem. His answer was beautifully simple: ‘“The probability
that an observation is lees than the median is 1/2: explain why this means that the
probability that the median is greater than the observation is also 1/2.”” I could offer no
really sound explanation then, and I still cannot.’ You may also be relieved to find that,
in spite of the difficulties, virtually all statisticians, faced with experimental results
such as those in this section, would reach a conclusion that differed little, if at all, from
that presented here.
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Y2 < m < Y, and the probability of this must be 1—0-039 = 0-961,
as discovered above from Table Al. The general result is

fmr—1 n! 1\"

Plyey < m <yYp-ren] =1-2 Eo t'(n—z)'( ) © (7.3.3)
and r is chosen so that this is as near as possible, given that r must
be a whole number, to 0-85, or whatever other confidence probability
is required. A very similar sort of statement is found for the mean in
the next section.

The method assumes that the distribution of the observations is
continuous (see §4.1) so it is not possible for two observations to be
exactly the same. In practice there may be ties because of rounding
errors but this does not matter even though very occasionally a sample
could give the same, say 95 and 99 per cent limits. If the distribution
is really discontinuous then the method is not appropriate.

7.4. Confidence limits for the mean of a normally distributed
variablet

Confidence limits for the population mean

In the improbable event that the glomerular filtration rate of dogs
was known to follow the normal distribution it would be possible to
calculate confidence limits for the mean of the nine observations given
in § 7.3. The sample mean is Zy/n = 1253/9 = 139-2 ml/min, compared
with the sample median of 138 ml/min. The sum of squared deviations
is given by (2.6.5) as

2 y—9)? = = 175179 —
{=1

5 Z 2 EY°_ (12537 _ 733.56.
=1 n 9

Therefore the variance of y is estimated to be s%(y) = 733-56/(9—1)
= 91-69; the variance of the mean is s%(j) = 91-69/9 = 10-19 by eqn.
(2.7.8), and the estimated standard deviation of the sample mean
glomerular filtration rate is 8(§) = 4/(10-19) ml/min = 3-192 ml/min.
These estimates have n—1 = 8 degrees of freedom (§ 2.6). From this
estimate of scatter, and the assumption that y (and therefore j) is
normally distributed, limits can be calculated within which the mean
of the population from which the observations were drawn (which may

t The aasumption of normality could be tested as in § 4.8 if there were more observa-
tions, but with one sample of 9 no useful test can be made.
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or not be the population in which the investigator is really interested)
is likely to lie.

The limits must be based on Student’s ¢ distribution (§ 4.4) because
only the estimated standard deviation is available. Reference to tables
(see § 4.4) shows that, in the long run, 95 per cent of values of ¢ (with
8 d.f.) will fall between ¢ = —2-306 and ¢ = 4-2-306. The definition of
t (eqn. (4.4.1)) is (z—u)/s(z) where z is normally distributed. In the
present example the (assumed) normally distributed variable of interest
is the sample mean, §, so ¢ is defined as (7—u)/s().

It follows that in 95 per cent of experiments t = (§—u)/s(j) is
expected to lie between —2-306 and 4 2-306, i.e.

P[—2:306< (§—p)/s(d) <-+2:306] = 0-05,
- P[—2-306.5(§) <(§—p) < +2-306.8(7)] = 095,
. P[§—2-306.5(5) <p <§+2-306.5()] = 0-95.1

This statement, which is analogous to (7.3.3), indicates our confidence
that the population mean, u, lies between the P = 0-95 confidence
limits, viz. §—2-306s(§) = 139-2—(2-306 X 3-192) = 131-8 ml/min and
§+2-3068(fj) = 139-24(2-306 X 3-192) = 146-6 ml/min. Compare the
mean 139-2 ml/min and its P = 0-95 Gaussian confidence limits,
131-8 to 146-6 ml/min, with the median and its confidence limits found,
with fewer assumptions, in § 7.3.

Condensing the above argument into one formula, the Gaussian
confidence limits for x4 (given an estimate of it, , the mean of a sample
of n normally distributed observations) are

gtt J (82?))- (7.4.1)

In general, the confidence limits for any normally distributed variable,
z, are

ztts(x), (7.4.2)

where the value of Student’s ¢ is taken from tables (see § 4.4) for the
probability required and for the number of degrees of freedom associated
with s(z).

To be more sure that the limits will include ux (the population
value of §; see § Al.1), they must be made wider. For example, the
value of ¢t for P = 0-99 with 8 d.f. is, from tables, 3-355. That is 0-5

t If this argument shakes you, see the footnote in § 7.3 (p. 104), reading y for £ and u
for 6.
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per cent (0-005) of the area under the curve for the distribution of ¢
with 8 d.f. lies below —3-355 and another 0-5 per cent above -3-355,
and 99 per cent lies between these figures. The 99 per cent Gaussian
oonfidence limits are then §4-ts(f), i.e. 128-5 to 149-9 ml/min.

Confidence limits for new observations

The Hmits just found were those expected to contain, u, the population mean
value of y (and also of g, and §/, see below). If limits are required within which a
new observation from the same population is expected to lie the result is rather
different. Suppose, as above, that n observations are made of a normally distri-
buted variable, y. The sample mean is g, and the sample deviation s(y), say.
If a further m independent observations were to be made on the same population,
within what limits would their mean, §,, be expected to lie? The variable
Yn—9m will be normally distributed with a population value y—u = 0, so ¢
= (Gn —Fn)/8(Gn —Fn], (8ee § 4.4). Using (2.7.3) and (2.7.8) the estimated variance
is s —9Fnl = 3’(93)+3’(gm) = 0’(1/)/”+0’(v)/m = 0’(v)c(1/ﬂ+ llm)- The best
prediction of the new observation, §., will, of course, be the observed mean, §,.
This is the same as the estimate of u, but the confidence limits must be wider
because of the error of the new observations. As above, P{—t < (§fa—¥m)/
oy —9Jnl< +t] = 0-95 s0, by rearranging this as before, the confldence limits for

g- are found t‘) be
9u:i:t L4 (ﬂ)- ("1'3)
nm

For example, a single new observation (m = 1) of glomerular flltration rate
would have a 85 per cent chance (in the sense explained in § 7.9) of lying within
the limits calculated from (7.4.3), viz. 139-2 4+ 2:306+/[91-69(1/9+1)]; that is,
from 115-9 ml/min to 162-56 ml/min. These limits are far wider than those for u.

‘Where m is very large, (7.4.3) reduces to the Gaussian limits for 4, eqn (7.4.1)
(a8 expected, because in this case §f, becomes the same thing as u).

It is important to notice the condition that the m new observations are from
the same Gaussian population as the original n. As they are probably made
later in time there may have been a change that invalidates this assumption.

7.5. Confidence limits for the ratio of two normally distributed
observations

If a and b are normally distributed variables, their ratio m = afb
will not be normally distributed, so if the approximate variance of the
ratio is obtained from (2.7.16), it is only correct to calculate limits
by the methods of § 7.4 if the denominator is large compared with its
standard deviation (i.e. if g is small, see § 13.5). This problem is quite
& common one because it is often the ratio of two observations that is
of interest rather than, say, their difference.

If a and b were lognormally distributed (see § 4.5) then log a and
log b would be normally distributed, and so log m = log a —log b would
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be normally distributed with var(log m) = var(log a)-var(log b)
from (2.7.3) (given independence). Thus confidence limits for log m
could be calculated as in § 7.4, log m+-¢t4/[var(log m)], and the anti-
logarithms found. See § 14.1 for a discussion of this procedure.

When a and b are normally distributed the exact solution is not
difficult. But, because it looks more complicated at first sight, it
will be postponed until § 13.5 (see also § 14.1), nearer to the numerical
examples of its use in §§ 13.11-13.15.

7.6. Another way of looking at confidence limits

A more general method of arriving at confidence intervals will be
needed in §§ 7.7 and 7.8. The ingenious argument, showing that limits
found in the following way can be interpreted as described in § 7.9, is
discussed clearly by, for example, Brownlee (1965, pp. 121-32). It will
be enough here to show that the results in § 7.4 can be obtained by a
rather different approach.

For simplicity it will be supposed at first that the population standard
deviation, o, is known. It is expected that in the long run 95 per cent
of randomly selected observations of a normally distributed variable
y, with population mean p and population standard deviation o, will
fall within x+1-960 (see §4.2). In § 7.4 the normally distributed
variable of interest was §, the mean of n observations, and similarly,
in the long run, 95 per cent of such means would be expected to fall
within u+1-966(), where ¢(§) = o/4/n (by (2.7.9)). The problem is
to find limits that are likely to include the unknown value of u.

Now consider various possible values of u. It seems reasonable to
take as a lower limit, 4, say, a value which, if it were the true value,
would make the the observation of a mean as large as that actually
observed (§,,) or larger a rare event—an event that would only
occur in 2-5 per cent of repeated trials in the long run, for example. In
Fig. 7.6.1(a) the normal distribution of § is shown with the known
standard deviation o(§), and the hypothetical mean p;, chosen in the
way just described.

Similarly, the highest reasonable value for u, say puy, could be
chosen so that, if it were the true value, the observation of a mean
equal to or less than §,,, would be a rare event (again P = 0-025, say).
This is shown in Fig. 7.6.1 (b). It is clear from the graphs that Fops
= u,+1960(§) = py—1-960(j). Rearranging this gives up = Fops
—1:960(9), and pug = Fons+ 1-960(7). If o is not known but has to be
estimated from the observations, then o(j) must be replaced by
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8(9), and 8o 1-96 must be replaced by the appropriate value of Student’s
t (for example 2-306 for P = 0-95 limits in the example in § 7.4; see
also § 4.4). When this is done p, and u g are the limits previously found

using (7.4.1).
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Fia. 7.6.1. One way of looking at confldence limits. See text.

7.7. What is the probability of ‘success’? Confidence limits for
the binomial probability

In §§ 3.2-3.5 it was described how the number of successes (r) out of
n trials of an event would be expected to vary in repeated sets of n
trials when the probability of ‘success’ was & at each trial and the
probability of ‘failure’ was 1—2. Usually, of course, the problem is
reversed. £ is unknown and must be estimated from the experimental
results. For example, if a drug were observed to cause improvement in
r = 7 out of n = 8 patients, who had been selected strictly randomly
(see § 2.3) from some population of patients, then the best estimate of
the proportion (#) of patients in the population that would improve
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when given the drug is r/n (as in § 3.4), i.e. 7/8 = 0-875 or 87-5 per
cent. What is the error of this estimate? Would it be unreasonable,
for example, to suppose that the population contained only 50 per cent
of ‘improvers’? The answer can be found without any calculation at
all using Table A2, which is based on the following reasoning.

The approach described in § 7.6 can be used to find confidence limits for the
population value of &. For concreteness suppose that 96 per cent (or P = 0-96)
confldence limits are required for the population value of 9 when r,,, ‘successes’
have been observed out of n trials. The highest reasonable value of #, Py say,
will be taken as the value that, if it were the true value, would make the observa-
tion of r,,, or fewer successes a rare event (an event occurring in only 2-56 per cent
of repeated sets of n trials). Now the probability of r successes P(r), is given
by (3.4.8), and r < rope if r = 0 or 1 or...or r,,, so, using (3.4.3) and the
addition rule, (2.4.2), it is required that

relons - nl
= ———PL(1 —Pg)*~T = 0-026. (1.1.1)
rmo Tln—r)!

The only unknown in this equation is Py, the upper confidence limit for the
population proportion, so it can be solved for #z. There is no simple way of
rearranging the equation to get 95 however, so tables are provided (Table A2)
giving the solution. Similarly, the lowest reasonable value, &, for the population
& (the lower confidence limit for &) is taken as the value that, if it were the
true value, would make the observation of r,,, successes or more (i.e. 7 = 7,
or ro,+ 1 or...or n) a rare event. Thus &, is found by solving

rmsn
Plr=rosl= 3 —”—’——9;(1 —PL)T = 0-026. (1.1.2)

,,,,,“_r!(n—r)!

Again the solution is tabulated in Table A2.

The use of Table A2

Confidence limits (956 and 99 per cent) for the population value of
100 &2 are tabulated for any observed r, and sample sizes from n = 2
to n = 30, and also some values for n = 1000 for comparison. Other
sample sizes are tabulated in the Documenta Geigy Scientific Tables
(1962, pp. 85-103). In the example at the beginning of this section
r =17 out of n = 8 patients improved (100r/n = 87-5 per cent
improvement). Consulting Table A2 with n =8 and r = 7 shows
that the P = 0-95 confidence limits (100#, to 100#y from (7.7.1))
and (7.7.2) are 47-35 to 99-68 per cent. In other words, if repeated
samples of 8 were taken from a population that actually contained
47-35 per cent of improvers, 2:5 per cent of the samples would contain
7 or more (i.e. 7 or 8) improvers. And if the population actually con-
tained 99-68 per cent of improvers then, in the long run, 2:5 per cent
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of samples would contain 7 or fewer improvers. Thus, if the drug were
tested on an infinite sample (rather than only 8) it would not be sur-
prising (see § 7.9 for a more precise interpretation) to find any propor-
tion of patients improving between %, = 0-4735 and %z = 0-9968.
The observation is compatible with any hypothetical population &
that lies between the confidence limits (see § 9.4) so the observation of
7 improving out of 8 cannot be considered incompatible with a true
improvement rate of 50 per cent (# = 0-5) at the P = 0-95 level of
significance. For greater certainty the P = 0-99 confidence limits
would be found from the tables. They are, of course, even wider,
36-85 to 99-94 per cent. A sample of 8 gives surprisingly little informa-
tion about the population it was drawn from, even when all the assump-
tions of randomness and simple sampling (see § 3-2) are fulfilled.

The comparison of two observed binomial proportions is a different
problem. It is discussed in Chapter 8.

7.8. The black magical assay of purlty in heart as an example of
binomial sampling

In a sadly neglected paper, Oakley (1943) proposed an assay method
for purity in heart. Oakley points out that lack of statistical knowledge
may vitiate a worth-while experiment the apparent failure of which
may deter others from repeating it, and that this fate seems to have
overtaken an experiment carricd out many years ago in Germany.
The only known source (Anon 1932) describes the experiment thus:

‘The legend of the Brocken (the famous peak in the Harz Mountains noted for its
‘‘gpectre’’ and as the haunt of witches on Walpurgis Night), according to which a
‘‘virigin he-goat’’ can be converted into ‘‘a youth of surpassing beauty’ by
spells performed in a magic circle at midnight, was tested on June 17th by
British and German scientists and investigators, including Professor Joad and
Mr. Harry Price of the National Institute of Psychical Research. The object was
to expose the fallacy of Black Magic and also to pay a tribute to Goethe, who used
the legend in “Faust’. Some wore evening dress. The goat was anointed with the
prescribed compound of scrappings from church bells, bats’ blood, soot and honey
The necessary ‘‘maiden pure in heart’’ who removed the white sheet from the
goat at the critical moment, was Friulein Urta Bohn, daughter of one of the
German profeesors taking part in the test. Her mother was a Scotewoman (form-
erly Miss Gordon). The scene was floodlit and filmed. As our photographs show,
the goat remained a goat, and the legend of the Brocken was dispelled I’

The main variables are the virgin he-goat and the maiden pure in
heart. Virginity may for the present be regarded as an absolute char-
acter, but purity in heart no doubt varies from person to person.
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Oakley therefore supposed that it might be possible to estimate the
purity in heart index (PHI) of a maiden by observing how many of a
group of he-goats are converted into young men. The original experi-
menters were clearly guilty of a grave scientific error in using only one
he-goat.

We shall assume, as Qakley did, that the conversion of he-goats into
young men is an all-or-nothing process; either complete conversion or
nothing occurs. Oakley supposed, on this basis, that a comparison
could be made between, on one hand, the percentage of he-goats
converted by maidens of various degrees of purity in heart, and, on the
other hand, the sort of pharmacological experiment that involves the
measurement of the percentage of individuals showing a specified
effect in response to various doses of a drug. In conformity with the
common pharmacological practice he supposed that a plot of percent-
age he-goat conversion against log purity in heart index (log PHI)
would have the sigmoid form shown in Fig. 14.2.4. As explained in
Chapter 14, this implies that log PHI required to convert individual
he-goats is a normally distributed variable. Furthermore it means that
infinity purity in heart is required to produce a population he-goat
conversion rate (HGCR) of 100 per cent.

Although there is a lack of experimental evidence on this point,
the present author feels that the assumption of a normal distribution
is, as so often happens, without foundation (see § 4.2). The implication
of the normality assumption, that there exist he-goats so resistant to
conversion that infinite purity in heart is needed to affect them, has
not been (and cannot be) experimentally verified. Furthermore the
very idea of infinite purity in heart seems likely to cause despondency
in most people, and should therefore be avoided until such time as its
necessity may be demonstrated experimentally. Oakley’s treatment of
the problem requires, in addition, that PHI be treated as an independent
variable (in the regression sense, see Chapter 12), which raises problems
because there is no known method of measuring PHI other than he-goat
conversion.

In the light of these remarks it appears to the present author desirable
that the purity in heart index should be redefined simply as the
population percentage of he-goats converted.t This simple operational
definition means that the PHI of all maidens will fall between 0 and
100, and confidence limits for the true PHI can be found easily from

t i.e., in the more rigorous notation of Appendix 1, PHI = E[HGCR].
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the observed conversion rate (which should be binomially distributed,
see §§ 3.2-3.5) using Table A2, as explained in § 7.7.

For example, if it were observed that a particular maiden caused
conversion of r = 2 out of n = 4 he-goats, the estimated PHI would be
100x 2/4 = 50 per cent, and from Table A2 the confidence limits
(P = 0-95) for the PHI are 6-76-93-24 per cent. Clearly the information
to be gained from a sample of only four he-goats is 8o imprecise that it
is difficult to conceive what use it could be put to. Oakley recommended
that for preliminary experiments at least n = 10 he-goats should be
used. If r = 5 (50 per cent) of these were observed to be converted
Table A2 would give the confidence limits (P = 0-95) for the true PHI
as 18-71-81-29 per cent. While the most extreme forms of vice and of
virtue appear to be ruled out by this result, there is still considerable
uncertainty about the PHI. If a greater degree of confidence were
required, as might happen, for example, if a potential husband
demanded a certain minimum (or, alternatively, a certain maximum)
PHI before committing himself, the P = 0-99 confidence limits could
be found from Table A2. They are 12-83-87-17 per cent. The most
tolerant suitor might be forgiven for requiring a larger sample.

These calculations show that the assay is subject to considerable
experimental error; and the problem of measuring very high or very
low PHIs is even more difficult (because percentage responses around
50 per cent are the most accurately determined).t If the practical
difficulties involved in using samples of » = 1000 he-goats could be
overcome, PHIs not too far from 50 per cent could be determined with
reasonable accuracy. For r = 500 converted, the confidence limits
(P = 0-95) from Table A2 are 46-85-53-15 per cent. If only r = 10
he-goats were converted out of 1000 (1 per cent) the confidence limits
(P = 0-95) should be 0-48-1-84 per cent. Although the relative error is
a good deal bigger than for conversion rates near 50 per cent, this is
likely to be precise enough for practical purposes.

A more precise and economical assay is clearly needed, but until
more experimental work is done the present method will have to do.
However, as Oakley points out, ‘All thoughtful persons must regard
the indiscriminate conversion of he-goats into young men with concern,
for there is no knowledge of what education or social, political or

t This depends on what is meant by accuracy. It is true if one is interested in the
relative error of the proportion converted (or not converted, whichever is the smaller).
It is also true if, a8 in Chapter 14, one is interested in the error of the dose producing a
specified proportion converted in quantal experimenta.
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economic views such young men might have, and it might well be that

their behaviour would bring scientific experiment into disrepute. This
is, however, a problem for necromancers rather than statisticians.’

7.9. Interpretation of confidence limits

The logical basis and interpretation of confidence limits are, even now,
a matter of controversy. However, few people would contest the
statement that if P = 0-95 (say) limits were calculated according to
the above rules in each of a large number of experiments then, in the
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F1a. 7.9.1. Interpretation of confldence limits. Repeated estimates (e.g.

sample mean) of a parameter (e.g. population mean), and their 96 per cent

confldence limits. In this (ideal) case one experiment (number 7) out of twenty

gave confldence limits that do not include the population value. One in twenty is
the predicted long-run frequency.

long run, 95 per cent of the intervals so calculated would include the
population mean (§ 7.4) or median (§ 7.3), u, if the assumptions made
in the calculation were true. The limits must be regarded as optimistic
as explasned in § 7.2.

In any particular experiment a single confidence interval is calculated
which obviously either does or does not include u. It might therefore
be thought that it could be said a priors that the probability that the
interval includes u is either 0 or 1, but not some intermediate value.
However, in a series of identically conducted experiments, somewhat
different values of the sample median or mean, and of the sample
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scatter, for example of s(§), will, in general, be found in every experi-
ment. The confidence limits will therefore be different from experiment
to experiment. The prediction is that, in the long run 95 per cent (19
out of 20) of such limits will include u as illustrated in Fig. 7.9.1. It is
not predicted that in 95 per cent of experiments the true mean will
fall within the particular set of limits calculated in the one actual
experiment.

Thus, if one were willing to consider that the actual experiment
was & random sample from the population of experiments that might
have been done, i.e. that ‘nature has done the shuffling’ one could go
further and say that there was a 95 per cent chance of having done an
experiment in which the calculated limits inciude the true mean, u.

Another interpretation of confidence intervals will be mentioned
later during the discussion of significance tests.



8. Classification measurements

‘In your otherwise beautiful poem, there is a verse which reads:

‘‘Every moment dies a man,
Every moment one is born.”

It must be manifest that, were this true, the population of the world would be at
a standstill. In truth the rate of birth is slightly in excess of that of death. 1
would suggest that in the next edition of your poem you have it read:

‘‘Every moment dies a man,
Every moment 1 1/16 is born.”

Strictly speaking this is not correct. The actual flgure is a decimal so long that
I cannot get it in the line, but I believe 1 1/16 will be sufficiently accurate for
poetry.

I am etc.’

Letter said to have been written to Tennyson by Charles Babbage after reading
‘The vision of sin’ (Mathematical Gazetle, 1927, p. 270)

8.1. Two independent samples. Relationship between various
methods

CLASSIFICATION measurements and independent samples were dis-
cussed in § 6.4. Before starting any analysis § 8.7 should be read to
make sure that the results are not actually the incorrectly presented
results of an experiment with related samples. The fundamental
method of analysis for the 22 table (§ 8.2) is the randomization
method (see § 6.3), which is known as the Fisher exact test (see § 8.2).
There is an approximate method that gives similar results to the
exact test with sufficiently large samples. This method can be written
in two ways, as the normal approximation described in § 8.4 or as the
chi-squared test described in § 8.5. The exact test (§ 8.2) should be
used when the total number of observations, N, is up to 40. Published
tables, which only deal with N < 40, make this easy. When N > 40
the exact test should be calculated directly from (8.2.1) if the frequency
in any cell of the table is very small. When the smallest expected value,
x, (8ee §8.5), is 5 or more there is reason to believe that the chi-
squared test (§ 8.5) corrected for continuity will be a good approxima-
tion to the exact test (Cochran 1952).
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8.2. Two independent samples. The randomization method and
the Fisher test

Randomization tests were introduced in § 6.3. As an example of the
result of classification measurements (see § 6.4), consider the clinical
comparison of two drugs, X and Y, on seven patients. It is funda-
mental to any analysis that the allocation of drug X to four of the
patients, and of Y to the other three be done in a strictly random way
using random number tables (see §§ 2.3 and 8.3). It is noted, by a
suitable blind method, whether each patient is improved (I) or not
improved (XN). The result is shown in Table 8.2.1 (b).

TaBLE 8.2.1
Pogsible results of the trial. Result (b) was actually observed

IN!Tolal I N | Total I N |Total I N | Tolal

DrugX 4 0 | 4 31 | 4 2 2 | 4 1 3 | 4

DrugY 0 3 | 3 1 2 | 3 2 1| 38 3 0 | 8
Total 4 3 | 7 4 3 | 7 4 8 | 7 4 3 | 7

(a) (b) () (d)

With drug X 75 per cent improve (3 out of 4), and with drug Y only
33 1/3 per cent improve. Would this result be likely to occur if X and Y
were really equi-effective ? If the drugs are equi-effective then it follows
that whether an improvement is seen or not cannot depend on which
drug is given. In other words, each of the patients would have given
the same result even if he had been given the other drug, so the observed
difference in ‘percentage improved’ would be merely a result of the
particular way the random numbers in the table came up when the
drugs were being allocated to patients.} For example, for the experiment
in Table 8.2.1 the null hypothesis postulates that of the 7 patients, 4
would improve and 3 would not, quite independently of which drug was
given. If this were so, would it be reasonable to suppose that the
random numbers came up 8o as to put 3 of the 4 improvers, but only
1 of the 3 non-improvers, in the drug X group (as observed, Table
8.2.1(b)}? Or would an allocation giving a result that appeared to

t Of course, if a subject who received treatment X during the trial were given an
equi-effective treatment Y at & later time, the response of the second occasion would
not be exactly the same as during the trial. But it is being postulated that if X and Y
are equi-effective then if one of them is given to a given subject at a given moment in

time, the response would have been exactly the same if the other had been given to the
same subject at the same moment.
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favour drug X by as much as (or more than) this, be such a rare happen-
ing as to make one suspect the premise of equi-effectiveness ?

Now if the selection was really random, every possible allocation of
drugs to patients should have been equally probable. It is therefore
gsimply a matter of counting permutations (possible allocations) to
find out whether it is improbable that a random allocation will come
up that will give such a large difference between X and Y groups as
that observed (or a larger difference). Notice that attention is restricted
to the actual 7 patients tested without reference to a larger population
(see also § 8.4). Of the 7 patients, 4 improved and 3 did not.

Three ways of arriving at the answer will be described.

(a) Physical randomszation. On four cards write ‘improved’ and on
three write ‘not improved’. Then rearrange the cards in random order
using random number tables (or, less reliably, shuffle them), mimicking
exactly the method used in the actual experiment. Call the top four
cards drug X and the bottom three drug Y, and note whether or not
the difference between drugs resulting from this allocation of drugs to
patients is as large as, or larger than, that in the experiment. Repeat
this say, 1000 times and count the proportion of randomizations that
result in a difference between drugs as large as or larger than that in the
experiment. This proportion is P, the result of the (one-tail) significance
teat. If it is small it means that the observed result is unlikely to have
arisen solely because of the random allocation that happened to come
up in the real experiment, so the premise (null hypothesis) that the
drugs are equi-effective may have to be abandoned (see § 6.2). This
method would be tedious by hand, though not on a computer, but
fortunately there are easier ways of reaching the same results. The
two-tail test is discussed below.

(b) Counting permutations. As each possible allocation of drugs to
patients is equally probable, if the randomization was properly done,
the results of the procedure just described can be predicted in much
the same way that the results of coin tossing were predioted in § 3.2.
If the seven patients are distinguished by numbers, the four who
improve can be numbered 1, 2, 3, and 4, and those who do not can be
numbered 5, 6, and 7. According to the null hypothesis each patient
would have given the same response whichever drug had been given.
How many way can the 7 be divided into groups of 3 and 4% The
answer is given, by (3.4.2), as 7!/(4131) = 35 ways. It is not neoessary
to write out about both groups since once the number improved has
been found in one group (say the smaller group, drug Y, for convenience),
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Enumeration of all 35 possible ways of selecting a group of 3 patients
Jrom 7 to be given drug Y. Patients 1, 2, 3, and 4 improved and patients
5, 6, and 7 did not. Number of subjects smproving with Y = b (see

Table 8.2.3(a))

Patients given Result Patients given Result
drug Y drug Y
5 6 7 b = 0 improve. 1 2 6
1 way glving 1 2 6
Table 8.2.1(a). 1 27
P =1{35 = 0-029
1 5 6 1 865
1 8 7 1 8 ¢
1 6 17 1 8 7 b = 2 improve.
18 ways all
2 5 6 1 4 5 glving
2 81 b = 1 improve, 1 4 6 Table 8.2.1(c).
2 6 17 12 ways all 1 4 7 P = 18/35 = 0-514
giving
38 5 6 Table 8.2.1(b). 2 8 85
8 6 7 P = 12/35 = 0-343 2 8 6
8 8 7 2 817
4 5 6 2 4 65
4 6 7 2 4 6
4 6 7 2 47
8 4 8
8 4 6
8 4 7
1 2 8 b = 8 improve.
1 2 ¢4 4 ways all
1 3 4 giving
2 8 4 Table 8.2.1(d).

P = 4/85 = 0-114

the number improved in the other group follows from the fact that the
total number improved is necessarily 3. All 35 ways in which the drug Y
group could have been constituted are listed systematically in Table
8.2.2. If the randomization was done properly each way should have
had an equal chance of being used in the experiment. Notice that
proper randomization in conducting the experiment 8 crucial for the
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analysis of the results. It is seen that 12 out of the 35 result in one
improved, two not improved in the drug Y group, as was actually
observed. Furthermore, 1 out of 35 shows an even more extreme
result, no patient at all improving on drug Y group, as shown in
Table 8.2.1(a).

Thus P = 12/35+41/35 = 0-3434-0-029 = 0-372 for a one-tail testt
(see § 6.1). This is the probability (the long-run proportion of repeated
experiments) that a random allocation of drugs to patients would
be picked that would give the results in Table 8.2.1(a) or 8.2.1(b), i.e.
that would give results in which X would appear assuperior to Y asin
the actual experiment (Table 8.2.1(b)), or even more superior (Table
8.2.1(a)), 3f X and Y were, in fact, equi-effective. This probability is
not low enough to suggest that X is really better than Y. Usually a
two-tail test will be more appropriate than this one-tail test, and this is
discussed below.

Using the results in Table 8.2.2, the sampling distribution under the
null hypothesis, which was assumed in constructing Table 8.2.2, is
plotted in Fig. 8.2.1. This is the form of Fig. 6.1.1 that it is appropriate
to consider when using the randomization approach. The variable on the
abscissa is the number of patients improved on drug Y, i.e. b in the
notation of Table 8.2.3(a). Given this figure the rest of the table can
be filled in, using the marginal totals, so each value of b corresponds to a
particular difference in percentage improvement between drugs X and
Y. Fig. 8.2.1 is described as the randomization (or permutation) distribu-
tion of b, and hence of the difference between samples, given the null
hypothesis. The result of a one-tail test of significance when the
experimentally observed value is b = 1 (Table 8.2.1(b)), is the shaded
area (as explained in § 6.1), i.e. P = 0-372 as calculated above.

The two-tasl test. Suppose now that the result in Table 8.2.1(a)
had been found in the experiment (b = 0). A one-tail test would give
P = 1/35 = 0-029, and this is low enough for the premise of equi-
effectiveness of the drugs to be suspect if it is known beforehand that
Y cannot possibly be better than X (the opposite result tothat observed).
As this is usually not known a two-tail test is needed (see § 6.1). How-
ever, the most extreme result in favour of drug Y (b = 3 as in Table

t This is & one-tail test of the null hypothesis that X and Y are equi-effective, when
the alternative hypothesis is that X is better than Y. If the alternative to the null
hypothesis had been that Y was better than X (the alternative hypothesis must, of
course, be chosen before the experiment) then the one-tail P would have been 12/35
+18/36+4/36 = 0-971, the probability of result as favourable to Y as that observed,
or more favourable, when X and Y are really equi-effective.
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8.2.1(d)) is seen to have P = 0-114. It is therefore impossible that a
verdict in favour of drug Y could have been obtained with these
patients. If the drugs were really equi-effective then, if the hypothesis
of equi-effectiveness were rejected every time b = 0 or b = 3 (the
two most extreme results), it would be (wrongly) rejected in 2-911-4
= 14-3 per cent of trials—far too high a level for the probability of an
error of the first kind (see § 6.1, para. 7). A two-tail test is therefore
not possible with such a small sample. This difficulty, which can only
occur with very small samples —it does not happen in the next example,
has been discussed in a footnote in § 6.1 (p. 89).
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Fi1a. 8.2.1. Randomization distribution of b (the number of patients improv-
ing on drug Y), when X and Y are equi-effective (i.e. null hypothesis true).

(c) Direct calculation. The Fisher test. It would not be feasible to
write out all permutations for larger samples. For two samples of ten
there are 20!/(10!10!) = 184756 permutations. Fortunately it is not
necessary. If a general 2 x 2 table is symbolized as in Table 8.2.3(a)

TABLE 8.2.3
success failure | total success failure | total
treatment X a A—a A 8 7 15
treatment Y b B—b B 1 11 12
total c D N 9 18 27

(a) (b)
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then Fisher has shown that the proportion of permutations giving rise
to the table is

A!BIC'D!
T NlalAd—a) b (B=b)!

For example, for Table 8.2.1(b), P = 4!31413!/(7131111121) = 12/35
= 0-343 as already found. With larger figures (8.2.1) is mest con-
veniently evaluated using tables of logarithms of factorials (e.g. Fisher
and Yates, 1963).

In fact no calculation at all is necessary as tables have been published
(Finney, Latscha, Bennett, and Hsu, 1963) for testing any 2 X 2 table
with 4 and B, or C and D, both not more than 40. Unfortunately, to
keep the tables a reasonable size it is not possible to find the exact P
value for all 22 tables, but it is given for those 2x 2 tables with
marginal totals up to 30 for which P < 0-05 (one tail). The published
tables are for B < 4 and b < a only, to avoid duplication. If the
table to be tested does not comply with this, rows and/or columns
must be interchanged until it does. As an example, the table in Table
8.2.3(b), which is from the introduction to the table of Finney et al.
(1963), is tested using the appropriate part of their table, which has been
reproduced in Table 8.2.4,

TaBLE 8.2.4
Ezact test for the 2 x 2 table (Extract from tables of Finney et al. (1963))

P

(8.2.1)

Probability (nominal)

a 0-05 0-025 0-01 0-006
A=18 B =12 15 8 0-028 7 o010~ 7 o-010~ 6 0-008
14 7 0-043 6 o016 5 0-006 4 0-002

18 6 0040 4 0007 8 0-002

9 2 0-028 1 0007 1 0-007 | 0 0-001|
8 | 1 (H)lsl 1 0018 0 0008 0 0-008
7 1 o-088 0 0-007 0 0-007 —_—

The observed Table 8.2.3(b) has 4 = 15, B =12, and a = 8.
Entering Table 8.2.4 with these values shows under each nominal
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probability a figure in bold type which is the largest value of b that is just
‘significant in a one-tail test at the 5 per cent (or 2-5, 1, or 0:5 per cent)
level’, i.e. for which the one-taslt P < 0-05, (or 0-025, 0-01, or 0-005).
The exact value of P is given in smaller type. It is the nearest value,
given that b must be a whole number, that is not greater than the
nominal value. In this example the one-tail P corresponding to the
observed b = 1 is 0-018. This is the sum of the P values calculated
from (8.2.1) for the observed table (a = 8,5 = 1, P = 0-017), and the
only possible more extreme one with the same marginal totals (a = 9,
b= 0, P = 0-001). To find the two-tail P value (see § 6.1 and above)
consider the distribution of b analogous to Fig. 8.2.1. In this case b
can vary from 0 to 9 and if the null hypothesis were true it would be
4 on the average (see § 8.5). The one-tail P found is the tail of the
distribution for b < 1. It is required to cut off an area as near as
possible tothis in the other tail of the distribution (b>>4),as in Fig, 6.1.1.
No value of b cuts off exactly P = 0-018 but b = 7 cuts off an area of
P = 0-019 that is near enough (see footnote, § 6.1, p. 89). This is the
sum of the probabilities of b = 7 and all the more extreme (b = 8 and
b = 9) results. It can be found from the tables of Finney et al. by the
method described in their introduction. The table has a = 2, b = 7,
A—a =13, B—b=105 so columns are interchanged, as mentioned
above, and the table entered with 13 and 5 rather than 2 and 7, as
marked in Table 8.2.4. Therefore if it were resolved to reject the null
hypothesis whenever & < 1 (a8 observed) or when b > 7 (opposite tail)
then, if the null hypothesis was in fact true, the probability that it
would be rejected (wrongly)—an error of the first kind —would be
P = 0:01840-019 = 0:037. This result for the two-tail test is small
enough to make one question the null hypothesis, i.e. to suspect a
real difference between the treatments, (see § 6.1).

In practioe, if the samples are not too small, it would be adequate,
and much simpler, to double the one-tail P from the table to get the
required two-tail P.

8.3. The problem of unacceptable randomizations

Sometimes it will be found that when two samples are selected at
random one sample contains, for example, all the men and the other
all the women. In fact if this does not happen sometimes, the selection
cannot be random. It seems silly to carry out an experiment in which

t For the case when it is decided, before the experiment, that the only alternative to
the null hypothesis is a difference between X and Y in the observed direction.
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treatment X is given only to men and treatment Y only to women.
Yet the logical basis of significance tests will be destroyed if the
experimenter rejects randomizations producing results he does not
like. Often this will be preferable to the alternative of doing an experi-
ment that is, on scientific grounds, silly. But it should be realized that
the choice must be made.

There is a way round the problem if randomization tests are used.
If it is decided beforehand that any randomization that produces two
samples differing to more than a specified extent in sex composition—
or weight, age, prognosis, or any other criterion—is unacceptable then,
if such a randomization comes up when the experiment is being
designed, it can be legitimately rejected if, in the analysis of the results,
those of the possible randomizations that differ excessively, according to
the previously specified criteria, are also rejected, in exactly the same
way as when the real experiment was done. So, in the case of Table
8.2.2, the number of possible allocations of drugs to the 7 patients
could be reduced to less than 35. This can only be done when using
the method of physical randomization, or a computer simulation
of this process, or writing out the permutations as in Table 8.2.2.
The shorter methods using calculation (e.g. from (8.2.1), or published
tables (e.g. for the Fisher exact test, § 8.2, or the Wilcoxon tests,
§§ 9.3 and 10.4), cannot be modified to allow for rejection of randomiza-
tions.

8.4. Two independent samples. Use of the normal approximation

Although the reasoning in § 8.2 is perfectly logical, and although
there is a great deal to be said for restricting attention to the observa-
tions actually made since it is usually impossible to ensure that any
further observations will come from the same population (see §§ 1.1
and 7.2), the exact test has nevertheless given rise to some controversy
among statisticians. It is possible to look at the problem differently.
If, in the example in Table 8.2.1, the 7 patients were thought of as
being selected from a larger population of patients then another sample
of 7 would not, in general, contain 4 who improved and 3 who did not.
This is considered explicitly in the approximate method described in
this section. However there is reason to suppose that the exact test
of § 8.2 is best, even for 2 2 tables in which the marginal totals are
not fixed (Kendall and Stuart 1961, p. 554).

Consider Table 8.2.3 again but this time imagine two infinite popula-
tions (e.g. X-treated and Y-treated) with true probabilities of success
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(e.g. improved) 2, and Z, respectively. From the first population a
sample of 4 individuals is drawn at random and is observed to contain a
successes (e.g. improved patients). Similarly b successes out of B are
observed in the sample from the second population. The experimental
estimates of 2, and #; are, as in § 3.4, p, = a/4 and p, = b/B, the
observed proportions of successes in the samples from the two popula-
tions. In repeated trials a and b should vary as predicted by the binomial
distribution (see § 3.4).

Use of the normal approximation to the binomial

It is required to test the null hypothesis that #;, = #;, both being
2, say. If this were so then on the average the observed proportions
would be the same too, so p, —p, would be distributed about a mean
value of zero (cf. Fig. 6.1.1). It was mentioned in § 3.4 and illustrated
in Fig. 3.4.1) that if = is reasonably large the discontinuous binomial
distribution of p is quite well approximated by a continuous normal
distribution. It will therefore be supposed, as an approximation, that
2, and p, are both normally distributed. This implies that the difference
between them (p; —p;) will be normally distributed with, according to
the null hypothesis, a population mean (x) of zero. The standard
deviation of this distribution can now be found by using (3.4.8) to
find the true variances of p, and p, which, given the null hypothesis,
are

_P(1-2) 2(1-2)

var(p,) = ——7 - var(py) = ‘B (8.4.1)

If p, and p, are independent, as they will be if the samples are indepen-
dent as assumed, (cf. § 6.4), the variance of their difference will be,
using (2.7.3),

1 1
var(py—p;) = var(p,)tvar(py) = 9’(1—9)(Z+]—3)° (8.4.2)

The true value, 2, is, of course, unknown, and it must be estimated
from the experimental results. No allowance is made for this, which is
another reason why the method is only approximate. The natural
estimate of &, under the null hypothesis, is to pool the two samples
and divide the total number of successes by the total number of trials
(e.g. total number improved by total number of patients), i.e.
p = (a+b)/(A+ B). Thus, taking £ = (p, —p,) a8 the normal variable,
with, according to the null hypothesis, 4 = 0, an approximate normal
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deviate (see §4.3) can be calculated, using (4.3.1) and (8.4.2). This
value of « can then be referred to tables of the standard normal distri-
bution (see § 4.3).

w B (pr—pa)
o) vI[p(1—p)(1/A+1/B)
Applying this method to the results in Table 8.2.3 gives p, = a/4

= 8/15, p; = b/B = 1/12, p = (a+b)/(A+B) = 9/27 and so, using
(8.4.3), the approximate normal deviate is

(8.4.3)

8/156—1/12
U~ / [ = 2-4648.

Jz0-5)5+5)]

s\ w1

According to Table 1 of the Biometrika tablest about 1-4 per cent of the
area of the standard normal distribution lies outside wu4-2-4648
(0-7 per cent in each tail). The result of the test, P = 0-014, is seen to
be a poor approximation to the exact result, P = 0-037, found at the

end of § 8.2. A better approximation can be found by using a ‘correction
for continuity’ and this should always be done.

Yates’ correction for continuity

Say » = r/n in general. It can be shown (e.g. Brownlee (1965, pp.
139, 152)) that the approximation of the continuous normal distribution
to the discontinuous binomial is improved if 0-5 is added to or sub-
tracted from r (or 0-5/n is added to or subtracted from p), so as to
make the deviation from the null hypothesis smaller. Thus a better
approximation than (8.4.3) for the normal deviate is

~ (P1—0'5/A)—(P2+0'5/B),
v[p(1—-p)(1/A+1/B)]

where p; > p,. Using the results in Table 8.3 again, gives u = 2-054.
Again using Table 1 of the Biometrika tables it is found that 4-0 per
cent of the total area of the standard normal distribution lies outside
u = 42-054 a8 shown in Fig. 8.4.1 (cf. Fig. 6.1.1). In other words, in
repeated experiments it would be expected, if the null hypothesis were

true, that in 2-0 per-unit of experiments » would be less than —2-054,
percent
t+ This table actually gives the area below u = +2-468, ie. 1—0-007 = 0-993.
See §4.3 for detaila.

(8.4.4)
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and in 2-0 per cent u would be greater than -+ 2:054. This is a two-tail
test (see § 6.1).

The result of the test. The probability of observing a difference (positive or
negative) in success rate between the sample from population 1 (X-treated) and
that from population 2 (¥-treated) as large as, or larger than, the observed
sample difference, if there were no real difference between the treatments
(populations), would be approximately 0.04, a 1 in 26 chance.

The corrected result, P = 0-04, is quite a good approximation to
the exact probability, P = 0-037, found at the end of § 8.2. It is low
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F1a. 8.4.1. Normal approximation to the binomial. Difference between two
binomial proportions is converted to an approximate normal deviate, u, and
referred to the standard Gaussian curve shown in the figure.

enough to make one suspect (without very great confidence) a real
difference between the treatments.

Nonparametric nature of test. Although the normal distribution is
used, the test just described is still essentially a nonparametric test.
This is because the fundamental assumption is that the proportion of
sucoesses is binomially distributed and this can be assured by proper
sampling methods. The normal distribution is used only as a mathe-
matical approximation to the binomial distribution.

8.6. The chi-squared (x?) test. Classification measurements
with two or more independent samples

The probability distribution followed by the sum of squares of n independent
standard normal variates (i.e. Z(z,—pu,)3/0?) where z, is normally distributed with &
mean of u; and a standard deviation of o, see § 4.8), is called the chi-squared
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distribution with f degree of freedom, denoted x?,. As suggested by the definition,
the scatter seen in estimates of the population variance, calculated from repeated
samples from a normally disiribuled population, follows the y? distribution. In
fact y? = fs3/0® where 52 is an estimate of o® issued on f degrees of freedom. The
consequent use of y3 for testing hypotheses about the true variance of such a
population is described, for example, by Brownlee (1965, p. 282).

In the special case of f = 1 d.f., one has x?) = u?, the square of a
single standard normal variate. Tables of the distribution of chi
squared with one degree of freedom can therefore be used, by squaring
the values of % found in § 8.4, as an approximate test for the 2x 2
table. In practice y2, is not usually calculated by the method given
for the calculation of u, but by another method which, although it
does not look related at first sight, gives exactly the same answer, as
will be seen. The conventional method of calculation to be described
has the advantage that it can easily be extended to larger tables of
classification measurements than 2 x 2. An example is given below.

The form in which x? is most commonly encountered is that appro-
priate for testing (approximately) goodness of fit, and tables of
classification measurements (contingency tables). If z, is an observed
frequency and z, is the expected value of the frequency on some
hypothesis, then it can be shown that the quantity

)2
z(%x—x) (8.5.1)

which measure the discrepancy between observation and hypothesis,
is distributed approximately like x2. This approach will be used to test
the 2 x 2 table (Table 8.2.3) that has already been analysed in §§ 8.2
and 8.4.

The expected values, z,, of the frequencies, given the null hypothesis
that the proportion of successes is the same in both populations, are
calculated as follows. The best estimate of this proportion of successes
is, as found in § 8.4, p = (a+b)/(A+ B) = 9/27 = 0-3333. Therefore,
if the null hypothesis were true, the best estimate of the numbert of
successes in the sample from population 1 (e.g. number of patients
improved on drug X) would be 0:3333x 15 = 5, and similarly the
expected number for population 2 (e.g. drug Y) would be 0-3333 x 12

t This need not be a whole number (see Table 8.6(b) for example). It is a predicted
long-run average frequency. The individual frequencies must, of course, be integers.
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= 4. The original table of observations, and the table of values expected
on the null hypothesis are thus:

Observed frequencies (z,)

Ezxpected frequencies (¢,)

success failure total success failure total
Population 1 8 7 15 5 10 15
Population 2 1 11 12 4 8 12
Total 9 18 27 ) 18 27

The summation in (8.5.1) is over all of the cells of the table. The
differences (z,—z,) are 8—5 =3, 1—4 = —3, 7—10 = —3, and
11—8 = 3. Thus, from (8.5.1),

. 32 (_3)2 (_3)2 32
v=gty T tg = 8%

This is & value of 2 with one degree of freedom, because only one
expected value need be calculated, the rest following by difference
from the marginal totals. It is, as expected, exactly the square of the
value of « found in § 8.4, 2-46482 = 6-075.

Correction for continuity

As in § 8.4, this approximate test for association in a 2x 2 table
should not be applied without using the correction for continuity.
Simply reduce the absolute values of the deviations by 0-5 giving

2.52 (—2:5)32 (—26) 25
( ! ) +5- — 4219

i
e 10 8

Again it is seen that this is exactly the square of the (corrected) value of
u found in § 84, u? = 2:054% = 4-219 = y2. This can be referred
directly to a table (e.g. Fisher and Yates, 1963, Table IV; or Pearson
and Hartley, 1966, Table 8) of the chi-squared distribution which,
for one degree of freedom, has the appearance shown in Fig. 8.5.1.
It is found that 4-0 per cent of the area under the curve lies above
22 = 4219 (because of the way the tables are constructed the most
accurate value that can be found from them is that the area is a little
less than 5-0 per cent, i.e. 0:05>>P>>0-025). This is exactly the same
as found in § 8.4 as it should be, since the y2 test for the 2 x 2 table is just
another way of writing the test using the normal approximation to the
binomial. The result of the test states that ¢f the null hypothesis were
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true, a value of y?, as large as 4-219 or larger would be found in
4-0 per cent of repeated experiments in the long run. This casts a
certain amount of suspicion on the null hypothesis as explained in
§ 8.4.

It should be noticed that the probability found using x2? is that
appropriate for a two-tail test of significance (as shown in §8.4,

05
041
_':;
‘B
£ 0-3L
>, 1 degree of freedom
;‘E
e
2
£
-9
02+
4 degrees of freedom
01k
4 per vent of area
0-0 | A ] 1 ’ L A h | J
0 1 2 3 + b5 6 7 8 9 10
4219 Xt

Fia. 8.6.1. The distribution of chi-squared. The observed value, 4:219, for

chi-squared with one degree of freedom (see text) would be exceeded in only 4

per cent of repeated experiments in the long run if the null hypothesis were true.

The distribution for 4 degrees of freedom is also shown. (See Chapter 4 for
explanation of probability density.)

Fig. 8.4.1, cf. §6.1) in spite of the fact that only one tail of the »2
distribution is considered in Fig. 8.5.1. This is because x2 involves the
squares of deviations, so deviations from the expected values in esther
direction increase y2 in the same direction.
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Use of chi-squared for testing association in tables of classification measure-
ments larger than 2 x 2

If the results of treatments X and Y had been classified in more than
two ways, for example success, no change, or failure, the experiment
shown in Table 8.2.3(b) might have turned out as in Table 8.5.1(a).

TaBLE 8.5.1
no
success change failure
Treatment X | ] 3 4 15
Treatment ¥ 1 5 6 12
(a) observed
9 8 10 27
no
success change failure
Treatment X 5 44 68 15
Treatment ¥ 4 88 44 12 (b) expected on
null hypothesis
9 8 10 27

A proper randomization analysis could be done similar to that in
§ 8.2, but no tables exist to shorten the calculations for tables larger
than 2 X 2. Often two or more columns or rows can be pooled (giving,
for example, Table 8.2.3(b) again) to give 2x2 tables, which may
answer the relevant questions. For example, is the proportion of
success and of [no change or failure] the same for X and Y1 This
question is answered by the test of Table 8.2.3(b).

Table 8.5.1(a) itself can be tested using the x? approximation,
which is quite sufficiently accurate if all the expected frequencies are
at least 5. (They are not in this case; the test is not really safe with
such small numbers.) On the null hypothesis that the proportion of
successes is the same from treatments X and Y this proportion would
be estimated as 9/27 = 0-3333. So the number of successes expected on
the null hypothesis, when 15 individuals are treated with X, is 0-3333
X156 = b. Proceeding similarly for ‘no change’ and ‘failure’ gives
Table 8.58.1(b). Thus, from (8.5.1),

(8—5)2 (3—4-4)2 (6 —4-4)?

A= Tyttt = 8086
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Note that no correction for continuity is used for tables larger than
2x 2. ¥* has two degrees of freedom since only two cells can be filled
in Table 8.5.1(b), the rest then follow from the marginal totals. Consult-
ing a table of the y? distribution (e.g. Fisher and Yates 1963, Table
IV) shows that a value of 42 (with 2 d.f.) equal to or larger than 6-086
would occur in slightly less than 5 per cent of trials in the long run, if
the null hypothesis were true; i.e. for a two-tail test 0-026 < P < 0-05.
This is small enough to cast some suspicion on the null hypothesis.

Independence of classifications (e.g. of treatment type and success
rate) is tested in larger tables in an exactly analogous way, y? being the
sum of rk terms, and having (r—1)(k—1) degrees of freedom, for a
table with r rows and k columns.

8.6. One sample of observations. Testing goodness of fit with
chi-squared

In examples in §§ 8.2-8.5 two (r in general) samples (treatments)
were considered. Each sample was classified into two or more (k in
general) ways. The chi-squared approximation is the most convenient
method of testing a single sample of classification measurements, to
see whether or not it is reasonable to suppose that the number of
subjects (or objects, or responses) that are observed to fall in each of the
k classes is consistent with some hypothetical allocation into classes
that one is interested in.

For example, suppose that it were wished to investigate the (null)
hypothesis that a die was unbiased. If it were tossed say 600 times the
expected frequencies, on the nullhypothesis, of observing1, 2,3, 4,5,and 6
(the & = 6 classes) would all be 100, 80 z, is taken as 100 each class in
calculating the value of eqn. (8.5.1). The observed frequencies are the
z, values. The value of eqn. (8.5.1) would have, approximately, the
chi-squared distribution with k—1 = 5 degrees of freedom if the null
hypothesis were true, so the probability of finding a discrepancy be-
tween observation and expectation at least as large as that observed
could be found from tables of the chi-squared distribution as above.
(See also numerical example below.)

As another example suppose that it were wished to investigate the
(null) hypothesis that all students in a particular college are equally
likely to have smoked, whatever their subject. Again the null hypothesis
specifies the number of subjects expected to fall into each of the k
classes (physics, medicine, law, etc.). If there are 500 smokers altogether
the observed numbers in physics, medicine, law, etc. are the z, values
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in eqn. (8.5.1). The expected numbers, on the null hypothesis, are
found much as above. The example is8 more complicated than in the
case of tossing a die, because different numbers of students will be
studying each subject and this must obviously be allowed for. The total
number of smokers divided by the total number of students in the
college gives the proportion of smokers that would be expected in each
class is the null hypothesis were true, so multiplying this proportion
by the number of people in each class (the number of physics students
in the college, etc.) gives the expected frequencies, z,, for each class.
The value calculated from (8.5.1) can be referred to tables of the chi-
squared distribution with k—1 degrees of freedom, as before.

A numerical example. Goodness of fit of the Potsson distribution

The chi-squared approximation, it has been stated, can be used to
test whether the frequency of observations in each clase differ by an
unreasonable amount from the frequencies that would be expected if
the observations followed some theoretical distribution such as the
binomial, Poisson, or Gaussian distributions. In the examples just
mentioned, the theoretical distribution was the rectangular (‘equally
likely’) distribution, and only the total number of observations (e.g.
number of smokers) was needed to find the expected frequencies. In
§ 3.6 the question was raised of whether or not it was reasonable to
believe that the distribution of red blood cells in the haemocytometer
was a Poisson distribution, and this introduces a complication. The
determination of the expected frequencies, described in § 3.6, needed
not only the total number of observations (80, see Table 3.6.1), but
also the observed mean # = 6-625 which was used as an estimate of m
in calculating the frequencies expected if the hypothesis of a Poisson
distribution were true. The fact that an arbitrary parameter estimated
from the observations (f = 6-625) was used in finding the expected
frequencies gives them a better chance of fitting the observations than
if they were calculated without using any information from the observa-
tions themselves, and it can be shown that thismeans that the number of
degrees of freedom must be reduced by one, so in this sort of test chi-
squared has k—2 degrees of freedom rather than k—1.

Categories are pooled as shown in Table 3.6.1 to make all calculated
frequencies at least 5, because this is a condition (mentioned above)
for 42 to be a good approximation. Taking the observed frequency as
z, and the calculated frequency (that expected on the hypothesis that
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cells are Poisson distributed as z, gives, using (8.5.1) with the results
in Table 3.6.1,
(48P (59 (3—B]F (0—B)?

8 9 5 + 5 = 14-7.

The number of degrees of freedom, in this case, is the number of
classes (k = 9 after pooling) minus two, as mentioned above. There
are therefore 7 degrees of freedom. Looking up tables of the y? distribu-
tion shows that Pfy#, > 14:7] =~ 0-05. This means that if the true
distribution of red cells were a Poisson distribution, then an apparent
deviation from the caloulated distribution (measured by x?) as large as,
or larger than, that observed in the present experiment would be
expected to arise by random sampling error in only about 5 per cent of
experiments. This is not low enough (see § 6.1) for one to feel sure that
the premise that the distribution is Poissonian must be wrong, though
it is low enough to suggest that further experiments might lead to that
oonclusion.

8.7. :I?ITted samples of classification measurements. Cross-over
rials

Consider Table 8.7.1(a), which is based on an example discussed by
Mainland (1963, p. 236). It looks just like the 2 x 2 tables previously
presented. In fact it is not, because it was not based on two independent
samples of 12. There were actually only 12 patients and not 24. Each
patient was given both X and Y (in a random order). This is described
a8 a cross-over trial because those (randomly chosen) patients who
were given X first (period 1) were subsequently (period 2) given Y, and
vice versa. Table 8.7.1(a) is an incorrect presentation of the results
because it disguises this fact. Table 8.7.1(b) is a correct way of giving
the results, and it contains more information since 8.7.1(a) can be
constructed from it, whereas 8.7.1(b) cannot be constructed from
8.7.1(a). Table 8.7.1(b) cannot be tested in the way described for
independent samples either. The 5 patients who reacted in the same
way to both X and Y contribute no information about the difference
between the drugs, only the 7 who reacted differently to X and Y do so.
Furthermore, the possibility that the result depends on whether X or
Y was given first can be taken into account. The correct method of
analysis is described clearly by Mainland (1963 p. 236). The full results,
which have been condensed into 8.7.1(b), were a8 given in Table
8.7.2. Note that of the 12 patients half (6 selected at random from the
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12) have been assigned to the XY sequence, the other half to the
Y X sequence. These results can be arranged in a 2 x 2 table, 8.7.3(a)
consisting of two independent samples. A randomization (exact) test
or x2 approximation applied to this table will test the null hypothesis

TaBLE 8.7.1
not
improved improved
(I (N)
Drug X 12 0 12
Drug Y 5 7 12
17 1 24 8.7.1(a)
Drug Y
————
I N
I 5 7 12
Drug X
N 0 0 0
5 7 12 8.7.1(b)
TABLE 8.7.2
Patients showing X in period (1) X in period (2) Totals
improvements
In both periods 3 2 5
In period (1)
not in (2) 3 0 3
In period (2)
not in (1) 0 4 4
In neither period 0 0 0
6 6 12

that the proportion improving in the first period is the same whether
X or Y was given in the first period, i.e. that the drugs are equi-effective.
The test has been described in detail in § 8.2 (the table is the same as
Table 8.2.1(a)), where it was found that P (one tail) = 0-029 but that
the sample is too small for a satisfactory two-tail test, which is what is
needed. In real life a larger sample would have to be used.
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The subjects showing the same response in both periods give no
information about the difference between drugs but they do give
information about whether the order of administration matters.
Table 8.7.3(b) can be used to test (with the exact test or chi squared)
the null hypothesis that the proportion of patients giving the same
result in both periods does not depend on whether X or Y was given
first. Clearly there is no evidence against this null hypothesis. If, for

TABLE 8.7.3

Improved in  Improved in
(1) not (2) (2) not (1)

X in period (1) 8 0 3
X in period (2) 0 " 4
3 4 | 7 8.7.3(a)

Outcome in periods (1) and (2)

same different !
X in period (1) 3 8 6
X in period (2) 2 4 6
5 7 | 12 8.7.3(b)

example, drug X had a very long-lasting effect, it would have been
found that those patients given X first tended to give the same result
in both periods because they would still be under its influence during
period 2.

If the possibility that the order of administration affects the results
is ignored then the use of the sign test (see § 10.2) shows that the
probability of observing 7 patients out of 7 improving on drug X (on
the null hypothesis that if the drugs are equi-effective there is a
50 per cent chance, & = 1/2, of a patient improving) is simply P
= (1/2)" = 1/128. For a two-tail test (including the possibility of 7 out
of 7 not improving) P = 2/128 = 0-016, a far more optimistic result
than found above.



9. Numerical and rank measurements.
Two independent samples

‘Heifle Magister, heile Doktor gar,

Und ziehe schon an die zehen Jahr

Herauf, herab und quer und krumm

Meine Schiiler an der Nase herum—

Und sehe, daB wir nichts wissen kdnnen!
Das will mir schier das Herze verbrennen.’t

t ‘They call me master, even doctor, and for some ten years now I've led my students
by the nose, up and down, and around and in circles—and all I see is that we cannot
know! It nearly breaks by heert.’

my GOETHE
{Faust, Part 1, line 360)

9.1. Relationship between various methods

IN §9.2 the randomization test (see §§ 6.3 and 8.2) is applied to
numerical observations. In § 9.3 the Wilcoxon, or Mann-Whitney,
test is described. This is a randomization test applied to the ranks
rather than the original observations. This has the advantage that
tables can be constructed to simplify calculations. These randomization
methods have the advantage of not assuming a normal distribution;
also they can cope with the rejection of particular allocations of treat-
ments to individuals that the experimenter finds unacceptable, as
described in §8.3. They also emphasize the absolute necessity for
random selection of samples in the experiment if any analysis is to be
done. For large samples Student’s ¢ test, described in § 9.4, can be used,
though how large is large enough is always in doubt (see § 6.2). At
least four observations are needed in each sample, however large the
differences, unless the observations are known to be normally distri-
buted, as discussed in § 6.2,

9.2. Randomization test applied to numerical measurements

The principle involved is just the same as in the case of classification
measurements and § 8.2 should be read before this section, as the
arguments will not all be repeated.

Suppose that 4 patients are treated with drug A and 3 with drug B
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as in § 8.2, but, instead of each being classified as improved or not
improved, a numerical measurement is made on each. For example,
the reduction of blood glucose concentration (mg/100 ml) following
treatment might be measured. Suppose the results were as in Table
9.2.1.

The numbering of the patients is arbitrary but notioe that if a positive
response is counted a8 an ‘improved’ and negative as ‘not improved’,
Table 9.2.1 is the same as Table 8.2.1(b) so, if the size of the improve-
ment is ignored, the results can be analysed exactly as in § 8.2.

However, with such a small sample it is easy to do the randomiza-
tion test on the measurements themselves. The argument is as in

TaBLE 9.2.1

Responses (glucose concentration, mg[100 ml) to two drugs. The ranks of
the responses are given for use in § 9.3

Drug A Drug B

Patlent Response Patient Response

number (mg/100ml) Rank number (mg/100ml) Rank Total
1 10 5 4 5 4
2 16 [} [} -3 2
3 20 i i -5 1
5 -2 8

Total 43 21 -8 i 40

§ 8.2. See p. 117 for details. If the drugs were really equi-effective (the
null hypothesis) each patient would have shown the same response
whichever drug had been given, so the apparent difference between
drugs would depend solely on which patients happened to be selected
for the A group and which for the B group, i.e. on how the random
numbers happened to come up in the selection of 4 out of the 7 for drug
A. Again, as in § 8.2, the seven measurements could be written on
cards from which 4 are selected at random (just as in the real experi-
ment) and called A, the other 3 being B. The difference between the
mean for A and the mean for B is noted and the process repeated many
times. There is actually no need to calculate the difference between
means each time. It is sufficient to look at the total response for drug
B (taking the smaller group for convenience) because once this is
known the total for A follows (the total of all 7 being always 40), and
8o the difference between means also follows. If the experimentally
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observed total response for B (—3 in the example), or a more extreme
(i.e. smaller in this example) total, arises very rarely in the repeated
randomizations it will be preferred to suppose that the difference
between samples is caused by a real difference between drugs and the
null hypothesis will be rejected, just as in § 8.2.

TABLE 9.2.2
Enumeration of all 35 possible ways of selecting a group of 3 patients from
7 to be given drug B. The response for each patient is given sn Table
9.2.1. The total ranks for drug B are given for use in § 9.3

Patients Total Patients Total
given response Total given response Total
drug B (mg/100ml) rank drug B (mg/100ml) rank
5 6 17 —10 6 1 2 6 23 14
1 2 6 22 18
1 2 9 20 12
1 6 6 6 10 1 8 6 28 15
1 6 1 3 9 1 8 6 27 14
1 6 7 2 8 1 8 7 26 18
2 6 6 10 11 1 46 13 12
2 5 17 8 10 1 4 6 12 11
2 6 7 7 9 1 4 7 10 10
8 5 6 15 12 2 8 6 83 16
38 6 1 13 11 2 3 6 32 16
3 6 17 12 10 2 8 17 30 14
4 6 6 0 9 2 4 5 18 138
4 6 1 —2 8 2 4 6 17 12
4 6 17 —3 1 2 4 7 16 11
3 4 b6 23 14
3 4 6 22 13
3 4 1 20 12
1 2 3 46 18
1 2 4 30 16
1 3 4 35 16
2 3 4 40 17

With such small samples the result of such a physical randomization
can be predicted by enumerating all 7!/(3!4!) = 35 possible ways (see
eqn. (3.4.2)) of dividing 7 patients into samples of 3 and 4. This predic-
tion depends on each of the possible ways being equiprobable, i.e.
the one used for the actual experiment must have been picked at random if
the analysis 18 to valid. The enumeration is done in Table 9.2.2. This
table is exactly analogous to Table 8.2.2 but instead of counting the
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number improved, the total response is calculated. For example, if
patients, 1, 5, and 6 had been allocated to drug B the total response
would have been 104 (—2)+(—3) = 5 mg/100 ml. The results from
Table 9.2.2 are collected in Table 9.2.3, which shows the randomization
distribution (on the null hypothesis) of the total response to drug B.
This is exactly analogous to Fig. 8.2.1. The observed total (—3) and
smaller totals (the only smaller one is —10) are seen to ocour 2/35
(= 0-057) times, if the null hypothesis is true, and this is therefore the
one-tail P. For a two-tail test (see § 6.1) an equal area can be cut off
in the other tail (total for B > 40), so the result of the two-tail test is
P = 4/35 = 0-114. This is not small enough to cast much suspicion on
the truth of the null hypothesis, but it is somewhat different from the
P = 0-372 (one tail) found in the analysis of Table 8.2.1(b), to which,
as mentioned above, Table 9.2.1 reduces if the sizes of the improve-
ments are ignored. In § 8.2 a one-tail P = 0.372 was found and a
two-tail test was not possible. The reason for the difference is that in
the results in Table 9.2.1 the ‘improvements’ on drug A are much
greater in size than the (negative) ‘non-improvements’ on drug B.
The two-tail test can be done since in § 8.2 all 35 randomizations
yielded only 4 different possible results (Table 8.2.1) for the trial, but
with numerical measurements the 35 randomizations have yielded
27 possible results, listed in Table 9.2.3, so it it is possible to cut off
equal areas in each tail (cf. §6.1). Notice that if patient 3 had been
in the B group and patient 4 in the A group (this leaves Tables 9.2.2
and 9.2.3 unchanged) the observed total for group B would have been
20+ (—3)+(—5) = 12 and it is seen from Table 9.2.3 that a total
< 12 occurs in a proportion 13/66 = 0-372 of cases. This one-tail P
(when a large improvement, patient 4, is seen with drug B) is as large
as that found in § 8.2.

With larger samples there are too many permutations to enumerate
eagily. For two samples of 10 there are (by (3.4.2)) 20!/(10!10!)
= 184756 ways of selecting 10 samples from 20 individuals. However it
is not difficult for a computer to test a large sample of these possible
allocations by simulating the physical randomization (random assort-
ment of cards) mentioned at the beginning of this section, and of
§ 8.2. Programs for doing this do not seem to be widely available at
the moment but will doubtless become more common. This method has
the advantage that it can allow for the rejection of a random arrange-
ment that the experimenter finds unacceptable (e.g. all men in one
sample) as explained in § 8.3. The results in Table 9.2.4 are observations
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TABLE 9.2.3
Randomization distribution of total response (mg/100ml) of a group of
3 patients given drug B (according to the null hypothesis that A and B
are equi-effective). Constructed from Table 9.2.2

Total for

drug B Frequency
(mg/100ml)

—10
-3
-2

=N NO

10
12
13
156
17
18
20
22
23
25
27
28
30
32
33
386
40
46

Pk Pt Pt Pt Pt DD bt et bt DD DD DD b=t bt DD DO DD DD bt bt bt bt pt et et et et

Total

[
1=

made by Cushny and Peebles (1805) on the sleep-inducing properties of
(—)-hyoscyamine (drug A) and (—)-hyoscine (drug B). They were
used in 1908 by W. S. Gosset (‘Student’) as an example to illustrate the
use of his ¢ test, in the paper in which the test was introduced.t

If two randomly selected groups of ten patients had been used, a

t In this paper the names of the drugs were mistakenly given as (—) hyoscyamine
and (4 )-hyoscyamine. When someone pointed this out Student commented in a letter
to R. A, Fisher, dated 7 January 1935, ‘That blighter is of course perfectly right and
of course it doeen’t really matter two straws . . .’
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randomization test of the sort just described could be done as follows.
(In the original experiment the samples were not in fact independent
but related. The appropriate methods of analysis will be discussed in
Chapter 10.) A random sample of 12000 from the 184756 possible
permutations was inspected on a computer and the resulting randomiza-
tion distribution of the total response to drug A is plotted in Fig. 9.2.1

TABLE 9.2.4
Response in hours extra sleep (compared with controls) snduced
by (—)-hyoscyamine (A) and (—)-hyoscine (B).
From Cushny and Peebles (1905)

Drug A Drug B
+07 +1-9
—1-6 +0-8
—0-2 +1-1
—1-2 +0-1
—0-1 —0-1
+34 +4-4
+87 +66
+0-8 +1-6

0-0 +4-6
+2:0 +34
Zya =16 Zys = 233
n, = 10 ng = 10
!7A = 0'75 !75 = 2'33

(of. the distribution in Table 9.2.3 found for a very small experiment).
Of the 12000 permutations 488 gave a total response to drug A of less
than 7-5, the observed total (Table 9.2.4), so the result of a one-tail
randomization test is P = 488/12000 = 0-04067. With samples of this .
gize there are so many possible totals that the distribution in Fig. 9.2.1
is almost continuous, so it will be possible to cut off a virtually equal
area in the opposite (upper) tail of the distribution. Therefore the
result of two-tail test can be taken as P = 2x 0-04067 = 0-0813. This
is not low enough for the null hypothesis of equi-effectiveness of the
drugs to be rejected with safety because the observed results would not
be unlikely if the null hypothesis were true. The distribution in Fig.
9.2.1, unlike that in Table 9.2.3, looks quite like a normal (Gaussian)
distribution, and it will be found that the ¢ test gives a similar result
to that just found.
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F1a. 9.2.1. Randomization distribution of the total response to drug A
for Cushny and Peebles’ results, when A and B are equi-effective (null hypothesis
true). The values of the difference between means corresponding for each total
for A is aleo shown on the abecissa (the total of all responses is 30-8 for every
allocation so, for example, if the total for A were 10-4, the total for B must be
204 8o the difference between means is 1-0). Constructed from a random sample
of 12000 from the 184756 ways of allocating 10 patients out of 20 to drug A.

9.3. Two sample randomization test on ranks. The Wilcoxon (or
Mann—-Whitney) test

The difficulty with the method described in § 9.2 is that it is not
possible to prepare tables for all possible sets of observations. However,
if the observations are ranked in ascending order and each observation
replaced by its rank before performing the randomization test it is
possible to prepare tables, because now every experiment with N
observations will involve the same numbers, 1, 2,. . ., N.

In addition to the fact that it is not necessary to assume a particular
form of distribution of the observations, another advantage is that the
method can be used for results that are themselves ranks, or results
that are not quantitative numerical measurements but can be ranked
in order of magnitude (e.g. subjective pain scores). Even with numerical
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The frequency of each rank total in Table 9.2.2 is plotted in Fig. 9.3.1,
which shows the randomization distribution of the total rank for drug
B (given the null hypothesis). This is exactly analogous to the distribu-
tions of total response shown in Table 9.2.3 and Fig. 9.2.1, but the
distributions of total response depend on the particular numerical
values of the observations, whereas the distribution of the rank sum
(given the null hypothesis) shown in Fig. 9.3.1 is the same for any
experiment with samples of 3 and 4 observations. The values of the
rank sum cutting off 2-5 per cent of the area in each tail can therefore
be tabulated (Table A3, see below).

The observed total rank for drug B was 7, and from Fig. 9.3.1, or
Table 9.2.2, it can be seen that there are two ways of getting a total
rank of 7 or less, 8o the result of a one-tail test is P = 2/35 = 0-057.
An equal probability, 2/35, can be taken in the other tail (total rank of
17 or more) so the result of a two-tail test is P = 4/256 = 0-114. This
is the probability that a random selection of 3 patients from the 7
would result in the potency of drug B (relative to A) appearing to be
as small as (total rank = 7), or smaller than (total rank < 7), was
actually observed, or an equally extreme result in the opposite direction,
if A and B were actually equi-effective. Since such an extreme apparent
difference between drugs would occur in 11-4 per cent of experiments
in the long run, this experiment might easily have been one of the
11-4 per cent, so there is no reason to suppose the drugs really differ
(see §6.1). In this case, but not in general, the result is exactly the
same as found in § 9.2.

A check can be applied to the rank sums, based on the fact that the
mean of the first N integers, 1, 2, 3,. . ., N, is (N+41)/2 so therefore

sum of the first N integers = N(N{1)/2. (9.3.1)

In this case 7(7+1)/2 = 28, and this agrees with the sum of all ranks
(Table 9.2.1), which is 2147 = 28.

The distribution of rank totals in Fig. 9.3.1 is symmetrical, and this
will be so as long as there are no ties. The result of a two-tail test will
therefore be exactly twice that for a one-tail test (see § 6.1).

The use of tables for the Wilcoxon test

The results of Cushny and Peebles in Table 9.2.4, which were
analysed in § 9.2, are ranked in ascending order in Table 9.3.1. Where ties
occur each member is given the average rank as shown. This method
of dealing with ties is only an approximation if Table A3 is used
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because the table refers to the randomization distribution of integers,
1,2,3,4,5,6,. . .20, not the actual figures used, i.e. 1, 2, 3, 4}, 44, 6,
etc. Such evidence as there is suggests a moderate number of ties does
not cause serious error.

The rank sum for drug A is 14+2+43+44+6+8+94+14+154+17
= 804, and for drug B it is 1294. The sum of these, 804+ 1298} = 210,

TaBLE 9.3.1
The observations from Table 9.2.4 ranked in ascending order

Observation
Drug (hours) Rank
A —1-6 1
A —1-2 2
A —0-2 8
B —01 4}, __ 4456
A —0-1 441 o
A 0-0 6
B 01 7
A 0-7 8
B 0-8 94 9+10
A 0-8 94/ = g
B 1-1 11
B 16 12
B 1-9 13
A 2:0 14
B 84 16%| _ 15418
A 84 164 — 2
A 37 17
B 44 18
B 46 19
B 56 20
Total 210

checks with (9.3.1), which gives 20(204-1)/2 = 210. A randomization
distribution could be found, just as above and in § 9.2, for the sum of
10 ranks picked at random from 20. The proportion of possible alloca-
tions of patients to drug A giving a total rank of 804 or less is the
one-tail P, as above. The two-tail P may be taken as twice this value
though, as mentioned this may not be exact when there are ties.
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P (two tail) can be found (approximately) from Table A3 in which
n, and 7, are the sample sizes (n, < n;). For each pair of sample sizes
two figures are given. If the rank sum for sample 1 (that with n,
observations) is equal to or less than the smaller tabulated figure,
or if it is equal to or greater than the larger tabulated figure, then
P (two tail) is not greater than the figure at the head of the column.
In this case n, = 10, n; = 10 and the pair of tabulated figures is
82, 128t for P = 0-1, and 78, 132 for P = 0-05. The observed rank
sum of 804 is less than 82 but greater than 78, so P is between 0-1 and
0-05. This means that if the null hypothesis of equi-effectiveness were
true then the probability of observing a rank sum of 804 or less would
be under 0-05, and the probability of observing a rank sum equally
extreme in the other direction would also be under 0-05, 80 the total
two-tail P (see § 6.1) is under 0-1. This result is similar to that found in
§ 9.2 using the slightly more powerful randomization test on the
observations themselves. It is not small enough to provide evidence for
a difference between the drugs.

How to deal with samples that are too large for Table A3

Table A3 only deals with samples containing up to 20 observations.
For larger samples the randomization distribution of ranks (shown for a
small sample in Fig. 9.3.1) is well approximated by a normal distribu-
tion. If the null hypothesis is true, the distribution of the rank sum,
R, say, for the sample with n, observations can be shown (see, for
example, Brownlee, 1965, p. 252) to have mean

= m(N+1)/2, (9.3.2)
where N = n,+n4 is the total number of observations. For example, in
the first example discussed in this section, n, = 3, N =7 80 yu; = 3

(741)/2 = 12, as is obvious by inspection of Fig. 9.3.1. The standard
deviation of R, is (loc. cit.)

¢ = +/[nm(N41)/12]. (9.3.3)

For the distribution in Fig. 9.3.1 the standard deviation is therefore

+v/[3%x4(741)/12] = 2-828. Using these values, an approximate

standard normal deviate (see § 4.3) can be calculated from (4.3.1) as

R, at Y
o

(9.3.4)

t These are the rank sums that cut off 5 per cent of the area in each tail (10 per cent,
P = 0-1, altogether), in the analogue of Fig. 9.3.1 for samples of size 10 and 10.



148 Numerical and rank measurements §9.3

and the rarity of the result judged from tables of the standard normal
distribution.

For example, the results in Table 9.3.1 gave n; = 10, N = 20,
R, = 80-5. Thus, from (9.3.2)~(9.3.4),

80-5—10(20+1)/2

= Vox102o+1z 8

u

This value is found from tables (see § 4.3) to cut off an area P == 0-032
in the lower tail of the standard normal distribution. The result of
two-tail test (see § 6.1) is therefore this area, plus the equal area above
u = +1-85, i.e. P = 2X0-032 = 0-064, in good agreement, even for
samples of 10, with the exact result from Table A3. The two-tail result
can be found directly by referring the value « = 1-85 to a table of
Student’s ¢ with infinite degrees of freedom (when t becomes the
same as u, see § 4.4).

9.4. Student’s t test for independent samples. A parametric test

This test, based on Student’s ¢ distribution (§ 4.4), assumes that
the observations are normally distributed. Since this is rarely known
it is safer to use the randomization test (§ 9.2) or, more conveniently,
the Wilcoxon two-sample test (§ 9.3) (see §§ 4.2, 4.6 and 6.2). It will
now be shown that when the results in Table 9.2.4, are analysed using ¢
test the result is similar to that obtained using the more assumption-free
method of §§ 7.2 and 7.3. But it cannot be assumed that the agreement
between methods will always be so good with two samples of 10. It
depends on the particular figures observed. If the observations were
very non-normal the ¢ test might be quite misleading with samples of 10.
The assumptions of the test are explained in more detail in § 11.2 and
there is much to be said for always writing the test as an analysis of
variance as described at the end of § 11.4. There was no evidence that
the assumptions were true in this example.

To perform the ¢ test it is necessary to assume that the observations
are independent, i.e. that the size of one is not affected by the size of
others (this assumption is necessary for all the tests described), and
that the observations are normally distributed, and that the standard
deviation is the same for both groups (drugs). The scatter is estimated
for each drug separately and the results pooled. The quantity of
interest is the difference between mean responses (§g—%.), 8o the
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object is to estimate the standard deviation of the difference, s[§, —#g],t
so that it can be predicted (see example in § 2.7) how much scatter
would be seen in (§,—#p) if it were determined many times (this
prediction is likely to be optimistic, see § 7.2).

(1) For drug A the sum of squared deviations, using (2.6.5), is

- (Zy)?
E (y_y)z pa— Eyz._
n
34-43 (7-6)" = 28-806

with n,—1 = 10—1 = 9 degrees of freedom (see § 2.6).
(2) For drug B the sum of squared deviations is similarly

(23-3)?
10

S(y—7)2 = 90-37— = 36-081

with ng—1 = 10—1 degrees of freedom.
(3) The pooled estimate of the variance of y (the response to either

drug) is

total sum of squares 28:805436-081

total degrees of freedom 949 = 3-606

8%yl =

with 9+ 9 = 18 degrees of freedom. As it is necessary to assume that
the scatter of responses is the same for both groups, a singled pooled
estimate of this scatter is made.

(4) Using (2.7.8), the variance of the mean of 10 observations on
drug A is estimated to be

82
8%[§,] = —l[g—] = 0-3605,

and similarly the variance of the mean of 10 observations on drug B is
estimated as

2
#[gg] = sl[g] — 0-3608.

t Note that this means the estimated standard deviation, &, of the random variable
(§a—9s). It is the functional notation described in § 2.1. It does not mean & times

(Fa—Fs)-



150 Numerical and rank measurements §9.4

(5) Using (2.7.3) the variance of the difference between two such
means (assuming them to be independent, see also § 10.7) is

8Ja—Fs] = 83 [Fal+8%[Fs] = 0-360540-3605 = 0-7210.

The standard deviation of the difference between means is therefore
4/(0:7210) = 0-8491 hours = s[§j, —#p], with 18 degrees of freedom.

(6) The definition of ¢, given in (4.4.1), is (x—u)/s(z) where z is
normally distributed and s(z) is its estimated standard deviation. In
this case the normally distributed variable of interest is the difference
between mean responses, (j,—#%p)- It i8 required to test the null
hypothesis that the drugs are equi-effective, i.e. that the population
value of the difference between means is zero, 4 = 0, and therefore
u = 0 is used in the expression for ¢ because, as usual, it is required to
find out what would happen sf the null hypothesis were true. Inserting
these quantities gives, on the null hypothesis,

(Fa—Ts)—0 2:33—0-75

t= = = 1-861.
a[ﬂA —gB] 0'8491

References to a table of the distribution of ¢t (see § 4.4 p. 77) for 18
degrees of freedom, shows that 5 per cent of the area lies outside the
t = -+-2:101 and 10 per cent lies outside ¢ = -1-734 (cf. §§ 4.4 and
6.1). Therefore, for a two-tail test, P is between 0-05 and 0-1. This would
be the probability of observing a value of ¢ differing from zero by as
much as, or more than, 1-861, if the null hypothesis were true, and if
the assumptions of normality, etc. were correct. It is not small enough
to make one reject the null hypothesis that the drugs are really equi-
effective (u = 0). See also §6.1.

In general, to compare two independent samples (A and B) of
normally distributed mutually independent observations one calculates,
condensing the above argument into a single formula,

b= ( —'I)(fi;fa)——f‘lﬂ 1 1\l 9.4.1
J Pl )] oD

where n, and ny are the numbers of observations in each sample (not
necessarily equal); u is the hypothetical value of the difference to be
tested (most often zero, but see example in § 12.5 in which it is not),
and the vertical bars round the numerator indicate that its sign is
ignored, i.e. ¢ is taken as positive. This quantity is referred to tables of
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the ¢ distribution (with n,4-np—2 degrees of freedom) in order to
find P.

Use of confidence limits leads to the same conclusion as the t test

The variable of interest is the difference between means (7, —ig)
and its observed value in the example was 2:33—0-75 = 1-58 hours.
The standard deviation of this quantity was found to be 0-8491 hours.
The expreasion found in § 7.4 for the confidence limits for the population
mean of any normally distributed available z, viz. z4-ts(x), will be
used. For 90 per cent (or P = 0-9) confidence intervals the P = 0-1
value of ¢ (with 18 d.f.) is found from tables. It is, as mentioned above,
1:734. Gaussian confidence limits for the population mean value of
(fa—17s) are therefore 1-58--(1-734x0-8491), i.e. from 0-11 to 3-05
hours. Because these do not include the hypothetical value of zero
(implying that the drugs are equi-effective) the observations are not
compatible with this hypothesis, if P = 0-9 is a sufficient level of
certainty. For a greater degree of certainty 85 per cent oconfidence
limits would be be found. The value of ¢ for P = 0-05 and 18 d.f. was
found above to be 2-101 so the Gaussian confidence limits are 1-58
+(2:101 X 0-8481), i.e. from —0-2 to 4 3:36 hours. At this level of
confidence the results are compatible with a population difference
between means of u = 0, because the limits include zero. These results
imply that confidence limits can be thought of in terms of a significance
test. For any given probability level («) the variable will be found
‘significantly’ different (at the P = a level) from any hypothetical
value (zero in this case) of the variable that falls outside the 100(1 —«)
per cent confidence limits.



10 Numerical and rank measurements.
Two related samples

10.1. Relationship between various methods

THE observations on the soporific effect of two drugs in Table 9.2.4
were analysed in §§ 9.2-9.4 as though they had been made on two
independent samples of 10 patients. In fact both of the drugs were
tested on each patient,t so there were only 10 patients altogether.
The unit on which each pair of observations is made is called, in general,
a block (= patient in this case). It is assumed throughout that observa-
tions are independent of each other. This may not be true when the
pair of observations are both made on the same subject as in Table
10.1.1, rather than on two different subjects who have been matched
in some way. The responses may depend on whether A or B is given
first, for example, because of a residual effect of the first treatment,
or because of the passage of time. It must be assumed that this does
not happen. See §8.6 for a discussion of this point. Appropriate
analyses for related samples (see § 6.4) are discussed in this chapter.
Chapters 6-9 should be read first.

Because results of comparisons on a single patient are likely to be
more consistent than observations on two separate patients, it seems
sensible to restrict attention to the difference in response between
drugs A and B. These differences, denoted, d are shown in Table
10.1.1. The total for each pair is also tabulated for use in §§11.2 and
11.6.

These results will be analysed by four methods. The sign test (§ 10.2)
is quick and nonparametric: and, alone in this chapter, it does not
need quantitative numerical measurements; scores or ranks will do.
The randomization test on the observed differences (§ 10.3) is best for
quantitative numerical measurements. It suffers from the fact that,
like the analogous test for independent samples (§ 9.2), it is impossible
to construct tables for all possible observations; so, except in extreme
cases (like this one), the procedure, though very simple, will be lengthy
unless done on a computer. In § 10.4 this problem is overcome, as in

t Whether A or B is given first should be decided randomly for each patient. See
§§ 6.4 and 2.3.
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§ 9.3, by doing the randomization test on ranks instead of on the
original observations—the Wilcoxon signed-ranks test. This is the
best method for routine use (see § 6.2). In § 10.6 the test based on the

TasLE 10.1.1

The results from Table 9.2.4 presented in a way showing
how the experiment was really done

Patient Difference Total
{block) Ya Vs d = (¥s—ya) (¥8+¥a)

1 +0-7 +1-9 +1-2 2-6

2 —1:6 +0-8 +2-4 —0-8

3 —0-2 +1-1 +1-8 09

4 —1-2 +0-1 +1-3 —1-1

5 —01 —01 0 —~0-2

6 +34 +4-4 +1-0 7-8

7 +3-7 +5-5 +1-8 9-2

8 +0-8 +1-6 +0-8 2:4

9 0 +4-6 +4-6 46

10 +2:0 +3-4 +1-4 5:4

Totals 76 22-3 15-8 30-8

mean 1-68

assumption of a normal distribution, Student’s paired ¢ test, is described
(see §§6.2 and 9.4). Unless the distribution of the observations is
known to be normal, at least six pairs of observations are needed, as
discussed in § 6.2 (see also § 10.5).

10.2. The sign test

This test is based on the proposition that the difference between the
two readings of a pair is equally likely to be positive or negative if the
two treatments are equi-effective (the null hypothesis). This means
(if zero differences are ignored) that there is a 50 per cent chance (i.e.
2 = 0-5) of a positive difference and a 50 per cent chance of a negative
difference. In other words, the null hypothesis is that the population
(true) median difference is zero. The argument is closely related to
that in §§ 7.3 and 7.7 (see below). It is sufficient to be able to rank the
members of each pair. Numerical measurements are not necessary.

Ezample (1). In Table 10.1.1 there are 9 positive differences out of
9 (the zero difference is ignored though a better procedure is probably
to allocate to it a sign that is one the safe side, see footnote on p. 155).
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If the probability of a positive difference is 1/2 (null hypothesis) then
the probability of observing 9 positive differences in 9 ‘trials of the
event’ (just like 9 heads out of 9 tosses of an unbiased coin) is given by
the binomial distribution (3.4.3) as (1/2)° = 1/512~0-002. For a two-
tail test of significance (see § 6.1) equally extreme deviations in the
opposite direction (i.e. 9 negative signs out of 9) must be taken into
account and for this P~0-002 also, 8o the result of a two-tail sign test
is P~0-004. This is substantially lower than the values obtained in
Chapter 9 (when it was not taken into account that the samples were
related) and suggests rejection of the null hypothesis because results
deviating it by as much as was actually observed would be rare if it
were true.

Ezample (2). If there had been one negative difference (however
small) and 9 positive ones, then the one tail P (see § 6.1) weuld be the
probability of observing 9 or more positive signs out of 10. This would
be the situation if it were decided to count the zero difference in Table
10.1.1 a8 negative, to be on the safe side. From the binomial distribu-
tion, (3.4.3), the probability of observing 9 positive differences out of 10
is

Po) =2 0.5 (0-5):
10!(1'10
= (=) = 000976
911! 2) 0-00976,

and the probability of 10 positive differences out of 10 (the only more
extreme result) is P(10) = (1/2)!® = 0-000976. Therefore the probability
of observing 9 or 10 positive signs out of 10 is 0-00976+0-000976
= 0-0107. The two-tail P (see § 6.1) includes equally extreme results
in the other direction (1 or fewer positive signs out of 10, i.e. 9 or more
negative signs) for which P = 0-0107 also, so the two-tail P = 0-0107
+40-0107 = 0-0214.

This means, in words, that if the null hypothesis (that & = 0-5, imply-
ing equi-effectiveness of the treatments) were true, then, in the long run,
2:14 per cent of repeated experiments would give resulls differing in either
direction from the results expected on the null hypothesis (i.e. 5 negative
signs out of 10) by as much as, or more than, was actually observed in the
experiment. This is a sufficiently rare event to cast some doubt on the premise
of equi-effectiveness (see § 6.1).
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The general resutt

Generalizing the argument shows that if r,,, differences out of n are
observed to be negative (or positive, if there are fewer positive signs
than negative), then the result of a two-tail test of the hypothesis that
the population median difference is zero is

T=Toba 7! 1\
P=2 2:0 m(g) . (10.2.1)

How to find the results without calculation

There are several ways of using tables to get the result.

Method (1). One way is to find confidence limits for the median
difference (d value) from Table Al, as described in § 7.3. If the con-
fidence limits do not include zero (or, more generally, any other
hypothetical value that it is wished to test for consistency with the
observations), then, as explained in § 9.4, the observations are not
consistent with the null hypothesis. For example, the results (d values)
in Table 10.1.1 consist of » = 9 non-zero differences.t The method of
§ 7.3 shows, using Table Al, that 99-60 per cent confidence limits for
the population median are provided by the largest and smallest of the
nine observations, i.e. +0-8 to +4-6. These limits do not include zero,
80 the results are not consistent with the null hypothesis and the result
for a two-tail test is that P is not greater than 1—0-996 = 0:004 (in
this case P = 0-004 as shown above).

Putting the matter more precisely, the exact value of P for the
confidence limits that just fail to include zero (e.g. such that the next
smallest observation below the lower limit would be negative) will
be the same as the exact value of P for a two-tail test (see method
(2) below). By way of example suppose that patient 5 (Table 10.1.1)
had given a difference of —0-01 (rather than zero) in Example (2)
above. Table Al shows that the 99-8 per cent confidence limits for the
population median difference, based on a sample of n = 10 differences,
are provided by the largest and smallest observations, —0-01 to +4-6
These limits include zero. The 97-86 per cent confidence limits, from

1 This situation shows the difficulties that can be introduced by ties. There is no reason
to exclude the zero difference when finding confidence limita for the median, but the
reeults will only agree exactly with the sign test (from which the zero was omitted) if
this is done. The best answer is probably to be on the safe side. This usually means
counting the zero difference as though it had the sign least conducive to rejection of the
null hypothesis. In the example discussed this means pretending that patient 5 actually
gave a negative difference. Example (2) shows that P = 0-0214 in this case.
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Table Al, are the next-to-smallest and next-to-largest observations,
i.e. 40-8 and -+ 2-4, which just fail to include zero. This agrees with the
exact two-tail result, P = 0-0214 (= 1—0-9786), found by direct
calculation above.

Method (2). The same result is obtained if Table Al is entered with
r = rope+1. This is obvious if (10.2.1) is compared with (7.3.3).
Considerations of a few examples shows that if limits are taken as the
(rops+1) the observation from end of the ranked observations, the
limits will just fail to include zero. For example, in Table 10.1.1, as
just discussed, r = r,,,+1 = 1, gives P = 1—0-996 = 0-004. Likewise
in the second example above, r,,, = 1 negative sign out of n = 10.
Entering Table Al with n = 10 and r = ro,,+1 = 2 gives the result of
the two-tail significance test as P = 1—0-9786 = 0-0214, exactly as
found from first principles above.

Method (3). As might be expected, the same result can be obtained by
finding oconfidence limits, #yz and #y, for the population proportion
() of positive (or negative) differences and seeing whether these limits
include £ = 0-5 or not. The method has been described in § 7.7 and the
the result can be obtained, as explained there, from Table A2. It will be
left to the reader to improve his moral fibre by showing (by comparing
(7.7.1), (7.7.2), and (7.3.2)) that if the upper confidence limit for
the population median difference, found above, just fails to include
zero, then it will be found that the upper confidence limit for 2, Py, is
equal to or less than 0-5. Similarly, if the lower confidence limit for the
population median just fails to include zero then it will be found that
P, > 05.

For example, in Table 10.1.1, r,,, = 0 out n = 9 differences were
negative, 8o 100r/n = 0 per cent negative differences were observed.
Entering Table A2 with r = 0 and n = 9 shows that 99 per cent
confidence limits for the population proportion of negative differences
are #;, = 0 and Py = 0-445. These limits do not include 0-5 (as
expected) and this implies that for a two-tail significance test P
< 0-01 (i.e. 1—0-99), as found above.

In the second example above (r,,s, = 1 negative difference out of
n = 10), consulting Table A2 with r = 1, n = 10, gives 95 per cent
confidence limits for the population proportion (£) of negative differ-
ences as 0-0025 and 0-445 which do not include 0-5. This is as expected
from the fact that the 97-86 per cent (which is as near to 95 per cent
as it is possible to get, see § 7.3) confidence limits for the population
median difference, +0-8 to +2-4 found above, just fail to include
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zero. The 99 per cent confidence limits for # are 0-0005 to 0-5443,
which do include the null hypothetical value, # = 0-5, as expected.
These results imply that the result of a two-tail sign test is 0:01 < P
< 0-05. The exact result is 0:0214, found above.

10.3. The randomization test for paired observations

The principle involved is that described in §§ 6.3, 8.2, 8.3, and 9.2.
As in §9.2, it is not possible to prepare tables to facilitate the test
when it is done on the actual observations. However, in extreme
cases, like the present example, or when the samples are very small, as
in § 8.2, the test is easy to do (see § 10.1).

As before, attention is restricted to the subjects actually tested.
The members of a pair of observations may be tests at two different
times on the same subject (as in this example), or tests on the members
of a matched pair of subjects (see § 6.4). It is supposed that if the null
hypothesis (that the treatments are equi-effective) were true then the
observations on each member of the pair would have been the same
even if the other treatment (e.g. drug) had been given (see p. 117 for
details). In designing the experiment it was (or should have been)
decided strictly at random (see §2.3) which member of the pair
received treatment A and which B, or, in the present case, whether A
or B was given first. If A had been given instead of B, and B instead of
A, the only effect on the difference in responses (d in Table 10.1.1),
if the null hypothesis were true, would be that its sign would be changed.
According to the null hypothesis then, the sign of the difference between
A and B that was observed must have been decided by the particular
way the random numbers came up during the random allocation of A
and B to members of a pair. In repeated random allocations it would be
equally probable that each difference would have a positive or a neg-
ative sign. For example, for patient 1in Table 10.1.1, the randomization
decided whether 4-0-7 or + 19 was labelled A and hence, according to
the null hypothesis, whether the difference was 41:2 or —1-2. It can
therefore be found out whether (if the null hypothesis were true) it would
be probable that a random allocation of drugs to these patients would
give rise to a mean difference as large as (or larger than) that observed
(1-58 hours), by inspecting the mean differences produced by all
possible allocations, (i.e. all possible combinations of positive and
negative signs attached to the differences). If this is sufficiently im-
probable the null hypothesis will be rejected in the usual way (Chapter



158 Numerical and rank measurements §10.3

6). In fact it can be shown that the same result can be obtained by
inspecting the sum of only the positive (or of only the negative) d
values resulting from random allocation of signs to the differences, so it
is not necessary to find the mean each timet (similar situations arose
in §§8.2 and 9.2).

Assumptions. Putting the matter a bit more rigorously, it can be
seen that the hypothesis that an observation (d value) is equally
likely to be positive or negative, whatever its magnitude, implies that
the distribution of d values is symmetrical (see § 4.5), with a mean of
zero. The null hypothesis is therefore that the distribution of d values
is symmetrical about zero, and this will be true esther if the y, and yp
values have identical distributions (not necessarily symmetrical), or
the distributions of y, and y, values both have symmetrical distribu-
tions (not necessarily identical) with the same mean. This makes it clear
that if the null hypothesis is rejected, then, if it is wished to infer from
this that the distributions of y, and yp have different population means,
it must be assumed either that their distributions both have the same
shape (i.e. are identical apart from the mean), or that they are both
symmetrical.

Note that when the analysis is done by enumerating possible alloca-
tions it is assumed that each is equi-probable, i.e. that an allocation
was picked at random for the experiment, the design of which s therefore
inextricably linked with its analysis (see § 2.3)

If there are n differences (10 in Table 10.1.1) then there are 2"
possible ways of allocating signs to them (because one difference can
be 4 or —, two can be 4+ +, + —, —+4, or — —, and each time another
is added the number of possibilities doubles). All of these combinations
could be enumerated as in Table 8.2.2 and Fig. 8.2.1, and Tables 9.2.2
and 9.3. This is done, using ranks, in § 10.4. In the present example,
however, only the most extreme ones are needed.

Ezxample (1). In the results in Table 10.1.1 there are 9 positive
differences out of 9 (the zero difference, even if included, would have no
effect because the total is the same whatever sign is attached to it).
The number of ways in which signs can be allocated is 2° = 512. The
observed allocation is the most extreme (no other can give a mean of
1-58 or larger) so the chance that it will come up is 1/512. For a two-tail
test (taking into account the other most extreme possibility, all signs

1 As before this is because the total of all differences is the same (15-8 in the example)
for all randomizations, so specifying the sum of negative differences also specifies the
mean difference.
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negative, see §6.1), the P value is therefore 2/512~~0-004. In this
most extreme case (though no other) the result is the same as given by
the sign test (§ 10.2). Consider, for example, what would have happened
if patient 5 had given a negative difference instead of zero. The result
of the randomization test will, unlike that of the sign test, depend on
how large the negative difference is.

Ezample (2). Suppose that patient 5 had given d = —0-9, the other
patients being as in Table 10.1.1. There are now 2!° = 1024 possible
ways of allocating signs to the » = 10 differences. How many of these
give a total for the negative differences (see above) equal to less than
0-97 Apart from the observed allocation, only two. That in which
patient 8 is negative but 5 is positive giving a sum of negative differ-
ences of 0-8, and that in which all differences are positive giving a sum
of negative differences of zero. The probability of observing, on the
null hypothesis, a sum of negative differences as extreme as, or more
extreme than 0-9 is thus 3/1024. For a two-tail test (see § 6.1), therefore,
P = 6/1024 = 0-00591 (see next example for the detailed interpreta-
tion).

Ezample (3). If, however, patient 5§ had had d = 2:0, the mean
difference, d, would have been 13-8/10 = 1-38. In this case a sum of
negative differences equal to or less than 2 could arise in ten different
ways, a8 well as that observed, so P (one tail) = 11/1024 and P
(two tail) = 22/1024 = 0-0225.+ The 11 possible ways are (a) all
differences positive (sum = 0), (b) one difference negative (patient
8, 6,1, 3,4,10,7, or 5) giving a sum of 0-8, 1-0, 1-2, 1-3, 1-3, 1-4, 1:8, or
2-0, depending on which patient has the negative difference, () two
differences negative, patients 6 and 8 giving a sum of negative differ-
ences of 1:040-8 = 1-8, or patients 1 and 8 giving a sum of 1-240-8
= 2:0.

This result means that if the null hypothesis were true then the
probability would be only 0-0225 that the random numbers would
come up, during the allocation of the treatments, in such a way as to
give a sum of negative differences of 2-0 or less (i.e. a mean difference
between B and A of 1-38 or more), or results equally extreme in the
other direction (A giving larger responses than B). This probability
is small enough to make one suspect the null hypothesis (see § 6.1).

t In general it is poesible, though uncommon in this sort of teet, that an exactly
equal area could not be cut off in the opposite tail so twice the one-tail P may be a
maximum value for the two-tail P (see § 6.1).

12
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10.4. The Wilcoxon signed-ranks test for two related samples

This test works on much the same principle as the randomization
test in § 10.3 except that ranks are used, and this allows tables to be
constructed, making the test very easy to do. The relation between the
methods of §§ 9.2 and 9.3 for independent samples was very similar.
However, the signed-ranks test, unlike the sign test (§10.2) or the
rank test for two independent samples (§9.3), will not work with
observations that themselves have the nature of ranks rather than
quantitative numerical measurements. The measurements must be
such that the values of the differences between the members of each
pair can properly be ranked. This would certainly not be possible if
the observations were ranks. If the observations were arbitrary scores
(e.g. for intensity of pain, or from a psychological test) they would
be suitable for this test if it could be said, for example, that a pair
difference of 80 —70 = 10 corresponded, in some meaningful way, to a
smaller effect than a pair difference of 26—10 = 15. Seigel (1966a, b)
discusses the sorts of measurement that will do, but if you are in
doubt use the sign test, and keep Wilcoxon for quantitative numerical
measurements. Sections 9.2, 9.3, 10.3 and Chapter 6, should be read
before this section. The precise nature of the assumptions and null
hypothesis have been discussed already in § 10.3.

The method of ranking is to arrange all the differences in ascending
order regardless of sign, rank them 1 to n and then attach the sign of the
difference to the rank. Zero differences are omitted altogether. Differ-
ences equal in absolute value are allotted mean ranks as shown in
examples (2) and (3) below (and in § 9.2). To use Table A4 find 7', which
is either the sum of the positive ranks or the sum of the negative ranks,
whichever sum is smaller. Consulting Table A4 with the appropriate
n and T gives the two-tail P at the head of the column. Examples are
given below. Of course for simple cases the analysis can be done
directly on the ranks as in § 10.3.

How Table A4 13 constructed
Suppose that » = 4 pairs of observations were made, the differences
(d) being +0-1, —1-1, —0-7, +0-4. Ranking, regardless of sign, gives
d +0-1 +0-4 —0-7 —1-1
rank 1 2 -3 —4

The observed sum of positive ranks is 14+ 2 = 3, and the observed sum
of negative ranks is 3+4 = 7. The sum of all four ranks, from (9.3.1),
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is n(n+1)/2 = 4(4+1)/2 = 10, which checks (347 = 10). Thus 7" = 3,
the smaller of the rank sums. Table A4 indicates that it is not possible
to find evidence against the null hypothesis with a sample as small as
4 differences. This is because there are only 2* = 2¢ = 16 different
ways in which the results could have turned out (i.e. ways of allocating
signs to the differences, see § 10.3), when the null hypothesis is true.

TaBLE 10.4.1
The 16 possible ways in which a trial on four pairs of subjects could turn
out if treatments A and B were equi-effective, g0 the sign of each difference
18 decided by whether the randomization process allocates A or B to the
member of the pair giving the larger response. For example, on the second
line the smallest difference is negative and all the rest are positive, giving
sum of negative ranks = 1

Sum of Sum of T
Rank 1 2 3 4 pos. ranks. neg. ranks

+ + + + 10 0 0
- + + + 9 1 1
+ - + + 8 2 2
+ + - + 7 8 8
+ + + - 6 4 4
- - + + 7 3 ]
- + - + 6 4 4
- + + - 5 6 5
+ — - + 5 5 5
+ - + - 4 6 4
+ + - — 3 7 3
+ - - — 1 9 1
- + - - 2 8 2
- - + - 8 7 3
- - —_ + 4 6 4
- - —_ — 0 10 0

Therefore, even the most extreme result, all differences positive, would
appear, in the long run, in 1/16 of repeated random allocations of
treatments to members of the pairs. Similarly 4 negative differences
out of 4 would be seen in 1/16 of experiments. The result of a two tail
test cannot, therefore, be less than P = 2/16 = 0-125 with a sample of
four differences, however large the differences (see, however, §§ 6.1 and
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10.5 for further comments). With a small sample like this, it is easy to
illustrate the principle of the method. More realistic examples are
given below.

The 2* = 16 possible ways of allocating signs to the four differences
(i.e. the possible ways in which A and B could have been allocated to
members of a pair, see § 10.3 for a full discussion of this process), are
listed systematically in Table 10.4.1, together with the sums of positive
and negative ranks, and value of T, corresponding to each allocation.
In Table 10.4.2, the frequencies of these quantities are listed from the

TABLE 10.4.2
The relative frequencies of observing various values of s.e. the distributions
of, the rank sum, and T, with n = 4 pasrs of observations when the null
hypothesis 18 true. Constructed from Table 10.4.1

Rank Frequency for Frequency for Frequency for

sum pos. ranks neg. ranks T
0 1 1 2
1 1 1 2
2 1 1 2
3 2 2 4
4 2 2 4
6 2 2 2
6 2 2
7 2 2
8 1 1
9 1 1
10 1 1
Total 16 16 16

results in Table 10.4.1, and in Fig. 10.4.1 the distribution of the sum
of positive ranks is plotted (that for negative ranks is identical).
(These are the paired sample analogues of the rank distribution worked
out for two independent samples in Table 9.2.2 and Fig. 9.3.1.)

Now the observed sum of positive ranks was 3, and the probability
of observing a sum of 3 or less is seen from Table 10.4.2 or Fig. 10.4.1, to
be 5/16. The probability of an equally large deviation from the null
hypothesis in the other direction (sum of positive ranks > 7) is also
5/16. (The distribution is symmetrical, like that in Fig. 9.3.1, unless
there are ties, so the result of a two-tail test is twice that for a one-tail
test. See § 6.1.) The result of a two-tail significance test is therefore
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P = 10/16 = 0-625, so there is no evidence against the null hypothesis,
because results deviating from it by as much as, or more than, the
observed amount would be common if it were true. In other words, if
the null hypothesis were true it would be rejected (wrongly) in 62-5
per cent of repeated experiments in the long run, if it were rejected
whenever the sum of positive ranks was 3 or less, or when it was equally
extreme in the other direction (7 or greater). A value of T equal to or
less than the observed value (3) is seen, from Table 10.4.2, to ocour in
4424242 = 10 of the 16 possible random allocations. The probability
(on the null hypothesis) of observing T < 3 is therefore P = 10/16

2-

Frequency
T

i
(’ i 1 1 i 1 i i 1

L 1
0 1 2 3 4 5 6 7 8 9 10
Rank sum

Fi1a. 10.4.1. Distribution of the sum of positive ranks when the null hypothesis
is true for the Wilcoxon signed ranks test with four pairs of observations. The
distribution is identical for sum of negative ranks. Plotted from Table 10.4.2.

= 0-625 which is another way of putting the same result. As in § 9.3,
the calculations in Tables 10.4.1 and 10.4.2 would be the same for any
experiment with » — 4 pairs of observations. The values of T cutting off
suitably amall tail areas (1 per cent, 5 per cent, etc.) can therefore be
tabulated for various sample sizes. (The smallest possible value,
T = 0, ocuts of an area of P = 2/16 = 0-125 for the small sample in
Table 10.4.2, a8 mentioned above.) This is what is given in Table A4.

Example (1). In Table 10.1.1, there are 9 positive differences out of 9
so all ranks are positive and T' = sum of negative ranks = 0. Consulting
Table A3 with n = 9, T = 0, shows P < 0-01 (because T is less than
2, the tabulated value for P = 0-01). In fact doing the test directly
it is seen that there is only one way (the observed one) of getting a sum
of negative ranks as extreme as zero, out of 2° = 512 ways of allocating
gsigns (see § 10.3). So P (one tail) = 1/612, and P(two tail) = 2/512
= 0-004 (exactly a8 in §§ 10.2 and 10.3 for this extreme case, but not
in general). This is quite strong evidence against the null hypothesis.

A3
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This is, as usual, because if the null hypothesis were true, deviations
from it (in either direction) as large as, or larger than, those observed
in this experiment would occur only rarely (P = 0-004) because the
random numbers happened to come up so that all the subjects giving
big responses were given the same treatment.

Ezample (2). Suppose however, as in § 10.3, Example (2), that patient
5 had givend = —0-9 instead of zero. When the observations are ranked
regardless of sign the result is as follows:

d 08 —09 1.0 1.2 13 13 14 18 24 46
rank 1 -2 3 4 5 5 7 8 9 10

Thus, n = 10, sum of negative ranks = 2, and sum of positive ranks
= B3. Thus, T = 2, the smaller rank sum. The total of all 10 ranks
should be, from (9.3.1), n(n+1)/2 = 10(10+1)/2 = 55, and in fact
6342 = 556. Consulting Table A4 with » = 10 and T = 2, again
shows P < 0-01 (two tail). An exact analysis is easily done in this case.
A sum of negative ranks of 2 or less could arise with only 2 combinations
of signs, in addition to the observed one (rank 1 negative giving 7' = 1
or all ranks positive giving 7' = 0), and there are 2" = 2!° = 1024
possible ways of allocating signs (see § 10.3). Thus P (one tail) = 3/1024
and P (two tail) = 6/1024 = 0-0059. Again quite strong evidence
against the null hypothesis.

Ezample (3). If patient 56 had had d = —2-0 (as disoussed in § 10.3)
the ranking process would be as follows:

d 08 10 1.2 1.3 13 14 18 —20 24 46
rank 1 2 3 4} 4 6 7 —8 9 10

Consulting Table A4 withn = 10and T = 8 gives P = 0-05. Enumera-
tion of all possible ways of achieving a sum of negative ranks of 8 or
less shows there to be 256 wayst so the exact two-tail P is 50/1024
= 0-049.

Ezxample (4). Consider the following 12 differences observed in a
paired experiment, shown after ranking in ascending order, disregarding
the sign.

d 01 -07 08 11 -12 1-§ —2-1 —-28 —24 —2-6 -—-27 -—-81
rank 1 -2 3 ¢ -5 8 -1 -8 -9 —-10 -—-11 -—12

t This is found by constructing a sum of 8 or lees from the integers from 1 to n(= 10),
as used in calculating Table A4. More properly it should be done with the figures 1, 2, 8,
4}a, 44b, 6, 7, 8, 9, 10 and with theee there are only 24 ways of getting & sum of 8 or
leas,
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In this case most of the observed differences are negative. Is the
population mean difference different from zero? The sum of the
negative ranks is 24-54748494+10411412 = 64, and the sum of
the positive ranks is 1434446 = 14, so 7 = 14, the smaller rank
sum. An arithmetical check is provided by (9.3.1) which gives n(n+1)/2
= 12(124-1)/2 = 178, and, correctly, 64414 = 78. Table A4 shows that
when n =12, a value of 7' = 14 corresponds to P = 0-05. Only
marginal evidence against the null hypothesis (see § 6.1).

How to deal with samples too large for Table A4

Table A4 deals only with samples up up to n = 25 pairs of observa-
tions. For larger samples, a8 in § 9.3, it is a very good approximation
to assume that the distribution of the rank sum, shown for a small
sample in Fig. 10.4.1, is Gaussian (normal) with (given the null hypo-
thesis) a mean of

p = nint+1)/4 (10.4.1)
and standard deviation

. = J{ﬂi%ﬁ‘f 1).} (10.4.2)

(the derivations of 4 and o are given, for example, by Brownlee
(1965, p. 258)). For example, for the distribution in Fig. 10.4.1,n = 480
the mean is u = 4(4+1)/4 = 5, as is obvious from the figure, and
o =+v/{4(4+1)(8+41)/24} = 2-74.

The results in Example (4) can be used to illustrate the normal
approximation. In this example, n = 12,80 u = 12(12+1)/4 = 39, and
o = 4/{12(12+1)(2441)/24} = 12-756. An approximate standard nor-
mal deviate (see § 4.3) can therefore be calculated from (4.3.1) as

|T—u| |14—39) 25
T e 1278 T 1275

u = 1-96. (10.4.3)
The vertical bars mean, as usual, that the numerator is taken as positive.
The same value would be obtained if the sum of negative ranks, 64,
were used in (10.4.3), because 64 —39 = 25. This value can now be
referred to of the standard normal distribution (see § 4.3), or tables of
t (with infinite degrees of freedom), (see § 4.4). A value of u = 1:96 cuts
off an area P = 0-05 in the tails of the standard normal distribution, as
explained in § 4.3. In other words of value of u above 4-1-96, or less
than —1-96, would occur in 5 per cent of repeated experiments. In
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this case the normal approximation gives the same value as the exact
result, P = 0-05, found above from Table A4.

10.5. A data selection problem arising in small samples

Consider the paired observations of responses to treatments A and B shown
in Table 10.5.1.

TasBLE 10.5.1

Treatment
Block A B Difference
1 1-7 05 +1-2
2 1.2 0-5 +0-7
3 1-8 0-9 +0-9
4 10 07 +0-3

The experiment was designed exactly like that in Table 10.1.1. All the differences
are positive so the three nonparametric tests described in §§ 10.2-10.4 all give
P = 2/2¢ = 1/8 for a two-tail test. In general, for n differences all with the
same sign, the result would be 2/2".

It has been stated that the design of an experiment dictates the form its an-
alysis must take. Selection of particular features after the results have been seen
(data-snooping) can make significance tests very misleading. Methods of dealing
with the sort of data-snoopingt problem that arise when comparing more than
two treatments are discussed in § 11.9. Nevertheless, it seems unreasonable to
ignore the fact that in these results, the observations are completely separated,
i.e. the smallest response to A is bigger than the largest response to B, a feature
of the results that has not been taken into account by the paired tests. (In
general, the statistician is not saying that experimenters should not look too
closely at the results of their experiments, but that proper allowance should be
made for selection of particular features.) This feature means that if the results
could be analysed by the two nonparametric methods designed for independent
samples (described in §§ 9.2 and 9.3), both methods would give the probability
of complete separation of the results, if the treatments were actually equi-
effective, a8 P = 2ninlf(2n)] = 2(4141)/81 = 1/35 (two-tail)—a far more ‘signi-
ficant’ result! The naive interpretation of this is that it would have been better
not to do a paired experiment. This is quite wrong. It has been shown by Stone
(1969) that the probability (given the null hypothesis of equi-effectiveness of
A and B) of complete separation of the two groups as observed, would be 1/35
even if there were no differences between the blocks, and even less than 1/35 if
there were such differences. This is not the same as the P = 1/8 found using the
paired tests because it is the probability of a different event. If the null hypo-
thesis were true, then, in the long run, 1 in 8 of repeated experiments would be
expected to show 4 differences all with the same sign out of 4, but only 1 in
35, or fewer, would have no overlap between groups as in this case.

It remains to be decided what should be done faced with observations such as

t This is statisticians jargon. ‘Data selection’ might be better.
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thoee in Table 10.5.1. The snag is, of course, that any single specified arrange-
ment of the results is improbable. If the treatments were equi-effective (and
there were no differences between blocks) any of the 4141/81 = 70 possible
arrangements of the eight figures into two groups of 4 would have the same
probability, P = 1/70, of occurring. It is only because the particular arrange-
ment, with no overlap between A and B, corresponds to a preconceived idea,
that it is thought unusual, and what constitutes ‘correspondence with a pre-
conceived idea’ may be arguable. The problem is an old one:

‘... . when Dr Beattie observed, as something remarkable which had happened to him,
that he had chanced to see both No. 1 and No. 1000, of the hackney-coachee, the first
and the last; ‘“Why, BSir, (said Johnson,) there is an equal chance for one's seeing those
two numbers as any other two'’. He waa clearly right; yet the seeing of the two extremes,
each of which is in some degree more conspicuous than the rest, could not but strike

one in a stronger manner than the sight of any other two numbers’
(Boswell's Life of Johnson)

The only safe general rule that can be offered at the moment is to analyse the
experiment as a paired experiment if it was designed in that way. In other words
take P = 1/8 in the present case; not much evidence against the null hypothesis.
The problem is, however, a complicated one that is still not fully solved.t

10.6. The paired ¢t test

As for the two sample ¢ test (§ 9.4), it is necessary to assume that the
distributions of responses to the two treatments are Gaussian (normal) in
form (see §§ 4.2 and 4.6), but it is no longer necessary to assume that they
have identical variances. The assumptions are explained in more detail in
§ 11.2 and it would be preferable always to write the calculations in the
form of analysis of variance as described in § 11.6.

The method will be applied to the results in Table 10.1 which have
already been analysed properly in §§10.2-10.4 (and which were
analysed as though the two samples were independent in Chapter
9) although there is no evidence that the assumptions are fulfilled.

The analysis is carried out on the differences, d = yp—ys. The
variance of the differences is estimated to be, using (2.6.2) and (2.6.5),

_ X(d—d)* 38-68—(15:8)%/10
Hdl=— = 10—1

= 1:513 with (n—1) = 9 degrees of freedom.

t In soms cases, such as this one, when the smaliest P value (given, in this case by
the Wilcoxon two-sample test) is smaller than the P value that the other tests under
consideration can ever reach, however large the difference between the treatments,
Stone (1969) has argued that it is proper to quote the smaller P, i.e. P < 1/35 for the
results in Table 10.5.1.

Stone’s method also introduces another factor of 1/2, i.e. he takes P < 1/70, but this
feature has not yet come into wide use.
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And the variance of the mean difference is, by (2.7.8),

83[d 1-513
&8[d] = Q = —— == 0-1513 with 9 degrees of freedom:.

This should be carefully distinguished from the variance of the
difference between means found in § 9.4, which was larger (0-7209) and
had more degrees of freedom (18). The disappearence of 9 degrees of
freedom will be explained when the results are looked at from the point
of view of the analysis of variance in § 11.6.

The standard deviation of the mean difference is estimated as

8{d) = 4/0-1513 = 0-3890

and the null hypotheeis is that the population (true) mean difference,
#, is zero. Thus, from (4.4.1),

g _ 4 _ d (10.6.1)

In this example

‘ 1-58
~ 0-3890

= 4062,

Referring to a table of the ¢ distributiont with n—1 = 9 degrees of
freedom shows that a value of ¢ (of either sign) as large as, or larger
than 4-062 would be seen in less than 0-5 per cent of trials if the null
hypothesis that the population (true) mean difference u = 0 were
true, and if the assumptions of normality, etc. were true, i.e. P (two
tail) < 0-005. This strongly suggests that the null hypothesis is not in
fact true and that there is a real difference between the means.

This result is rather different from that found in § 9.4 and the other
sections in Chapter 9, when the same results were analysed as though
the drugs had been tested on independent samples, and the reasons for
this are discussed in §§ 10.7, 11.2, 11.4, and 11.6. It is in reasonable
agreement with the other analyses in this chapter but it cannot be
assumed that the ¢ test will always give similar results to the more
assumption-free methods.

As in §9.4, the same conclusion could be reached by calculating
confidence limits for the mean difference. The 99-5 per cent confidence

t For example, Fisher and Yates (1983), Table 3, or Pearson and Hartley (1968),
Table 12. Only the latter has P = 0-005 values. See § 4.4 for details.
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limits for 4 would be found not to include zero, the null hypothetical
value, but the 99-8 per cent confidenoe limits do include zero.

10.7. When will related samples (pairing) be an advantage?

In Chapter 9 the results in Table 9.2.4 and § 10.1 were analysed by
several different methods and in no case was good evidence found
against the hypothesis that the two drugs were equi-effective. The
methods all assumed that the measurements had been made on two
independent samples of ten subjects each. In § 10.1 it was revealed
that in fact the measurements were paired and the same results were
reanalysed making proper allowance for this in §§ 10.2-10.6. It was then
found that the evidence for a difference in effectiveness of the drugs
was actually quite strong. Why is this? On commonsense grounds the
difference between responses to A and B is likely to be more consistent
if both responses are measured on the same subject (or on members of
a matched pair), than if they are measured on two different patients.
This can be made a bit less intuitive if the correlaiion between the
two responses from each pair is considered. The correlation coefficient,
r (which is discussed in § 12.9, q.v.), is a standardized measure of the
extent to which one value (say y,) tends to be large if the other (yp) is
large (in so far as the tendency is linear, see § 12.9). It is closely related
to the covariance (see § 2.6), the sample estimate of the correlation
coefficient being r = cov[y,, yp}/(s[ya] s[¥s))-

Now in § 9.4 the variance of the difference between two means was
found as 8%[§, —7p] = 8%[§a]+8%[§s] using (2.7.3), which assumes that
the two means are not correlated (which will be 8o if the samples are
independent). When the samples are not independent the full equation
(2.7.2) must be used, viz.

8(d] = 8MFp—Fa] = &[Fal+8[Fa] —2 cov{a, F].
Using the correlation coefficient (r) this can be written

8 Ga—Fs] = 8[Ga)+8[Fp]—2r.8[F])-8[Fs]- (10.7.1)

(This expression should ideally contain the population correlation
coefficient. If an experiment is carried out on properly selected in-
dependent samples, this will zero, so the method given in § 9.4, which
ignores r, is correct even if the sample correlation coefficient is not
exactly zero.)

These relationships show that if there is a positive correlation between

t There are equal numbers in each sample 80 (§, —Fa) = (ya—ya) = d.



170 Numerical and rank measurements § 10.7

the two responses of a pair (r > 0) the variability of the difference
between means will be reduced (by subtraction of the last term in
(10.7.1)), as intuitively expected. In the present example r = +0-8,
and 8%[§,—#g] is reduced from 0-7210 when the correlation is ignored
(§§ 9.4 and 11.4), to 0-1513 when it is not (§§ 10.6 and 11.6). The
correct value is 0-1513, of course.

Although correlation between observations is a useful way of looking
at the problem of designing experiments so as to get the greatest
possible precision, this approach does not extend easily to more than
two groups and it does not make clear the exact assumptions involved
in the test. The only proper approach to the problem is to make clear the
exact mathematical model that is being assumed to describe the
observations, and this is discussed in § 11.2.



11 The analysis of variance. How to
deal with two or more samples

‘. . . when I come to *“Evidently” I know that it means two hours hard work at
least before I can see way.’
Why W. 8. GosskT (‘Student’)
in letter dated June 1822, to R. A. Fisher

11.1. Relationship between various methods

THE methods in this chapter are intended for the comparison of two or
more (k in general) groups. The methods described in Chapters 8 and
10 are special cases (for k¥ = 2) of those to be described. The rationale
and assumptions of the two sample methods will be made clearer
during discussion of their k¥ sample generalizations. The principles
discussed in Chapter 6, although some were put in two-sample language,
all apply here.

All that any of the methods will tell you is whether the null hypo-
thesis (that all ¥ treatments produce the same effect) is plausible or
not. If this hypothesis is not acceptable, the analysis does not say
anything about which treatments differ from which. Methods for
comparing all possible pairs of the k¥ treatments are described in
§ 11.9 and, references are given to other multiple comparison methods.

When the samples are independent (as in Chapter 9) the experimental
design is described a8 a one-way classification because each experi-
mental measurement is classified only according to the treatment
given. Analyses are described in §§ 11.4 and 11.5. When the samples
are related, as in Chapter 10, each measurement is classified according
to the treatment applied and also according to the particular block
(patient in Chapter 10) it occurs in. Such two-way classifications are
discussed in §§ 11.6 and 11.7.

As in previous chapters nonparametric methods based on the
randomization principle (see §§ 6.2, 6.3, 8.2, 8.3, 9.2, 9.3, 10.2, 10.3, and
10.4) are available for the simplest experimental designs. As usual,
these experiments can also be analysed by methods involving the
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assumption (among others, see § 11.2) that experimental errors follow a
normal (Gaussian) distribution (see §4.2), but the nonparametric
methods of §§ 11.5 and 11.7 should be used in preference to the Gaussian
ones usually (see § 6.2). Unfortunately, nonparametric methods are not
available (or at least not, at the moment, practicable) for analysis of
the more complex and ingenious experimental designs (see § 11.8 and
later chapters) that have been developed in the context of normal
distribution theory. For this reason alone most of the chapters following
this one will be based on the assumption of a normal distribution (see
§§ 4.2 and 11.2),

When comparing two groups, the difference between their means or
medians was used to measure the discrepancy between the groups.
With more than two it is not obvious what measure to use and because
of this it will be useful to describe the normal theory tests (in which a
suitable measure is developed) before the nonparametric methods.
This does not mean that the former are to be preferred. Tests of
normality are discussed in § 4.6.

11.2. Assumptions involved in the analysis of variance based on
the Gaussian (normal) distribution. Mathematical models
for real observations

It was mentioned in § 10.7 that in order to see clearly the underlying
principles of the ¢ test (§ 9.4) and paired ¢ test (§ 10.6) it is necessary
to postulate that the observations can adequately be described by a
simple mathematical model. Unfortunately it is roughly true that the
more complex and ingenious the experimental design, the more
complex, and less plausible, is the model (see § 11.8).

In the case of the two-sample ¢ test (§§ 9.4 and 11.4) and its k sample
analogue it is assumed that (1) the observations are normally distri-
buted (§ 4.6), (2) the normal distributions have population means g,
(j = 1,2,...,k) which may differ from group to group (e.g. u, for drug
A and y, for drug B in §9.4), (3) the population standard deviation,
o, is the same for every sample (group, treatment), i.e. 6; = 03 = ...
= 0, = 0, say (it was mentioned in § 9.4 that it had to be assumed
that the variability of responses to drug A was the same as that of
responses to drug B), and (4) the responses are independent of each
other (independence of responses in different groups is part of the
assumption that the experiment was done on independent samples, but
in addition the responses within each group must not affect each other
in any way, cf. discussion in § 13.1, p. 286).
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The additive model

These assumptions can be summarized by saying that the ith
observation in the jth group (e.g. jth drug in § 9.4) can be represented
as y,, = pu,+e, (¢ = 1,2,...,n,, where n, is the number of observations
in the jth group—reread § 2.1 if the meaning of the subscripts is not
clear). In this expreesion the u, (constants) are the population mean
responses for the jth group, and e, a random variable, is the error
of the individual observation, i.e. the difference between the individual
observation and the population mean. It is assumed that the e, are
independent of each other and normally distributed with a population
mean of zero (so sn the long runt the mean y,, = u,) and standard
deviation ¢. Usually the population mean for the jth group, u,, is written
a8 u+r, where p is a constant common to all groups and r, is a con-
stant (the treatment effect) characteristic of the jth group (treatment).
The model is therefore usually written

Yiy = ptrtey (11.2.1)

The paired ¢ test (§§10.6 and 11.6), and its k sample analogue
(§ 11.6), need a more elaborate model. The model must allow for the
possibility that, as well as there being systematic differences between
samples (groups, treatments), there may also be systematic differences
between the patients in § 9.4, i.e. between blocks in general (see § 11.6).
The analyses in § 11.6 assume that the observation on the jth sample
(group, treatment) in the sth block can be represented as

Yy = p+Bi+1+ey (11.2.2)

where u is a constant common to all observations, 8, is a constant
characteristic of the ith block, r, is a constant, as above, characteristic
of the jth sample (treatment), and e,, is the error, a random variable,
values of which are independent of each other and are normally distri-
buted with a mean of zero (so the long run average value of y,, is
p+p+7,), and standard deviation o. This model is & good deal more
restrictive than (11.2.1) and its implications are worth looking at.
Notice that the components are supposed to be additive. In the case
of the example in § 10.6, this means that the differences between the
responses of a pair (block in general) to drug A and drug B are supposed
to be the same (apart from random errors) on patients who are very
sensitive to the drugs (large f,) as on patients who tend to give smaller

t In the notation of Appendix 1, E(e) = 0 80 E(y) = E(u,)+E(e) = y, from (11.2.1).
And E(y) = E(u)+E(8,)+E(r,)+E(e) = u+ B+, from (11.2.2).
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responses (small f,). Likewise the difference in response between
any two patients who receive the same treatment, and are therefore in
different pairs or blocks, is supposed to be the same whether they
receive a treatment (e.g. drug) producing a large observation (large ;)
or a treatment producing a small observation (small r,). These remarks
apply to differences between responses. It will not do if drug A always
gives a response larger than that to drug B by a constant percentage,
for example.

Consider the first two pairs of observations in Table 10.1.1. In
the notation just defined (see also §2.1) they are y,, = +0-7, ¥,
= +19, y;; = —1-6, and yz; = +0-8. The first difference is assumed,
from (11.2.2), to be yy3—yy = w+h+rates)—(@+h+nten,)
= (r3—7;)+(e;3—e,;) = +1-2. Thatis to say, apart from experimental
error, it measures only the difference between the two treatments
(drugs), viz. r;—r, whatever the value of 8,. Similarly, the second
difference is yu3—ya; = (r3—7,)+(€za—eg;) = 24, which is also an
estimate of exactly the same quantity, 7,—7,, whatever the value of 8,,
i.e. whatever the sensitivity of the patient to the drugs.

Looking at the difference in response to drug A (treatment 1) between
patients (blocks) 1 and 2 shows y,, —y4;, = (u+Bi+7,+e€,)—(u+8;
+7t+eg) = (B1—Ba)+(e11—es) = +07—(—1:6) = +2:3, and sim-
ilarly for drug B y;3—y35 = (f1—Pa)+(e1a—€z) = 19—0-8 = 1-1.
Apart from experimental error, both estimate only the difference
between the patients, which is assumed to be the same whether the
treatment is effective or not.

The best estimate, from the experimental results, of r;—, will be
the mean difference, d = 1-58 hours. If the treatment effect is not the
same in all blocks then block X treatment inferactions are said to be
present, and a more complex model is needed (see below, § 11.6 and,
for example, Brownlee (1956, Chapters 10, 14, and 15)).

This additive model is completely arbitrary and quite restrictive.
There is no reason at all why any real observations should be repre-
sented by it. It is used because it is mathematically convenient. In the
case of paired observations the addivity of the treatment effect can
easily be checked graphically because the pair differences should be
a measure of 7,—7;, as above, and should be unaffected by whether
the pair (patient in Table 10.1.1) is giving a high or a low average
response. Therefore a plot of the difference, d = y,—y5, against the
total, y,+yp, or equivalently, the mean, for each pair should be apart
from random experimental errors, a straight horizontal line. This
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plot, for the results in Table 10.1.1, is shown in Fig. 11.2.1. No system-
atic deviation from a horizontal line is detectable with the available
results but there are not enough observations to provide a good test
of the additive model. For methods of checking additivity in more
complex experiments see, for example, Bliss (1967, p. 323—41).
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Fia. 11.2.1. Test of additive model for two way analysis of variance with
two samples (i.e. paired t test). Pair differences are plotted against pair sum
(or pair mean).

Homogeneity of error

In the models for the Gaussian analysis of variance all random errors
are pooled into the single quantity, represented by e in (11.2.1) and
(11.2.2), which is supposed to be normally distributed with a mean of
zero and a variance of o2. In other words, if observations could be
made repeatedly using a given treatment (e.g. drug) and block (e.g.
patient) the scatter of the results would be the same whatever the
size of the observation and whatever treatment was applied. This means
that the scatter of the observations must be the same for every group
(sample, treatment) for experiments with independent samples,
represented by (11.2.1).

13
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To test whether the variance estimates calculated from each group
can reasonably all be taken to be estimates of the same population
value, a quick test is to calculate the ratio of the largest variance to
the smallest one, 8%,,/s%;,. This test assumes that the k samples are
independent and that the variation within each follows a normal
distribution. Under these conditions the distribution of &2,,./6%;, is
known (when k = 2 it is the same as the variance ratio, see § 11.3). For
the results in Table 11.4.1 it is seen that k = 4, &2, /%, = 158:14/
34-29 = 4-61, and each group variance is based on 7—1 = 6 degrees of
freedom. Reference to tables (e.g. Biometrika tables of Pearson and
Hartley (1966 pp. 63-7 and Table 31)) shows that a value of &2,,/
8%in of 104 or larger would be expected to occur in 5 per cent of
repeated experiments if the 4 independent samples of 7 observations
were all from a single normally distributed population, and therefore
all had the same population variance—the null hypothesis. Thus
P > 0-05 and there are no grounds for believing that population
varianoe is not the same for all groups, though the test is not very
sensitive. The tables only deal with the case of k groups of equal size.
If the sizes are not too unequal the average number of degrees of
freedom can be used to get an approximate result.

Use of transformations

If the original observations do not satisfy the assumptions, some
funoction of them may do so, although you will be lucky if you have
enough observations to find out which function. Aspects of this problem
are discussed in Bliss (1967 pp. 323-41), §§ 4.2, 4.5, 4.6 and 12.2.

For example, suppose the observations (1) were known to be log-
normally distributed (see § 4.5) and (2) were represented by a multi-
plicative model (e.g. one treatment always giving say 50 per cent greater
response than another, rather than a fixed increment in response) and
(3) had standard deviations that were not constant, but which were
proportional to the treatment mean (i.e. each treatment had the same
ooefficient of variation, eqn (2.6.4)). In this case the logarithms of the
observations would be normally distributed with constant standard
deviation, and would be represented by an additive model. The
constancy of the standard deviation follows from eqn (2.7.14). Therefore
the logarithm of each observation would be taken before doing any
calculations.

If the standard deviation for each treatment group is plotted against
the mean as in Fig. 11.2.2 the line should be roughly horizontal.
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This can be tested rapidly using s%,./s%,;, as above, given normality.
If it is a straight line passing through the origin then the coefficient
of variation is constant and the logs of the observations will have
approximately constant standard deviation as just described. If the
line is straight, but does not pass through the origin, as shown in Fig.
11.2.2, then y, = a/b (where a is the intercept and b the slope of the

Standard deviations of treatment

3
©
% Slope =b
X
|
Yo=0/b Means of treatment groups §;

Fia. 11.2.2. Transformation of observations to a scale fulfilling the require-
ment of equal scatter in each treatment group. See text.

line, as shown) should be added to each observation before taking
logarithms. It will now be found that log (y+y,) has an approximately
constant standard deviation, though this is no reason to suppose that
this variable fulfils the other assumptions of normality and additivity.
It is quite possible that no transformation will simultaneously
satisfy all the assumptions. Bartlett (1947) discusses the problem.
A more advanced treatment is given by Box and Cox (1964). In the
discussion of the latter paper, Nelder remarks ‘Looking through the
corpus of statistical writings one must be struck, I think, by how
relatively little effort has been devoted to these problems [checking of
assumptions]. The overwhelming preponderance of the literature
consists of deductive exercises from a priori starting points .
Frequently these prior assumptions are unjustifiably strong and amount
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to an assertion that the scale adopted will give the required additivity
eto.” A good discussion is given by Bliss (1967 pp. 323-41).

What sort of model is appropriate for your experiment —fixed effects or
random effects?

In the discussion above, it was stated that the values of §; and 7,
were constants characteristic of the particular blocks (e.g. patients)
and treatments (e.g. drugs) used in the experiment. This implies that
when one speaks of what would happen in the long run if the experiment
were repeated many times, one has in mind repetitions carried out with
the same blocks and the same treatments as those used in the experi-
ment (model 1). Obviously in the case of two drugs the repetitions would
be with the same drugs, but it is not so obvious whether repetitions
on the same patients are the appropriate thing to imagine. It would
probably be preferred to imagine each repetition on a different set of
patients, each set randomly selected from the same population, and in
this case the 8, will not be constants but random variables (model 2).
It is usually assumed that the §,, as well as the e, are normally dis-
tributed, and the variance of their distribution (w? say) will then
represent the variability of the population mean response for individual
patients (blocks) about the population response for all patients (w? is
assumed to be the same for all treatments). Compare this with o2,
which represents the variability of the individual responses of a patient
about the true mean response for all responses on that patient (o2 is
assumed to be the same for all patients and treatments).

The distinction between models based on fixed effects (model 1)
and those based on random effects (model 2) will not affect the inter-
pretation of the simple analyses described in this book as long as the
simple additive model (such as (11.2.2)) is assumed to be valid, i.e. there
are no interactions. But if interactions are present, and in more complex
analyses of variance, it is essential for the interpretation of the result
that the model be exactly specified because the interpretation will depend
on knowing what the mean squares, which are all estimates of 02 when
the null hypothesis is true, are estimates of when the null hypothesis is
not true. In the language of Appendix 1, the first thing that must be
known for the interpretation of the more complicated analyses of
variance is the expectations of the mean squares. These are given, for
various common analyses, by, for example, Snedecor and Cochran
(1967, Chapters 10-12 and 16) or Brownlee (1965 Chapters 10 14, and
15). See also § 11.4 (p. 1886).
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11.3. The distribution of the variance ratio F

This section describes the generalization of Student’s ¢ distribution
(§ 4.4) that is necessary to extend the two-sample normal distribution-
based tests (see §§ 9.4 and 10.6) to more than two (k in general) samples
of observations with normally distributed errors (see §§ 11.4 and 11.6
and later chapters). The ¢ tests of §§ 9.4 and 10.6 will be special cases
(k = 2) of the more general methods.

In the case of the ¢ test for two independent samples (§ 9.4), the
discrepancy between the samples was measured by the difference
between the sample means, and if this was large enough, compared
with experimental errors, the null hypothesis that the two population
means were equal, i.e. that both samples were samples from the same
parent population, with variance o3, was rejected. If it is required to
test the hypothesis that more than two samples are all from the same
population, and therefore have the same mean and variance, o2, the
first step is to find a measure of the discrepancy between the k sample
means, to take the place of the simple difference that was used when
k = 2. The usual measure of scatter in normal distribution theory is the
standard deviation, and it turns out that the standard deviation of the
k sample means is a suitable generalization of the difference between
two means.

The sensibleness of this is made apparent when it is realized that the
difference between two figures s their standard deviation, apart from a
constant. Consider two observations, y, and y,. What is their standard
deviation ? The variance is Z(y —§)3/(n—1) = Z(y—#)? (because n = 2).
By (2.6.5) this is Z(y—#)* = Zy’— (Zy)°/n = y] +¥3— (1 +92)?/2
=¥+ —Ei+y+299)/2 = (y1+ 93— 2.9%)/2 = (1 —¥)?/2. The
standard deviation of the two figures is the square root of this, viz.

3/2
\/2

where the subscript 1 indicates that this is a standard deviation based
on one (= n—1) degree of freedom. Now ¢ is defined (see §§ 4.4, 9.4, and
10.6) as (x—pu)/s,{z] where z is normally distributed, with mean 4, and
sample standard deviation s/[z] based on, say, f degrees of freedom
(f = 18 in § 9.4). If the variable of interest is z = y, —y;, and one
wishes to test the null hypothesis that the population valuest of y, and
¥, are equal, i.e. u = 0, then one calculates ¢t = (y, —ys)/sly, —y.). Now

t In the language of Appendix I, 4 = Ely; —ya] = Els]—E{ya] = 0.

8,[y) = (11.3.1)
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y, and y, are assumed to be independent, and both are assumed to
have the same variance, of which an estimate s7[y] based on f degrees of
freedom is available (calculated, for example, from the variability
within groups as in § 9.4 if y, and y; were group means). The estimated
variance of y, —y, is therefore, by (2.7.3), 8y, —y3] = 8%[y,]+8%(va)
= 2s%y], 8o 8{y; —y3] = +/28,{y]. Using these values gives

{ = Ni— Y - Yi—Ya
T dy—yal V28]
— 8yl
syl

Thus, if the null hypothesis (u = 0) is true, ¢2 is seen to be the ratio of
two independent estimates of the same population variance o (see
above), that in the numerator having one degree of freedom (in § 9.4
this was found from the difference between the sample means, § ; and
#.2), and that in the denominator having f degrees of freedom (in
§ 9.4 this was found from the differences within samples). Compare this
approach with the discussion of predicted variances in § 2.7. In §§ 9.4
and 11.4 it is predicted from the observed scatter within samples what
the scatter between samples could reasonably be expected, and the
prediction compared with the observed scatter between samples.

Now the ratio of two independent estimates of the same population
variance is called the vartance ratio and is denoted F (after R. A. Fisher
who discovered its distribution when the population is normally
distributed). If the estimate in the numerator has f, degrees of freedom,
and the estimate in the denominator has f; degrees of freedom then F
is defined as

by (11.3.1). (11.3.2)

Ly I,[y].
&yl

From (11.3.2) it is immediately seen that ¢? with f degrees of freedom is
simply the special caset of the va.ria.nce ratio with f; = 1 degree of
freedom in the numerator, i.e. t? = si/s? = F(1,f). Because the
variance in the numerator can be found from (and used as a measure of
the discrepency of) k sample means, F is the required generalization of
Student’s ¢. Numerical examples occur in §§ 11.4 and 11.6

F(fi.fs) = (11.3.3)

t It is worth noting, in passing, that chi-squared distribution is another special case
of the variance ratio. Since y® with f degrees of freedom is the distribution of f s%/0*
(see § 8.5) it follows that y3/f is simply F(f,o0), the population variance g? being an
estimate with oo d.f.
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Imagine repeated samples drawn from a single population of normally
distributed observations. From a sample of f,}1 observations the
sample variance, 87, is calculated as an estimate of the population
variance (with f, degrees of freedom). Another independent sample
of f,-+1 observations is drawn from the same population and its sample
varianoe, &3, is also calculated. The ratio, F, of these two estimates
of the population variance is calculated. If this proocess were repeated
very many times the variability of the population of F values so
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F1a. 11.8.1. Distribution of the variance ratio when there are 4 degrees of

freedom for the estimate of #2 in the numerator and 6 degrees of freedom for

that in the denominator. In 10 per cent of repeated experiments in the long run,

the ratio of two such estimates of the same variance (null hypothesis true) will be

8-18 or larger. The mode of the distribution is less than 1, and the mean is greater
than 1.

produced would be described by the distribution of the variance ratio,
tables of which are available.t The tables are more complicated than
those for the distribution of ¢ because both f; and f; must be specified
as well as F and the corresponding P, so a three-dimensional table is
needed. An example of the distribution of F for the case when f; = 4

t For example, (a) Fisher and Yates (1963), Table V. In these tablea values of F are
given for P = 0-001, 0-01, 0-05, 0-1, and 0-2 (the ‘0-1 per cent, etc. percentage points’
of F). The degrees of freedom f, and f, are denoted n, and n,, and the variance ratio F'is,
for largely historical reasons, called e3* (the tables of z on the facing pagee should be
ignored). (b) Pearson and Hartley (1966), Table 18 give values of F for P = 0-001
0-005, 0-01, 0-025, 0-05, 0-1, and 0-25. The degrees of freedom are denoted », and #,.
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and f, = 6 is shown in Fig. 11.3.1. Reference to the tables shows that
in 10 per cent of repeated experiments F will be 3.18 or larger, as
illustrated. The distribution has a different shape for different numbers
of degrees of freedom, but it is always positively skewed so mode and
mean differ (see § 4.5). Since numerator and denominator are estimates
of the same quantity values of F would be expected to be around one.

As in the case of 2 (see § 8.5), deviations from the null hypothesis in
either direction tend to increase the value of F (because squaring
makes all deviations positive), so the area in one tail of the F distribu-
tion, as in Fig. 11.3.1 is appropriate for a two-tail test (see § 6.1) of
significance in the analysis of variance. This can be seen clearly in the
case of the ¢ test. In § 9.4 it was found that the probability that ¢, will
be either less than —2-101 or greater than +2.101 was 0-05. Either of
these possibilities implies that ¢33 > 2:1013, ie. F(1,18) > 4-41.
Reference to the tables of F with f; = 1 and f; = 18 shows that
F = 4-41 cuts off 5 per cent of the area in the upper tail of the distribu-
tion, the same result as the two-tail ¢ test.

What to do if the variance ratio is less than one

When the null hypothesis is true F would be expected to be less than.
one quite often but the tables only deal with values of one or greater
In this case look up the reciprocal of the variance ratio which will now
have f, degrees of freedom for the numerator and f, for the denominator.
The resulting value of P is the probability of F equal to or less than the
original observed value. For example, if F(4,6) = 0-25, then look up
F(6,4) = 1/0-26 = 4-0 with 6 d.f. for the numerator and 4 for the
denominator. From the tables it is found that P[F(6,4) > 4-0] = 0-1,
and therefore P[F(4,6) < 0-25] = 0-1. 10 per cent of the area lies
below F = 0-25 in Fig. 11.3.1. The probability required for the analysis
of variance is P[F(4,6 > 0-25] = 1 — 0-1 = 0-9. If a variance ratio is
observed that is so small as to be very rare, it can only be assumed that
either a rare event has happened, or else that the assumptions of the
analysis are not fulfilled. Deviations from the null hypothesis can only
result in & large variance ratio.

11.4. Gaussian analysis of variance for k independent samples
(the one way analysis of variance). An illustration of the
principle of the analysis of variance

The use of the variance ratio distribution to extend the method of

§ 9.4 to more than two samples will be illustrated using observations on



§11.4 How to deal with two or more samples 183

the blood sugar level (mg/100ml) of 28 rabbits shown in Table 11.4.1.
As usual, the rabbits are supposed to be randomly drawn from a
population of rabbits, and divided into four groups in a strictly random
way (see § 2.3). One of the four treatments (e.g. drug, type of diet, or
environment) is assigned to each group. Is there any evidence that the
treatments affect the blood sugar level? Or, in other words, do the

TaABLE 11.4.1

Blood sugar level, (mg/100ml)—100, in four groups of seven rabbits.
See § 2.1 for explanation of notation. The figures in parentheses are the
ranks and rank sums for use in § 11.8

Treatment (5)
1 2 3 4
17 (10}) 87 (26) 36 (224) 9 (8)
16 (9) 36 (24) 22 (18) 8 (4)
28 (18) 21 (13h) 86 (22 17 (10
4 (3) 18 (7) 38 (28) 18 (12)
21 (l3i) 45 (28) 31 (19) 1 (2)
0 (1) 23 (16}) 34 (20*) 34 (20*)
23 (lﬂi) 13 (7) 40 (27) 13 (7)
Total Grand total
{=7 k
T., =‘}.‘.1y., 109 (71-5) 188 (121) 285 (162'5) 100 (61) @ =jz:1 :ly.,
= 632
Mean Grand mean
gy = -1-'—’ 15-5671 26-857 33-571 14-286 g.. = 632/28
ny = 22:6714
Varlance 1o2.95 168-14 34-29 109-24
1

four mean levels differ by more than reasonably could be expected if the
null hypothesis that all 28 observations were randomly selected from
the same population (so the population means are identical) were true ?

The assumptions concerning normality, homogeneity of variances,
and the model involved in the following analysis have been discussed in
§ 11.2 which should be read before this section. Although the largest
group variance in Table 11.4.1 is 4-6 times the smallest, this ratio is not
large enough to provide evidence against homogeneity of the variances,
a8 shown in § 11.2. Tests of normality are discussed in § 4.6.
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The nonparametric method described in § 11.5 should generally be
preferred to the methods of this section (see § 6.2).

The following discussion applies to any results consisting of k
independent groups, the number of observations in the jth group being
n, (the groups do not have to be of equal size). In this case k = 4 and
all n, = 7. The observation on the ith rabbit and jth treatment is
denoted y,;. The total and mean responses for the jth treatment are
T ; and y ;. See § 2.1 for explanation of the notation.

The arithmetic has been simplified by subtracting 100 from every
observation. This does not alter the variances calculated in the analysis
(see (2.7.7)), or the differences between means.

The problem is to find whether the means (§.,) differ by more than
could be expected if the null hypothesis were true. There are four
sample means and, as discussed in § 11.3, the extent to which they differ
from each other (their scatter) can be measured by calculating the
variance of the four figures.

The mean of the four figures is, in this case, the grand mean of all
the observations (this is true only when the number of observations is
the same in each group). The sum of squared deviations (SSD) is

'f(g_,—g“)ﬂ = (15-571 —22-571)3+ (26-857 —22-571)+
j=1

+(33-571 —22-571)3+ (14-286 —22-571)3
= 257-02.

The sum of squares is based on four figures, i.e. 3 degrees of freedom,
so the variance of the group means, calculated directly (cf. § 2.7) from
their observed scatter is

257
o 85-6733.

Is this figure larger than would be expected ‘by chance’, i.e. if the
null hypothesis were true? It would be zero if all treatments had
resulted in exactly the same blood sugar level, but of course this
result would not be expected in an experiment, even if the null hypo-
thesis were true. However, the result that would be expected can be
predicted, because the null hypothesis is that all the observations come
from a single Gaussian population. If the true mean and variance of
this hypothetical population were 4 and o2 then group means, which are
means of 7 observations, would be predicted (from (2.7.8)) to have
variance ¢3/7. If another estimate of o2, independent of differences
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between treatments, were obtainable then it would be possible to see
whether this prediction was fulfilled. How this is done will be seen
shortly.

With greater generality, suppose that k groups of n observations are
to be compared. In the present example k = 4 and n = 7. If all the
observations were from a single population with variance ¢? then the
variance of group means should be ¢?/n, so the variance of the means
(85-673) in the present example), caloulated directly from their observed
scatter about the grand mean should be an estimate of a2/n, calculated
from differences between groups. Multiplying through by n, it therefore
follows that

=k
n3 (@,—7.)
=1 )

(k—1)

would be an estimate of o, calculated from differences between groups,
if the null hypothesis were true.

Thus in the present example 7 x 85:673 = 599-71 is an estimate of
a2, It can be shown that if the number of observations were not equal,
say n,; observations in the jth group, then this expression would become

=k
2 ,—9.)
ful )

=1 (11.4.1)
k—1

However, if the population means of the groups were not all the
same, i.e. if the null hypothesis were not true, then the above expression
would not be an estimate of ¢®. Its numerator would be inflated by
the real differences between means so, on the average, the estimate
caloulated from differences between groups would be an estimate of
something larger than o?. The expectation of the between-groups mean
square will be greater than o? if the null hypothesis is not true, see
p. 186.

To test whether this has happened an independent estimate of o2,
not dependent on the assumption that the true (population) group
means are equal, is needed. This can be obtained from differences within
groups. The estimate of ¢? calculated from within the jth group—
simply the estimated variance of the group—is, as usual, found by
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summing the squares of deviations (SSD) of the individual observations
in a group from the mean for that group. Thus, for the jth group,

i=ny
—a )2
5 SSD within jth group _ 2:1 yy—9.,)
] = degrees of freedom within jth group =  #,—1

Now, since all groups are assumed to have the same variance, the
information about the variance from all groups can be pooled to give a
single estimate. This is done by dividing the total sum of squares by the

total degrees of freedom, as in § 9.4, s0
i=k

121 (SSD within the jth group)
#ly] ==

=k

2 (n,—1)
k n =1
2 }f(yu——ﬂ.,)’
= %—(using (2.1.8) and (2.1.7)), (11.4.2)
. .
where N = Y n, is the total number of observations. This is the

=]
required est;mate of o2 calculated from differences within groups. In
the present example its value is 2427-714/(28-4) = 101-155. An easy
method of calculating the numerator is given below.

Furthermore, if all N observations were from the same population,
o? could be estimated from the sum of squared deviations (SSD) of all
of the N (= 28 in this case) observations from their mean (the grand
mean §_). Thus, using (2.6.5),

Total 88D = 3 3(y,—9.)* = Z 2y, —(ZZy)*/N (11.4.3)
T
= (172+4+163+...4+ 342+ 13%) —(632)%/28.

Tabulation of the results
It has been shown that (11.4.1) and (11.4.2) would both be estimates
of o7 if the null hypothesis were true, so their ratio would follow the
F distribution (see § 11.3). If there is a difference between groups
then (11.4.1) will be enlargedt and the observed F would therefore be,
t The expectation (long-run mean, see Appendix 1) of MS, in Table 11.4.2 is E[MS,]
= ¢% and in general E[MS,] = ¢*+ ﬁn,(-r,-—i)’/(k—l) for the fixed effect model

=1
(11.2.1) discussed in § 11.2, so if the njull hypothesis, that all the r, are the same, is
true, E{MS8,] = ¢? also. For the random effects model (see p. 178) E[MB,] = 0?4 nw?
when all groups are the same size (n). And the null hypothesis is that @? = 0, in which
case again E[MS8,] = ¢°. (8Bee Brownlee (1965, pp. 310 and 318).)
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on the null hypothesis, improbably large. It is shown below that the
sums of squares in the numerators of (11.4.1) and (11.4.2) add up to
the total sum of squares (11.4.3). Furthermore, the number of degrees
of freedom for between groups (11.4.1) comparisons, k—1, and that for

TABLE 11.4.2
General one-way analysis of variance. Notice that if the null hypothesis
were true all the figures in the mean square column would be estimates of
the same quantity (0®). Mean square i8 just another name for variance
(see § 2.6). Puiting in the figures in the example gives Table 11.4.3

Source of Sum of Mean square Variance P
variation d.f. squares (or variance) ratio

k
Between k—1 Xn,(9,~9.)2 S8D/d.f. = M8, F = MS, /M8,
groups 1

kn
Within N~k I3yy—9,° SSD/d.f = M8,
groups Jt

kn
Total N-1 ?ﬁ‘(w —-g.7»

TaBLE 11.4.3
Analysss of the rabbit blood sugar level observations in Table 11.4.1

Source of d.f. 8um of Mean Variance P
variation squares square ratio
Between 1799-143 599-71
trea ts 4—-1=3 1799-143 —3 = 599-71 Toriss — 593 <0-008
Within 2427-714
treatments 28—4 = 24 2427714 T = 101-188
Total 281 = 27 4226-887

within groups (11.4.2) comparisons, (n,—1) = N —k, add up to the
total number of degrees of freedom.

These results can be written out as an analysis of variance table.
All analysis of variance tables have the same column headings, but the
sources of variation considered depend on the design of the experiment.
For the one-way analysis the general result is as in Table 11.4.2.
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If the null hypothesis were true 599-71 and 101-16 would both be
estimates of the same variance (0%). Whether this is plausible or not is
found by referring their ratio, 5-93, to tables of the distribution of
F (see §11.3) with f; = 3 and f; = 24 degrees of freedom. This
shows (see Fig. 11.3.1) that a value of F(3,24) = 5-93 would be exceeded
in only about 0-5 per cent of experiments in the long run (if the assump-
tions made are satisfied). Therefore, unless it is preferred to believe
that a 1 in 200 chance has come off, the premise that both §89-71 and
101-16 are estimates of the same variances will be rejected, and this
implies that all the observations cannot have come from the same
population, i.e. that the treatments really differ in their effect on blood
sugar level (see § 6.1).

Notice that this does not say anything about which treatments
differ from which others—whether all treatments differ, or whether
three are the same and one different for example. The answering of this
question raises some problems, and a method of doing it is discussed in
§ 11.9. It is not correct to do ¢ tests on all possible pairs of groups.

A practical method for calculating the sum of squares
A form of (11.4.1) that is more convenient for numerical computations

can be derived along the same lines as (2.6.5). The SSD between groups,
from (11.4.1), is

I=k k
,21"1(9.1 —-7.)? =’21 (ng 2—2n4 4 +n4 3

k x k
=3 ng.L—29. 3 ng +7 3 ny. (11.4.4)
j=1 j=1 J=1
In this expression consider
(a) the first term: because § , = T',/n; (see Table 11.4.1 and § 2.1)

the first term can be written

1)

j=1\ Ny

(b) the second term: again substituting the definition of 7 ; shows
that the second term is 2§ Ing,= 2§ XT ;= 2§ G = 2G3N,
because Y 7', = sum of group totals = grand total, @, and § = G/N;

1
(c) the third term: because the sum of the group numbers 3n; = N,
1
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the total number of observations, and § = G/N, the third term is
§2.3n, = Nij ? = G?|N.
]
Substitution of these three results in (11.4.4) gives
TA
SSD between groups = z )_17'

J=1\ By
i.e., writing out the summation term by term,
T3 T3 T &
SSD between groups = —+—-+ +———17: (11.4.8)

and this is the usual working formula. The formula for the total sum
of squares, (2.6.5), can be regarded as the special case in which each
total T contains n = 1 observation. In the present example

1092 1883 2357 1002 (632)
7t 3 7 28

SSD between groups =

= 1799-143

as shown in Table 11.4.3.
The SSD within groups can now be found most easily by difference

SSD within groups = total SSD —between-groups SSD (11.4.6)

= 4226-857 —1799-143 = 2427-714,
a8 in Table 11.4.3.

A digression to show that sum of squares between and within groups must
add up to the total sum of squares

Consider the total sum of squared deviations (S8D) of the observations about
the grand mean (11.4.1), namely Z(y,,—9. )°. At first consider the SS8D of the
observations in the jth group about the grand mean, i.e.

n n
¥ =907 = ¥ lwy—9.)+@,—7.)P
i=l fm]l
n
= ¥ (=907 + 20y —F )@ —F.)+ G~ 9]
1:1 n
=‘i1<yu—y.,>=+2(y.,—y..)‘i1(y.,—y'.,>+n,(y,,—y..>=

n
=‘i1(y.,—y.,)°+n,(y.,~y..)=.

The last step in this derivation follows from (2.6.1), which shows that E(y.,——y s)
= 0, so the central term disappears.
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If the above result is summed over the k groups, the required result is obtained,
thus

% Y- =3 Fwy—g.r2+ zn,(y,—y 2. (11.4.7)
f=l =1 =1 j=1
Total SSD = 88D within —+-SSD between
groups groups

Thus is a purely algebraic result and must hold for any set of numbers, but
unless the observations can really be represented by the postulated model
(see § 11.2) the components will not have the simple interpretation implied in the
‘source of variation’ column of Table 11.4.2.

The t test on the results of Cushny and Peebles written as an analysis of
variance

The calculations in § 9.4 can usefully be written as an analysis of
variance on the lines just described, with ¥ = 2 independent groups.
The results and necessary totals are given in Table 10.1.1. Again refer
to § 2.1 if in doubt about the notation.

The first step is usually to calculate G2/N as it appears several times
in the calculations. This quantity is often called the correction factor
Jor the mean, because, from (2.6.5), it corrects Ly? to X(y—#)>.

From Table 10.1.1:

(a) correction factor G3|N = (30-8)2/20 = 47-4320; (11.4.8)
(b) total sum of squares, from (2.5.6) (cf. (11.4.3)),

2 10
IZ S (yy—9. )% = ZZy},—GIN
2l {ml
= 0734 1-62+ ...+ 342 —47-432
= 77-3680; (11.4.9)

(c) sum of squares between columns (i.e. between drugs A and B),
calculated from the working formula (11.4.5), is
T T2 &
Zn;(y =9 = e +n—2—17

7-52 2332

10T 10
= 12:4820; (11.4.10)

—47-432

and, as above, when divided by its number of degrees of freedom
this would give an estimate of ¢2 if the null hypothesis (that all
observations are from a single population with variance ¢2)
were true;
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(d) the sum of squares within groups can now be found by difference,
a8 in (11.4.6),

2 10
S 3 (yy—9,)° = 77-3680—12-4820 = 64-8860.
jul tml
These results can now be assembled in an analysis of variance table,
Table 11.4.4, which is just like Tables 11.4.2 and 11.4.3.

TABLE 11.4.4

Sum of
Source of variation df. squares MS F P
Between drugs 1 12-4820 12-4820 3463 0-1-—0-06
Error (or within drugs) 18 64-8860 3-6047
Total 19 77-3680

Reference to tables of the distribution of F (see § 11.3) shows that, if
the assumptions discussed in § 11.2 are true, a value of F(1,18) equal
to or greater than 3-46 would occur in between 5 and 10 per cent trials
in the long run, if the null hypothesis, that the drugs are equi-effective,
were true, and if the assumptions of normality, etc. were true. This
is exactly the same result as found in § 9.4, and P is not small enough to
reject the null hypothesis. Because there are only two groups (k = 2),
F has one (= k—1) degree of freedom in the numerator, and is therefore
(see § 11.3) a value of 3. Thus v/ F = 1/(3:463) = 1-861 is a value of
t with 18 d.f,, and is in fact identical with the value of ¢ found in § 9.4.

Furthermore, the error (within groups) variance of the observations,
from Table 11.4.4, is estimated to be 3:605, exactly the same as the
pooled estimate of s%(y) found in § 9.4. Table 11.4.4 is just another way
of writing the calculations of § 9.4.

11.6. Nonparametric analysis of variance for independent
samples by randomization. The Kruskal-Wallis method

As suggested in §§6.2 and 11.1, the methods in this section are
to be preferred to that of § 11.4.

The randomization method
The randomization method of § 9.2 is easily extended to k samples

and this is the preferred method, because it makes fewer assumptions
than Gaussian methods. The disadvantage, a8 in § 9.2, is that tables

14
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cannot be prepared to facilitate the test, which will therefore be tedious
(though simple) to calculate without an electronic computer. As in
§ 9.3, this can be overcome, with only a small loss in sensitivity, by
replacing the original observations by their ranks, giving the Kruskal-
Wallis method described below.

The principle of the randomization method is exactly as in §§ 9.2,
9.3, and 8.2 80 the arguments will not all be repeated. If all four treat-
ments were equi-effective then the observed differences between group
means in Table 11.4.1, for example, must be due solely to the way the
random numbers come up in the process of random allocation of a
treatment to each rabbit. Whether such large (or larger) differences
between treatments means are likely to have arisen in this way is
again found by finding the differences between the treatment means
that result from all possible ways of dividing the 28 observed figures
into 4 groups of 7. On the assumption that, when doing the experiment,
all ways were equiprobable, i.e. that the treatments were allocated
strictly at random, the value of P is once again simply the proportion
of possible allocations that give rise to discrepancies between treatment
means as large as (or larger than) the observed differences. In § 9.2 the
discrepancy between two means was measured by the difference
between them. As explained in §§11.3 and 11.4, when there are
more than two (say k) means, an appropriate thing to do is to measure
their discrepancy by the variance of the k figures, i.e. by calculating,
for each possible allocation the ‘between treatments sum of squares’ as
deacribed in § 11.4.

An approximation to the answer could be obtained by card shuffling,
as in § 8.2. The 28 observations from Table 11.4.1 would be written on
cards. The cards would then be shuffled, dealt into four groups of
seven, and the ‘between treatments sum of squares’ calculated. This
would be repeated until a reasonable estimate was obtained of the
proportion (P) of shufflings giving a sum of squares equal to or larger
than the value observed in the experiment. In fact, just as in §9.2
it was found to be sufficient to calculate the total response for the
smaller group, so, in this case, it is sufficient to calculate ZT ?/n, for
each possible allocation, because once this is known the between
treatments sum of squares, or between-treatments F ratio, follows from
the fact that the total sum of squares is the same for every possible
allocation.

By a slight extension of (3.4.3), the number of possible allocations of
N objects into k groups of size ny, ny,...0y, (En; = N)is N !/(ny Ingl..n,1).
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In the case of Table 11.4.1 there are therefore 28!/(717!7171)
= 472518347558400 possible allocations. This is rather too many to
enumerate by hand (doing one every 5 minutes it would take about 20
thousand million normal working years), though it is easy to select a
sufficiently large random sample of them with an electronic computer.

If a program for this is not available, the recommended procedure for
analysis of k independent samples is, just as in § 9.3, to replace the
observations by ranks allowing tables to be constructed. This is known
as the Kruskal-Wallis method.

The k sample randomization test on ranks. The Kruskal-Wallis one-way
analysis of variance

This is simply an extension to more than two (k, say) groups of
the Wilcoxon two-sample test (see above, and § 9.3). As before, the null
hypothesis is that all N observations are from the same population, and
if this is rejected the conclusion will be that the populations differ. If
it is wished to conclude that the population medians differ then it must
be assumed that the underlying distributions (before ranking) for all
groups are the same apart from the medians, though no particular

TaBLE 11.5.1

Treatment
A B (]

Score Rank Score Rank Score Rank

1 4 1 1 17 9

15 8 [ 2 31 11

12 6 8 3 14 7

8 5 22 10
Totals R, =28 R, =6 Ry = 87

form of distribution is assumed except that it must be continuous (see
§ 4.1). This implies that the variance is assumed to be the same for all
groups.

Again the method can be applied when the observations are them-
selves not numerical measurements but ranks, or arbitrary scores that
must be reduced to ranks, as well as when they are numerical measure-
ments.

All N observations are ranked in asoending order, ties being given the
average rank as in §9.3 (see Table 9.3.1). Table 11.5.1 shows the
results of an experiment in which 11 patients were divided randomly
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into k = 3 groups, each being given a different analgesic drug (A, B,
and C). In each group the figure recorded is the total subjective pain
score recorded over a period of time by each patient. Such measure-
ments should not be treated like numerical measurements but should
be ranked. The ranks are shown in the table together with the rank
sum, R,, for each group (j = 1,2,...k,). The number of observations in
each group is n; and the total number is N = Xn, as in § 11.4.

The measure of the extent to which the treatments differ, analogous
to the rank sum of the smaller sample used in § 9.3, is the statistic H
defined as

H= LI B 3(N+1
—N(N+l)2n,_ (N+1) (11.5.1)
=1

a8 long as there are not too many ties (see below). Notice that the
term X R}/n, makes H similar in character to a between-groups sum of
squares (11.4.5). For the results in Table 11.5.1, N = 11, n, = 4,
ng =3, ng =4, R, = 23, R, = 6, and R; = 37. Applying the check
(9.3.1) gives the sum of all ranks a8 N(N+1)/2 = 66 and in fact 23
+6+37 = 66. Using these values with (11.5.1) gives

He— 22 (232 ¢ 372) 3(114-1) = 8-277
=\ ¢ Tt ) T = 8277

Table A5 gives the exact distribution of H found, as in § 9.3, by the
randomization method. It shows that for sample sizes 4, 4, and 3 (the
order of these figures is irrelevant) a value of H > 7-1439 would
occur in 1 per cent of trials (P = 0-01) in the long run if the null
hypothesis were true, therefore H — 8:227 must be even rarer, i.e.
P < 0-01. As in §11.3 deviations from the null hypothesis in any
direction increase the size of H. Again, as in all analyses of variance,
this result does not give any information about differences between
individual pairs of groups (see § 11.9).

Example with larger samples. Table A5 only deals with k = 3 groups
with not more than 5 observations in any group. For larger experi-
menta it is a sufficiently good approximation to assume that H is
distributed like chi-squared with k—1 degrees of freedom. P can then
be found from the chi-squared tables (see § 8.5). For example, the
results in Table 11.4.1 have been converted to ranks, shown in paren-
theses. In this case N =28, n, =n3=n3=n,=17, R, = 71B,
Ry =.121, Ry = 152-5, and R, = 61. Applying the check N(N-1)/2
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= 28(28+1)/2 = 406 and, correctly, R,+ R;+ Rg+ R, = 406. Thus,
from (11.5.1),
12 71-5* 1213 152-53 61’)

H = ?8—(2_84——1)(T+T+T+T —3(28+1) = 1166,
Consulting a table of the chi-squared distribution (Fisher and Yates
(1963, Table IV) or Pearson and Hartley (1966, Table 8)) with k—1 = 3
degrees of freedom shows that 3, = 11-345 would be exceeded in 1
per cent of experiments in the long run if the null hypothesis were
true, so P < 0-01 for the observed value of 11-66. This is somewhat
larger than the value of P < 0-005 found when the assumptions of the
Gaussian analysis of variance were thought justified (Table 11.4.3),
but it is still small enough to cast considerable doubt on the null
hypothesis.

As in the Gaussian analysis, the finding that all k¥ groups are unlikely
to be the same says nothing about which groups differ from which
others. A method for testing all pairs of groups to answer this question
is described in § 11.9. It is not correct to do two-sample Wilcoxon
tests on all possible pairs.

Correction for ties. Unless there is a very large number of ties the
correction factor (described, for example, by Brownlee (1965, p. 256))
has a negligible effect. It always makes H larger. and hence P smaller
so there is no danger that neglecting the correction factor will lead to
rejection of the null hypothesis when it would otherwise not have been
rejected.

11.6. Randomized block designs. Gaussian analysis of variance
for k related samples (the two-way analysis of varlance)

In §§10.1 and 6.4 it was pointed out that if the experimental units
(e.g. patients, periods of time) can be selected in some way to form
groups that give more homogeneous and reproducible responses than
units selected at random, then it will be advantageous if all the treat-
ments (k in number, say) to be compared, are compared on the units of
such a group. The group is known as a block. The units comprising the
block are sometimes, because of the agricultural origins of the design,
known as plots. It must clearly contain as many (k) experimental
units as there are treatments, or at least a multiple of k. The k treat-
ments must be allocated strictly randomly (see § 2.3) to the k units of
each block. Because every treatment is tested in every block the
blocks are deacribed as complete (of. § 11.8). This section deals with
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randomized complete block experiments when the observations are
described by the single additive model with normally distributed error
(11.2.2) described in § 11.2, which should be read before this section.

The analysis in § 10.6, Student’s paired ¢ test, was an example of
a randomized block experiment with k = 2 treatments and 2 units
(periods of time) in each block (patient). This test will now be reform-
ulated as an analysis of varianoce.

The paired t test written as an analysis of variance

The observations of Cushney and Peebles in Table 10.1.1 were
analysed by a paired ¢ test in § 10.6. At the end of § 11.4 it was shown
how a sum of squares for differences between drugs could be obtained,
but no account was taken of the block arrangement actually used in the
experiment. As before (see §§ 11.3 and 11.4) the calculations are such
that if the null hypothesis (that all observations are from the same
Gaussian population with varianoce ¢?) were true, then the quantities
in the mean-square column of the analysis of variance would all be
independent estimates of o2.}

Because of the symmetry of the design it is possible to obtain an
estimate of 02, on the null hypothesis that there is no real difference
between blocks (patients), by considering deviations of block means
from the grand mean, i.e. by analogy with (11.4.1), from Y k(#, —7. )%/

1

(n—1), where k = number of treatments = number of observations
per block, and #» = number of blocks = number of observations on
each treatment. Unlike the one-way analysis, » must be the same for
all treatments. N = kn is the total number of observations. From
(11.4.8), it can be seen that the numerator of this (sum of squares
between blocks) can most simply be calculated from the block totals,
as the sum of squares between treatments was found from treatment
totals in (11.4.5). From the results in Table 10.1.1

TR 6

SSD between blocks = z—k——i (11.8.1)
=1
_ 28 08 4B arase0
5 g T3
= 58-0780.

t+ The expected value of the mean squares (see § 11.2, p. 173 and 11.4, p. 186) are
derived by Brownlee (1865, Chapter 14). Often the mixed model in which treatmenta
are fixed effects and blocks are random effecta is appropriate (loc. oit., p. 498).
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In this, the group (row, block) totals, T, , are squared and divided by
the number of observations per total just as in (11.4.5). See §§ 2.1 and
11.4 if olarification of the notation is needed. Since there n = 10 groups
(rows, blooks) this sum of squares has n—1 = 9 degrees of freedom.

The values of G?/N(47-4320), and of the sum of squares between
drugs (treatments, columns) (12-4820) and the total sum of squares
(77-3680), are found exactly as in (11.4.8)-(11.4.10). The results are
assembled in Table 11.6.1. The residual or error sum of squares is again

TaBLE 11.6.1

The pasred t test of § 10.5 written as an analysis of variance. The mean
squares are found by dividing the sum of squares by thesr d.f. The F ratios
are the ratio of each mean square to the error mean square

Sum of Mean F P
Source of variation d.f. squares square

Between treatments (drugs) 1 12-4820 12-4820 18-5009 0-001 —0-005
Between blocks (patients) 9 58-0780 6-4531 8:631 0-001 —0-005
Error 9 8-8080 0-7664

Total 19 77-3680

found by difference (77-3680—058-0780—12-4820 = 6-8080), and so is
its number of degrees of freedom (19—9—1 = 9). The error mean
square will be an estimate of the variance of the observations, o2,
after the elimination of variability due to differences between treat-
ments (drugs) and blocks (patients), i.e. the variance the observations
would have because of sources of experimental variability if there were
no such differences. This is only true if there are no interactions and the
simple additive model (11.2.2) represents the observations. The other
mean squares would also be an estimate of ¢? if the null hypothesis
were true, and therefore, when the null hypothesis is true the ratio of
each mean square to the error mean square should be distributed like
the variance ratio (see § 11.3). If the size of the F ratio is so large is to
make its observance a very rare event, the null hypothesis will be
abandoned in favour of the idea that the numerator of the ratio has
been inflated by real differences between treatments (or blocks).

The variance ratio for testing differences between drugs is 16-5009
with one d.f. in the numerator and 9 in the denominator. Reference to
tables of the F distribution (see § 11.3) shows that F(1,9) = 13-61
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would be exceeded in 0-5 per cent, and F(1,9) = 22:86 in 0-1 per oent
of trials in the long run, if the null hypothesis were true. The observed
F falls between these figures so 0-001 << P < 0-005, just as in § 10.5.

As pointed out in § 11.3 (and exemplified in § 11.4), F with 1 d.f.
for the numerator is just a value of {2 so /[F(1,9)] = 4/(16-5009)
= 4-062 = (9), a value of { with 9 d.f.—exactly the same value, as
was found in the paired ¢ test (§ 10.6). Furthermore, the error variance
from Table 11.6.1 is 0-7564 with 9 d.f. The error variance of the differ-
ence between two observations should therefore, by (2.7.3), be 0-7564
+0-7564 = 1-513, which is exactly the figure estimated directly in
§ 10.6.

If there were no real differences between blocks (patients) then
6-453 would be an estimate of the same o? as the error mean square
0-756. Referring this ratio (8:531) to Tables (see § 11.3) of the distribu-
tion of the F ratio (with f;, = 9 d.f. for the numerator and f; = 9 d.f.
for the denominator) shows that the probability of an F ratio at least
as large as 8:531 would be between 0-001 and 0-005, if the null hypo-
thesis were true.

This analysis, and that in § 11.4, show clearly why ¢t had 18 d.f. in the
unpaired ¢ test (§ 9.4) but only 9 d.f. in the paired ¢ test (§ 10.6). In the
latter, 9 d.f. were used up by comparisons between patients (blocks).

There is quite strong evidence (given the assumptions in §11.2)
that there are real differences between the treatments (drugs), as
concluded in § 10.5. This is because an F ratio, i.e. difference between
treatments relative to experimental error, as large as, or larger than,
that observed (16:532) would be rare if there were no real (population)
difference between the treatments (see §§6.1 and 11.3). Similarly,
there is evidence of differences between blocks (patients).

An example of a randomized block experiment with four treatments

The following results are from an experiment designed to show
whether the response (weal size) to intradermal injection of antibody
followed by antigen depends on the method of preparation of the
antibody. Four different preparations (A, B, C, and D) were tested.
Each preparation was injected once into each of four guinea pigs. The
preparation to be given to each of the four sites on each animal was
decided strictly at random (see § 2.3). Guinea pigs are therefore blocks
in the sense described above. The results are in Table 11.6.2. (This is
actually an artificial example. The figures are taken from Table 13.11.1
to illustrate the analysis.)
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TABLE 11.6.2
Weal diameters using four antibody preparations in guinea pigs
Antibody preparation (treatment)
Guinea
pig
(block) A B c D Totals (T,.)
1 41 81 62 43 207
2 48 a8 62 418 268 226
3 53 70 66 53 242 -
4 56 72 70 52 250
Total (T.)) 198 271 260 196 G = 9025
Mean 49-5 7.7 85-0 4190
The calculations follow exactly the same pattern as above.
G (925)
= ——— = 53 476-5625.

(1) ‘Corvection factor’ (see (11.4.8)). -

(2) Between antibody preparations (treatments). From (11.4.5),

1982 2712 2607 1962

SSD =

4+4+4

(3) Between guinea pigs (blocks). From (11.6.1),

+ n —b53 476-5625 — 1188-6875.

2072 2263 2422

S8D = =+t

—53 476-5625 = 270-6875.

(4) Total sum of squared deviations. From (2.6.5) (or (11.4.3)),
SSD — 41244834 ...+ 533+ 522 — 53 476-5625 — 1492-4375.

(5) Error sum of squares found by difference.

SSD = 1492-4376—(1188-691270-687) = 33-0625.

There are 3 d.f. for blocks and treatments (because there are 4 blocks
and 4 treatments) and the total number of d.f. is ¥ —1 = 15, so, by
difference, there are 16—(3+3) = 9 d.f. for error. These results are
assembled in Table 11.6.3. Comparison of each mean square with the
erTor mean square gives variance ratios (both with f; = 3 and f,
= 9 d.f.) which, according to tables of the F distribution (see § 11.3),
would be very rare if the null hypothesis were true. It is concluded that
there is evidenoe for real differences between different antibody
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preparations, and between different animals, for the same reasons as in
the previous example.

TaBLE 11.6.3

Sum of Mean
Source of variation d.f. squares square F P
Between antibody 3 1188-6876  396-229 107-86 < 0001

preps. (treatments)
Between guinea pigs 3 270-6875 90-229 24-56 < 0-001

(blocks)
Error 9 83:0625 3-674
Total 15 1492-4375

Multiple comparisons. As in §§ 11.4 and 11.5, if it is wished to go
further and decide which antibody preparations differ from which
others the method described in § 11.9 must be used. It is not correct
to do paired ¢ tests on all possible pairs of treatments.

11.7. Nonparametric analysis of variance for randomized blocks.
The Friedman method

Just as in §§9.2, 10.3, and 11.5 the best method of analysis is to
apply the randomization method to the original observations. The
principles of the method have been discussed in §§ 6.3, 8.2, 9.2, 9.3, 10.3,
10.4, and 11.5. Reasons for preferring this sort of test are discussed in
§ 6.2. As before, the drawback of the method is that tables cannot be
prepared to the calculation will be tedious without a computer, though
they are very simple; and as before, this disadvantage can be overcome
by using ranks in place of the original observations (the Friedman
method).

The randomization method

The argument, simply an extension to more than two samples of
that in § 10.3, is again that if the treatments were all equi-effective
each subject would have given the same measurement whichever
treatment had been administered (see p. 117 for details), so the observed
difference between treatments would be merely a result of the way the
random numbers came up when allocating the k treatments to the k
units in each block (see § 11.6). There are k! possible ways (permuta-
tions) of administering the treatments in each block, so if there are n
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blocks there are (k!)* ways in which the randomization could come
out (an extension to k treatments of the 2" ways found in §10.3).
If the randomization was done properly these would all be equi-
probable, and if the F ratio for ‘between treatments’ is caloulated for all
of these ways (cf. § 11.5), the proportion of cases in which F is equal to
or larger than the observed value is the required P, as in § 10.3. As in
§11.5 it will give the same result if the sum of squared treatment
totals, rather than F, is calculated for each arrangement.

As in previous cases an approximation to this result could be obtained
by writing down the observations on cards. The cards for each block
would be separately shuffled and dealt. The first card in each block
would be labelled treatment A, the second treatment B, and so on.
If this process were repeated many times, an estimate of the proportion
(P) of cases giving ‘between treatments’ F ratios as large as, or larger
than the observed ratio, could be found. If this proportion was amall
it would indicate that it was improbable that a random allocation
would give rise to the observed result, if the observation was not
dependent on the treatment given. In other words, an allocation that
happened to put the same treatment group subjects that were, despite
any treatment, going to give a large observation, would be unlikely to
turn up.

The analysis of randomized blocks by ranks. The Friedman method

If the observations are replaced by ranks, tables can be constructed
to make the randomization test very simple.

The null hypothesis is that the observations in each block are all
from the same population, and if this is rejected it will be supposed that
the observations in any given block are not all from the same popula-
tion, because the treatments differ in their effects. If it is wished to
oonclude that the median effeots of the treatments differ it must be
assumed that the underlying distributions (before ranking) of the
observations is the same for observations in any given block, though the
form of the distribution need not be known, and it need not be the
same for different blocks.

As in the case of the sign test for two treatments (§ 10.2) the observa-
tions within each block (pair, in the case of the sign test) are ranked.
If the observations in each block are themselves not proper measure-
ments but ranks, or arbitrary scores which must be reduced to ranks,
the Friedman method, like the sign test, is still applicable. In fact the
Friedman method, in the special case of k = 2 treatments, becomes
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identical with the sign test. Compare this with the Wilcoxon signed-
ranka test (§ 10.4) in which proper numerical measurements were
necessary because differences had to be formed between members of a
pair before the differences could be ranked.

Suppose, as in § 11.6, that k treatments are compared, in random
order, in n blocks. The method is to rank the k observations in each
block from 1 to k, if the observations are not already ranks. The rank
totals, R, (see §§ 2.1, 11.4, and 11.5 for notation), are then found for
each treatment. If there were no difference between treatments these
totals would be approximately the same for all treatments. The sum
of the ranks (integers 1 to k) in each block should be k(k+1)/2, by
(9.3.1), and because there are n blocks the sum of the rank sums should
be

k
3 R, = nk(k+1)/2. (11.7.1)
j=1
As a measure of the discrepancy between rank sums now simply
calculate 8, the sum of squared deviations of the rank sums for each
treatment from their mean (cf. (11.4.1)). From (2.6.5), this is

- 3 TR)?
S =%(R—Rp = 233—( k’)-
jml

(11.7.2)

The exact distribution of this quantity, calculated according to
the randomization method—see sections referred to at start of this
section, is given in Table A6, for various numbers of treatments and
blocks. For experiments with more treatments or blocks than are
dealt with in Table A6, it is a sufficiently good approximation to
calculate

128
zzfdlk = ﬂk(k+l)

and find P from tables of the chi-squared distribution (e.g. Fisher and
Yates (1963, Table IV) or Pearson and Hartley (1966, Table 8)) with
k—1 degrees of freedom.

As an example, oonsider the results in Table 11.6.2, with k = 4
treatments and n = 4 blocks. If the observations in each block (row)
are ranked in ascending order from 1 to 4, the results are as shown in
Table 11.7.1. Ties are given average ranks as in Table 8.3.1. This is an
approximation but it is not thought to affect the result seriously if the
number of ties is not too large.

(11.7.3)
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Applying the check (11.7.1), shows that LR, should be 4.4.(4+41)/2
= 40, as found in Table 11.7.1. Now caloulate, from (11.7.2),

3
8 = 63+ 15’+13’+6’-—(42)

= 66-00.

Consulting Table A6 shows that when k=4 and n =4, § = 64
corresponds to P = 0-0069. So the observed S = 66 corresponds to
P < 0-0069. This means that if the treatments were equi-effective
(null hypothesis) then in less than 0-69 per cent of experiments in the

TaBLE 11.7.1
The observations within each block in Table 11.6.2 reduced to ranks

(Antibody preparation (treatment)

Guinea pig
(block) A B C D
1 1 8 4 2
2 14 4 3 14
3 14 4 3 14
4 2 4 8 1

Rank sum(R;) Ry=6 R;=16 R;=13 R,=6 ZXR,=40

long run would a random allocation of treatments to the units of each
block be chosen that gave differences between treatment rank sums
(i.e. & value of S) a8 large as, or larger than, that observed (S = 66).
The null hypothesis of equi-effectiveness is therefore rejected, though
not with as much confidence as when the same results were analysed
by the Gaussian analysis of variance in § 11.6. In Table 11.6.3, it was
seen that if the assumptions made (see § 11.2) were correct, P < 0-001,
was much lower than found by the present method.

If the experiment had been outside the scope of Table A6 then
(11.7.8) would have been used giving zi. = 12.66/4.4(4+1) = 9-80.
Consulting tables of the chi-squared distribution (see above) with
k—1 = 3 degrees of freedom shows that a value of 9-837 would be
exceeded in 2 per cent of experiments in the long run so P ~ 0-02.
Not a very good approximation, in such small samples, to the exact
value of P (just less than 0-0069) found from Table A6.

If it were of interest to find out whether there was a difference
between blocks, exactly the same method would be used (e.g. inter-
change the words block and treatment throughout this section).

Multiple comparisons. As in §§ 11.4-11.6, the conolusion that the
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treatments do not all have the same effect says nothing about which
ones differ from which others. It would not be correct to perform sign
tests on all possible pairs of treatment groups, in order to find out, for
example, whether treatment B differs from treatment D. A method of
answering this question is given in § 11.9.

11.8. The Latin square and more complex designs for experiments

There is a vaast literature describing ingenious designs for experiments
but the analysis of almost all of these depends on the assumption of a
normal distribution of errors and on elaborations of the models des-
oribed in § 11.2, If the experiments are large there is, in some cases,
some evidence that the methods will not be very sensitive to the
assumptions. As the assumptions are rarely checkable with the amount
of data available it may be as well to treat these more complex designs
with caution (see comments below about use of small Latin squares).
Certainly if they are used the advice of a critical professional statistician
should be sought about the exact nature of the assumptions being
made, and the interpretation of the results in the light of the mathe-
matical model (see § 11.2).

To emphasize the point it should be sufficient to quote Kendall and
Stuart (1966, p. 139): ‘The fact that the evidence for the validity of
normal theory tests in randomized Latin squares is flimsy, together
with the even greater paucity of such evidence for most other, more
complicated, experiment designs, leads one to doubt the prevailing
serene assumption that randomization theory will always approximate
normal theory.’

The Latin square

The experiment summarized in Table 11.6.2, was actually arranged
so that each of the four injection sites (e.g. anterior and posterior on
each side), received every treatment once, according to the design
shown in Table 11.8.1(a). The measurements, from Table 11.6.2, are
given in Table 11.8.1(b).

In the randomized block design (§ 11.6) each treatment appeared
once, in random order, in each block (row). In the design shown in
Table 11.8.1, which is called a Latin square, there is the additional
restriction that each treatment appears once in each column so that the
column totals are comparable. The number of columns (injection sites)
as well as the number of blocks (rows, guinea pigs) must be the same
as (or a multiple of) the number of treatments. If a model like (11.2.2),
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but with another additive component characteristics of each column
(injection site), is supposed to represent the real observations, then a
sum of squares (see §§ 11.2, 11.3, 11.4, and 11.6) can be found from the
observed scatter of the column totals (the corresponding mean square,
would, as usual, estimate o3, if the null hypothesis were true), and used

TaBLE 11.8.1
The Latin square design

Column Injection site
Guinea
Row 1 2 38 4 pig 1 2 38 4 Total
1 A B C D 1 41 61 62 43 | 207
2 C A D B 2 62 48 48 68 | 226
3 D ¢C B A 3 53 66 70 53 | 242
4 B D A C 4 72 62 66 70 | 250
Total 228 227 236 234 | 925
(a) (b)

in the Gaussian analysis of variance to eliminate errors due to system-
atic differences between columns (injection sites). The sum of squares
is found from column totals, and number of observations per total
(4 in this case), using (11.4.5) again.

SSD between injection sites (columns)

2283 2272 2367 2342
T 4 + 4 + 4 + 4

—B3 476-56256—14-6875 (11.8.1)

TABLE 11.8.2
Analysis of variance for the Latin square

Sums of Mean
Source of variation d.f. squares square F ¥ o

Between antibody prepara-

tion (treatments) 3 1188-6876 396-23 129-4 <0-001
Between guinea pigs
(rows) 3 270-6875 80-23 29-56 <0-001
Between sites (columns) 3 14-8876 4-89 1-8 >0-2
Error 8 18-3760 3-06

Total 16  1492-4376
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with 3 degrees of freedom (because there are 4 columns). The sums of
squares for differences between treatments and between guinea pigs,
and the total sum of squares, are exactly as in § 11.6. When these
results are filled into Table 11.8.2, the error sum of squares and degrees
of freedom can be found by difference, and the rest of the table com-
pleted as in § 11.6. Referring the variance ratio, F(3,6) = 1-6, to
tables (see §11.3) shows that there is no evidence for a population
difference between injeotion sites (P > 0-2).

Choosing a Latin square at random

As usual it is essential that the treatments be applied randomly,
given the restraints of the design. This means the design, Table 11.8.1 (a),
actually used in the experiment had the same chance of being
chosen as each of the 575 other possible 4x 4 Latin squares. The
selection of a square at random is not as straightforward as it might
appear at first sight and is frequently not done correctly. Fisher and
Yates (1963) give a catalogue of Latin squares (Table 25), and instruc-
tions for choosing a square at random (introduction, p. 24).

Are Latin squares reliable ?

The answer is that if the assumptions of the mathematical model
are true, then they are an excellent way of eliminating experimental
errors to two sorts (e.g., guinea pigs and injection sites) from the
comparisons between treatments which is of primary interest. How-
ever, a8 usual, it is very rare that there is any information about
whether the model is correct or not. In the case of the ¢ test the Gaussian
approach could be justified because it has been shown to be a good
approximation to the randomization method (§ 9.2) if the samples are
large enough. However, there is much less information on the sensitivity
of Latin squares (and more complex designs) to departures from the
assumptions. In the case of the 4 x4 Latin square the randomization
method does not, in general, give results in agreement with the Gaussian
analysis 8o one is totally reliant on the assumptions of the latter being
sufficiently nearly true. It is thus doubtful whether Latin squares as
small as 4 X 4 should be used in most circumstances, though the larger
squares are thought to be safer (see Kempthorne 1952).

Incomplete block designs
In § 11.6, the randomized block method was described for eliminating
errors due to differences between blocks, from comparisons between
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treatments. Sometimes it may not be poasible to test every treatment
on every block as when, for example, four treatments are to be com-
pared, but each patient = block is only available for long enough
to receive two. It is sometimes still possible to eliminate differences
between blocks even when each block does not contain every treatment.
Catalogues of designs are given by Fisher and Yates (1963, pp. 25,
91-3) and Cochran and Cox (1957).

A nonparametric analysis of incomplete block experiments has been
given by Durbin (1951).

Examples of the use of balanced incomplete block designs for bio-
logical assays (see §13.1) have been given by, for example, Bliss
(1947) and Finney (1964). General formulas for the simplest analysis
of biological assays based on balanced incomplete blocks are given by
Colquhoun (1963).

11.9. Data snooping. The problem of multiple comparisons

In all forms of analysis of variance discussed, it has been seen that
all that can be inferred is whether or not it is plausible that all of the
k treatments (or blocks, etc.) are really identical. If there are more
than two treatments the question of which ones differ from which
others is not answered. The obvious answer is never to bother with the
analysis of variance but to test all possible pairs of treatments by the
two sample methods of Chapters 9 and 10. However, it must be re-
membered that it is expected that the null hypothesis will sometimes
be rejected even when it is true (see §6.1), so if a large number of
tests are done some will give the wrong answer. In particular, if several
treatments are tested and the results inspected for possible differences
between means, and the likely looking pairs tested (‘data selection’,
or as statisticians often call it ‘data snooping’), the P value obtained
will be quite wrong.

This is made obvious by considering an extreme example. Imagine
that sets of, say, 100 samples are drawn repeatedly from the same
population (i.e. null hypothesis true), and each time the sample out of
the set of 100 with largest mean is tested, using a two-sample test,
against the sample with the smallest mean. With 100 samples the
largest mean is likely to be so different from the smallest that the
null hypothesis (that they come from the same population) would be
rejected (wrongly) almost every time the experiment was repeated,
not only in 1 or 5 per cent (according to what value of P is chosen as
low enough to reject the null hypothesis) of repeated experiments as it

13
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should be (see § 6.1). If the particular treatments to be compared are
not chosen before the results are seen, allowance must be made for data
snooping. There are various approaches.

One way is to compare all possible pairs of treatments. This is
probably the most generally useful, and methods of doing it for both
nonparametric and Gaussian analysis of variance are described below.

Another case arises when one of the treatments is & control and it is
required to test the difference between each of the other treatment
means and the control mean. In the Gaussian analysis of variance
this is done by finding confidence intervals for the jth difference
a8 difference + ds+/(1/n.+1[/n;) where n. is the number of control
observations, n, the number of observations on the jth treatment, s is
the square root of the error mean square from the analysis of variance,
and d is a quantity (analogous to Student’s t) tabulated by Dunnett
(1964). Tables for doing the same sort of thing in the nonparametric
analyses of variance are given by Wilcoxon and Wilcox (1964).

A third possibility is to ask whether the largest of the treatment
means differs from the others. Nonparametric tables are given by
McDonald and Thompson (1967).

The critical range method for testing all possible pairs in the Kruskal-
Wallis nonparametric one way analysis of variance (§ 11.5)

Using this method, which is due to Wilcoxon, all possible pairs of
treatments can be compared validly using Table A7, though the table
only deals with equal sample sizes. The procedure is very simple.
Just caleulate the difference between the rank sums for any pair of
groups that is of interest. If this difference is equal to (or larger than)
the critical range given in Table A7, the P value is equal to (or less
than) the value given in the table. For small samples exact probabilities
are given in the table (they cannot be made exactly the same as the
approximate P values at the head of the column because of the dis-
continuous nature of the problem, as in § 7.3 for example). For larger
samples use the approximate P value at the head of the column.

The first example of the Kruskal-Wallis analysis given in §11.5
cannot be used to illustrate the method because it has unequal groups.
The second example in § 11.5, based on the (parenthesized) ranks in
Table 11.4.1, will be used. In this example there were ¥ = 4 treatments
and n = 7 replicates, and evidence was found in § 11.5 that the treat-
ments were not equi-effective. Consulting Table A7 shows that a
difference between two rank sums (selected from four) of 79-1 or larger
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would occur in about 5 per cent of random allocations of the 28 subjects
to 4 groups (i.e. in about 5 per cent of repeated experiments if the
null hypothesis were true), that is to say P ~ 0-05 for a difference of
79-1. Similarly P ~ 0-01 for a difference of 95-8.

The simplest way of writing down the differences between all six
possible pairs of rank sums is to construct a table of differences, with
the rank sums from § 11.5 (or Table 11.4.1), as in Table 11.8.1. The
treatments have been arranged in ascending order so the largest
differences occur together in the bottom left-hand corner of the table.

TaBrLe 11.9.1

Treatment 4 1 2 3
rank sum 61 716 121 1526
4 61
2 121 60-0 495
8 1526 91-5* 81-0* 81-8

The differences marked with an asterisk in Table 11.9.1 are larger than
79-1 but less than 95-8. So P is somewhere between 0-01 and 0-05 for
these differences suggesting (see § 6.1) that there is a real difference
between treatments 3 and 1, and between treatments 3 and 4. All
other differences are less than 79-1 go there is little evidence (P > 0-:05)
for any other treatment differences.

The critical range method for testing all possible pairs in the Friedman
nonparametric two way analysis of variance (§ 11.7)

This method, also due to Wilcoxon, allows valid comparison of any
pair of treatments in the Friedman method (§ 11.7), using Table A8
in much the same way as just described for the one way analysis.

The results in Table 11.7.1 will be used to illustrate the method.
There are k = 4 treatments and n = 4 blocks (replicates), so reference
to Table A8 shows that a difference (between any two treatment rank
sums selected from the four) as large as, or larger, than 11 would be
expected in only 0-5 per cent of repeated experiments if the null
hypothesis (see § 11.7) were true, i.e. if ranks were allocated randomly
within blocks. Similarly a difference of 10 would correspond to P
= 0-026.

A table of all possible pair differences between the rank sums from
Table 11.7.1 can be constructed as above in Table 11.9.2.
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All the six differences are less than 10, i.e. none reaches the P = 0-026
level of significance. Despite the evidence (in § 11.7) that the four
treatments are not equi-effective, it is not, in this case, possible to
detect with any certainty which treatments differ from which others.
This is not so surprising looking at the ranks in Table 11.7.1, but
looking at the original figures in Table 11.6.2 suggests strongly that

TaBLE 11.9.2

Treatment : A D c B
rank sum ; [ [ 13 16
A 6
D 6 0
c 13 7 7
B 16 9 9 2

treatments B and C give larger responses than A and D. In fact, if the
assumptions of Gaussian methods (see § 11.2) are though justifiable,
the Scheffé method could be used, and it is shown below that it gives
just this result. The reason for the apparent lack of sensitivity of the
rank method with the small samples is similar to that discussed in
§ 10.5 for the two-sample case.

Scheff€’s method for multiple comparisons in the Gaussian analysis of
variance

The Gaussian analogue of the critical range methods just described
is the method of Tukey (see, for example, Mood and Graybill (1963,
pp. 267-71)), but Scheffé’s method is more general.

Suppose there are k treatments. Define, in general, a contrast (see
examples below, and also § 13.9) between the k means as

k
L= Sag, (11.9.1)
=1
where Xa, = 0. The values of a, are constants, some of which may be
zero. When the , are the means of independent samples the estimated
variance of this contrast follows from (2.7.10) and is

k 82 aa
var(L) = Y a?— = 833~ (11.9.2)
j=1 Ty ny

where &2 is the variance of y (the error mean square from the analysis
of variance) and n, is the number of observations in the jth treatment
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mean, §,. The method is to construct confidenoce limits (see Chapter 7)
for the population (true) mean value of L as

L + Sy/[var(L)] (11.9.3)

where 8 = 4/[(k—1)F], and F is the value of the variance ratio (see
§ 11.3) for the required probability. For the numerator F has (k—1)
degrees of freedom, and for the denominator the number of degrees of
freedom associated with s3. If the confidenoe limits include any hypo-
thetical value of L the observations cannot be considered incompatible
with this value, as explained in § 9.4.

Three numerical examples

Example 1. Suppose that it were decided to test whether the largest
mean in Table 11.4.1 (§j; = 33:87) really differs from the smallest

. = 14-29), this pair being chosen after the results were known. If
in (11.9.1) we take @, = 0, a; =0, a3 = +1 and ¢, = —1 then L
= §3—ij, = 19-38, the difference between means. From Table 11.4.3
it is seen that 82 = 101-15 with 24 degrees of freedom. Thus, by (11.9.2),
var(L) = 101-15(0%/7+40%/7+13[7+ —137) = 28-90. There are k = 4
treatments so to find the 99 per cent confidenoe limits, the varianoe
ratio for P = 0-01 (= 1—0-99) with 3 and 24 degrees of freedom is
required. From the tables (see § 11.3) this is found to be 4:72. Thus
S = 4/[(4—1).472] = 3-763. The P = 0-99 confidence limits are
19:28 4 3-7634/(28-90) = 19-28 4 20-23, i.e. —0-95 to +39-561. The
limits include 0, so the difference between the two means cannot be
considered to differ from 0 at the P = 0-99 level of confidence. In
other words a significance test (see § 6.1) for the difference between
the largest and smallest means would give P > 0-01 (compare § 9.4).
And, because S4/[var(L)] is the same for any pair of means, the same
can be said of any pair of means differing by less than 20-23 (see
Example (3) also).

Now try the 97:5 per cent limits. From the Biometrika tables (see
§ 11.3) the value of F(3, 24) for P = 0-025 is 3-72, so S4/[var(L)]
= 4/(3x3-72 x 28-90) = 17-96. This is less than the observed difference,
19-28, so the result of a significance test would be that P is between
0-025 and 0-01, suggesting, though not with great confidenoce, a real
differenoe.

Ezample 2. As another example, suppose that it were wished to test
the null hypothesis that mean of the two more effective treatments
(2 and 3) is equal to the mean of the other two treatments in Table



212 The analysis of variance $§11.9

11.4.1. To do this, takea;, = —1,a;, = +1,a;, = +1landa, = —1 80
L = (§,+#,)—(#,+1#,)- The true (population) value of this will be
zero if the hypothesis to be tested is true. The sample value is L
= —15-57+26-86433-57—14-29 = 30-57. From (11.9.2) var(L) =
101-18 (—1%/74+13[74+13[74 —13[7) = 57-80. 8 = 3-763 exactly as
above, so the 99 per cent (P = 0-99) confidence limits for the population
value of L are 30-57 + 3-7634/(57-80) = 30-57 + 28-61, i.e. +1-98
to +59-18. The limits do not include zero so the null hypothesis that
the true (population) value of L is zero would be rejected if P < 0-01
were considered sufficiently small (see § 6.1). The same could be said
of any difference (between the sum of any two means and the sum of
the other two), that exceeded 28-61.

Ezample 3. The method can be used, at least as an approximation,
for randomized block experiments also. For the results in Table 11.6.2,
82 = 3-674 with 9 d.f. (from Table 11.6.3). To test §j, against §, take
a, = —1, ag= +1, a3 =0, a, =0, a8 in Example (1). There are
n = 4replicates, so var(L) = 3-674 (—12/4+ 13/4+03/4+ 03/4) = 1-837,
from (11.9.2). And this value will be the same for the difference
between any two means. There are k = 4 treatments so values of
F(3,9) are required. From the Biometrika tables (see §11.3) the
P = 0-25 value is 1-63 and the P = 0-001 value is 13-80. Thus, § =
V(3% 1-63) = 2:211 and 84/[var(L)] = 2-2114/(1-837) = 2-996 for
P =0-25. And for P = 0-001, § = 4/(3x 13-90) = 6-457, so S/[var
(L)] = 8-749. The differences between the six possible pairs of means
from Table 11.6.2 are, tabulating as above, shown in Table 11.9.3.

TasBLE 11.9.3

Treatment D A C B
Mean 49-0 49-6 66:0 87-7
D 490
A 49-6 06
c 650 16-0* 15-56*
B 87-7 18-7* 18-2* 29

The four differences marked by an asterisk in Table 11.9.3 are greater
than 8:749 so the null hypothesis that the true values of these differ-
ences are zero can be ‘rejected’ at P < 0-001 (see § 6.1). The other
differences are less than 2:996 so there is no evidenoce (P > 0-25) that
these differences are due to anything but experimental error. It is
concluded that treatments B and C both give larger responses than
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treatments A and D, but that no difference can be detected between
A and D, or between B and C. Compare this result with rank analysis
of the same observations (§§ 11.7 and 11.9, above). Remember that a
normal (Gaussian) distribution has been assumed throughout these
calculations despite the fact that no evidence was presented, in any of
the examples, to suggest that this assumption was justified.



12 Fitting curves. The relationship
between two variables

12.1. Nature of the problem

I~ all the examples discussed so far, measurements of only one variable
have been involved (e.g. blood sugar level or change in duration of
sleep). However, experiments are often concerned with the relationship
between two (or more) variables ; for example, dose of drug and response,
concentration and optical density, time and extent of chemical reaction,
or school and university examination results. The last of these examples
is rather different from the others and suggests that two sorts of
gituation occur.

(a) One variable can be measured accurately and its value chosen by
the experimenter, for example the time when a measurement is taken,
or the dose of a drug. This sort of variable is called an independent
varsable (notice that sndependent in this context has a different meaning
from that encountered in §§ 2.4 and 2.7). The other variable, called the
dependent variable, is subject to experimental error, and its value
depends on the value chosen for the independent variable. For example,
response is a dependent variable which is related to dose, the inde-
pendent variable (as long as dose can be measured with negligible
error).

(b) Quite often the value of neither variable can be chosen by the
experimenter, or measured without error. For example ability before
and after university (as measured by school and university exam
results) are both measured inaccurately.

In both of these cases the first thing usually done is to plot the
results and draw some sort of line through them.

Case (a) is described (for historical reasons, now irrelevant) as a
regression problem. The line fitted to the points is called a regression
line, the formula for calculating it being the regression equation. This
sort of problem is dealt with in §§ 12.1-12.8.

The second type of problem, case (b), is a correlation problem and
the graph of the results is often called a scatter diagram (see §§ 1.2 and
12.9).
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The expression ‘fitting a curve to the observed points’ means the
process of finding estimates of the parameters of the fitted equation
that result in a calculated curve which fits the observations ‘best’ (in a
sense to be specified below and in § 12.8). For example if a straight line
is to be fitted the ‘best’ estimates of its arbitrary parameters (the slope
and intercept) are wanted. The method of fitting the straight line is
discussed in detail in §§ 12.2 to 12.6 because it is the simplest problem.
But very often, especially if one has an idea of the physical mechanism
underlying the observations, the observations will not be represented
by a straight line and a more complex sort of curve must be fitted.
This situation is discussed in §§ 12.7 and 12.8. Often some way of
transforming the observations to a straight line is adopted, but this
may have a considerable hazards as explained in §§ 12.2 and 12.8.

It is, however, usually (see § 13.14) not justified to fit anything but a
straight line if the deviations from the fitted line are no greater than
could reasonably be expected by chance (i.e. than could be expected if
the true line were straight). In general it is usually reasonable to use
the simplest relationship consistent with the observations. By simplest
is meant the equation containing the smallest number of arbitrary
parameters (e.g. slope), the values of which have to be estimated from
the observations. This is an application of ‘Occam’s razor’ (one version
of which states ‘It is vain to do with more what can be done with fewer’:
William of Occam, early fourteenth century). The reason for doing
this is not that the simplest relationship is likely to be the true one,
but rather because the simplest relationship is the easiest to refute
should it be wrong. (The opposite would, of course, be true if the
parameters were not arbitrary, and estimated from the observations,
but were specified numerically by the theory.)

The role of statistical methods

Statistical methods are useful

(1) for finding the best estimates of the parameters (see §§ 12.2, 12.7,
and 12.8) of the chosen regression equation, and confidence limits
(Chapter 7 and §§ 12.4-12.6) for these estimates,

(2) to test whether the deviations of the observed points from the
caloulated points (the latter being obtained using the best estimates
of the parameters) are greater than could reasonably be expected by
chanoe, i.e. to test whether the type of curve chosen fits the observations
adequately. It is important to remember (see § 6.1) that if observations
do not deviate ‘significantly’ from, say, a straight line, this does not
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mean that the true relationship can be inferred to be straight (see
§ 13.14 for an example of practical importance).

The best fitting curve (see § 12.8) is usually found using the method of
least squares. This means that the curve is chosen that minimizes the
‘badness of fit’ as measured by the sum of the squares of the deviations
of the observations (y) from the calculated values (Y) on the fitted
curve. In other words, the values of the parameters in the regression
equation must be adjusted so as to minimize this sum of squares. In
the case of the straight line and some simple curves such as the parabola
the best estimates of the parameters can be caloulated directly (see
§§ 12.2 and 12.7). The principle of least squares can be applied to
any sort of curve but for non-linear problems (see § 12.8; but note that
fitting some sorts of curve is a linear problem in the statistical sense,
a8 explained in § 12.7) it may not have the optimum properties that it
can be shown to have for linear problems (those of providing unbiased
estimates of the parameters with minimum variance, see § 12.8, and
Kendall and Stuart (1961, p. 75)). For linear problems these optimum
properties are, surprisingly, not dependent on any assumption about
the distribution of the observations, but the construction of confidence
limits and all the analyses of variance depend on the assumption that
the errors of the observations follow the Gaussian (normal) distribution,
80 all regression methods must (unfortunately) be classed as parametric
methods (see § 6.2). Tests for normality are discussed in § 4.6.

12.2. The straight line. Estimates of the parameters

It is assumed throughout this discussion of linear regression that the
tndependent variable, x (e.g. time, concentration of drug, see §12.1)
can be measured reproducibly and its value fixed by the experimenter.
The experimental errors are assumed to be in the observations on the
dependent variable, y (e.g. response, see § 12.1). Suppose that several
(k, say) values of the independent variable , z,, z,, . . ., x,, are chosen
and that for each observations are made on the dependent variable,
Y1, Y2, - - - Yn (there being N observations altogether; N may be bigger
than k if several observations are made at each value of z, as in § 12.6).

In order to find the ‘best’ straight line by the method of least squares
(see §§12.1, 12.7, and 12.8) it is necessary to find the line that will
minimize the badness of fit as measured by the sum of squares of
deviations of the dependent variable from the line, as shown in Fig.
12.2.1,
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Thus the best fitting straight line is the one that minimizes the sum of
squared deviations

=N
8= ’Z d? = Z(y,—Y,)? (12.2.1)

i=1
where y, is the observed, and Y, the calculated, value of the dependent
variable corresponding to z,. The resulting line is called the regression
line of y on x. If the deviations of points from the fitted line were not
measured vertically as in (12.2.1), but, say, horizontally, the least
squares line would be different from that found in the way just described
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Fi1a. 12.2.1. The dependent variable y, plotted against the independent
variable x. Deflnition of y,, #,, ¥, and d, for discussion of curve fitting.

(it would be called the regression line of x on y), but this would not be
the correct approach when the experimental errors are supposed to
affeot y only.

The general equation for a straight line can be written ¥ = a’'+bx
where a’ is the intercept (i.e. the value of ¥ when x = 0). It will be
more convenient (for reasons explained in § 12.7) to write this in a
slightly different form, viz.

Y = a+b(z—3) (12.2.2)

where b is the slope, and a is the value of ¥ when x = % (so that
a—bz, which is a constant, is the same as a’). The left-hand side is
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written as capital ¥ to emphasize that the evaluation of the equation
gives the calculated value of the dependent variable, which will in
general, differ from the observations (y) at the same value of z, unless
the observation happens to lie exactly on the calculated line.

The true (population) regression equation, assuming the line to be
really straight, can be written, for any specified value of 2,

u = population value of y = a-f(z—%Z) (12.2.3)

where « and 8 are the true parameters, of which the statistics a and b
are estimates made from a sample of observations. Because the in-
dependent variable, z, is assumed to be measured with negligible error
there is no distinction between the observed and true values of z.

The problem is now to find the least squares estimates of a and g,
from the observations. This will be done algebraically for the moment.
In §12.7 the geometrical meaning of the algebra is explained. First
substitute the calculated value of Y at the jth value of 2, which, from
(12.2.2), i8s Y, = a+b(z,—Z), into (12.2.1) giving

8 =l§[y, —a—b(z,—Z)]2. (12.2.4)

J=1

Squaring the term in brackets gives

N
S = 3 [y +a3+ b (x,—%)?—2ay, —2yb(x,—Z)+ 2ab(x, —F)]

j=1
and therefore, using (2.1.5), (2.1.6), and (2.1.8),

N N N N N
S=3 y?+Na”+b’,Z (x,—Z) —24121!/1 —2b121y,(x, —Z)+ 2ab,2 (x—%).

f=1 -1 = = =1
(12.2.5)

The last term in this equation is zero because, by (2.6.1), Z(x—zZ) = 0.
The object is to find, for the particular values of x used and the particular
values of y observed, the values of a and b which make 8 as small as
possible. For a particular set of results we are, for the moment regarding
z and y values as fixed and a and b as variables. The usual procedure in
calculus for finding a minimum is to differentiatet and equate the
result to zero as illustrated (for a) in Fig. 12.2.2 (see Thompson (1965,
p. 78 et seq.)) A fuller explanation of this process 18 given in §12.7.

t Beoause there are two variables, ¢ and b, partial differential coefficienta (with
curly 8) are used. This makes the differentiation of (12.2.5) even simpler because it

means that when differentiating with respect to a, b is treated as a constant (and vice
versa). See § 12.7.
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It is shown below (see (12.2.10)) how the least squares estimates can
derived without using caloulus at all. Thus, to find the least squar
value of a, differentiate (12.2.5) treating b as a constant

= 2Na—-2 E y, =0
3a i=1
thmfom Na = Zy,

80 =—=73. (12.2

__Slope=0
at minimum

Sum of squared deviations S
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F1a. 12.2,2. The sum of squared deviations (S) plotted against varis

values of a using eqn. (12.2.5). The data (y and z values) are those in Table 12.

and b was held constant at 3-00 (cf. Fig. 12.7.8). The slope of the curve, 2S/
is zero at the minimum. The graph is discussed in detail in § 12.7,

Similarly, to find the least squares estimate of b, differentiate (12.2
with respect to b, treating @ as a constant,

o8 ¥ L
= %Iil(w;—i)’—{ilyf(x;—i) =0

therefore 2b%(z,—%)? = ;l'.y,(a:,—a':)

Zy,(x;—)
80 b= X, —2)° (12.2
or b 209G =) (12.2

S(x,—£)?
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Although it is not immediately obvious, the numerators of these two
expressions for b are identical, as shown by (12.2.9) below.

Using (2.6.2) and (2.6.6) shows that the estimated slope, (12.2.8), can
be written b = cov(z, y)/var(z). It was shown in §2.6 that Z(y—g)
(x—%), and hence the covariance, measure the extent to which y tends
to inorease when z is increased.

Proof that Z(y —§)(z — ) can be writlen Ly(z —E)

N
Izl(y,—y)(z,—i) = Xy, —y, % —§zs+ §2]
= Zly,lz)—%) —Flx,—Z)]
= Xy, (z,—&)—§L(x,—F)

N
= X yylx,—%) (12.2.9)
I=1
because the last term in the penultimate equation is, by (2.6.1), zero.

How to find the least squares estimates without using calculus

The argument is exactly analogous to that already used for the arithmetic
mean in § 2.5 (p. 27). The sum of squares to be minimized, (12.2.4), can be
written

S = Xy, —a—b(z,—)P = Zy,~§ —blz,—5)P+ N(a—§)+ (b —bd). Z(z,—£)3,

(12.2.10)

where a and b denote possible estimates of « and §, and b denotes, as in § 12.7,
the estimate of f given by (12.2.7). This expression is analogous to (2.5.6).
It is easy to see that the values of a and b that minimize this are a = § and

b= 3 (the same estimates as found above), because in this case the last two
terms will be zero, their minimum possible value. It can quite easily be shown

that (12.2.10) is an algebraic identity by inserting b from (12.2.7) and expanding
the right side, in the same sort of way as shown in detail for (2.5.6).

Assumptions made inf) the least squares fitting and analysis of straight
lines

(1) The standard deviation of y was assumed to be a constant. That
is to say, that the observations have the same scatter at all points
along the ourve so that equal weight can be attached to all observations
(as has been done in the above derivations, cf. (2.5.1) and (2.5.2)).
When this condition is fulfilled the observations are described as
homoscedastic. Quite often this condition is not fulfilled as illustrated in
Fig. 12.2.3. For instance, it is quite commonly found in practice that
there is a tendency for the smaller observations to have less scatter,
in a way that the relative scatter (e.g. the coefficient of variation,
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(2.6.4)) is more nearly constant than the absolute scatter (e.g. the
standard deviation). If this is the case the observationa (which are said
to show heteroscedasticity) should not be given equal weight, and this
makes the calculations more complicated (cf. Chapter 14).

(2) The population (true) relation between y and = has been assumed
to be a straight line. In § 12.6 it will be shown how it can be judged
whether deviations from linearity can reasonably be ascribed to
experimental error.

- —-

(a) Homoscedastic y (b) Heteroscedastic

w

3 J
x £

Fi1a. 12.2.3. (a) A homoscedastic curve-fitting problem (idealized). (b) An
example of heteroscedastic observations.

(3) The independent variable has been assumed to be measured
with negligible error. For a discussion of what to do when it is not see,
for example, Brownlee (1965, p. 391).

(4) The analyses to be described will all assume that the errors in
the observations (y, the dependent variable) at each of the selected
values follow Gaussian (normal) distributions (see §§ 4.2, 4.6 and 12.1).

The use of transformations

This discussion is closely related to that in § 11.2, in which & method
of choosing a transformation to equalize variances was described.
Transformation (e.g. logarithm, square root, reciprocal) may be used
to make results conform with the above assumptions. For example,
if the observations are described by an exponential relationship,
Y = Y.e~**, then taking natural logarithms gives log ¥ = log Y, —k=.
The regression of log y on z should therefore be a straight line with
intercept = log Y, and slope = —k. An example is worked out in
§ 12.6. Notice, however, that if y were homoscedastic and normally
distributed then log y would be neither, so it may not be possible to
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satisfy all the assumptions simultaneously (see §§11.2, 12.8 and
Bartlett (1947)). Tests for normality are discussed in § 4.6.

It is important to distinguish between the effects of transformations
of the dependent variable, y, on one hand, and on the independent
variable, z, on the other. Transformations of z are often used to make
a line straight (e.g. response, y, is often plotted against the log of the
dose, z, in pharmacology). This merely alters the spacing at which
pointas are plotted along the abscissa in Fig. 12.3, but cannot have any
effect on the homoscedasticity or distribution of errors of the observa-
tions, y. Transformations of y, on the other hand, affect these as well as
linearity.

12.3. Measurement of the error in linear regression

Consider the straight line fitted to the results in Fig. 12.3.1. As
before, y stands for the observation at a particular value of z, and Y

Fia. 12.3.1. Deflnition of terms used in curve fitting. The values of the

dependent variable are plotted on the ordinate and the independent variable (z)

on the abscissa (see §§ 12.1 and 12.2). The five observed values ((), ¥; to ¥s,

have been plotted against the corresponding z values, z; to zs, and a straight

line fitted to them. The nature of the terms (y —Y), (¥ —9), and (y —§) occurring
in eqns. (12.8.2) and (12.3.3), is illustrated for the fourth z value.

for the predicted value of the dependent variable (i.e. that calculated
from the estimated line) at & particular 2. The equation for the esti-
mated line, ¥ = a+b(x—Z), can be written, using (12.2.6),

Y = §+bz—3%), (12.3.1)
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from which it can be see that the line must go through the point
(7, £) because ¥ = § when z = £ (i.e. when x—& = 0).

This seotion is concerned only with errors in y, because z has been
assumed to be measured without error (§§ 12.1, 12.2). The total devia-
tion of the observed point from the mean, in Fig. 12.3.1, can be divided
into two parts: (y—Y) = deviation of observed value from the line,
and (Y —§) = deviation of predicted value on the line from the mean of
all observations. This can be written

(y—9) = (y—Y) + (Y—9) (12.3.2)
total deviation deviation from part of the total
straight line deviation accounted
for by the linear
relation betwesn
yand z

It is now possible to use the analysis of variance approach. The total
sum of squared deviations (SSD) of each observation from the grand
mean of all observations is X(y,—#)?, and this total SSD can be divided
into two components (compare (12.3.2))

I(y,—§)? = B(y,— Y, )’ +2(Y,—§)? (12.3.3)

in which the first term on the right-hand side measures the extent
to which the observations deviate from the line and is called the 88D
for deviations from linearity. It is this that is minimized in finding least
squares estimates, see § 12.2. The second term on the right-hand side
measures the amount of the total variability of y from § that is accounted
for by the linear relation between y and z, and is called the SSD due to
linear regression. That (12.3.3) is merely an algebraic identity following
from (12.3.2) will now be proved.

Digression to prove (12.3.3), and to obtain a working formula for the sum
of squares due to linear regression

(1) To show that (12.3.3) follows from (12.2). The summations are, as before,
over all N observations of y (there may be more than one y at each z value).
From (1242),

total 88D = I(y—9)* = Z{(y—¥)+(¥ —§)F
= Zl(y—YP+2(y— Y)Y —g)+(¥ —9)’]
= L(y—Y)*+2L(y - Y)Y —§)+ (¥ —§)*
=Ly-YP+E(Y—g?® QE.D.

deviations due to linear
from regression
linearity

16
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The central term in the penultimate equation is zero because

2X(y—YNY —9)
= 2y~ ¢ bz —Z)[g+blx—%)—¢F] (from (12.8.1))
= 2XW[yb(x —£) — Pz —£) —b3(x —Z)%]
= 2bXy(x —2) —20%T(x —%)? (from (2.6.1))
= 2bXy(x—%) —2bLy(x—%) = 0. Q.E.D.
(from (12.2.7))

(2) A working formula for the sum of squares due lo linear regression

As usual, it is inconvenient to calculate the individual deviations (¥ —g), and
& more convenient working formula is used. As before, the summations are over
all N observations.

Z(Y —§)? = Z{j+blx—&)—gP (from (12.8.1))
= Zb(x —%)P = VE(x—%£)* (from (2.1.5)).
Substituting (12.2.8) for the slope, b, gives the alternative forms:

88D due to linear regression = V3L (x —%)3 or [W (12.8.4)

12.4. Confidence limits for a fitted line. The important
distinction between the variance of y and the variance of ¥

It was stated in § 12.2 that the method of fitting a straight line
there described involves the assumption that the scatter of the observa-
tions does not depend on their size (see Fig. 12.2.3), i.e. that their
population (true) variance, o%[y], is a constant, independent of the
value of z (and of y) The estimated value of o2 from a sample is s9[y]
or var{y], the error mean square from the analysis of variance table
(see §§ 11.4, 12,5, and 12.6). The width of the confidence interval
for the population value of an observation is therefore the same
(+ts[y], see (7.4.2)) whatever the size of the observation.

In practice a straight line is usually fitted for one of the following
reasons.

(a8) To estimate the slope or intercept and their confidence limits
(see §§ 7.2, 7.9, 12.5, and 12.6).

(b) To predict values of y for a given z. For example, it may be
required to predict from the fitted line what response (Y) would be
produced by a particular dose (z), or what optioal density (Y) a
solution of a particular concentration (z) will have. The error of such
a prediction is discussed in this section. There are two forms of the
problem, as in § 7.4.

(¢) To predict the value of z required to produce & given (observed
or hypothetical) value of y. For example, the prediction of the dose
(z) needed for a given response, or of the concentration (z) of a solution
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of a particular optical density. This sort of problem is probably the
most important in practice but its solution is rather more complicated
than for (a) and (b). Its solution will be given in § 13.14.

In case (b) confidence limits are required for a value of Y caloulated
from the fitted line, rather than for an observed value, y (see § 12.2); and
to find these limits an estimate of the variance of ¥ will now be found.
For the meaning and interpretation of confidence limits see §§ 7.2 and
7.9.

Equation (12.2.2) for the fitted line is ¥ = a-b(x—%) where a = §
and b = Zy(z—z)/Z(x—%)? (from (12.2.6) and (12.2.7)). Because the
independent variable (z) is assumed to be measured without error
(§ 12.2), terms involving only z can be treated, for the purposes of
assessing error, as constants. Because, as shown below, a and b, and
hence Y, are linear functions of the observations, it follows that if the
observations are normally distributed then a, b, and Y will be normally
distributed. Imagine the experiment being repeated many times on
repeated random samples from the same population, using the same z
values. From each experiment a and b are estimated, and Y, for
example the response for a particular dose, is calculated from the
fitted line (12.2.2). The variation of the repeated a, b, and Y values
should follow normal distributions with means a, 8, and u (see (12.2.3)),
and variances vat[a], vat[b], and va+{Y] say. Compare the non-normal
distribution of parameter estimates found in the non-linear problem
discussed in § 12.8. If Y is normally distributed confidence limits can
be found as in § 7.4 once var{ Y] is known. To find var[ Y] it is necessary
to know the variances of a and b.

The variance of the estimated slope, b

The least squares estimate (b) of the true slope (8) given in eqn.
(12.2.7) can be written out term by term in the form

_ Zyl(x; —) . (x,—%) (2 —%) (@y—%)
= Z(xr_x’)ﬂ - ylz(x1_i)2+yﬂz(x1_i)n+-..+yﬂz(x’ -0 (12.4.1)

—Z)?

b

Therefore b is a linear function of the observations, i.e. it can be written
in the form Ze¢,y, = ¢\, +caya+...+cyyy where the ¢, are constants
{for more comments on this use the word ‘linear’ see § 12.7). In this case
the constants are ¢, = (z,—Z)[Z(x,—%)3. The variance of b now follows
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directly from (2.7.10) and is var{y].Z¢]. Now ¢} = (z,—%)*/[Z(z,—Z)*]
80 X} = X(x,—&)?/[Z(x,—%)3]® and therefore, cancelling,

_varfy]

Z(z, —x)’

var{b] = (12.4.2)
This gives a prediction of what the variance of repeated estimates of b
should be, based on the scatter of the observations, var{y], seen in
the one experiment actually done (see §§ 2.7 and 7.2). Notice that the
slope will be most accurately determined (var {6] smallest) when the
values of z are widely spaced making the values of (x—Z) large, as
common sense suggests.

Confidence limits for the slope can be obtained just as in §7.4
(because b is normally distributed when the observations are, see above)
a8

b + t4/(varb]), (12.4.3)

where ¢ is Student’s ¢ for the required P and with the number of d.f.
associated with varfy]. See §§ 12.5 and 12.6 for examples.

The variance of a
By (12.2.6) a = § so var[a] = var{§] = var{y]/N, by (2.7.8).

Confidence limits for the true (population) straight line

The value of Y estimated from the line, ¥ = a-+b(z—%), is a linear
function of the observations because, as above, both ¢ and b are. It
will therefore be normally distributed when the observations are.
The population mean value of ¥ at any given value of z is u (see
(12.2.3)), so the error of a value of Y is ¥ —u which has a population
mean valuet of u—u = 0 and variance var[ Y] (because u is a constant).
The variance of Y is

var{ Y] = var{§+b(x —%)] (by (12.3.1))
— var(g]+ var{b(z—3)] (by (2.7.3))

= var{§]+ (x —Z)3var{b] (by (2.7.5))
var[y]+( g (27.8) and (12.4.2))

Z(z,—x)?

= varfy]. ( Al z((::;—xr)’)

t 8ee Appendix 1 for a rigorous definition. E{Y —u] = E[Y]—~E{u] = y—u = 0.

(12.4.4)
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Notice that the use of (2.7.3) assumes that 7 and b are uncorrelated
(i.e. in repeated experiments there will be no tendency for y to be
large in experiments when b is). This has not been proved but a similar
relationship is discussed in greater detail in §§ 13.8 and 13.10. See also
§12.7.

The confidence limits for u4 (at a particular value of z), when it is
estimated by calculating Y, are, by (7.4.2),

Y + t/(varf Y)). (12.4.5)

Several points about (12.4.4) are worth noticing. First, although
the term Z(z,—zZ)? is a constant (depending on the particular values
of z chosen) for a given experiment, the term (z —)? is not. The presence
of this latter term shows that the variance of Y, unlike that of y, s
dependent on the value of x. The variance of Y will be at a minimum
when z = £ because at this point the second term, which involves
z—Z, disappears leaving var{Y] = var[j] as expected (because at
this point ¥ = #, see § 12.3). It can also be seen that the variance of
Y (and hence the width of the confidence limits) increases as z deviates
in esther direction from Z, because the deviation (x —z) is squared and
therefore always positive.

The common sense of these results is discussed further when they
are illustrated numerically in §§ 12.56 and 13.14 (and plotted in Figs.
12.5.1 and 13.14.1).

Confidence limits for new observations

Just as in § 7.4 the situation is changed if instead of wishing to find
confidence limits for, say, the population (true) response, x4, produced
by a particular concentration of drug, z, it is wished to find confidence
limits within which the mean (7,,) of m observations of the response to
concentration x would be expected to lie. The best estimate of y,, is
the same as the best estimate of u, viz. ¥ = a+b(z—4Z); but, as in
§ 7.4, its error is different. The error of the prediction is Y —g,,
which will be normally distributed with a population mean of y —u = 0.
Because the m new observations are supposed to be independent
observations from the same Gaussian population (2.7.3) can be used
giving var[Y —§,,] = var{ Y]+ var[§,,]. Now var{ Y] is given by (12.4.4),
and, by (2.7.8), var[§,] = var[y]/m, so, by exactly the same argument
a8 used to find (7.4.3), the confidence limits for §,, will be

Yt '/ [var[y](N ~ 2(::1)_2)2)] (12.4.6)
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As expected (and as in § 7.4) this reduces to (12.4.5) when m is very
large so §,, becomes the same as u. The prediction is that if repeated
experiments are conducted and in each experiment the limits calculated,
then in 95 per cent of experiments (or any other chosen proportion,
depending on the value chosen for t) the mean of m new observations
will fall within the limits. The limits, and #,, will of course vary
from experiment to experiment—see §7.9. This prediction is, as
usual, likely to be optimistic (see § 7.2). The use of this method is
illustrated on § 13.14 (and plotted in Fig. 13.14.1).

12.6. Fitting a straight line with one observation at each x value

The results in Table 12.5.1 show a gingle observation on the dependent
variable, y, at each value of the independent variable, x. For example,
y might be the plasma concentration of a drug at a precisely measured
time z after administration. The common sense supposition that the
times have not been chosen sensibly will be confirmed by the analyais.
The assumptions neceesary for the analysis have been discussed in
§§11.2, 12.1, and 12.2, and the meaning of confidence limits has been
discussed in §§ 7.2 and 7.9. These should be read before this section.

TaBrLE 12.5.1

z Y
160 59
166 54
169 64
175 87
180 85
188 78
Totals 1087 407

There is & tendency for y to increase as x increases. Is this trend
statistically significant? To put the question more precisely, does the
estimated slope of this line, b, differ from zero to an extent that would
be likely to occur by random experimental error if the true slope of the
line, 8, were in fact zero ? In other words it is required to test the null
hypothesis that g = 0.

Fitting the straight line ¥ = a+b(z—%)
The least squares estimate of « in (12.2.3) is, by (12.2.6),
a = § = 407/6 = 67-833,
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The least squares estimate of the slope, B, is, by (12.2.8),
b= Z(y—P—HEE—22.
First calculate, by (2.6.5),
T(z—%)? = T3 —(Zx)3N = 1607+ 1653+ ... 1887 —1037%/6 = 526-833.
The sum of products is found using (2.6.7),
Ely—§)(z—%) = Tyz—Iy.Sz|N

= (59X 160)+ ...+ (78 X 188)—(407 x 1037)/6
= 511-833.

Thus b = 511-833/526-833 = 0-98715. Also £ = 1037/6 = 172-833.
Inserting these values in (12.2.2) gives the equation for the least
squares straight line.

Y = 67-833+4-0-9715 (x—172-833) (12.6.1)

This line is plotted in Fig. 12.5.1 together with the observed values.
Does the estimated slope, b = 0-9715, differ from zero by more than
could reasonably be expected if the population slope, 8, were zero ?

The analysse of variance

The analysis is performed with the observations (y values). The
independent variable, z, only comes in incidentally. The principle of
the method is described in § 12.3.

The total sum of squares, by (2.6.5), is

S(y—g)® = Sy? —(Sy)3|N = 592+ ...+ 782 —4073/6 = 682-833,
The sum of squares due to linear regression, by (12.3.4), is
(611-833)3/526-833 = 497-260.

The sum of squares due to deviations from linearity is found, using
(12.3.3), by difference, as 682-833—497-260 = 185-573.

There are 6 values of y so the total number of degrees of freedom is 5.
The sum of squared deviations (SSD) due to linear regression has one
d.f. because it corresponds to the calculation of one statistic (b) from
the observations (this is made obvious by the identity of the analysis
with a ¢ test, shown at the end of this section). The analysis summarized
by (12.3.3) is tabulated in Table 12.5.2, which is completed and inter-
preted in the same way as previous analyses of variance (e.g. Table
11.3, 11.4, and 11.5). The two figures in the mean square column would
be independent estimates of the same quantity (¢2) if all 6 observations
were from a single population (with mean u and variance ¢%). This way
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of stating the null hypothesis implies that the population mean of the
observations is always u (whatever the x value), i.e. it implies that
f = 0, the way in which the null hypothesis was put above. The
probability that the ratio of two independent estimates of the same
variance will be 10-72 (as observed, Table 12.5.2), or larger, is 0-02 to
0-05 (see §§ 11.3 and 11.4), i.e. 10-72 would be exceeded in something

120+

Yy
100}

80+

60

40)—

- 100

F1a. 12.6.1. Observed points from Table 12.5.1.

Least squares estimate of straight line (eqn. (12.5.1).

— — — 9b per cent confidence limits for ¥, i.e. for the fitted line.
X Particular values of confildence limits calculated in the text.

between 2 and 5 per cent of experiments in the long run (the limitations
of the tables of F, see § 11.3, prevent P being found to any greater
accuracy).

In this analysis there is no good estimate of the experimental error.
because only one observation was made at each value of z. This analysis
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should be compared with that in § 12.6, in which replication of the
observations gives a proper estimate of o2. The best that can be done
in this case is to assume that the line is straight, in which case the
mean square for deviations from linearity, 46-:393, will be an estimate of

TaABLE 12.5.2

Source of
variation d.f. 88D MS F P
Linear regresaion 1 497-260 497-260 10-72 0-02-0-05
Deviations from
linearity N-2=4 185-873 46-393
Total N—-1=5 682833

the error variance (see § 12.6). Following this procedure shows that a
value of b differing from zero by as much as or more than that observed
(0-87158) would be expected in between 2 and 5 per cent of repeated
experiments if § were zero. This suggests, though not very conclusively,
that y really does increase with = (see § 6.1).

Gaussian confidence limits for the population line

The error variance of the 6 observations (the part of their variance
not accounted for by a linear relationship with z) is estimated, from
Table 12.2, to be var{y] = 46-393 with 4 d.f. The value of Student’s
t for P = 0-95 and 4 d.f. is 2-776 (from tables, see § 4.4). The confidence
limits for the population value of Y at various values of z can be
found from (12.4.5). To evaluate var{ Y] from (12.4.4) at each value of z,
the values var{y] = 46393, N = 6, = 172-833 and Z(x—£)? =526-833
are needed. These have already been calculated and are the same at all
values of 2. Enough values of z must be used in (12.4.4) to allow smooth
curves to be drawn (the broken lines in Fig. 12.5.1). Three representative
calculations are given.

(8) =z = 200. At this point, (by 12.5.1), the estimated value of Y is

Y = 67-8334+0-9715 (200—172-833) = 94-23

and, by (12.4.4),

1 (200—172:833)2
—_— = 72‘72.

var{Y] = 46'393(5+ 526-833
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The Gaussian confidence limits for the population value of
Y at x = 200 are thus, by (12.4.5), 94:23 + 2-7764/(72-72), i.e.
from ¥ = 70-56 to Y = 117-90; these are plotted in Fig. 12.5.1
at z = 200.
(b) z = 172833 = Z. At the point (z—Z) = 0 so, from (12.5.1),
Y = 67-833 = §. From (12.4.4) var{ Y] = var(y)(1/N) = 46-393/6
= 7-78, and the confidence limits for the population value of Y
are, by (12.4.5), 67-833 + 2:7764/(7-73), i.e. from 60-11 to 75-55.
(¢) x = 0. At this point, the intercept on the y axis, ¥ = 67-833
+0-9715 (0—172-833) = —100-1. This is, of course, a considerable
extrapolation beyond the range of the experimental results. From
(12.4.4),
v (1 (0—172-833)’) 6
var{ Y] = 46-393 §+ 526-833 = 2638,
which is far larger than when z is nearer . The confidence limits are
—100-1 4+ 2:7764/(2638), i.e. from —243 to +425.

The confidence limits, are much wider at the ends than at the central
portion of the curve which illustrates the grave uncertainty involved
in extrapolation beyond the observations. Moreover it must be re-
membered that these confidence limits assume that the population
(true) line is really straight in the region of extrapolation. There is, of
course no reason (from the evidence of this experiment) to assume this.
In fact with only one observation at each z value linearity could not be
tested even within the range of the observations. The uncertainty in
the extrapolated intercept, ¥ = —100-1, at x = 0 is therefore really
even greater than indicated by the very wide confidence limits which
extend from —243 to 4-42-5 (even apart from the further uncertainties
discussed in §7.2). The intercept does not differ ‘significantly’ from
zero (or even from + 40 or —240) ‘at the P = 0:05 level’.

Testing a hypothetical value with the t test
As in § 9.4 the confidence limits can be interpreted as a ¢ test, and
this will make it clear that the (rather undesirable) expression ‘not
significant at the P = 0-05 level’ means the result of the test is P
> 0-05. For example to test the hypothesis that the population value of
the intercept is u = +40, calculate, from (4.4.1),
t = (Y—p)[/var{Y] = (—100-1—40)/+/(2638) = —2-728

with 4 degrees of freedom. Referring ¢ = 2:728 to a table (see § 4.4)
of Student’s ¢ distribution shows P > 0-05 (two tail; see § 6.1).
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The curvature of the confidence limits for the population line is
only common sense because there is uncertainty in the value of a,
i.e. in the vertical position of the line, as well as in b, its slope. If lines
with the steepest and shallowest reasonable slopes (confidence limits for
B) are drawn for the various reasonable values of a the area of uncer-
tainty will have the outline shown by the broken lines in Fig. 12.5.1.
Another numerical example (with unequal numbers of observations at
each point) is worked out in § 13.14.

Confidence limits for the slope. Identity of the analysis of variance with a
t test

In § 12.4 it was mentioned that the slope will be normally distributed
if the observations are, with variance given by (12.4.2). In this example
b = 0-9715 and var{b] = 46-393/526:833 = 0-08806. The 95 per cent
confidence limits, using ¢ = 2:776 as above, are thus, by (12.4.3),
0-971542-7764/(0-08806), i.e. from 0-15 to 1-80. These limits do not
include zero, indicating that b ‘differs signficantly from zero at the
P = 0-05 level’'.

As above, and as in § 9.4, this can be put as a ¢ test. The Gaussian
(normal) variable of interest is b, and the hypothesis is that its popula-
tion value (8) is zero so, by (4.4.1),

,_ b=p 097150
"~ 4/var(b]  /0.08806

with 4 degrees of freedom (the number associated with var{y], from
which var{b] was found). Referring to tables (see §4.4) of Student’s
t distribution shows that the probability of a value of ¢ as large as, or
larger than, 3-274 ocourring is between 0-02 and 0-05, as inferred from
the confidence limits.

It was mentioned in § 11.3 (and illustrated in § 11.4) that the variance
ratio, F, with 1 d.f. for the numerator and f for the denominator is
simply a value of ¢2 with f degrees of freedom. In this case ¢? with
4d.f. = 3-274%2 = 10-72 = F with 1 d.f. for the numerator and 4 for the
denominator. This is ezactly the value of F found in Table 12.5.2
(and P = 0-02—0-05 exactly as in Table 12.5.2). It is easy to show
that this ¢ test is, in general, algebraically identical with the analysis
of variance, so the component in the analysis of variance labelled
‘linear regression’ is simply a test of the hypothesis that the population
value of the straight line through the results is zero. This approach also,
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incidentally, makes it clear why this component in the analysis of
variance should have one degree of freedom.

12.6. Fitting a straight line with several observations at each x
value. The use of a linearizing transformation for an
exponential curve and the error of the half-life

The figures in Table 12.6.1 are the results of an experiment on the
destruction of adrenaline by liver tissue in vitro. Three replicate
determinations (n = 3) of adrenaline concentration (the dependent
variable, y) were made at each of k = 5 times (the independent variable,

z). The figures are based on the experiments of Bain and Batty (1956).

TABLE 12.6.1
Values of adrenaline (epinephrine) concentration, y (ug/ml)

Time, £ (min)
8 18 30 42 54 Total
30:0 8-9 41 1-8 08
28-6 80 4-6 2:6 06
28:6 10-8 4.7 2:2 1-0
Totals 87-1 277 13-4 8-6 2:4 137-2

The decrease in adrenaline concentration with time plotted in Fig.
12.6.1 is apparently not linear. Because there is more than one observa-
tion at each point in this experiment it is possible to make an estimate
of experimental error without assuming the true line to be straight
(cf. § 12.5). Therefore it 18 possible to judge whether or not it 18 reasonable
to attribute the observed deviations from linearity to expervmental error.
The assumptions of the analysis have been discussed in §§ 6.1, 7.2, 11.2,
12.1, and 12.2 which should be read first. There are not enough results
for any of the assumptions to be checked satisfactorily (see §§ 4.6 and 11.2).
" The basic analysis is exactly the same as the one way analysis of
variance described in § 11.4, the ‘treatments’ in this case being the
different « values (times). As in § 11.4, it is not necessary to have the
same number of observations in each sample (at each time). If the three
rows in Table 12.6.1 had corresponded to three blocks (e.g. if three
different observers had been responsible for the observations in the
first, second, and third rows) then the two-way analysis described in
§ 11.6 would have been appropriate, with a between-rows (between
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blocks, between observers) component in the analysis of variance. The
additional factor, compared with the one-way analysis in § 11.4, is

30

- ®
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=
£ 20k
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-E 10} ®
«
g
= @®
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1 1 i 1 ®
0 6 18 30 42 54
Time x

Fro. 12.6.1. Observed mean adrenaline concentration (J,) plotted against
time (z). Data of Bain and Batty (1956) from Table 12.6.1.

that part of the differences ‘between treatments’ (i.e. between the mean
concentrations at the five different times) can be accounted for by a
linear change of concentration with time (see § 12.3).
Calculating the analysis of variance of y
The first part is exactly asin § 11.4 (where more details will be found).
(1) Correction factor G3[N = (137-2)2/15 = 1254-923.
(2) Total sum of squares, from (2.6.5) (cf. (11.4.3) and refer to § 2.1 if
you are confused by the notation).

5 3

121 421("/“ -4 )32 = EEy{‘}—G’/N
= 30:0%24-8-924 .. +2-224 1.0 —1254-923
= 1612-037.

(3) Sum of squares (SSD) between columns (i.e. between the concen-
trations at different times), by (11.4.5), is

87-12 27-72 2-42
3 + 3 +...+T—l254-923=1605-937.

This SSD can be split into two components, just as in § 12.5. In this
case the calculations could be made easier by transforming the
independent variable (z), a8 shown at the end of this section. But,
for generality, the full calculation will be given first.

SSD between times =
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Sum of squares due to linear regression. This is found from (12.3.4)
as

N N
SSD = [3(y—i)e—aP/ Sw—2p.

It is easy to make a mistake at this stage by supposing that there
are only five z values, when in fact there are N = 15 values. This
will be avoided if the N = 15 pairs of observations are written
out in full, as in Table 12.5.1, rather than in the condensed form
shown in Table 12.6.1. This is shown in Table 12.6.2.

TaAaBLE 12.6.2

z v
6 300
(] 28-6
6 28-6
18 89
54 0-8
64 0-6
54 1-0
Totals 450 137:2

Firstly find the sum of products using (2.6.7) and Table 12.6.2:
N LN (Zx)(Zy)
2y—Pe—=F) =Zry——
= (6 X 30-0)+ (6 x 28:6)+...
(450)(137-2)
16

+(54x1-0)—
= —2286-000.

Notice that Zx = 3(6+18+30+ 424 54) = 450 (compare Table
12.6.2), because each z occurs three times; and also that the
calculation of the sum of products can be shortened by using the
group totals from Table 12.6.1 giving
(450)(137-2)

16
= —2286-000. (12.6.1)

(6 X 87-1)+ (18 X 27-T)+ ...+ (54 X 2:4) —
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Secondly, find the sum of squaree for z. From (2.6.5)

2
f.'(:r—ﬂ'-')2 = iz’—(z:) = 6’+6’+...+542+54=_;—“:’
4

4502
= 3(63+ 182+...+54’)—'1—5—

= 4320-000. (12.6.2)
From (12.3.4) the SSD due to linear regression now follows
ssp — (Z28600F o o68
T 4320000 )

b) SSD for deviations from linearity. As in § 12.4 this is most easily
found by difference (cf. (12.3.3))
SSD due to deviations from linearity = SSD between z values—

SSD due to linear regres-
sion (12.6.3)

= 1605-937 —1209-68
= 396-26.

(4) SSD for error. This is simply the within groups SSD of § 11.4.
The experimental error is assessed from the scatter of replicate observa-
tions of each z value. It has N—k = 16—5 = 10 degrees of freedom

TaBLE 12.6.3
Gaussian analysis of variance of y

Source a.f. 8SD MS F P
Linear regression 1 1209-68  1209-68 1983 <£0-001
Deviations from

linearity k—2=38 396-26 132-09 216-5 <0-001
Between z values
(times) k—-1=4 1605-937 401-48 658-2 <£0-001
Error (within z
values (times)) N—-k =10 6:100 0:6100
Total N-—-1 =14 1612-037

and is most easily found by difference as in § 11.4, thus 1612-037
—160-937 = 6-100.

These results can now be assembled in an analysis of variance table
(Table 12.6.3) the bottom part resembling Table 11.4.2, the top part
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resembling Table 12.5.2 (except that the number of different x values, £,
is no longer the same as the total number of observations, V).

The table is completed as described in Chapter 11 and § 12.56. Each
mean square would be an estimate of o2 if the null hypothesis that all
16 observations came from a single normal population (with variance
a2) were true. The ratio of each mean square to the error mean square is
referred to tables of the F ratio (see § 11.3), to see whether it is larger
than could be expected by chance. Although a considerable part of the
differences between the mean adrenaline concentrations at different
times (‘between times’) is accounted for by a linear relationship between
concentration (y) and time (), the remainder (‘deviations from linearity’)
ia still much larger than could be reasonably expected if the érue line
were straight. P <€ 0-001, i.e. deviations from linearity as large as
those observed, or larger, would ocour in far fewer than 1 in 1000
repeated experiments if the true line were straight, and if the assump-
tions about normal distributions, etc (see § 12.2), made in the calcula-
tions are sufficiently nearly true.

There are now two possibilities. Either a curve can be fitted directly
to the observations (see §§ 12.7 and 12.8), or a transformation can be
sought that converts the graph to a straight line. The latter approach is
now described.

A linearszing transformation. Does the catabolism of adrenaline follow an
exponential time course ?

If the rate of catabolism of adrenaline by liver tissue at any given
moment were proportional to the concentration of adrenaline (y)
present at that time (r) than the concentration of adrenaline (Table
12.6.1) would be expected to fall exponentially, i.e.

Yy = Yo~ ¥, (12.6.4)

where y, is the concentration present at time x = 0 and % is the rate
constant.} The reciprocal of k, the time constant, is the time taken
for the concentration to fall to 100/e ~ 36-8 per cent of its original
value (when z = 1/k, it follows from (12.6.4) that y = y,/e). Taking
natural logarithms (logs to base e) of (12.6.4) gives

log.y = log.y,—kx. (12.6.5)

t The symbol k has already been used for the number of treatments (times), but
there should be no risk of confusion between its two meanings.
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(Remember the log is the power to which the base must be raised to
give the argument, so log, e** = —kxz.) Therefore there is a straight
line relation between log ¥ and z, with slope —k and interocept log y,.
The half-life of adrenaline is related to the rate constant in a simple
way. Putting y = y,/2 in (12.6.5) gives the half-life as

log,2 0-69315
zo.s - k = k .

(12.6.6)

The interpretation of the rate constant in molecular terms §s discussed in
§ A2.3.

Common logarithms (to base 10) are more easily available than
natural logarithms so it will be convenient to write (12.6.5) in terms of
common logarithms. Dividing though by log,10 ~ 2-3026 gives, using
(13.3.5),

kx
log;0y = l0g10Y0—5 3056’ (12.6.7)

a straight line with slope = —k/2-3026 and an intercept log,y,.

In order to do the following analysis it is necessary to assume that the
values of log y at each z value are normally distributed (i.e. that y is
lognormal, § 4.5) and homoscedastic (see § 12.2). These assumptions,

I3

TABLE 12.6.4
Values of log,qy found from Table 12.6.1

Time, z (min) Total
8 18 30 42 54
1-4771 0:9494 0-6128 0-2553 —0-0969
1-4564 0-9031 0-6628 0-4150 —0-2218
1-4648 1-0334 0-6721 0-3424 0-0000
Total 4-3883 2-8859 1-9477 1-0127 —0-3187 9-9169

of course, contradict those just made in doing the analysis of variance
of y (Table 12.6.3), when y itself was supposed normal and homo-
scedastic (see the discussions of transformations in §§11.2 and 12.2;
this problem would not arise if the transformation was made on the in-
dependent variable x). There is no way of telling how likely it is that
this contradiction will give rise to misleading inferences in particular
cases. In the absence of real knowledge about the distributions of the

17
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observations the analysis will, as previously emphasized (see §§ 4.2,
6.2, and 7.2), be in error to some unknown extent. If y were known to
be normally distributed the methods of § 12.8 would be preferred to

that now described.
To see whether the straight line defined by (12.6.7) fits the observa-

tions, the logarithms of the observations are tabulated in Table 12.6.4.

TaBLE 12.6.5
Gaussian analysis of variance of log,oy

Source d.f. 88D MS F P
Linear regression 1 42487 4-2467 8741 <0-001
Deviations from linearity 3 0-0337 0-0112 231 01-0-2
Between times 4 4-2804 1-0701 220-3 <0-001
Error 10 0-04858  0-004868
Total 14 4-3290
1.7
1-5
o
2
w0
210
o
S
¢
=
E
»
§ 0-5]
=

0-0
—_ 0.3| 1 1 1 1 J
6 18 30 42 54
Time z

Fia. 12.6.2. Same data as Fig. 12.6.1, but the mean value of the logo
adrenaline concentration (from Table 12.6.4) is plotted against time. The line is
that found by the method of least squares, eqn (12.6.12).

The mean log concentrations are plotted against time in Fig. 12.6.2.
The graph looks much straighter than Fig. 12.6.1. The analysis of
variance of the log concentrations in Table 12.6.4 is now calculated in
exactly the same way as the calculation of the analysis of variance of
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the oconcentrations themselves (Table 12.6.1). The result is Table
12.6.5. Compare Table 12.6.3.

The results in Table 12.6.5 show that almost all the variation of the
log concentrations between times is acoounted for by a straight line
relationship between log y and time and the evidence against the null
hypothesis that the true slope of this line, f, is zero is very strong.
Deviations from linearity as large as, or larger than, those observed
would be expected to ocour in between 10 and 20 per cent of repeated
experiments if the true population line were straight (if the assumptions
made are correct). There is, therefore, no compelling reason to believe
that the relation between log y and time is non-linear, i.e. the experi-
ment providesno evidencethat eqn. (12.6.7), and hence also eqn. (12.6.4),
fit the observations inadequately. In other words there is no reason
to believe that the concentration of adrenaline does not decay
exponentially.

Having established that it is reasonable to fit a straight line to the
log concentrations, the next step is to estimate the parameters (slope
and intercept) of the line.

Fitting the strasght line
If the log observations are denoted ¥', i.e.

Yy = logyoy, (12.6.8)
the equation to be fitted (12.6.7) can be written as
logyo ¥ =Y’ = a+b(x—%), (12.6.9)

which has the same form as in previous examples in this chapter.
Using (12.2.6) the estimate of a is

9-8159
15

a=7q = = 0-66106.

To estimate the slope, the sum of products is first found as described
in the analysis of untransformed concentrations (eqns. (12.6.1) and
(2.6.7))

L, - , (Zx)(Zy
2y —7')(x—%) = Zxy —Ty)
= (6x 4-3883) (18 X 2-88560)+-...+ (54 X —0-3178) —
(450)(9-9159)
15
= —135-446 (12.6.10)
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This is negative because y’ decreases with z (see §2.6). The sum of
squares for z is found as in eqn. (12.6.2), and is 4320-000 as before. The
slope is therefore estimated, by (12.2.8), to be

5 Iy —7)xz—Z) —135-466
T I@—xz)?  4320:000

—0-03135.  (12.6.11)

Putting these values, and £ = 450/15 = 30-000 as before, into (12.6.9)
gives the least squares estimate of the straight line as

logio ¥ = 0-66106—0-03135 (z—30)
= 1-6016—0-03135z. (12.6.12)
Comparing this with (12.6.7) gives the estimates of the parameter as
log,oyo = 1-6016, 80 y, = 39-96 ug/ml (12.6.13)

2:3026

and = —0-03135 80 k = 0-07219 min~! (12.6.14)

In its original form (12.6.4) the estimated regression equation is thus
y = 39-96¢ 007310z (12.6.15)

The time constant (discussed above) for adrenaline catabolism is
estimated to be

1/k = 1/0-07219 = 13-85 min, (12.6.16)
and from (12.6.6) the half-life of adrenaline is
0-69315 )
To.s — _k— = 9'602 min. (12.6.17)

It is shown in § A2.3 that ¥~! = 13-85 min can be interpreted as the
mean lifetime of adrenaline molecules, and z, ; = 9:602 min can be
interpreted as the median lifetime.

Confidence limits for the half-life. From the analysis of variance
(Table 12.6.5), the variance of the log observations is estimated as
var{y’] = 0-004858 (the error mean square with 10 d.f.). Thus, using
(12.4.2) and (12.6.2), the variance of the estimated slope (b in eqn.
(12.6.9)) is var[b] = vary']/E(z—%)? = 0-004858/4320-000 = 1-125
X 10-8, The value of Student’s ¢ for P = 0-95 and 10 d.f. (from tables,
see §4.4) is 2-228, so 95 per cent confidence limits for b follow
from (12.4.3) as b + t4/(var[b]) = —0-03135 4 2:2284/(1-125 x 10-€)
= — 0-0337]1 to —0-02899. The values for the half-life corresponding to
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these values of b are now found as above (z, ; = 0-69315/(—2-3026b)).
Because 2-3026 and 0-69315 are constants, not variables, no additional
error enters in the conversion of b to z, ;. The 95 per cent Gaussian
confidence limits for the true half-life are thus 8-930 to 10-38 min. As
usual these limits can be interpreted as in § 7.9 only 4f all the assump-
tions discussed in §§ 7.2, 11.2, and 12.2 are fulfilled. And, as usual,
the limits are likely to be optimistic (see § 7.2).

A simplifying transformation of the x values

When, as in the present example, the z values are equally spaced and
there is the same number of observations at each, the values of z can be
transformed to make the arithmetic simpler. If 2’ is defined as 2/12—2%
the scale becomes

z 6 18 30 42 54
212 P4 o2 sk 4
z’ -2 -1 0 +1 42

Thus 2’ = —2—-2—2—-1—1—-14+04+0+0+14+1+14+2+4+242 = 0,
go & = 0. It follows that E(z'—&')? = Zz2 = 3(224124-024-124-23)
=30 and Z(y' —¥')(x'—%') = Zy'(z'—%') = Zy's’ = (—2x4:3883)+
-+ {(4+2x —0-3187) = —11-2872. These simplified calculations give, of
course, the regression equation Y’ = a+b(z'—&') = a+bz’, the plot
of log y against 2’. The result is ¥’ = 0-6611—0-37622’. Inserting the
definition of z' gives Y’ = 0-6611—0-3762 (z/12—2¢) = 1-602—
0-03136z, exactly as above (eqn. (12.6.12)).

12.7. Linearity, non-linearity, and the search for the optimum

In real life most graphs are not straight lines. Sometimes, as in
§ 12.6, they can be converted to lines that are near enough straight, but,
as will be shown in §12.8, this may be a hazardous process. Most
elementary books do not discuss curves that are non-linear (in the
sense to be defined in this section) because the mathematics is incon-
venient to do by hand. Since most relationships that are based on some
sort of physical model are non-linear, this is unfortunate. A simple
computer method for fitting non-linear models will be given in § 12.8.
Before this the principles of finding least squares estimates will be
discussed, mainly in a pictorial way, and an attempt made to give an
idea of the scope of linear (in the general sense) models.
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Finding least squares solutions. The geometrical meaning of the algebra

In §12.2 the least square estimates, 4 and 8, of the parameters, «
and B, of the straight line (12,2.3) were found algebraically. (In this
section, and in § 12.8, the symbols ¢ and 4 will be used to distinguish
least squares estimates from other possible estimates of the parameters.)
It will be convenient to illustrate the approach to more complicated
curves by first going into the case of the straighter line in greater
detail.

The intention is to find the values of the parameter estimates that
make the sum of the squares of the deviations of the observations
(y) from the calculated values (Y), 8 = Z(y—Y)? (eqns. (12.2.1) and
(12.2.5)), as small as possible. Notice that during the estimation procedure
the experimential observations are treated as constanis (the particular
observations made) and various possible values of the parameters are
considered. The conventional way of finding & minimum, as in § 12.2,
is to differentiate and equate to zero. How this works was illustrated in
Fig. 12.2.2, in which 8 was plotted against various possible values for
a(b being held constant). The slope of this graph (i.e. 98/0a) is zero at
the minimum, and the corresponding value of a is taken as the least
squares estimate of a. The curly 0, indicating partial differentiation
means that b is treated as a constant when differentiating (12.2.5) to
obtain (12.2.6). This means that b is given a fixed value which is
inserted, along with the experimental observations (from Table 12.7.1)
into (12.2.5) so that S can be calculated for various values of a,
giving the curve plotted in Fig. 12.2.2. It may occur to you to ask
whether the value at which b is held constant makes any difference to
the estimate of «. In fact it does not because the expression found for
08/0a did not involve b, and similarly the expression for d8/da did not
involve a. The geometrical meaning of this will be made clear using the
data in Table 12.7.1.

Fitting a straight line in the form

Y = a+b(z—%) (12.7.1)
gives Y = 8:0004+2:107(z—1-0), (12.7.2)

which is plotted in Fig. 12.7.1. The calculations and interpretation are
the same as for the example in § 12.5. The corresponding analysis of
variance in Table 12.7.2 shows that, if the true line were straight and the
assumptions described in § 12.2 were true, then the slope of this line is
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TaBLE 12.7.1

z v

-2

Total
Mean

= - w-wto.—-o.l-
P
[

-

\ S

-2 -1 0 1 2 3 4
z

Fia. 12.7.1. A straight line (eqn. (12.7.2)) fitted by the method of least
squares to the data in Table 12.7.1.
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greater than could be reasonably expected if the population slope (8)
were zero.
The least squares estimates given in (12.7.2) are d = § = 8-000 and
= 2:107, calculated from eqns. (12.2.6) and (12.2.7). If the values of =
and y from Table 12.7.1 are inserted in the expression for the sum of

TaABLE 12.7.2

Source a.f. 88 MS F P
Linear regression 1 124-321 124-321 80-95 <0001
Deviations from linearity 5 7-679 1-536
Total (] 182-000

squared deviations, 8, (eqn. (12.2.5)), then 8 can be calculated for
various possible values of a and b. There are three variables here so
the results must be plotted as & three-dimensional graph. The most
convenient way to represent this on two dimensional paper is to plot a
contour map, the contours representing values of S (the height), i.e.
the a- and b-axes are in the plane of the paper and the S-axis is sticking
up perpendicular to the paper. The result, calculated for the results in
Table 12.7.1 using eqn. (12.2.5), is shown in Fig. 12.7.2. The graph is
seen to represent a valley with elliptical contours. The bottommost
point of the valley corresponds to d = 8-:000 and 6 = 2-107, i.e. the
least squares estimates already found.

It can now be shown why the value of b used in constructing Fig.
12.2.2 did not matter. In Fig. 12.7.3 sections across the valley are shown
for b = b = 2:107, b = 3:0 and b = 3-4. The lines along which these
sections have been taken are shown in Fig. 12.7.2, It can be seen that
wherever the section is taken (i.e. whatever value b is held constant at),
the minimum in the curve occurs at the same place, viz. at a = ¢
= 8-00. Similarly, if sections across the valley are taken at various
fixed a values (i.e. at 90° to the sections illustrated), each section will
give a plot of § against b, with slope 08/0b. The minima (98/db = 0) of
these curves will clearly all be at b = § = 2-107 whatever the value of a.
Clearly this independence of a and b arises because the axes of the
ellipses in Fig. 12.7.2 are at right angles to the coordinates of the
graph (the ellipses are said to be in canonical form).

The fundamental form of the straight-line equation is u = «’'+fz,
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Sections taken along these lines

o
toe
°
g
3
K
»
a8 1 4
60 {80
J
34 4

3
b Values of b

Fi1a. 12.7.2. Contour map of the sum of squared deviations, S (on an axis
perpendicular to the paper), plotted against various values of a and b using eqn.
(12.2.5) and the data in Table 12.7.1 (plotted in Fig. 12.7.1). The contours for a
straight line fitted in the form ¥ = a+b(z —%) always have this appearance.
Values of S are marked on the contours. The minimum value of §, at the bottom
of the valley, gives the least squares estimates as 4 = 8000 and b = 2-107.
Sections across the valley, along the lines shown, are plotted in Fig. 12.7.3. The
lowest point on each line (minima in Fig. 12.7.3) is marked Xx.
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where «’ is the intercept, 8 the slope, and 4 the population value of y.
Inserting the estimates of the parameters gives

Y = d'+bx (12.7.3)
and, because (12.7.2) can be written as

Y = 5-893+2:107z, (12.7.4)

Sum of squared deviation,S
&

30
20
P 10
- b=b = 2107
0 1 i i 1 1 L 1
4 5 6 7 9 10 11 12

=8-00 Va.luu of a

Fi1a. 12.7.3. BSections across the valley along the lines indicated in Fig. 12.7.2.

The slope of the line, 8S/da, is zero when S is at a minimum, as shown in Fig.

12.2.2. The value of S at the bottom of the valley is 7:679 as shown, and as found
in Table 12.7.2.

it is seen that ' = 5-893 and 6 = 2-107. Comparison of (12.7.1) and
(12.7.3) shows that in general, as in § 12.2,

4’ = d—bz. (12.7.5)

It may be asked why (12.7.4) was arrived at indirectly, through the
seemingly more complicated form, (12.7.2). Why not apply the method
of least squares directly to (12.7.3)? The answer to this will become
clear when it is tried. The method of least squares will now be applied
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to the straight line in the form of (12.7.3), in just the same way as it
was applied in § 12.2 to the straight line in the form of (12.7.1).
Denoting the observations y and the values calculated from (12.7.3)
a8 Y, as in § 12.2, gives the sum of squared deviations, which is to be
minimized, as
8 =3(y—Y)? =Z(y—a' —bx)?
= I(y3+a'?+4 b33 —2a'y —2ybx 4 2a’bx)
= Zy3+ Na'? 4+ 1332? — 23y —2bZyx+ 2a'bZx.  (12.7.6)
This is analogous to (12.2.5), but notice that this time the last term is
not zero. Asin § 12.2, S is differentiated with respeoct to a’, treating b as a
constant, giving
o8
oa’

= 2Na'—2Zy+ 2bLzx, (12.7.7)

and equating this to zero to find the value of @’ for which S is &8 minimum
(see Fig. 12.7.5) gives

Na'+bZx = Zy. (12.7.8)

The value of a’ for which .S is a minimum is no longer independent of b,
as shown by the presence of b in (12.7.8), the solution of which will
depend on the value of b chosen.

Differentiating (12.7.6) with respect to b, holding a’ constant, gives

a8

%= 2bTx? —28yx 4 2a'Sx, (12.7.9)
and again equating to zero gives
a'Sx+4-bZx? = Zyx. (12.7.10)

Again unlike the result in § 12.2, the estimate of b is seen to depend on
the value of a’.

The required solution for d’ and 8’ are those for which (12.7.8) and
(12.7.10) are both true simultaneously. In fact, (12.7.8) and (12.7.10)
are a pair of (linear) simultaneous equations (known, in regression
analysis, as the normal equations), which can be solved for a’ and b
by school-book methods giving (with the values of  and y in Table
12.8) d' = 5893 and b = 2-107 as found above.

What is the geometrical meaning of these results? If contours are
plotted from (12.7.6) (using the data in Table 12.7.1) the results are as
shown in Fig. 12.7.4.
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The contours are still elliptical, but their axes are no longer parallel
with the coordinates of the graph. When sections are made across the
valley at the values of b shown in Fig. 12.7.4, the results are as shown in
Fig. 12.7.5.

Sections taken

along these IineN
0 N

Values of a’

FN =

3 34
Values of b

b

Fi1a. 12.7.4. Contour maps of S (values marked on the contours) for same
data as Fig. 12.7.2, but straight line fitted in the form ¥ = a’+bz. Sections
across the valley, along the lines shown, are plotted in Fig. 12.7.6. The lowest
point along each line (minima in Fig. 12.7.5) is marked X.

The value of a’ for which § is a minimum is seen to depend on the value
at which b was held constant when making the section across the valley,
as expected from (12.7.8). Of course, the slope of the curves in Fig.



§12.7 The relationship belween two variables 251

12.7.5, 9S/oa’, is zero at the minimum of each curve. But the only
point at which 0S/ob is simultaneously zero is at the bottommost
point of the valley in Fig. 12.7.4 (hence the simultaneous equations).
For example, on the curve for b = 3-4, in Fig. 12.7.5, S is at & minimum
(i.e. S/0a’ = 0) at the point a’ = 4-6. Inspection of Fig. 12.7.4 makes
it clear that if a section is made across the valley (at 90° to the sections
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F1a. 12.7.5. Sections across the valley, along the lines shown in Fig. 12.7.4,
when a straight line is fitted in the form ¥ = a’+ bx. The value of S at the bottom
of the valley is 7-679 as before.

in Fig. 12.7.5) at @’ = 4-6, giving a plot of S against b (with slope
= 08/0b), the minimum will not be at b = 3-4. That is to say, at the
point a’ = 4-6, b = 3-4, 98/0a’ is zero but 08/0b is not.

It is now clear that the effect of writing the straight line in the form
Y = a+b(x—£%), is to make the estimates 4 and b independent of each
other so two simple independent equations (derived in § 12.2) can be
used for their estimation. If the line is written in the form Y = a'+ bz,
then the estimates are no longer independent, but must be found by
solving simultaneous equations.
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What does linear mean?

The term linear, a8 usually based by statisticians, embraces more
than the simple straight line. It includes any relationship of the form

Y = a+bz,+cxy+dag+..., (12.7.11)
where z,, x5, 3, . . . are independent variables (see § 12.1; examples
are given below), and a, b, ¢, d, . . . are estimates of parameters. This

relationship includes, as a apecial case, the straight line (Y = a+bz),
which has already been discussed at length. Equation (12.7.11) is des-
cribed as a multiple linear regression equation (the ‘linear’ bit is,
sad to say, often omitted). As well as describing straight line
relationships for several variables (z,, z5, . . .), (12.7.11) also includes,
for example, the parabola (or second degree polynomial, or quadratic),
Y = a+bz+cx?, as the special case in which z, is the square of z,.
(As discussed in § 12.1, an ‘independent variable’ in the regression
sense is simply one the value of which can be fixed precisely by the
experimenter; it does not matter that in this case z, and z, are not
independent in the sense of §§ 2.4 and 2.7 since their covariance is not
zero. All that is required is that the values of z,, 2,3, . . . be known
precisely.) The parabola is not a straight line of course, but it is linear
in the sense that Y is a linear function (p. 39) of the paramelers if the z
values are regarded as constants (they are fixed when the experiment is
designed). This is the sense in which ‘linear’ is usually used by the
statisticians. It turns out that for (12.7.11) in general (and therefore
for the parabola), the estimates of the parameters are linear functions
of the observations. This has already been shown in the case of the
straight line for which 4 = §, and for which 5 has also been shown
(eqn. (12.4.1)) to be a linear function of the observations. This means
that the parameter estimates will be normally distributed if the
obgervations are, and the standard deviations of the estimates can be
found using (2.7.11). Also, if the parameter estimates are normally
distributed, it is & simple matter to interpret their standard deviations
in terms of significance tests or confidenoe limits. Furthermore, linear
problems (including polynomials) give rise to linear simultaneous
equations (like (12.7.8) and (12.7.10)) which are relatively easy to
solve (cf. § 12.8). They can be handled by the very elegant branch of
mathematics known as matriz algebra, or linear algebra (see, for example,
Searle (1966), if you want to know more about this). It is doubtless
partly the aesthetic pleasure to be found in deriving analytical solutions



§12.7 The relationship belween two variables 253

in terms of matrix algebra that has accounted for the statistical litera-
ture being heavily dominated by empirical linear models with no
physical basis, and, much more dangerous, the widespread availability
of computer programs for fitting such models by people who do not
always understand their limitations (some of which are mentioned
below).

Polynomial curves

It does not change the nature of the problem if some z values in
(12.7.1) are powers of the others. Thus the general polynomial regression
equation

Y = a+bx+tcxd+dad+... (12.7.12)

is still a linear statistical problem. Increasingly complex shapes can
be described by (12.7.12) by including higher powers of z. The highest
power of x is called the degree of the polynomial, so a straight line is a
first degree polynomial, the parabola is a second degree polynomial,
the cubic equation, ¥ = a+bz?{da?, is a third degree polynomial,
and so on. Just as a straight line can always be found to pass exactly
through any two points, it can be shown that pth degree polynomial
can always be found that will pass exactly through any specified p+1
points. Because of the linear nature of the problem discussed above,
polynomials are relatively easy to fit (especially if the x values are
equally spaced). Methods are given in many textbooks (e.g. Snedecor
and Cochran (1967, pp. 349-58 and Chapter 13); Williams (1959,
Chapter 3); Goulden (1952, Chapter 10); Brownlee (1965, Chapter 13);
and Draper and Smith (1966)) and will therefore not be repeated here.

Although polynomials are the only sort of curves described in most
elementary books, they are, unfortunately, not of much interest to
experimenters in most fields. In most cases the reason for fitting a
curve is to estimate the values of the parameters in an equation based
on a physical model for the process being studies (for example the
Michaelis-Menten equation in biochemistry, which is discussed in
§ 12.8). Very few physical models give rise to polynomials, which are
therefore mainly used in a completely empirical way. In most situations
nothing more 18 learned by fitting an empirical curve (the parameters of
which have no physical meaning), than could be made obvious by drawing a
curve by eye. One possible exception is when the line is to be used for
prediction, for example a calibration curve, and an estimate of error is
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required for the prediction—see §13.14. In this case a polynomial
curve might be useful if the observed line was not straight.

Multiple linear regression

If, as is usually the case, the observation depends on several different
variables, it might be thought desirable to find an equation to describe
this dependence. For example if the response of an isolated tissue
depended on the concentration of drug given (z,, say), and also on the
concentration of calcium (z,, say) present in the medium in which the
tissue was immersed, then the response, Y, might be described by a
multiple linear regression equation like (12.7.11), i.e.

Y = a+bz,+cz,. (12.7.13)

This implies that the relationship between response and drug concentra-
tion is a straight line at any given calcium concentration, and the
relationship between response and calcium concentration is a straight
line at any given drug concentration (so the three-dimensional graph of
Y against z, and z, is a flat plane). As already explained z, could be
the log of the drug concentration, and z; could similarly be some
transformation of the calcium concentration, the transformation being
chosen so that (12.7.13) describes the observations with sufficient
accuracy. Even so the linear nature of (12.7.12) is a considerable
restriction on its usefulness. Furthermore all the assumptions described
in § 12.2 are still necessary here. The process of fitting multiple linear
regression equations is described, for example, by Snedecor and Cochran
(1967, Chapter 13); Williams (1959, Chapter 3); Goulden (1952,
Chapter 8); Brownlee (1965, Chapter 13); and Draper and Smith
(1966).

The really serious hazards of multiple linear regression arise when the
z values are not really independent variables in the regression sense
(see § 12.1), i.e. when they are not fixed precisely by the experimenter,
but are just observations of some variable thought to be related to ¥,
the variable of interest. Data of this sort always used to be analysed
using the correlation methods described in § 12.9, but are now very
often dealt with using multiple regression methods. There is much to be
said for this as long as it is remembered that however the results are
analysed it is impossible to infer causal relationships from them (see
also §§ 1.2 and 12.9).

Consider the following example (which is inspired by one discussed
by Mainland (1963, p. 322)). It is required to study the number of
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working days lost though illness per 1000 of population in various
areas of a large city. Call this number y. It is thought that this may
depend on the number of doctors per 1000 population (z,) in the
area and the level of prosperity (say mean income, z;) of the area.
Values of y, z,, and z; are found by observations on a number of areas
and an equation of the form of (12.7.13) is fitted to the results. Even
supposing (and it is not a very plausible assumption) that such complex
results can be described adequately by a linear relationship, and that
the other assumptions (§12.2) are fulfilled, the result of such an
exercize is very difficult to interpret. Suppose it were found that areas
with more doctors (z,) had fewer working days lost through illness (y).
(If (12.7.13) were to fit the observations this would have to be true
whatever the prosperity of the area.) This would imply that the co-
efficient b must be negative. Suppose it were also found that areas with
high incomes had few working days lost through illness (whatever
number of doctors were present in the area), so the coefficient ¢ is also
negative. Inserting the values of a, b, and ¢ found from the data into
(12.7.13) gives the required multiple regression equation. If z, in this
equation is increased y will decrease (because b is negative). If z, is
increased y will decrease (because ¢ is negative). It might therefore be
inferred (and often is) that if more doctors were induced to go to an
area (increasing x,), the number of working days lost (y) would decrease.
This inference implies that it is believed that the presence of a large
number of doctors is the cause of the low number of working days lost,
and the data provide no evidence for this at all. Whatever happens in
the equation, it is clear that in real life one still has no idea whatsoever
what will happen if doctors go to an area. The number of working days
lost might indeed decrease, but it might equally well increase. For
example, it might be that doctors are attracted to areas of the city
which are near to the large teaching hospitals, and that these areas also
tend to be more prosperous. It is quite likely, then that most people in
these areas will do office jobs which do not involve much health hazard,
and this might be the real cause of the small number of working days
lost in such areas. Conversely, less prosperous areas, away from teaching
hospitals, where many people work at industrial jobs with a high
health hazard, (and where, therefore, many working days are lost
through illness) attract fewer doctors. If the occupational health hazard
were the really important factor then inducing more doctors to go to
an area might, far from decreasing the number of working days lost
according to the naive interpretation of the regression equation, might

18
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actually tncrease the number lost, because the occupational health
hazards would be unchanged, and the larger number of doctors might
increase the proportion of cases of ocoupational disease that were
diagnosed. Similarly it cannot be predicted what effect in the change in
the prosperity of an area will have on the number of working days lost.
The regression equation describes (at most) only the static situation at
the time the survey was made and says nothing a¢ all about what would
happen if the 2 values were changed.

Clearly a correlation or regression relationship based on static
survey data of this sort, in which the z values are correlated with
each other and with other variables that have not been included in the
regression equation because they have not been thought of or cannot
be measured, is the sort of thing for which it is possible to think up
half-a-dozen plausible explanations before breakfast. The only use of
the results, apart from describing, if you are lucky, the situation as it
was when the survey was done, is to provide hints about what sort of
proper experiments might be worth-while. The only way to find out
what effect increasing the number of doctors in an area has is to increase
the number. In a proper experiment various numbers of doctors would
be allocated strictly at random (see § 2.3) to the areas being tested.
This point has been discussed already in Chapter 1.

Further discussions will be found in § 12.9, and in Mainland (1963,
p. 322). More quantitative descriptions of the hazards of multiple
regression will be found in Tukey (1954), Snedecor and Cochran (1967,
PP- 393—400), and Brownlee (1965, pp. 452—4).

Linear models and the analysis of variance
It is worth mentioning in passing that the analysis of variance can
be written in the form of a multiple linear regression problem. Consider
for example the comparison of two treatments on two independent
samples of test objects (the problem discussed at length in Chapter 9).
It was pointed out in § 11.2 that in doing the analysis based on Gaussian
(normal) distribution (i.e. Student’s ¢ test in the case of two samples—
see § 9.4) it is assumed that the ith observation on the first treatment
can be represented as y,, = u-+7,+e¢;;, and for the second treatment
Y2 = u+7a+e, (eqn (11.2.1)), where u is a constant, and 7, and 7, are
constants characteristic of the first and second treatments respectively.
This model can be written in the form of a multiple linear regression
equation
Yy = pt7i %1+ tey, (12.7.14)



§12.7 The relationship between two variables 257

where z, is defined to have the value 1 for all responses to treatment
1 (j = 1) and 0 for all responses to treatment 2(j = 2), and z, is 1 for
responses to treatment 2, and 0 for responses to treatment 1. Inserting
these values (12.7.14) reduces to y,; = u+7,+e; for treatment 1,
and to y,; = u+r15+€, for treatment 2, exactly as in § 11.2 If the
estimates of 7, and 7, from the data are called b and ¢, and estimate of u
is called a, the estimated value for ith response to the jth treatment
becomes Y = a-bz,+cx,, identical with (12.7.13). The estimation of
treatment effects (values of 7) is the same problem as the estimation of
the regression coefficients. An intermediate level discussion of this
approach will be found in the first (1960) edition of Brownlee’s (1965)
book.

12.8. Nop-linear curve fitting and the meaning of ‘best’
estimate

For the purposes of illustration, the problem of fitting the Michaelis—
Menten hyperbolat (or Clark equation, or Langmuir isotherm) will be
discussed. In biochemical terms the equation states that the velocity
of an enzyme catalysed reaction is ¥"z/(X +x) where z is the concentra-
tion of substrate (the independent variable in the sense of § 12.1, and
the parameters frue or population values) of the equation are ¥~ (the
maximum velocity, approached as z—o0), and X", the Michaelis con-
stant (the substrate concentration necessary for half-maximum velocity ;
if X = z the velocity is ¥7/2). The observed velocity, y say (the de-
pendent variable, see § 12.1), will differ from this by some error. If
V and K are estimates from experimental results, of ¥ and X", the
estimated velocity of the reaction will be

Vx

Y= K—{—x.

(12.8.1)

The shape of this curve is shown in Fig. 12.8.1.

Notice that the parameters, ¥ and X", are not linearly related to Y
so this s a non-linear problem in the sense defined in § 12.7.

There are many ways of estimating ¥" and X". The relative merits
of some of them will be considered below. First, the problem of finding
least squares estimates for non-linear models will be discussed. The

t The general formula for a hyperbola is (Y —¢,;)(z—¢3) = constant, where the
constants ¢, and ¢y are the asymptotes of the hyperbola. If ¢; = V and ¢; = — K
rearranging (12.8.1) shows that (Y — V)(z+ K) = — VK = constant, which haa the same
form as the general formuls.
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problem of estimating the error of these estimates from the experimental
results is important but complicated, and it will not be considered here
(see Draper and Smith 1966). Oliver (1970) has given formulas for
caloulating the asymptotic variances of V and K from scatter of the
observations s(y). If there were several observations (y values) at each
z then s(y) would be estimated from the scatter of these values ‘within

I" (least squares) —— -«
30+ ¥ (true)——
2= =" V(LB plot)
201 = ——
e e
z e ———
% T
® :
- < Two population
101 /’ I standard deviations
/
K (LB rk(lmt squares)
. Tplot) X (true)
0 Lt 1 - 1 ]
256 5 10 20 40

Substrate concentration,z
F1a. 12.8.1. Fitting the Michaelis-Menten hyperbola.

(© ‘Observed’ values from Table 12.8.1.

—— True (population) hyperbola (known only because the
‘observations’ were computer-simulated, not real. See
discussion on p. 268). The population standard deviation is
o(y) = 1-0 at all z values.

— « — Least squares estimate of population line found from

‘observed’ values.
—— - Lineweaver-Burk (LB, or double reciprocal plot) estimate
of population line found from the same ‘observations’.

The true values, ¥ and X", and their values estimated by the two methods
(from Table 12.8.4) are marked on the graph.

z values’, but in the following example where there is only one observa-
tion at each z, the best that can be done is to assume the population
curve follows (12.8.1), in which case the sum of squares of deviations
from the fitted curve, Sp,,, will be an estimate of s%(y). This is exactly
like the situation for a straight line discussed in § 12.6. The formulas
involve the population values ¥" and X for which the experimental
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values V and K must be substituted. No allowanoce is made for the
unoertainty resulting from the use of sample values ¥, K, and s(y) in
place of population values ¥°, X, and o(y) so the formulas are to some
extent optimistic. Using them is just like using the normal deviate u
instead of Student’s ¢ (see §§ 4.3 and 4.4).

Least squares estimates for non-linear models

The approach is exactly as in § 12.7. It is required to find the esti-
mates of the parameters that minimize the sum of the squares of
deviations between observed (y) and caloulated (Y) velocities, S
= Z(y—Y)2 In this example these least squares estimates will be
denoted ¥ and K, asin §12.7.

From (12.8.1),

§=Zy-Ty= Z(y_;:z)’
= Z[ K+xz (K::-cz)’:l
—3y—2 VZ( Ky:x)+ V’Z( K:x)a- (12.8.2)

If, as in § 12.7, this expression is differentiated first with respect to V
holding K constant (giving d8/0V), and then with respect to K holding
V constant (giving 08/0K), and the two derivatives equated to zero,
the result is a pair of simultaneous equations (the normal equations)
that can be solved for ¥ and &, just as (12.7.8) and (12.7.10) could be
solved for d’ and b in § 12.7. The only snag is that in this case they are
non-linear simultaneous equations that cannot be solved by school-
book methods. Another difficulty is that there may well be (as in this
example) more than one set of solutions. The sort of difficulty that may
be encountered can be illustrated using a numerical example. The
figures in Table 12.8.1 represent the results of an enzyme kinetic
‘experiment’.

Using these figures and eqn. (12.8.2), contours for various S values
can be calculated and plotted against ¥ and K as shown in Fig. 12.8.2
(a) and (b).

The contours are not simple ellipses like those found in §12.7
(Fig. 12.7.2 and 12.7.4). The required solution is clearly the bottom-
most point of the valley in Fig. 12.8.2(a) (where aS/0V and 38/0K
are simultaneously zero, see § 12.7), and it can be seen that this point
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TaBLE 12.8.1

Results of an enzyme kinetic experiment. The population (irue) velocities

are also given. They are known only because the ‘experiment’ was not

real, but was simulated on a compuler, as discussed later in this section.

Substrate ‘Observed’ Population
concentration velocity mean velocity

() ) )
26 5-576 4-2887
5-0 7-282 7-5000
10-0 12-521 12-0000
20-0 16-138 17-1429
40-0 23-219 21-8182

40

Fi1a. 12.8.2(a) Fitting the Michaelis-Menten hyperbola. Contour map of the
sum of squared deviations, § (on an axis perpendicular to the paper), against
various values of K and V. This figure is analogous to Figs. 12.7.2 and 12.7.4
which referred to the fitting of a straight line. The values of S, calculated from
eqn. (12.8.2) using the observations in Table 12.8.1, are marked on the contours.
(a) This covers the (physically important) positive values of V and K. The
minimum value of S, 4-323, at the bottom of the valley corresponds to the least
square estimates § = 31:45 and R = 15-80.
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There are, in fact, several solutions to the simultaneous ‘normal
equations’ in this case.t For example, there is another pit at the
point V = 3-244 and K = —3-793, shown in Fig. 12.8.2(b). Although
these values correspond to & minimum in 8§, the minimum is merely a
hollow in the mountain side. The value of § at this minimum, 764-3, is far
greater than the value of § at the least of all the minimums, 4-323, as
shown at the bottom of the valley in Fig. 12.8.2(a). If there are several
minimums that with the smallest S, i.e. the best fitting curve, corres-
ponds to the least squares estimates. In this case (though not necessarily
in all problems) all of the subminimums correspond to negative values
of K that are physically impossible and can therefore be ruled out.

There are many methods of finding the least squares solutions (see,
for example, Draper and Smith (1966, Chapter 10), Wilde (1964)).
In almost all non-linear problems the solution involves suoccessive
approximations (iteration). The procedure is to make a guess at the
solution and then to apply a method for correcting the guess to bring
it nearer to the correct solution. The method is applied repeatedly
until further corrections make no important difference. The final
solution should, of course, be independent of the initial guess. Geo-
metrically, the initial guess corresponds to some point on Fig. 12.8.2
(say ¥V =10, K = 2 for example). The mathematical procedure is
intended to prooceed by steps down the valley until it reaches (sufficiently
nearly) the bottom, which corresponds to ¥ = ¥ and K = K. One
method, which sounds intuitively pleasing is to follow the direction of
steepest descent (which is perpendicular to the contours) from the initial
guess point to the minimum. However inspection of Fig. 12.8.2 shows
that the direction of steepest descent often points nowhere near the
minimum. Furthermore if the search for the minimum is started in the
precipitous terrain shown in Fig. 12.8.2(b), or if this region is reached
at some time during the search, the direction of steepest decent may be
completely misleading. Although this and other sophisticated methods
(see, e.g Draper and Smith (1966, Chapter 10)) have had much sucoess,
many people now favour simpler search methods which seem to be
rather more robust (see Wilde 1964). One such method which has proved
useful for ourve fitting (Hooke and Jeeves 1961 ; Wilde 1964 ; Colquhoun,
1968, 1969) will now be described.

t There is also, in general, the possibility of a saddle point or mountain pass when a
minimum in the plot of S against one parameter coincides with a maximum in the plot
of S against the other, SBuch a point also satisfles the normal equations because both
derivatives are zero.
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Patternsearch minsmization
In Table 12.8.2 a computer program (an Algol 60 procedure) is

TaBLE 12.8.2
Patternsearch procedure (in Algol 60) written by M. Bell (Unsversity of
London Institute of Computer Science) to whom I am grateful for permission
to reproduce it

A Fortran IV version can be supplied on request.
For this procedure the following must be supplied :

k = number of variablea on which the function to be minimized depends
bp(1:k] = basepoint, the initial guesses for the values of each variable {para-
meter estimate)
np{1:k] = newpoint, a real array
step(] :k] = initial step size for altering each variable in search for better
values

redfaci(} : k] = step reduction factor for each variable (usually between 0-1 and
0-6)

crilstep(]1 : k] = smallest permissible step size for each variable. This controls
accuracy with which the minimum is located.

eps = half the smallest of the critsteps

eval = number of evaluation, an integer variable

evalim = maximum permissible number of evaluations of function

pat = patternfactor (usually 1-0, but other values may help in some cases)

min = a real variable

The function to be minimized is declared as
real procedure function (P); real array (P); (see Table 12.8.3 for an example)
On exit, after calling patternsearch,
min = minimum value of the function
np = values of the variables corresponding to the minimum (the least squaies
parameter estimates for example)
eval = number of evaluations of the function during the search
procedure patiernsearch (function, k, bp, np, siep, redfact, crilstep, eps, eval,
evalim, pat, min); integer k, eval, evalim; real eps, pat, min; real array bp, np, sep,
redfact, critstep; real prooedure funclion;
begin real array move [1:k]; integer i, fails; real valus, minsiors;
procedure explore;
begin real home; integer j;
fails:= 0,
for i:= 1 step 1 until k¥ do
begin home: = np(i); j:= 1;
ADD 8:np(i]: = home+ step[i]); value: = function (np); eval. = eval +1;
if value <min then min: = value
else begin
if j = 2 then begin np{i]: = home; fails: = faile+1 end
else begin step(i]: = —atep(i); j:= 2; goto ADD S end
end

end
end of axplore;
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min: = funciion (bp); eval:=1;
GO ON: for i:= 1 step 1 until k do np[i]: = bp{i);
TRY: explore;
if fails = k then
begin for ¢:= 1 step 1 until k do
if abs(step(i]) > critstep(i] then goto CONT;
goto EXIT;
CONT: fori:= 1 step 1 until k do slep [i): = redfact{i] X step[i];
goto TRY
end;
for i: = 1 step 1 until k do move(i): = np{i] —bp{il;
PATTERNING: if eval > evalim then goto EXIT;
for i:= 1 step 1 until k do
begin bp(i): = np[il; npli]: = bpli]+pat x movei];
if move{i] x atep{i] < O then step[i): = —atep(i]
end;
minstore: = min; min: = fundlion (np); eval: = eval +1;
explore;
if min < minstore then
begin for i: = 1 step 1 until k do move(i]: = np{i] —dplil;
for i: = 1 step 1 until k do if abs(move{i]) > eps then goto PATTERNING
end;
min: = minslore; goto GO ON;
EXIT: end of patternsearch;

given that can be used to minimize any function, i.e. that will find
the values of the k variables (in the present example k = 2 variables,
viz. K and V) required to make the function (in the present example,
S given by (12.8.2)) & minimum. The procedure was written by Bell
on the basis of the work of Hooke and Jeeves (1961). The prooedure
starts from the initial guess (basepoint) by trying steps (of specified
size) in each variable to see whether the function is reduced. The
size of the reduction is not taken into account. When a suoccessful
pattern of moves has been found it is repeated, the step size increasing
while the moves are successful (i.e. while they reduce the funotion
value). When the function cannot be decreased any further the step
size is reduced (by a specified factor) and a further exploration carried
out. When the steps fall below a specified size the search terminates on
the assumptions that & minimum has been found. Further details are
given by Wilde (1964).

Of course, if the surface has several pits patternsearch will locate only
one of them, which one depending on the initial guess, step sizes,
eto.

A typical procedure for calculating values of the function is shown in
Table 12.8.3. It calculates the sum of square deviations (eqn. (12.8.2))
for fitting the Michaelis-Menten equation. It incorporates a simple
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devioe for preventing the search venturinginto the craggy (and physically
impossible) region of negative ¥ and K values.

When the patternsearch program was used for fitting the Michaelis—~
Menten curve to the results in Table 12.8.1 & minimum of S = 4-32299
was found at ¥ = 31-45004 and K = 15-88267 after 215 evaluations of
S (from Table 12.8.3) with various trial values of V and K. In this case
the initial gueeses, bp in Table 12.8.2, were set to V = 2-0 K = 50-0,

TABLE 12.8.3
An Algol 60 procedure for calculating the function to be minsmized for
fitting the Michaelis—Menten equation. The arrays containing the n
observations, y [1:n), and the n substrate concentrations, z{1:n), are
declared and read in before calling patternsearch. If the Boolean variable
constrained 18 set to true the search is restricted to non-negative values of
V and K
real procedure function (P); real array-(P);
begin integer j; real 8, K, V, Pealc;
S:=0;
if constrained then for j: = 1, 2 do if P(j] < 0 then P{j]:= 0;
V:= P[1}; K:= P[2];
for j:= 1 step 1 until n do
begin Yeale: = V X a[j]/(K +2{51);
8:= S+ (i1 Feale) } 2

fum;wn =8
end of function;

step sizes were 1-0 for both ¥ and K, reduction factor was 0-2 for both
V and K, and critstep was 10-° for both V and K. Patternfactor was
2:0. In another run, the same except that patternfactor was set to
1-0 virtually the same point waa reached (S = 4-32299 at ¥ = 31-45019
and R = 15-89286) after 228 evaluations of S—not quite as fast. If
the initial guesses were ¥ = 1-0, K = 20 then again the virtually same
minimum (S = 4-32299 at P = 3145018 and K = 15-89283) was
reached after 191 trial evaluations of 8. On the other hand if the initial
guesses are V = 2-5, K = —3-8 and the step sizes 0-01 then the program
locates the subminimum (S = 764-299 at V = 3:2443 and K =
-—3-7938) shown in Fig. 12.8.2(b), if not constrained.

Other uses for patternsearch

The program in Table 12.8.2 can be used for any sort of minimization
(or maximization) problem. It can, for instance, be used to solve any
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set of simultaneous equations (linear or non-linear). If the n equations
are denoted f,(z,,...,z,) = 0 (¢ = 1,...,n) then the values of 2 correspond-
ing to the minimum value of Xf? (which will be zero if the equations
have an exact solution) are the required solutions.

The meaning of ‘best’ estsmale

The method of least squares has been used throughout Chapter 12
(and implicitly, in earlier chapters). It was stated in § 12.1 that least
squares (LS) estimates have certain desirable properties (unbiasedness
and minimum variance; see below) in the case of linear (see §12.7)
problems. It cannot automatically be assumed that least squares
estimates will be the best in the case of non-linear problems (and even if
they are best, they may not be so much better than others that it is
worth finding them if doing so is much more troublesome than the
alternatives). If the distribution of the observations is normal then
the method of least squares becomes the same as the method of maxi-
mum likelihood (see Chapter 1) and this method gives estimates that
have some good properties. Maximum likelihood (ML) estimates,
however, are often biased, as in the case of the variance for which the
maximum likelihood estimate is Z(x—%)?/N, see §2.6 and Appendix
1, eqn. (A1.3.4). And in general ML estimates have minimum variance
only when the size of the sample is large (they are said to be asymp-
totscally efficient, meaning that as the size of the sample tends to infinity
the varianoe of the ML estimate is at least as small as that of any other
eatimate). Such results for large samples (asymplotic results) are often
encountered but are not much help in practice because most experi-
ments are done with more or less small samples. There are few published
results about the relative merits of different sorts of estimates for
non-linear models when the estimates are based on small experiments.
Such knowledge as there is does not contradict the view that if the
errors are roughly constant (homoscedastic) and roughly normally
distributed, it is probably safest to prefer the LS estimates in the
absence of real knowledge. The ideas involved will be illustrated by
means of the Michaelis~Menten curve fitting problem discussed above.

As in all estimation problems, there are many ways of estimating the
parameters (¥ and X of (12.8.1) in the present example), given some
experimental results. And as usual all methods will, in general, give
different estimates. The methods most widely used in the Michaelis~
Menten case all depend on transformation of (12.8.1) to a straight line
(of. §12.6). The most widely used (and worst) method is the double
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reciprocal plot (or Lineweaver-Burk plot). This depends on rearrange-
ment of (12.8.1) into the form

11 K(l)
7 =7t7\z)" (12.8.3)

which shows that a plot of 1/y against 1/x should be straight with
intercept 1/V and slope K/V. Such a plot is shown in Fig. 12.8.3.
A straight line has been fitted to the results by the simple (unweighted)
method of least squares described in § 12.5 (in laboratory practice
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F1a. 12.8.3. Double reciprocal (or Lineweaver-Burk) plot (1/y against
1/z) for the ‘observations’ in Table 12.8.1. See also Table 12.8.4.

© ‘Observations’.

—— Straight line fitted (see text) to ‘observations’.

Intercept = 100/V = 100/22-58.
Slope = K|V = 8-16/22-58.

-« - True line corresponding to population mean velocities in
Table 12.8.1 (i.e. ¥ = 80 X = 15, see Table 12.8.4).
Intercept = 100/30 = 3-83.

Slope = ¥/ = 0-5.
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usually either this done, or a line is fitted by eye). From its slope and
interoept the estimates of ¥ and K are found to be V = 22:568 and
K = 8-16.

Another method is based on the rearrangement of (12.8.1) in the
form

Y= V—K(—g), (12.8.4)
from which it is seen that plot of y against y/x should be a straight
line with slope —K and intercept V. This plot is shown in Fig. 12.8.4.
Again a straight line was fitted using the method of § 12.5 in spite of
the fact that the abscissa, y/z, is not free of error as assumed in §12.1
(because it now involves the observations, y). From the slope and
intercept of this line the estimates are found to be V = 25-76 and
K = 10-13.

The results of applying these various estimation methods to the
observations in Table 12.8.1 are compared in Table 12.8.4. They are not
very informative aa they stand, but it will now be shown that they are
not untypical.

TABLE 12.8.4

v K
True population value 80-00 15-00
Least squares estimate  381-45 15-89
Lineweaver-Burk
estimate (eqn. (12.8.3)) 22-58 8-16
y against y/x estimate
(eqn. (12.8.4)) 25-76 10-18

In fact the ‘observations’ in Table 12.8.1 were taken from a study in
which simulatedt experiments were used to investigate various
methods of estimation under various conditions (Colquhoun 1969; of.
Dowd and Riggs 1965). An ‘experiment’ was performed by picking at
random an observation from a normally distributed population known
to have the mean (u) given in Table 12.8.1 (and plotted in Fig. 12.8.1),

t The simuiation method avoids the mathematical difficulties of finding the distribu-
tion of estimates, but the results are not very general. Fig. 12.8.5 would look different
for different sorts of error, different distributions for the obeervations and different
experimental designs (spacing and number of substrate concentrations, i.e. of z values).
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and known to have a standard deviation o(y) = 1-0 at every conocentra-
tion (i.e. the ‘observations’ were homosocedastio—see Fig. 12.2.3). The
‘observations’ were generated using computer methods. The observa-
tions are thus known to be unbiased (their population means, u, are

30g———7"=30
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y/x
Fia. 12.8.4. Linearized plot using y against y/.

(© ‘Observations’ from Table 12.8.1.
—— Straight line fitted (see text) to ‘observations’
Intercept = V = 25-76, slope = —K = —10:13
(see Table 12.8.4).
- - - - True line corresponding to population mean velocities in
Table 12.8.1, i.e. intercept = ¥ = 30, slope = —X
= —16.

known to lie exactly on the caloulated curve in Fig. 12.8.1) and, unlike
what happens in any real experiment, their distribution and population
means and standard deviations are known. Seven hundred and fifty
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such ‘experiments’ were performed, and from each ‘experiment’
estimates of ¥ and K were calculated by five methods (three of which
have been mentioned above). The resulting 750 estimates of ¥V and K
were grouped to form histograms. The distributions so obtained of the
estimates of V are shown in Fig. 12.8.5 for three methods of estimation.

True value ¥ =30

3001 .
y against y/x
150+
——
G A 1 1 — 1 4
15 I 15 60 75 90
_ I
t.loO- L 1/y against 1/x
2
&
E
- 0. [_ _hj_l—l_}—L
0 15 | 45 60 75 90 >100
300+
Least, squares
150+
) JEEE conm _] 1 Y 1 L |
15 45 60 75 €N
Estimate of V

True value ¥ =30

Fi1a. 12.8.5. Distributions of the 750 estimates of ¥~ (= 30) obtained, using

three methods, in 750 simulated experiments. Top: estimates from plot of y against

y/z (a8 shown for one ‘experiment’ in Fig. 12.8.4). Middle: double reciprocal

(Lineweaver—Burk) plot (as shown for one ‘experiment’ in Fig. 12.8.3). Bottom:
method of least squares.
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The distributions of estimates of K are similar, which is expected in
the light of the finding that the estimates of ¥ and K are highly corre-
lated, i.e. experiments that yield an estimate of V that is too high tend
to give an estimate of K that is too high also, whichever method
of estimation is used. Inspection of Fig. 12.8.5 shows that in this
particular case (the u values shown in Table 12.8.1 and Fig. 12.8.1, with
normally distributed homosoedastic observations) the method of least
squares is in fact the best of the three methods. The LS estimates are
more closely grouped round the population value (V' = 30-0) than the
estimates found by the other methods (i.e. they have the smallest
variance), and the average value of the LS estimates (viz. 30.4) is close
to the population value (i.e. they have little bias).

By comparison the Lineweaver—-Burk method is clearly terrible—
the scatter of estimates being very much greater (near infinite estimates
will be obtained when the plot in Fig. 12.8.3 goes nearly through the
origin giving 1/V == 0, and these distort the average estimate so much
that no realistic estimate of the bias is possible).

The plot of y against y/x falls in between these extremes. In spite of
breaking the rules for fitting straight lines by having error in the
quantity (y/z) plotted along the abscissa, the estimates are obviously
much less variable than those found by the Lineweaver-Burk method
(their standard deviation is only about 28 per cent greater than that of
the LS estimates in this case). The estimates from the y vs.y/z plot
are, however clearly consistently too low—they have a negative bias.
The average of all 760 estimates is 28-0, well below the population
value of 30-0, and about 73 per cent of estimates are too low (i.e. below
30-0). This bias is purely a property of the method of estimation. In these
simulated experiments the observations themselves were known to be
completely unbiased (a similar situation was seen in the case of the
standard deviation, see § 2.6 and Appendix 1). In real life there would
in addition be some unknown amount of bias in the observations themselves
(see §§ 1.2 and 7.2).

If, as is usually the case, experiments are repeated several times,
bias would be considered a more serious problem than large variance.
This is because the variance of an estimate can always be reduced by
doing a large enough number of experiments, whereas bias remains
however many experiments are averaged, and there is no way of
detecting the presence of bias from the results of repeated experiments.
These results are only valid for the particular conditions under which
they were obtained. In fact different results are obtained if the errors
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are not constant or the observations not normally distributed (Dowd
and Riggs 1965). For example, if the observations are normally dis-
tributed but heteroscedastic, i.e. they do not have the same standard
deviation at each z value, then it is found, in the case when the co-
efficient of variation (standard deviation/mean) is the same at each
z value, that linear transformations give betfer estimates of ¥ and K than
the least squares method (Colquhoun 1969). The only exception is the
linear Lineweaver—Burk plot which is always awful.

Why are the Lineweaver—Burk estimates so bad ?

The problem is mainly one of weighting. In fitting the straight line
to the plot of 1/y against 1/z, the dependent variable, 1/y, has been
treated as though it had constant variance (see §§12.1 and 12.2),
and if the straight line is fitted by eye rather than by the method of
§ 12.5, the result is usually much the same. In fact, in this example
y had constant variance (= 1-0 at every z value). The variance of 1/y
is therefore, from (2.7.14), approximately proportional to 1/u*—very
far from constant. Inspection of Fig. 12.8.3 shows that in the particular
experiment illustrated the poor estimates were mainly the result of
the error in the top point of graph (1/z = 0-4, = 2-5). This observa-
tion was somewhat too high (see Table 12.8.1), so 1/y is too low, and
this point has been given far too much weight in plotting the straight
line in Fig. 12.8.3. It has pulled the line down distorting the parameter
estimates. From (2.7.14), and the values of 4 in Table 12.8.1, it is seen
that the variance of 1/y at z = 2-6 is approximately vat(y)/ut = 1-0/
(4-2857)%, and the variance of 1]y at the highest substrate concentration
(x = 40) is approximately 1-0/(21-8182)*—far more precise. Each
point should really have a weight inversely proportional to its variance
(see § 2.5) so the point for x = 40 (1/z = 0-025) should have (21-8182)*/
(4-2857)* =~ 670 times the weight of the point for z = 2-5 (1/z = 0-4),
not the equal weight it was given in Fig. 12.8.3. The impression that the
point for # = 2:5 has been given far too much importance in the
Lineweaver-Burk plot is confirmed. The correctly weighted Lineweaver—
Burk plot is quite satisfactory, but in real life the weights (population
variances) would not be known so fitting it would be no less arithmetic-
ally inconvenient than finding the LS estimates.

12.9. Correlation and the problem of causality

So far in this chapter it has been assumed that the z variable (or
variables) can be fixed precisely by the experimenter. In many cases,
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especially in social and behavioral sciences, when often it is not
possible, or thought not to be possible, to do proper experiments (see
Chapter 1), two (or more) variables are measured, neither (or none)
of which can be fixed by the experimenter, or assigned by him to
particular individuals. Results of this sort are far more difficult to
interpret, and therefore far less satisfactory, than the results of proper
experiments as discussed in Chapter 1, but they are sometimes un-
avoidable.

Examples of the sort of questions usually treated by correlation
methods are (a) do people with good scores in school exams also have

{d)

® ® ®
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® o ©
74 =060 ® g =060 ry=+0:09
r =079 r =0-51 r =—0-02 r =-—001
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F16. 12.9.1. Behaviour of the Spearman rank correlation coefficient rg,

and the product moment correlation coefficient, r, on various sorts of data.

Clearly non-linearity can result in coeficients of almost any value even when there

is a perfectly smooth relationship between z and y. In these small samples it can

be seen from Table 12.9.2 that there is no evidence against the null hypothesis
that the population value of rg is zero in figures (d)-(h).

high scores in university exams? (b) are people who smoke a lot of
cigarettes more likely to die of lung cancer than those who smoke few ?
(c) do parts of the country that have a large number of doctors per
1000 of population have more or fewer working days lost because of
illness than less well supplied areas? and so on. In each of these cases
there are two sets of figures (e.g. school and university exam scores for a
number of people) which can be plotted on a graph or scatter diagram
like those in Fig. 12.9.1. The tendency of one variable to increase (or
decrease) as the other variable increases can be measured by a correlation
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coefficient. There are many different sorts of correlation coefficient, of
which two will be described briefly. For detailed descriptions of correla-
tion methods see, for example, Guilford (1954).

If a correlation is observed between two variables (4 and B say),
and if it is large enough for it to be unlikely that it arose by chanoe,
then it can be concluded that

either (1) A causes B,
or (2) B causes 4,
or (3) some other factor, direotly or indirectly, causes both 4 and B,
or (4) an unlikely event has happened and a large correlation has
arisen by chance from an uncorrelated population (see § 6.1).

Usually there is no reason, other than the observer’s prejudice, for
preferring one of these explanations to the others. As explained in
Chapter 1, the only way to choose between (1), (2), and (3) is to do a
proper experiment. For example, using the example already discussed
in §12.7, if it were found that areas with more doctors (x) had fewer
working days (y) lost through illness, the relationship might be pre-
sented in the form of a correlation coefficient, which would be negative,
between 2 and y, or by fitting a curve to the graph of y against z. If a
straight line, Y = a+bx, was an adequate representation of the
observations the slope, b, would be negative. However, as mentioned in
§ 12.2, the least squares estimate (b) of the slope found by minimizing
Z(y— Y)? will not be quite the same as the estimate found by using the
horizontal deviations from the line in Fig. 12.2.1 (i.e. treating z as the
dependent variable and minimizing X(z—X)?). Sinoe there is no in-
dependent variable in this case it is not obvious which line to fit. This
problem is avoided with correlation coefficients, into which = and y
enter in a symmetrical way. The interpretation of the relationship,
however it is presented, is clearly very difficult because chosen numbers
of doctors were not allocated at random to selected areas. This has
already been discussed at length in §12.7. As stated there, and in
Chapter 1, the only way out of the difficulty is to do a proper experi-
ment.

Correlation based on ranks. Spearman’s coefficient, rg

This coefficient, like other methods based on ranks, does not depend
on assumptions about normal distributions or the straightness of lines.
And, like other correlation coefficients, a value of 41 corresponds to
perfect correlation between x and y, a value of 0 corresponds to no
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correlation and a value of —1 corresponds to perfeot negative correla-
tion (y decreasing as z increases). However, what is meant by ‘perfect
ocorrelation’ is not the same for different coefficients (see Fig. 12.9.1).
In the case of the Spearman coefficient it means that the ranking of
individuals is the same for both criteria. As an example take the N = 6
pairs of observations shown in Table 12.5.1. These were analysed by
regression methods in § 12.5. They are reproduced in Table 12.9.1,
in which the ranks of the z and of the y values are given, and also
d; = difference between ranks for the sth pair of observations. In this
case one variable might be a measure of the rarity of doctors in the sth
area, and the other variable a measure of the number of working days
lost through illness in that area.

TaBre 12.9.1

pair rank rank
no. () x, ¥ of &, of y, ds d?
1 160 59 1 2 -1 1
2 166 54 2 1 +1 1
3 169 64 3 3 0 0
4 175 a7 4 4 0 1]
[ 180 85 [ 6 -1 1
8 188 78 6 5 +1 1
Total 1087 407 21 21 0 4

The Spearman rank correlation coefficient, rg, is estimated using the
same formula (eqn. (12.9.3)) as used for the Pearson coefficient (see
below), but using the ranks rather than z and y themselves. It can be
shown (e.g. Siegel 1956) that the same anwer is found more easily from

N
63}
=1——t= 12.9.1
s = 1§ (12.8.1)
where Xd? is the sum of the squares of the differences in rank for each
pair of observations (as shown in Table 12.5.1) and ¥ = number of
pairs. From Table 12.5.1, N = 6 and Zd? = 4 so

6x4
T 6(36—1)

This is a less than perfect positive correlation, as expected. If the ranks
for y had been exactly the same as those for z, all the differences,

re =1 = 0-886.
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d,, would have been zero, so it is obvious from (12.9.1) that rg would
have been 1. If the ranks for y had been in exactly the opposite order
to the ranks for y then rg would have been —1. And that is about all
that can be said. In no sense does a correlation coefficient (of any sort)
of 0-886 mean ‘88-6 per cent perfect correlation’, and clearly rg does
not measure the slope of the line when the observations (or the ranks)
are plotted against each other aa shown in Fig. 12.5.1, aa rg can only
vary between +1 and —1. Some examples of the Spearman and
Pearson (see below) correlation coefficients calculated from partiocular
sets of obeervations are shown in Fig. 12.9.1. to give an idea of their
properties. It is obvious from this figure that far more information is to
be gained from plotting the graph than from calculating a correlation
coefficient.

Ties. Small numbers of ties can be given average ranks as in Chapters
8-10. For a description of the corrections necessary when there are
many ties see, for example, Siegel (1956).

Is it unreasonable to suppose that the observed correlation arose by chance ?

As usual this, put more precisely, means ‘what is the probability that
a correlation coefficient differing from zero by as much, or more than
the observed value would be found by random sampling from an
uncorrelated population?’ (see § 6.1). The exact probability can be
found in just the same sort of way as was used in Chapters 8-10. If
the observations are from an uncorrelated population each of the N!
possible rankings of y (permutations of the numbers 1 to N) would
have an equal chance of being observed in combination with a given
ranking of z. The probability of any particular ranking would therefore
be 1/N ! 8o a correlation of 41 or —1 (when no more extreme values are
possible) will have P = 1/N! (one tail) or 2/N! (two tail, see Chapter
6). P can always be found by enumerating all N! possibilities and
seeing how many give rg equal to or larger than the observed value
(of. Chapters 8, 8-10). To save trouble, tables have been constructed
giving the critical values of rg corresponding to P (two tail) not more
than 0-1, 0-05, and 0-01. For samples up to N = 8 the values are shown
in Table 12.9.2.

In the present example N = 6 and rg = 0-886 80 P = 0:05 (from
Table 12.9.2). For larger samples than 8 it is close enough to caloulate

t=r J (llv_—,i) (12.9.2)
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and refer the value of ¢ found to tables (described in § 4.4) of Student’s
t distribution with N —2 degrees of freedom. Equivalently, when N > 8,
rg can be referred to tables (e.g. Fisher and Yates, 1963, Table VII) of

TABLE 12.9.2
Critical values of rg. If the observed rg (taken as positive) is equal to or
larger than the tabulated value then P(two tail) is not more than the specified
value. Reproduced from Mainland (1963), by permission of author and

publisher.
Number of P (two tail)
pairs, N 0-1 0-08 0-01

4 1-000

6 0-900 1-000

8 0-829 0-886 1-000
7 0-714 0-786 0-929
8 0-643 0-738 0-881

critical values of Pearson’s correlation coefficient. In this case ¢ = 0-886
V[(6—2)/(1—0-8863)] = 3-82 with 6—2 =4 degrees of freedom.
Reference to tables of ¢ (see § 4.4) gives P =< 0-02, not a very good
approximation to the exact value (0-05) when N is as small as 6.

Linear correlation. Pearson’s product moment correlation coefficient (r)

If z and y are both normally distributedt (see Chapter 4) the closeness
with which points cluster round a straight line is measured by Pearson’s
product moment correlation coefficient, . This measure has been met
already in § 10.7. The population value of r is estimated by

,_ Zy—h)e—2)
VIE(y—§) Z(z—2)%]
cov(y,x)
~ Vlvar(y).var(@)]
The second form follows from the definition of variance and covariance

((2.6.2) and (2.6.6)). It was shown in § 2.6 that the covariance measures
the extent to which y increases as x increases. Pearson’s r will be 1

(12.9.3)

%+ It is actually assumed that z and y follows a bivariate normal distribution (see, for
example, Mood and Graybill (1963), p. 198).



278  Correlation §12.9

(or —1) only if the points lie exactly on a straight line as shown in
Fig. 12.9.1. The relationship between x and y may be perfectly pre-
dictable and yet have a low correlation coeflicient if the relation is not
a straight line, as illustrated in Fig. 12.9.1 (c), (d), and (g). The informa-
tion to be gained from r is therefore limited.

Using the results in Table 12.5.1 and Table 12.9.1 as an example
once again, r can be estimated easily because the sums of squares and
products have already been calculated in §12.5. Inserting their
values in (12.9.3) gives

511-833

T = /(526-833 % 682:833) _ 0 °03

a fairly large positive correlation. Its interpretation has been discussed
above.

To find what the probability of observing a Pearson correlation
coefficient as large or larger than 0-862 would be, if the observations
were randomly selected from normal population with zero correlation,
the procedure is to caloulate ¢ using (12.9.2). The value of ¢ is referred
to the tables of Student’s ¢ distribution (described in § 4.4) with N —2
degrees of freedom where N is the number of pairs of observations.
In the present example N = 6 so

t 0853J[ 6—2 ] 3-27
o (1—0-8633)] — "7

Consulting the tables with 6 —2 = 4 degrees of freedom shows that
the required probability is between P = 0-08 (corresponding to
t = 2-776) and P = 0-02 (corresponding to ¢ = 3-747). This is low enough
to make one a little suspicious of the null hypothesis that the population
correlation is zero. (The inference was, for practical purposes, the
same when Spearman’s coefficient was calculated using ranks.) The
same result can be obtained, without calculation, from tables of critical
values of r (e.g. Fisher and Yates (1963, Table VII)).

A little bit of algebra shows that the test of the hypothesis that the
population correlation coefficient is zero is identical with test (in § 12.5)
that the population slope (regression coefficient) is zero. The value of
t just found is the same as that found at the end of § 12.5, and 2 = 3-272
= 10-7 is the value of F found in the analysis of variance of the observa-
tions shown in Table 12.5.2.
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‘Il est vrai que certaines paroles et certaines cérémonies suffisent pour faire
périr un trgpeau de moutons, pourvu qu'on y ajoute de l'arsenic.’}

VOLTAIRE 1771
(Questions sur I’Encyclopédie: ‘Enchantement’)

1 ‘Incantations will destroy a flock of sheep if administered with a certain
quantity of arsenic.’
(Translation: GroraE EL1OT, Middlemarch, Chap. 17)

13.1. Methods for estimating an unknown concentration or
potency

THE process of estimating an unknown concentration will be referred
to as an assay. All biological assays and most chemical assays depend
on comparison of the unknown substance with a standard so the
principles involved in both chemiocal and biological assays are the same.
The objects are to obtain (a) the ‘best’ (usually least squares, see
§§12.1, 12.2, 12.7, and 12.8) estimate of the unknown concentration,
(b) confidence limits for its true value, and (¢) to test as many as
possible of the assumptions involved in the assay. Unfortunately
almost all the methods used involve the assumption of a Gaussian
(normal) distribution (see § 6.2). As usual it is no exaggeration to say
that there is rarely any reason to believe that this assumption is correot
80 the results must be interpreted with caution asindicated in §§ 4.2, 4.6
and 7.2. A detailed account of biological assay will be found in Finney
(1964), whose notation has been used in most places to make this
standard reference book as accessible as possible.

This chapter is pretty solid and it may help to go through the
numerical examples in §§ 13.11-13.15 before looking at the theory in
§§ 13.2-13.10. The objeot of the theoretical part is to derive the
formulas used in parallel line assays using simple algebra only. This
means putting all the steps in, avoiding ‘evidently’ and ‘it is obvious
that’. One result is that the theoretical part is rather long and, by
mathematicians’ standards, inelegant. Another result, I hope, is that
the basis of the analysis of parallel line assays is made available to
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those who, like me, prefer to have the argument laid out in words of one
syllable.

The experimental designs according to which the various concentra-
tions of standard and unknown substance can be tested are discussed
at the end of this section.

All the methods to be discussed involve the assumption, which may
be tested, that the relationship between the measurement (y, e.g.
response) and the concentration (z) is a straight line. Some transforma-
tion of either the dependent variable, y, or the independent variable, «,
may be used to make the line straight. The effects of such transforma-
tions are discussed in § 12.2. In biological assay the transformed response
is called the response metameter (i.e. the measure of response used for
calculations) and the transformed concentration or dose is called the
dose metameter. Of course the response metameter may be the response
itself, when, as is often the case, no transformation is used.

Furthermore, all the methods to be discussed assume that the
standard and unknown behave as though they were identical, apart
from the concentration of the substance being assayed. Such assays are
called analytical dilution assays. When this condition is not fulfilled
the assay is called a comparative assay. Comparative assays ocour
when, for example, the concentration of one protein is estimated
using a different protein as the standard, or when the potency of a
new drug relative to a different standard drug is wanted. (Relative
potency means the ratio of the concentrations or doses required to
produce the same response.) One difficulty with comparative assays is
that the estimate of relative concentration or potency may not be a
constant, i.e.independent of the response level chosen for the comparison,
so when a log dose scale is used the lines will not be parallel (see below).

Calibration curves

Chemical aseays are often done by constructing a calibration curve,
plotting response metameter (e.g. optical density) against concentration
of standard. The concentration corresponding to the optical density
(or whatever) of the unknown solution is then read off from the calibra-
tion curve. This sort of assay is discussed in § 13.14.

Continuous (or graded) and discontinuous (or quanial) responses
In chemical assays the ‘response’ is nearly always a continuous

variable (see §§ 3.1 and 4.1), for example volume of sodium hydroxide
or optical density. In biological assays this is often the case too.
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For example the tension developed by a muscle, or the fall in blood
pressure, is measured in response to various concentrations of the
standard and unknown preparations. Assays based on continuous
responses are disoussed in this chapter. Sometimes, however, the
proportion of individuals, out of a group of n individuals, that produced
a fixed response is measured. For example 10 animals might be given a
dose of drug and the number dying within 2 hours counted. This
response is a discontinuous variable—it can only take the values
0,1, 2, ... 10. The method of dealing with such responses is con-
gidered in Chapter 14, together with closely related direct assay in
which the dose required to produce a fixed response is measured.

One of the assumptions involved in fitting a straight line by the
methods of Chapter 12, discussed in § 12.2, is the assumption that the
response metameter has the same scatter at each x value, i.e. is homo-
scedastic (see Fig. 12.2.3). This is usually assumed to be fulfilled for
assays based on continuous responses (it should be tested as described
in §11.2). In the case of discontinuous (quantal) responses there is
reason (see Chapter 14) to believe that the homoscedasticity assumption
will not be fulfilled, and this makes the calculations more complicated.

Parallel line and slope ratio assays

In the case of the calibration curve described in § 13.14 the abscissa is
measured in concentration (e.g. mg/ml or molarity). It is usual in
biological assays to express the abscissa in terms of ml of solution
(or mg of solid) administered. In this way the unknown and standard
can both be expressed in the same units. The aim is to find the ratio
of the concentrations of the unknown and standard, i.e. the potency
ratio R.

concentration of unknown
" concentration of standard

__amount of standard for given effeot (zg)
" amount of unknown for same effect (zU).

(13.1.1)

For example, if the unknown is twice as concentrated as the standard
only half as much, measured in ml or mg, will be needed to produce
the same effect, i.e. to contain the same amount of active material.
See also § 13.11.

Suppose it is found that the response metameter y, when plotted
against the amount or dose, in ml or mg, gives a straight line. Obviously
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the response should be the same (zero, or control level) when the
dose of either the standard or unknown preparation is zero. The
straight line for standard can be written Yg = a-bgzg, where bg is
the slope, zg the dose (amount) of standard, and a the response to
zero dose (zg = 0); similarly for the unknown Yy = a+byzy, the
response to zero dose being a, as for the standard. When Yg = Y
it follows that a4 bgzg = a+byzy so the potency ratio, from (13.1.1),
i8 R = zgfz = by/bg, the ratio of the slopes of the lines, as illustrated
in Fig. 13.1.1(a). An assay in which the abscissa is the dose or amount
of substance is therefore called a slope ratio assay (c.f. § 13.14). This
sort of assay is described in detail by Finney (1964).
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Fi1a. 13.1. (a) Slope ratio assay. Response metameter plotted against dose.
(b) Paralle] line assay. Response metameter plotted against log dose. See text for
discussion.

Consider now what happens if it is found empirically that, in order
to obtain straight lines, the response metameter must be plotted against
the logarithm of the dose, z = log z say. The ratio of doses required to
produce any arbitrary constant effect Y, in Fig. 13.1.1(b) is again the
potency ratio zg/zy from (13.1.1). Now from Fig. 13.1.1(b) the horizontal
distance between the two lines is 25—z, = logzg—logzy = log(zg/zy)
= log R. So the horizontal distance is the log of the potency
ratio, and because (for analytical dilution assays, see above) the potency
ratio (R) is a constant, the horizontal distance between the lines (log R)
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must also be a constant. This will be so whether or not the lines are
straight (the argument has not involved the assumption that they are),
but when they are straight it implies that they will be paraliel. Assays
in which the absacissa is on & logarithmic scale are therefore called
parallel line assays. The reason for using a logarithmic dose acale is to
produce a straight line. Parallelism is a consequence of using the log-
arithmic scale (see §12.2 also). Another consequence of using the
logarithmic dose scale is that the ratio between doses is usually kept
constant so that the interval between the log doses will be constant.
The spacing of the doses is, of course, a consequence of using & log-
arithmic scale, and not a reason for using it as is sometimes implied.
Furthermore, the range covered by the doses has nothing to do with
scale chosen. A wide range can be accommodated just as easily on an
arithmetio scale as on a logarithmic scale.

A similar situation arises in pharmacological studies when the log
dose-response curve is plotted in the presence and absence of a drug
antagonist. The parallelism of the lines can be tested as described in
the following sections. If they are parallel the potency ratio can be
estimated. In this context the potency ratio is the ratio of the doses of
drug required to produce the same response in the presence and absence
of antagonist, and is called the dose ratio.

The rest of this chapter, except for § 13.14, will deal with parallel
line assays with continuous responses. Sections 13.2-13.10 deal with
the theory and numerical examples are worked out in §§ 13.11-13.185.

Types of parallel line assays

In biological assays, when the response, y, is plotted against log
dose, z, the line is usually found to be sigmoid rather straight. But it is
often sufficiently nearly straight over a central portion for the assump-
tion to produce negligible error.

It is convenient to classify assays according to the number of dose
levels of each preparation used. If kg dose levels of the standard
preparation are used, and k; of unknown, the assay is described as a
(kg+ky) dose assay. The properties of various types are, briefly, as
shown in Table 13.1.1.

The tests of validity possible in a (2 2) dose assay will now be con-
sidered in slightly more detail before starting on the theory of parallel
line assays. It is intuitively plausible that the following tests can be
done (see § 13.7 for details).

(1) For slope (i.e. due to linear regression, see §12.3). The null
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hypothesis that the slope of the response-log dose curve is zero is
tested. Obviously the assay is invalid unless it can be rejected. Possible
reasons for an increase in dose not causing an increase in response are
(a) insensitive test object, (b) doses not sufficiently widely spaced, or
(o) responses all supramaximal.

(2) For difference between standard and unknown preparations, i.e.
is the average response to the standard different from that to the

TABLE 13.1.1

Number of doses of
8td (kg) Unknown
(kw)

1 1 The responses to the two doses must be exactly
matched. If not too much exactness is demanded
this may be possible to achieve once, but a single
match would allow no estimate of error. If the
doses were given several times it is most improb-
able that the means would match and so no
result could be obtained. This matching assay is
therefore unsatisfactory.

2 1 The response-log dose line for the standard can
be drawn with two pointe, if it is already known
to be straight, and the dose of standard needed to
produce the same response as the unknown can
be tnlerpolated. Error can be estimated. The
assumption that the slope of the line is not zero
can be tested but the assumptions of linearity and
parallelism cannot. (See § 13.15.)

2 2 The (24 2) dose assay is better because, in addition
to being able to test the slope of the dose response
lines, their parallelism can be tested (see Fig.
12.1.2). It is still necessary to assume that they are
straight.

3 3 With a (3+3) dose assay the assumptions of
non-zero slope, parallelism, and linearity can all
be tested.

test preparation? This is not usually of great interest in itself though
it helps precision if §g and §; are not too differont (see § 13.6). It will
be seen later that this test emerges as a side effect of doing tests (1) and
(3).

(3) Deviations from parallelism. The null hypothesis that the true
(population) slopes for standard and test preparation are equal is
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tested. If this hypothesis is rejected the assay must be considered in-
valid. In an analytical dilution assay the most probable cause of non-
parallelism is that one of the preparations is off the linear part of the
log dose-response curve. This is shown in Fig. 13.1.2.

Response metameter (y)
Response metameter (y)

log dose (z) log dose (r)

Fi1a. 138.1.2. Apparent deviations from parallelism can result when some
doses are not on the straight part of the dose response curve, as shown in (b),
even when the horizontal distance between the two curves is constant.

(© Observations.
— —~ Straight line fitted to observations.
—— True response-log dose curve.

Symmetrical parallel line assays

In the following section it will become obvious that the calculations
can be very greatly simplified when the assay is symmetrical. In the
context symmetry means that the assay has (a) the same number of
dose levels of each preparation—either (2+ 2) or (3 3) usually, (b) each
dose is administered the same number of times, (c) the ratiocs between
all doses are equal, and the same for both standard and unknown,
i.e. the infervals between doses are equal on the logarithmic scale.
These conditions are summarized precisely in eqns. (13.8.1).

Designs for the administration of standard and unknown

Any of the usual experimental designs, some of which were desoribed
in Chapter 11, may be used. The various concentrations of standard and
unknown are the treatments. See also § 13.8.
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For example in a (3+3) dose assay there are 6 different solutions,
each of which is to be tested several (say n) times. The 6n tests may be
done in a completely random fashion as described in § 11.4. If each dose
is tested on a separate animal this means allocating the 6n doses to
6n animals strictly at random (see §§ 2.3 and 11.4). Often all observa-
tions are made on the same individual (e.g. the same spectrophotometer
or the same animal)., In this case the order in which the 6n tests are
done must be strictly random (see § 2.3), and, in addition, the size of a
response must not be influenced by the size of previous responses (see
discussion of single subject assays below).

If, for example, all 6n responses could not be obtained on the same
animal, it might be possible to obtain 6 responses from each of =
animals, the animals being blocks as described in § 11.6. Examples of
assays based on randomized block designs (see §11.6) are given in
§§ 13.11 and 13.12. A second source of error could be eliminated by
using a 6 X6 Latin square design (this would force one to use n = 6
replicate observations on each of the 6 treatments). However it is
safer to avoid small Latin squares (see § 11.8).

If the natural blocks were not large enough to accommodate all the
treatments (for example, if the animals survived long enough to receive
only 2 of the 6 treatments), the balanced incomplete block design could
be used. References to examples are given in § 11.8 (p. 207).

The analysis of assays based on all of these designs is done using
Gaussian methods. Many untested assumptions are made in the analysis
and the results must therefore be treated with caution, as described in
§§ 4.2, 4.6, 7.2, 11.2, and 12.2. In particular, the estimate of the error
of the result is likely to be too small (see § 7.2).

Single subject assays

Assays in which all the doses are given, in random order, to a single
animal or preparation (e.g. in the example in § 13.11, a single rat
diaphragm) are particularly open to the danger that the size of a
response will be affected by the size of the preceding responses(s).
Contrary to what is sometimes said, the fact that responses are evoked
in random order does not eliminate the requirement that they be
independent of each other. Special designs have been worked out to
make the allowance for the effect of one response on the next, but it is
necessary to assume an arbitrary mathematical model for the inter-
action 8o it is much better to arrange the assay so as to prevent the
effect of one dose on the next (see, for example, Colquhoun and Tattersall
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(1969). If the doses have to be well separated in time to prevent inter-
action it may not be possible to give all the treatments to one subject,
80 an incomplete block design may have to be used (see § 11.8 and; for
example, Colquhoun (1963)). The problem is discussed by Finney
(1964, p. 291).

13.2. The theory of parallel line assays. The response and dose
metameters

Response metameter (y)

The object is to transform the response so that it becomes normally
distributed, homoscedastic, and produces a straight line when plotted
against log dose (see §§ 11.2, 12.2, p. 221, and 13.1). In many cases the
response itself is used. A linear transformation of the response, of the
form y = ¢,+czy where ¢, and ¢, are constants, may be used to simplify
the arithmetic. This will not affect the distribution, socedasticity, or
linearity. For example, in § 11.4 each observation was reduced by 100
to make the numbers smaller. For tests of normality, see § 4.6.

The dose metameter (z)

For parallel line assays this of course, by definition (see § 13.1),
the logarithm of the dose. The dose (measured in volume or weight) is
denoted z, a8 in § 13.1. Thus

z=log 2 (13.2.1)

Usually logarithms to base 10 (common logs) will be used because the
tables are the most convenient; but it will be shown that for parallel
line assays which are symmetrical, as defined in § 13.1 and eqn. (13.8.1),
it will make the calculations much simpler to use a different base for
the logarithms. This will not, of course, affect the linearity or parallelism
of the lines. At this stage this only looks like an additional complication,
but the simplification will become apparent later. Numerical examples
are worked out in §§ 13.11, 13.12, 13.13, and 13.15.

The symmetrical (2+2) dose assay
Suppose that the ratio between the high and low doses is .D, both for
the standard and for the unknown. Suppose further that each dose is

given n times 80 the total number of observations is N = 4n. Of these
ng = 2n = N are standards and ny; = §N are unknowns.

20
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If the low doses of standard and unknown preparations are z, 5 and
2,y then, by definition of D, the high doses will be

2ps = Dz.g, 8nd zgy = Dzyy. (13.2.2)

The most convenient base for the logarithms is 4/ D. This looks most
improbable at first sight, but the reason why it is so will now be shown.
Taking the logarithms to the base /D of the doses (remembering that
log .o D = 2 whatever the value of D, because the log is defined as the
power to which the base must be raised to give the argument) gives,
from (13.2.1) and (13.2.2),

T 9 =log ,p21 g (13.2.3)
zgs = log ,pzrs = log /p(Dz1s)

= log ,pD+log ,p21e

= 242 (13.2.4)

Similarly, for the unknown, z,; = log ,p2.y, Tagy = 2+ L0
The mean value of the log dose for the standard preparation, if the
high and low doses are given an equal number of times (n), will be,
using (13.2.4)
. MhgtnTgs  Tus+Zms

Zg = = =14z
8 2n 2 s (13.2.5)
and iv = 1+sz.
Combining these results with (13.2.4) gives
(xas—%s) = +1,
(TLg—%s) = —1,
and similarly (13.2.6)
(@ay—Ey) = +1,
(TLy—=Zy) = —1.

Using logs to the base 4/D has made (x—z) takes the value 41 for
the high doses (of both standard and unknown), and —1 for the low
doses. This means that (z—z)2 = 1 for every dose; and since there are
4N doses of standard and }N doses of unknown, it follows from (2.1.7)

that
T(ag—Fg)? = (xy—Ey)? = N, (13.2.7)

where the summations are over all $N doses of standard (or unknown).
Thus the total sum of squares for z, pooling standard and unknown, is

3 S(e—£)? = I(2g —Eg)3+E(xy—Ey)d = N, (13.2.8)
8,0
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where the symbol 3 means ‘add the value of the following for the
8,U

standard to its value for the unknown’ (a8 shown in the central expres-
gion of (13.2.8)). The sums of squares are greatly simplified by using
logs to the base 1/D.

The symmetrical (3-+ 3) dose assay
The most convenient base for the logarithms in this case is D rather
than 4/D. The low, middle, and high doses will be indicated by the
subscripts S1, S2, and S3 for standard, and U1, U2, and U3 for un-
known. The ratio between each dose and the one below it is D, as
before. Thus
2g9 = Dzg,,

ZSa == DZSQ - DRZBI (13.2.9)

Taking logarithms to the base D (remembering lognhD =1 and
logp D? = 2, whatever the value of D) gives

rg; = logpzsy,
Zgq = logpzgs = logp(Dzs,) = logpy D+1ogpzs; = 14125y,  1(13.2.10)
Zgs = logpzgy = logp D?+logpzg, = 2+-24;.

The mean standard dose, if each dose level is given the same number
of times (n), will be, using (13.2.10),

P neg, +n2gy+nTgy 142
8 3n ot (13.2.11)
and fu == l+xul.

Combining this with (13.2.10) gives, for the standard

(xg1—%) = —1
(tgg—%Eg) = O (13.2.12)
(2g3—%g) = +1

and similarly (zy—Zy) = —1, 0, +1 for low, middle, and high doses of

unknown.

Because the assay is symmetrical (see §§ 13.1 and 13.8.1) each dose
is given the same number of times, n. The total number of observations
is N = 6n and the number of standards is ng = 3n = {N, and of
unknowns ny = 3n = }N. Now (z—%)? = +1 for all high and low
doses, and 0 for all middle doses so

Ty —Zg)? = Z(xg—Ey)? = 3N (13.2.13)
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the summations being over all }¥ doses (n low, n middle, and »n high)
of standard or unknown. The total sum of squares for z, pooling stand-
ard and unknown, is

I3 — £)2 = E(zg — £)? + S(ay — £u)2 = §N  (13.2.14)
8,U

where 3 means sum over preparations as in (13.2.8).
8,u

13.3. The theory of parallel line assays. The potency ratio
This discussion applies to any parallel line assay, symmetrical
(see §§ 13.1 and 13.8) or not. Numerical examples are given in §§ 13.11,
13.12, 13.13, and 13.15.
According to (13.1.1) the ratio of the concentration of unknown to
concentration of standard is
concentration of unknown
"~ concentration of standard

amount of standard for given effect z'g

(13.3.1)

r

= amount of unknown for same effect "

where the prime indicates doses estimated to produceidentical responses.
Asin § 13.1 the dose z will be measured in the same units (e.g. volume of
solution, or weight of solid) for both standard and unknown (what
happens when the units are different is explained in the numerical
example in § 13.11).

The conventional symbol for the log of the potency ratio is M so,
from (13.3.1),

M =log R = log zg—log zg = g —xy. (13.3.2)

As in § 13.1, M = zg—=zy the difference between the logs of equi-
effective doses, is the horizontal distance between the parallel lines as
shown in Fig. 13.3.1. The least squares estimate of this quantity will
now be derived.

When straight lines are fitted to the standard and unknown responses
the lines are constrained to be parallel, i.e. an average of the observed
slopes for S and U is used for both (see § 13.4). If this common slope
is called b, the linear regression equations (see §§ 12.1 and 12.7, and
eqn. (12.3.1)) are written

Yg = §a+b(zg—7s),
YU == gu+b(xu—fu). (13.3.3)
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When the response is the same for standard and unknown Yg = Yy, 80
these can be equated giving
Fa+b(zs—Zs) = Ju+b(zg—7v),

where zg and z; are the log doses giving equal responses as above.
Rearranging this to give M = zg—zy, from (13.3.2), gives the result

\Slope=b

! Wn‘yn)

(in_iu)/b

Unknown

Response metameter (y)
()

Zy Z, log dose (z)

Fi1a. 13.3.1. QGeometrical meaning of the equation (derived in the text)
for the log potency ratio (M = log R) in any parallel line assay.

(Pu—Fs)
b

The geometrical meaning of the right-hand side is illustrated in Fig.
13.3.1. To find the potency ratio, R, the antilog of M can be found
from tables if common logarithms (to base 10) have been used. However
in symmetrical assays it has been shown that it is better to use logar-
ithms to a different base, say base r in general (it was shown in § 13.2
that r = 4/D is best for 22 dose assays and r = D for 343 dose
assays). Since antilog tables are available only for base 10 logarithms
it will be necessary to convert to base 10 before looking up antilogs.
The general formulat for changing the base of logarithms from a to b is

M =log R = zg—2zy = (Tg—Zy)+ (13.3.4)

log, z = log, z.log, b (13.3.5)
from whioch it follows that

+ Proof. From the definition of logs, antilog, 2 = b* and 80 6'°* = z. Also, in general,
n log z = log z*. Thus log, z.log, b = log, (b!**) = log, =.
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Therefore, multiplying (13.3.4) by the conversion factor, log,, r, gives

logyo B = [(is—iu)+(y°;ys)]. log, 7. (13.3.7)

This is a perfectly general formula whatever sort of logarithms are used.
If common logs were used, r = 10 so the conversion factor is log,,10
= 1.

For symmetrical assays (as defined in (13.8.1) and at the end of
§ 13.1) this expression can be simplified, as shown in § 13.10.

13.4. The theory of parallel line assays. The best average slope

For estimation of the potency ratio it is essential that the response-
log dose lines be parallel (see §§ 13.1, 13.3). Inevitably the line fitted
to the observations on the standard will not have exactly the same slope
a8 the line fitted to the unknown; but, if the deviation from parallelism
is not greater than might reasonably be expected on the basis of
experimental error, the observed slope for the standard (bg) is averaged
with that for the unknown (by) to give a pooled estimate of the pre-
sumed common value.

By ‘best’ is meant, as usual, least squares (see §§12.1, 12.2, 12.7,
and 12.8). A weighted average of the slopes for standard and unknown is
found using (2.5.1). Calling the average slope b, this gives

wh
b= s%: _ wsbs+wubu’ (13.4.1)
szuw wg+wy o

where the weights are the reciprocals of the variances of the slopes
(see § 2.5). The estimated variances of the individual slopes, by (12.4.2),
are

Syl 1
Vo] = g ZaP W

] ) (13.4.2)
var{by] =

S@y—Fg)® Wy

where s%[y] is, as usual, the estimated error variance of the observations
(the error mean square from the analysis of variance).



§13.4 Assays and calibration curves 293

Now in general the variance of the weighted mean § = Zwy /Zw,
will be given by (2.7.12) as
1

var{§] = -;‘ (13.4.3)

Taking wg = 1/var{bg] and wy = 1/var{by] from (13.4.2), and insert-
ing the estimate of the slope from (12.2.7) gives
L(xg—1g)? . Lys(xs —7s) - Zys(xs—Tg)

#{y] Z(zg —7g)? #{y]

and similarly for unknown. Inserting these results in (13.4.1) gives the
weighted average slope

wsbs = (13.4.4)

Sye(ts — e+ Syultg—Fe) 22D

O = T E(re—ZstT(wg—Fo 3> T2y

(13.4.5)

where the symbol z means, as before, ‘add the value of the following

quantity for the sta.nda.rd to its value for the unknown’. In other
words, the average slope is simply (pooled sum of products for S and U)/
(pooled sum of squares of x).

For symmetrical assays it was shown in § 13.2 that X(z—Z)? is the
same for standard and unknown so, from (13.4.2), the weights are
equal and the two slopes (bg and by) are simply averaged.

From (13.4.2) and (13.4.3) it follows that the variance of the average
slope is, in general, estimated as

M= — 8%y] 8y
Vo] = S = St el Sy —Fg) > Sy (13.4.6)

(compare this with (12.4.2)). It is, of course being assumed that the
variance of the observations, #%y], is the same for standard and un-
known as well as for each dose level —see §§ 11.2, 12.2, and 13.1.

13.5. Confidence limits for the ratio of two normally distributed
variables: derivation of Fieller's theorem
The solution to the problem posed in § 7.5 will now be given. The
result, in its general form, looks rather complicated ; but the numerical
examples in §§ 13.11-13.14 show how easy it is to use.
Although the sum or difference (or any linear combination, see p. 39)
of two normally distributed (Gaussian) variables is itself normally
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distributed, their ratto is not. Therefore, as discussed in § 7.5, the
methods discussed so far cannot provide confidence limits for the
ratio. A solution of the problem will now be described.

The simplest application of the result is to find the confidence limits
for the ratio (= m, say) of two means (see § 14.1), the problem dis-
cussed in § 7.5. It is shown below that if g (eqn (13.5.8)) is very small
compared with one, so (1—g) = 1, the result of using Fieller’s theorem
is the same as the approximate result, m4-t4/[var(m)], where var(m)
is given, approximately, by (2.7.16).

The theorem is needed to find confidence limits for the value of
the independent variable (z) necessary to produce a given value of the
dependent variable (y) as discussed in § 12.4. A numerical example of
this ‘calibration curve problem’ is given in § 13.14. The confidence
limits for a potency ratio are also found using Fieller's theorem.

Before considering a ratio, the argument of § 7.4 leading to ocon-
fidence limits for a single Gaussian variable, y, will be repeated in a
rather more helpful form. If y is normally distributed with population
mean u and estimated variance s? then y—u is normal with population
mean = y—u = 0 and variance 82, 80, as in § 4.4, ¢t = (y—u)/s%. As in
§ 7.4 the 100 « per cent confidence limits for the value of u are based
on Student’s ¢ distribution (§ 4.4) which implies

Pl-ts<(y—p) < H8]=a (13.5.1)
or, in other words (see § 11.3, p. 182),
Plly—u)? <t28%)] = a. (13.5.2)

The deviation (y—u) will border on significance when it is equal to
—ts or 48, i.e. when

(y—w? =2

This is a quadratic equation in u and solving it for u using the usual
formulat gives as the two solutions u = y—ts and u = y-+ts, the
confidence limits for x4 found in § 7.4. This seems a long way round to
goet the same answer as before, but the approach will now be used to
find the confidence limits for a ratio.

Consider, in general, any ratio 4 = «/f. The estimate (m) of the
population value (u) from the observations will be written m = a/b
where g is the estimate of «, and b is the estimate of 8. The case of
interest, or, at any rate, the case to be dealt with, is when a and b are

t In general, if az®+ bx+¢ = 0 then x = [—b 1 4/(b°—4ac)]/2a.
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normally distributed variables (with population means « and ). The
variances of @ and b must be specified and this will be done using a
new notation. This notation is based on the fact that not only the
variances but also the covariances (in analysis of variance problems
that are linear in the general sense discussed in § 12.7) can be expressed
as multiples of the error variance of the observations, sy] (as usual
this is the error mean square from the analysis of variance). For ex-
ample, the variance of a mean §, is, by (2.7.8), 1/n times the error
variance. Similarly the varianoce of a slope, b, is, by (12.4.2), 1/Z(z—%)?
times the error variance. If these multiplying factors are symbolized v
then one can define

var{a] = v;,8%,
var{b] = v,082, (13.5.3)
oovla, b] = v,48%,

where 82 is written for s%[y]. The subscripts distinguishing the varsance
multipliers, v, are arbitrary (cf. §2.1), but the notation used emerges
naturally from a more advanced treatment, and is that used in Finney
(1964), who discusses Fieller’s theorem and two of its extensions. For
example, if ¢ was a mean, §, then v;; = 1/n as above.

Since @ and b are normally distributed and u is a constant, the
variable (@ —pub) is & linear function of normal variables, and is therefore
normally distributed. The population mean of (¢ —ub) will be a —uf = 0
and its estimated variance will be, using (13.5.3), (2.7.2), (2.7.5), and
(2.7.6),

var{(a—ub)] = var{a]+ var{ub]—2 cov(a,ub]
= var{a]4-u? var{b]—2u cov{a,b]
= 83(vy; +uPvgg —2uvy,). (13.5.4)

Now, by direct analogy with (13.5.2), it follows from the definition of
Student’s ¢ that

Pl(a—pb)® < £28%(vy; +pvag —2u015)] = a. (13.5.5)

And, again by analogy, the 100 « per cent confidence limits for u are
found by solving for u the equation

(@—pub)? = t3s3(v,; + uPveg—2uvy3). (13.5.6)
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This is again a quadratic equation in x4 and when solved for 4 by the
usual formula (see above) the two solutions are the required confidence
limits for 4. They are

1 gv p3
(l—g)[ ——gibJ{v11 —2mv,5+m ”22_9('”11 v:z)}] (13.5.7)

where
t28%vg
9=
Simplifications of Fieller’s theorem in special cases
If a and b are independent, i.e. v;3 = 0, the result simplifies con-
siderably, giving the confidence limits for 4 as

(13.5.8)

m
(1—g)Tb(1—g)
The quantity g defined in (13.5.8) can be considered an index of the
significance of the difference of b (the denominator of the ratio) from
zero. This is clearly important because if the denominator could be
zero, the ratio could be infinite. The effect of the (1 —g) in front of the
4 sign is to raise both upper and lower limits, i.e. unless g is very small
the limits are not symmetrical about m. Since var(b) = vy;8% by
(13.5.3) it follows that if b2 < t2s%v,,, i.e. if g > 1, then b would be
judged ‘not significantly different’ from zero at the level of significance
fixed by the value of ¢t chosen, and useful limits could not be found. In
other words 1/g is the square of the ratio of b to ¢t times the standard
deviation of b.
If g is very small, as it will be in good experiments, then the general
formula, (13.5.7), simplifies giving the (symmetrical) confidence limits
for u as

[(l —a)vu+m’v”]- (13.5.9)

ts
miz\/(vn —2mw, -+ m3v,,). (13.5.10)

This is the result that would be obtained by treating m as roughly
normally distributed and ecalculating m4-t4/[var(m)], as in §7.4,
using the approximate formula, (2.7.18), together with (13.5.3) to give
var(a) var(d) 2 cov(a,b))
a? ¥ ~  ab

var(m) =~ m’(

82
= ﬁ(v“ —~2mv,3+m3,,). (13.5.11)
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If a and b are uncorrelated (v,; = 0), as well g < 1, then the confidence
limits for 4 can again be found as m + t4/[var(m)], the approximate
expression for var(m), (13.6.11), simplifying even further to

var(a) var(b)
va.r(m)zm’( = + T )
&2
== ﬁ(vll +m2022)- (13.5.12)

This is the variance given by the approximate formula, (2.7.16)
(because C%(m) = var(m)/m?, etc., from the definition (2.6.4)).

Examples of the use of the results in this section will occur in §§ 13.6
and 13.10-13.14,

13.6. The theory of parallel line assays. Confidence limits for the
potency ratio and the optimum design of assays

This discussion applies to any parallel line assay. The simplifications
possible in the case of symmetrical assays (see § 13.1) are given later in
§ 13.10, and numerical examples in § 13.11 onwards.

The logarithm of the potency ratio (R) is M = log Rasin §13.3. It
will be convenient to rearrange the formula for the potency ratio,
(13.3.4), to give

_ (yU _gs).

M—(Eg—~2y) =~ (13.6.1)

The term (3 —Z,) has zero variance because z is supposed to be meas-
ured with negligible error (see §§ 12.1, 12.2, and 12.4), and so can be
treated as a constant. The approach is therefore to find confidence
limits for the population value of (§y;—#s)/b and then add the constant
(£g—=y) to the results. Now if the observations are normally distributed
then so are (§;—7g) and (as explained in § 12.4) the average slope, b.
The right-hand side of (13.6.1) is therefore the ratio of two normally
distributed variables, and confidence limits for it can be found using
Fieller’s theorem (§ 13.5).

The variance multipliers defined in (13.5.3) are required first.
From (2.7.3) and (2.7.8) it follows that var{§y—7s] = 83[yl/ny+83[yl/ns
and therefore

(ret2)
i = n_u+ns (13.6.2)
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where ny and ng are the numbers of responses to the unknown and
standard preparations. The variance of the average slope, b, in the
denominator, is, from (13.4.6), var{b] = s*y]/ ¥ 3 (z—Z)* s0

8.U

1
Il ey (13.6.3)
8.0

the notation being explained in § 13.4. Because it can be shown (see
§ 13.10) that (§y—§s) and b are uncorrelated, i.e. have zero covariance,
it follows that v, = 0 (see also §12.7). Thus the simplified form of
Fieller’s theorem, eqn. (13.5.9), can be used to find confidence limits for
the ratio (§y—#s)/b. Using (13.6.2) and (13.6.3) these are

@U—gs)/b:t ad (1—g) l+l +@U—gs)2/
(1—g) —b(1—yg) ne ng] 3 Sa—zp| (13.6.4)

8.0
where from (13.5.8) and (13.6.3),

23
1= ESSea (13.6.5)
8,0

From (13.6.1) it follows that (13.6.4) gives the confidence limits for
M —(%3—Zy), so the confidence limits for the log potency ratio, M, are
(£s—%y)+{[13.6.4).

To find the confidence limits for the potency ratio itself the anti-
logarithms of these limits are required. Now, as discussed in § 13.3, the
calculations are often carried out not with logarithms to base 10 of the
dose, but with some other convenient base, say r. In this case M
= log, R, and, as explained in § 13.3, it is necessary to multiply by
log, o7, to convert to logarithms to base 10, before looking up the anti-
logarithms. The confidence limits for true value of log,, R are thus

- - (ﬂu—ﬂs)/b 8 1 1 (.'7!1“?5)2/”2
(Zg—Zv)+ (1—g) + 5i—g) J {(1 —y)(n—u%-;:)-i-f—z‘(z__g)—a}] logyor.
8

U

(13.6.6)

A numerical example of the use of this general equation occurs in
§13.13.
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Ssmplification of the calculation for good assays

If the slope of the log dose-response line, b, is large compared with
the experimental error then g will be small (see § 13.5), so (1—g) ~ 1.
Inserting this into (13.6.6), together with the definition of M = log,R
from (13.3.4), gives the oonfidence limits for log,,R a8 approximately

at 1 1\ (Gu—Fs)?/b?
[Miz.,\/{(a-i-;—s)—{—#:;)—z}]logm’- (13.6.7)
8,U

This is equivalent to treating the log potency ratio, M, as approximately
normally distributed and calculating the limits as M + ¢4/[var(M)], as

in § 7.4, with
&(1 1 (fu—Fs)?/
var(M) ~ ﬁ(;—u-i-n—s-i-‘ﬁgs__;:)' (13.6.8)
8,U

which can alternatively be inferred directly from (13.5.12

The optimum design of assays

The aim is to make the confidence limits for the potency ratio as
narrow a8 possible, i.e. the result of the assay as precise as possible.
Ways of doing this can be inferred from (13.6.6).

(1) g should be small. In other words (see discussion at the end of
§ 13.5) the slope of the response-log dose lines should be as
large as possible relative to its standard deviation. If g is large
(approaching 1) the limits for the log potency ratio will beoome
wide because of the term involving g after the 4 sign in (13.6.6),
and also unsymmetrical about M because of the g in the term
before the -+ sign both upper and lower limits are raised when g is
large.

(2) s, the error standard deviation should be small. That is the
responses should be as reproducible as possible; and the error
variance reduced, if possible, by giving the doses in designs such
a8 randomized blocks, as described in § 13.1 and illustrated in
§§ 13.11 and 13.12.

(3) b should be large, to minimize the term after the 4 sign in
(13.6.6). A steep slope will also minimize g.
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(4) (1/ny+1/ng) should be small. That is, as many responses as
possible should be obtained. For a fixed total number of responses
(1/ny+1/ng) is at & minimum when ny = ng 80 & symmetrical
design (see § 13.1) is preferable.

(6) (§y—1%s) should be small because it occurs after the + sign in
§ 13.6. That is, the size of the responses to standard and unknown
should be as similar as possible. The assay will be more precise
if & good guess at its result is made beforehand.

(6) ZZ(x—%)? should be large. That is, the doses should be as far
apart as possible, making (x—z) large; but the responses must,
of course, remain of the straight part of the response-log dose
curve.

13.7. The theory of parallel line assays. Testing for non-validity

This discussion is perfectly general for any parallel line assay with at
least 2 dose levels for both standard and unknown, i.e. (242) and
larger assays. The simplifications possible in the case of symmetrical
assays are described in §§ 13.8 and 13.9 and numerical examples, are
worked out in §§13.11-13.13. The (k+1), e.g. (2+1), dose assay is
discussed in § 13.15.

In the discussion in § 13.1 it was pointed out that it will be required
to test whether the slope of the response-log dose lines differs from
zero (‘linear regression’ as in § 12.5), and whether there is reason to
believe that the lines are not parallel. If more than 2 dose levels are used
for either standard or unknown it will also be possible to test the
hypothesis that the lines are really straight. The method of doing these
tests will now be outlined.

Each dose level gives rise to a group of comparable observations
and these can be analysed using an analysis of variance appropriate
to the design of the assay, the dose levels being the ‘treatments’
of Chapter 11, as discussed in §§ 12.6 and 13.1. For example, for a
(2+2) dose assay there 4(= k, say) ‘treatments’ (high and low standard,
and high and low unknown), and a (3+ 4) dose assay has k = 7 ‘treat-
ments’. The number of degrees of freedom for the ‘between treatments
sum of squares’ will be one less than the number of ‘treatments’ (or
‘doses’), i.e. at least 3 as this section deals only with (24 2) dose or
larger assays (cf. § 11.4). Now the ‘between treatments’ (or ‘between
doses’) sum of squares can be subdivided into components just as in
§ 12.6. This partition can be done in many different ways (see § 13.8
and, for example, Mather (1951), and Brownlee (18656, p. 517)), but
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only one of these ways is of interest. Each component must be un-
correlated with all others and this will be demonstrated, in the case of
symmetrical assays, in § 13.8. Three components, each with one degree
of freedom, can always be separated ; (a) linear regression, (b) deviations
from parallelism, and (c) difference between standard and unknown
responses, as described in § 13.1. If there are more than 3 degrees of
freedom (i.e. more than 4 ‘treatments’) the remainder can be lumped
together as ‘deviations from linearity’ (cf. § 12.6), as in Table 13.1,
or further subdivided as in §§ 13.10 and 13.12. The analysis thus has
the appearence of Table 13.1 if there are k dose levels (‘treatments’) and
N responses altogether.

TABLE 13.7.1

. Degrees of
Source of variation freedom Sum of squares
Linear regression 1 A
Deviations from parallelism 1 B
Between standard and unknown 1 C
Deviations from linearity k—4 D-—-(A+B+0C)
Between ‘treatments’ or dose levels k—1 D
Error (within ‘treatments’) N—k
Total N-—-1

The bottom part of the analysis would look like Table 11.6.1 or Table
11.8.2 if a randomized block or Latin square design (respectively) were
used.

(1) Linear regression. To test whether the population value of the
slope differs from zero, the appropriate sum of squares (SSD) is, from
(13.4.5) by analogy with (12.3.4),

SSD for linear regression =

[Zys(zg —Zg)+Zyylzy —fu)]z.
Z(xg—Ig)2+Z(zy _13_U)2

(2) Deviations from parallelism. To test whether the lines are parallel
it seems reasonable to calculate the difference between (a) the total
sum of squares for linear regression for lines fitted separately to
standard and unknown (from 12.3.4), and (b) the sum of squares for
linear regression when the slopes are averaged (i.e. (13.7.1)), because
this difference will be zero if the lines are parallel. Thus

(13.7.1)
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88D for deviations from parallelism =

Bys(zs—%e)P  [Eyulry—2u)P

X(zg—%g)? E(zg—2Iy)?

—8SD for linear regression. (13.7.2)

(3) Between standard and unknown. This is found directly from
(11.4.5) as

Cys)® (Zyy)® G2
+ .
ng ny N

(4) Deviations from linearity. This is found as the difference between
the sum of squares between ‘treatments’ (from (11.4.5)), as in Table
11.4.3, and the total of the above 3 components. It must be zero for
8 (242) dose assay (k = 4) when the sum of (13.7.1), (13.7.2), and
(13.7.3) can be shown to add up to the sum of squares between treat-
ments.

A numerical example of the use of these relations is worked out in
§13.13.

SSD between S and U =

(13.7.3)

13.8. The theory of symmetrical parallel line assays. Use of
orthogonal contrasts to test for non-validity
Numerical examples are given in §§ 13.11 and 13.12. Symmetrical
(in this context) means, summarizing the definition in § 13.1,

n = number of responses at each of the k dose levels
(see § 13.7), same for all
N = kn = total number of responses,
kg = ky = }k = number of dose levels for standard and
to unknown (same for both), (13.8.1)

D = ratio between each dose and the one below it. The same for all
doses, and for standard and unknown (see also §§ 13.1 and 13.2
and Fig. 13.8.1), so the doses are equally spaced (by log D) on
the logarithmic scale.

The symmetrical (2+2) dose assay. Contrasts

There are k = 4 dose levels, low standard (LS), high standard (HS),
low unknown (LU) and high unknown (HU). The ¥—1 = 3 degrees of
freedom between dose levels can be separated into 3 components as
described in §§ 13.1 and 13.7 (Table 13.7.1). A simpler approach than
that in § 13.7 is possible.
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Asusual a hypothesisis formulated. Then the probability that observa-
tions would be made, deviating from the hypothesis by as much as, or
more than, the experimental results do, if the hypothesis were in fact
true, is caloulated (cf. § 6.1).

(1) Linear regression. From Fig. 13.8.1 it is clear that if the null
hypothesis (that the true value, 8, of the average slope, see § 13.4, is
zero) were true then, in the long run, the responses to the high doses

Yur

Response metameter (y)

o

8
g

log dose (r)

Fi1a. 13.8.1. The symmetrical 2+ 2 dose parallel line assay.

(O Mean of n observed responses (e.g. Jgy is the mean of the
n responses to xgy).
—— — Straight lines between observed points, with slope by
for unknown and bg for standard.
—— Best fitting parallel lines with slope & (= average of
bs and bu, see § 13.4).

would be the same as those to low doses, i.e. §gy+Fus = Fruv+FLs-
It follows that if the regression contrast, L,, is defined as

L, = —Zy1s+Zyns—ZyrLv+I¥ru (13.8.2)

(a linear combination of the responses), it will be a measure of departure
from the null hypothesis. If the null hypothesis were true she population
mean value of L, would be zero (as long as each dose level is given the
same number of times so the total responses can be used in place of the
mean responses). In a small experiment L, would not be exactly zero

21
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even if the null hypothesis were true, and it is shown § 13.9 how to
judge whether L, is large enough for rejection of the null hypothesis.

(2) Deviations from parallelism. From Fig. 13.8.1 it is clear that if
the null hypothesis (that the population lines are parallel, g = By, see
§ 13.4) were true then, in the long run, §gy —#FLu = Jgs—FLs- Therefore
deviations from parallelism are measured, as above, by a deviations
from parallelism contrast, L; defined as

L= ZYrs—ZYas—ZYrv+Z YU (13.8.3)
Again the population value of L; will be zero if the null hypothesis is
true.

(3) Between standard and unknown preparations. If the null hypo-
thesis that the population mean response to standard is the same as
that for unknown were true then, in the long run, §,5+ s = JrLv+Fru-
Departure from the null hypothesis is therefore measured by the
between S and U (or between preparations) contrast, L, defined as

L, = —Zy.s—Zyns+Zyrv+Z¥au, (13.8.4)

which will have a population mean of zero if the null hypothesis is
true.

These contrasts are used for calculation of the analysis of variance
and potency ratio, as described below and in §§ 13.9 and 13.10.

The subdivision of a sum of squares (cf. §13.7) using contrasts
is quite a general process described, for example, by Mather (1951) and
Brownlee (1965, p. 517). The set of contrasts used must satisfy two
conditions.

(1) The sum of the coefficients of the contrast must be zero. In
Table 13.8.1 the coefficients (which will be denoted «) of the response
totals for the contrasts defined in (13.8.2), (13.8.3), and (13.8.4) are
summarized. In each case Ya = 0 as required. This means that the
population mean value of the contrast will be zero when the null
hypothesis is true.?}

(2) Each contrast must be independent of every other. A set of
mutually independent contrasts is described as a set of orthogonal
contrasts. It is easily shown (e.g. Brownlee (1965, p. 518)) that two
contrasts will be uncorrelated (and therefore, because a normal distri-
bution is assumed, independent, see § 2.4) when the sum of products
of corresponding coefficients for the two contrasts is zero. All results

t In the language of Appendix 1, E[L] = E[ZaT,] where T, ia the total of the n
responses of the jth treatment (dose). If all the observations were from a single popula-
tion, all E{T',] = nu where E[y] = u. Thus E[L] = nuXa = 0 if Za = 0.
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necessary for the proof have been given in § 2.7. It is shown in the
lower part of Table 13.8.1 that this condition is fulfilled for all three
posgible pairs of contrasts.

TABLE 13.8.1
The upper part summarizes the coefficients () of the response totals for
the validity tests for the symmetrical (2+2) dose assay. The lower part
demonstrates the orthogonality (i.e. independence) of the contrasts

ZyLs Zyns Zyru Zynu Za ol

Linear regression L; —1 +1 -1 +1 0 4
Parallelism L] +1 -1 —1 +1 0 4
Preparations (S and U)

L, —1 -1 +1 +1 0 4

Total

GleuL; -1 —1 +1 +1 0
GleaLp +1 -1 -1 +1 0
apy Xap -1 +1 -1 +1 0

These conditions mean that if two contrasts are defined, to measure
linear regression and deviations from parallelism, say, there is no
choice about the third, which happens to measure the difference
between §5 and #y.

The symmetrical (34 3) dose assay

There are k = 6 levels, say S1, S2, 83, Ul, U2, and U3, where S1 is
the lowest, S2 the middle, and S3 the highest standard dose. There are
k—1 = 5 degrees of freedom between dose levels so after separating
components for linear regression, deviations from parallelism and
between S and U, there are two degrees of freedom left for deviations
from linearity (see Table 13.7.1). The first three contrasts are
constructed from response totals by the same sort of reasoning as for
the (24 2) assay and the coefficients («) are given in Table 13.8.2.
Deviations from linearity can be further divided into two components
each with one degree of freedom. If the average curve for S and U is
straight then (for a symmetrical assay) the responses to the middle
doses will be equal to the mean of the responses to the high and low
doses, i.e., in the long run (7g;+Jss+FuitFus)/4 = (FsatFual/2.
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Therefore & deviation from linearity contrast, L,, measuring departure
from the hypothesis of straightness, can be defined as

L; = Zyg; —2Zyea+Zyas+Zyu; —2ZYug+Zyus (13.8.5)

and this will be zero in the long run if the average line is straight. The
fiftth contrast is dictated by the conditions mentioned above. It is
called L3, and inspection of the ooefficients in Table 13.8.2 shows that

TABLE 13.8.2

Coefficients (x) of the response totals for the orthogonal contrasts in a
symmetrical (31 3) dose assay

Response totals Za Za?

Contrast Zyg, Zysa Zyss Zyun Zyuva Zyus

I -1 0 1 -1 0 1 0 4
I 1 0 -1 ~1 0 1 o 4
L, -1 -1 -1 1 1 1 0 6
Ly 1 —2 1 1 —2 10 12
Ly -1 2 -1 1 —2 1 0 12

It can easily be checked that, as in Table 18.8.1, the sum of the products of the
coefficients of corresponding totals is zero for all possible pairs of contrasts, so
all pairs of contrasts are orthogonal.

it is & measure of the extent to which deviations from linearity are the
same for the standard and unknown. It is therefore called the difference
of curvature contrast (cf. L; which measures the extent to which
the linear regressions differ between S and U, i.e. deviations from
parallelism).

13.9. The theory of symmetrical parallel line assays. Use of
contrasts in the analysis of variance

The notation used is defined in § 2.1 and (13.8.1). In conformity with
the usual approach in the analysis of variance, it is required to calculate
from each contrast a quantity (the mean square) that will be an estimate
of the error variance, o%[y], if the appropriate null hypothesis is true.
These estimates will then be compared with the error variance (which
estimates o2 whether or not the null hypotheses are true), in the usual
way (see § 11.4). Numerical examples are given in §§ 13.11 and 13.12.

The first step is to estimate the variance of a contrast. If T', is used
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to stand for the total of the n responses to the jth dose level, then the
contrasts defined in § 13.8 all have the form

k
L = 2 a,T,. (13.9.1)
=1
The variance of this, from (2.7.10), is Saivar(T,) and from (2.7.4) it
follows that var(7';) = ns*[y] where s%[y] is the estimated variance of
the observations and n is the number of observations in each total.
Thus

var{ L] = nsZo3, (13.9.2)

The values of Za? are worked out in Tables 13.8.1 and 13.8.2.

It might be supposed that it is not possible to estimate the variance
of L directly from the observed scatter of values of L, because there is
only a single experimentally observed value for each contrast. However
it is what happens when the null hypothesis is true that is of interest,
and it was shown in § 13.8 that when it is true the population mean
value of each L will be zero. Now it was pointed out in § 2.6 (eqn.
(2.6.3)) that if there are N observations of y, and if the population
mean value () of y is known, then the estimate of the variance of y is
Z(y—u)3/N (the divisor is only N—1 when the sample mean is used in
place of u). For a gingle value of L it follows that, on the null hypothesis,

var{L] = (L—0)3/1 = I3, (13.9.3)

Equating (13.9.2) and (13.9.3) shows that when the null hypothesis
(that the population value of L is zero) is true, an estimate of the error
variance is provided by

L2
= s (13.9.4)
and this expression also gives the sum of squares required for the
analysis of variance, because each sum of squares has one degree of
freedom—see §§ 13.7, 13.8, 13.11, and 13.12—s0 the sum of squares is
the same as the mean square.

It is not difficult to show (try it) that, when the appropriate base is
used for the logarithms giving (13.2.6), (13.2.7), (13.2.12), and (13.2.13),
the sums of squares for testing validity given by the general formulas
(13.7.1), (13.7.2), and (13.7.3) are the same as those given by (13.9.4),
using the definitions of the contrasts in § 13.8. The demonstrations
follow the lines used in the next section.
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13.10. The theory of symmetrical parallel line assays. Simplified
caiculation of the potency ratio and its confidence limits
The general results in §§ 13.3, 13.4, and 13.6 can be simplified when
the appropriate dose metameter is used (see § 13.2). The notation, and
the definition of symmetrical, are given in (13.8.1). Numerical examples
are given in §§ 13.11 and 13.12. Try to suspend your belief that this is
a very complicated sort of simplification until you have compared the
calculations for symmetrical assays (in §§ 13.11 and 13.12) with those
for an unsymmetrical assay (§ 13.13).

The symmetrical (24-2) dose assay

The best dose metameter in this case was shown in § 13.2 to be
z = log,z where z = dose and r = 4/D. The consequences of using this
base for the logarithms, derived in § 13.2, can be used to simplify the
ratio (§y—%s)/b which occurs in the potency ratio and its confidence
limits. Taking the numerator first, (§jy—#s) is, a8 expected, simply
related to the between-preparations contrast, L,. Thus, from (13.8.1)
and (13.8.4),

(Fo—Ta) = ziJ_z__ys _ ZyLut+Zyav—ZYLs—Z¥ns

LP
=T (13.10.1)
The average slope, b (see § 13.4) is related to the regression contrast,
L,, as expected. From (13.4.5), (13.2.6), (13.2.8), and (13.8.2) it follows
that

b— Zyg(xg —Ig)+Zyylry—Iy)
S(xg—Ig)*+Z(xy—Ty)?

(%L —Zg)ZYLs + (Tus —T)XYms+ (Tru —Ty)ZYLy+ (Tay —ZTu) XYy

- 33 @22
8.U

—ZyYrs+ZyYrs —ZYru+ZYav _ 5_1
N - N

(13.10.2)

Combining (13.10.1) and (13.10.2) gives
(Fu—Fa)fb = 2L,/ Ly. (13.10.3)
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Furthermore, from (13.2.5),

Tg—Ty = Tug—TLy = log,z 5 —log, 21y = log, (2 a/27.y)
(13.10.4)

and from (13.3.6)
(£g—Zy) log,or = logiq(2e/2Lu)- (13.10.5)

The potency ratio
Substituting (13.10.3) and (13.10.5) into the general formula for the
log potency ratio, (13.3.7), gives

z, 2L
log,oR = 10810( B) +Tp1°81o’-
1

Ly

Putting r = /D (remembering that log /D = log D! = } log D),
taking antilogarithms gives

28 . L
R = (—)antxlo [—plo D:l- 13.10.6
20 810 A g10 ( )
The confidence limits

It was mentioned in § 13.8 that (§,—#g) is not correlated with b and
80 v;4 = 0. This follows (using (13.10.1) and (13.10.2)) from the fact
that L, and L, were shown in § 13.8 to be uncorrelated.

From (13.6.2) and (13.8.1),

vy, = (/nyg+1/ng) = (1/4N+1/§N) = 4/N. (13.10.7)
And from (13.6.3) and (13.2.8),
gy = 1/ 3 J(x—&)2 = 1/N. (13.10.8)
8.U
Substituting (13.10.2), (13.10.3), (13.10.5), (13.10.7), (13.10.8) and r =
v/D (again log 4/D = } log D) into the general formula for the
confidence limits for log,,R (13.6.6), and taking antilogarithms, gives

the confidence limits for the population value of R, the potency ratio
in a symmetrical (24 2) dose assay, as

() anstosa (7727 g Y0 -0+ ¥(2) ) o]
(13.10.9)
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where, from (13.6.5), (13.10.2), and (13.10.8),
N&?
g= 7

(13.10.10)

If g is very small 80 (1—g) ~ 1, then (13.10.9) can be further sim-
plified. As explained in §13.8, this pquivalent to treating log,oR
a8 approximately normally distributed, and calculating confidence
limits for its population value as log R + ¢ s[log;oR] a8 in § 7.4,
where the approximate standard deviation of log,,R, from (13.10.9)
(or from (13.6.8)), is

log,0D
s{log, o R] =~ _Lm__
1

/182 N{1+(L,/L,)3}]. (13.10.11)
A numerical example of the use of (13.10.9) and (13.10.11) is given in
§13.11.

The symmetrical (3-13) dose assay

The simplifications follow exactly the same lines as those just
described. (From (13.8.1) and the definitions of the contrasts in Table
13.8.2,

Y
(Fo—9s) = Zyo_Zys — Zyu1 +ZYva+2us—ZYs1 —ZYas—ZYss
TR T ny ng N
LP

=W (13.10.12)

and, from the general definition of the slope b, (13.4.5), using (13.2.12),
(13.2.14), and the definition of L, in Table 13.8.2,

1
b= _ﬁx_—-i)’[(xsl —Zg)ZYg; + (Taa—Tg)ZYgat+ (Tas—Tg)ZYsa+
8.U

+ (@1 — )2y + (Tua—Fu) Zyva+ (Tys —Fu) Zyus]

—2Yg1+ZYa3—ZYu1 +2¥3 L,
= 3N = iN- (13.10.13)

Combining (13.10.12) and (13.10.13) gives
(Hu—9s)/b = 4Ly[3L,. (13.10.14)
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Furthermore, from (13.2.11)

(Zg—%y) = (Ta1—2y;) = log,ze; —log,zy; = log,(2g:/2u1)
(13.10.15)

80, from (13.3.6),

(Zg—%y)-logior = 108;0(2a1/2u1)- (13.10.16)

Substituting these results, together with r = D (see § 13.2), into the
general formulas, as above, gives the potency ratio, from (13.3.7), as

2g1 . 4L,
R= (Zl -mtlloglo 3L 1081°D (13.10.17)

Confidence limits for the population of R from (13.6.6), (with v,

C::) antilog, [(3Lj(f—g) 30 g)J ‘N (a ”H'—(L)}) 1°3‘°D]

(13.10.18)

where

2Ns%3

y = 3L§ °

Again if, g is small, 80 1—g ~ 1, further simplification is possible.
As explained above and in § 13.6 the confidence limits for the popula-
tion value of log;o R can be found, as in § 7.4, from log;,R + tsflog,,R]

where the approximate standard deviation of log,oR, from (13.10.18)
or (13.6.8), can be written in the form

sflog,oR] = ﬂog”D : [s’N{l +§(%:)a}:| (13.10.20)

A numerical example of the use of (13.10.18) and (13.10.20) is given in
§18.12.

(13.10.19)

13.11. A numerical example of a symmetrical (2 +2) dose
parallel line assay
The results of a symmetrical assay of (- )-tubocurarine based on a
randomized block design (see § 11.8) are shown in Table 13.11.1. The
mean responses are plotted in Fig. 13.5. The response, y, was the
percentage inhibition, caused by each dose, of the contraction (induced
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by stimulation of the phrenic nerve) of the isolated rat diaphragm.
The four doses (or ‘treatments’) were allotted arbitrarily to the numbers
0, 1, 2, 3 as described in § 2.3:

Dose 0 = LU = 0-28 ml of unknown solution,
1 = HU = 0-32 ml of unknown solution,
2 = HS = 16-0 ug of pure (4-)-tubocurarine,
3=LS = 14-0 ug of pure (+)-tubocurarine.

Each dose was given four times, 8o sixteen doses were given altogether.
The doses were given in sequence to the same tissue (see § 13.1, p. 286),
the blocks, in this case, corresponding to periods of time. The analysis

TaBLE 13.11.1

Responses to (+ )-tubocurarine. The doses were given tn random order in
each block (time period) as specified in the text, not in the order shown in

the table
Treatment
LS HS LU HU Totals
1 43 62 41 61 207
2 48 62 48 68 226
Block 3 63 a6 563 70 242
4 52 70 56 72 260
Totals 196 260 198 271 926

will therefore help to eliminate error due to changes of sensitivity of
the tissue with time (which occurred in this experiment). However it
seems most unlikely that the responses in one block (period of time)
will differ from the responses in another by a constant amount, as
specified in the model (eqn. (11.2.2)) on which the analysis is based
(see §§11.2 and 11.6), so the analysis should be regarded as only an
approximation. The four doses were given in strictly random order
(see §2.3) in each time period, the random number tables producing
the sequence: first block: 1, 0, 2, 3; second block 3, 1, 2, 0; third block,
0, 3, 1, 2; fourth block, 1, 0, 3, 2.

The assumptions involved in the analysis (normal distribution of
errors, equal scatter in all groups, size of response not affected by pre-
vious responses, additivity etc.) have been discussed in §§ 11.2 and
13.1, p. 279. The analysis is the same as that for randomized block
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experiments (§ 11.6), with the addition that the between treatment
sum of squares can be split into components as described in §13.7.
Because this assay is symmetrical (see (13.8.1)) the arithmetic can be
simplified using the results in §§13.8, 13.9 and 13.10. Remember that

70r
HU '

£ HS
=
= 6ot
> logy, 5061

=9
Z

-4

¢

& 50F LU LS
”

) I i / [ 1 J
40 —06 ~U-5 [ +1-1 +1-2

log,, dose
Fi1a. 13.11.1. Results of symmetrical 242 dose assay from Table 13.11.1.

(© Observed mean responses.

—— Least squares lines constrained to be parallel (i.e. with
mean slope, see §§ 13.4, 13.10 and calculations at end of
this section).

Notice break on abscissa. The question of the units for the potency ratio,
50-81, is discussed later in this section.

the assumptions discussed in §§ 4.2, 7.2, 11.2, and 12.2 have not been
tested, so the results are more uncertain than they appear.

The analysis of variance of the response (y)

The figures in Table 13.11.1 are actually identical with those in Table
11.6.2 which were used to illustrate the randomized block analysis.
The lower part of the analysis of variance (Table 13.11.2) is therefore
identical with Table 11.6.3. The calculations were described on p. 199,
(A similar example is worked out in § 13.12.) All that remains to be
done is to partition the between-treatment sum of squares, 1188-6875,
using the simplifications made possible by the symmetry of the assay.

(a) Linear regression. The linear regression contrast defined in
(13.8.2) (or by the coefficients in Table 13.8.1) is found, using the
response totals from Table 13.11.1, to be

L, = —196+4260—198+4-271 = 137.
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The sum of squared deviations (SSD) for linear regression is found
using eqn. (13.9.4):

In this expression n is the number of responses in each total used
in the calculation of L (see (13.8.1)), and Za? is the sum of the squares
of the coefficients of the response totals in L (given in Table 13.8.1;
in the particular case of the (24 2) dose assay it is 4 for all 3 contrasts).

(b) Deviations from parallelism. The deviations from parallelism
contrast defined in (13.8.3) is
L; = 196—260—198+271 = 9-0
The sum of squares is found, as above, from (13.9.4)
L3 92

(c) Between standard and unknown preparations. The contrast,
defined (in 13.8.4), is

L, = —196—260+198+271 = 13-,
and the sum of squares, using (13.9.4) as above, is

4x4

SSD = = 10-5625.

(d) Check on arithmetical accuracy. The sum of the three components
is 1173-06264-5:0625+410-5625 — 1188-6876, the same as the between
treatments sum of squares which was calculated independently.

These results are assembled in the analysis of variance, Table 13.11.2.

Interpretation of the analysis of variance

Dividing each mean square by the error mean square, in the usual
way, gives the variance ratios F. As usual all the mean squares would
be an estimate of the same variance o2 if all 16 observations were ran-
domly selected from a single population with variance ¢2. This is
the basic all-embracing form of the null hypothesis because if it were
true there would obviously be no differences between treatments,
blocks, preparations, etc. In fact, when the variance ratio for linear
regression, F = 319-3 with f; = 1 and f; = 9 degrees of freedom, is
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looked up in tables of the distribution of the variance ratio, as described
in § 11.3, it is found that a value of F(1,9) as large as, or larger than,
319-3 would be very rarely (P<€0-001) observed if both 1173-0625 and
3:674 were estimates of the same varianoce (¢2), i.e. if there were in
fact no tendency for the high doses to give larger responses than low
doses (see §§ 13.8 and 13.9). It is therefore preferred to reject the null
hypothesis in favour of the alternative hypothesis that response does

TaBLE 13.11.2
Analysis of variance of responses for symmetrical (2+-2) dose assay of
(+) tubocurarine. The lower part of the analysis 18 sdentical with Table
11.6.3 which was calculated using the same figures

Source of variation  d.f. 88D MS F P
Linear regression 1 1173-06256 1173-08256 319-3 <£0-001
Deviations from

parallelism 1 5-0825 50625 1-38 >0-2

Between preps.

(8 and U) 1 10-56626 10-566256 287 0-1—0-2
Between treatments 3 1188-6875 896-229 107-86 <0-001
Between blocks 3 270-6876 90-229 24-66 <0001
Error 9 83-0626 3-874
Total 16 1492-4875

change with dose (i.e. that 8, the population value of b, is not zero, of.
§ 12.5). The logical reason for this preference waa discussed in § 6.1.

Proceeding similarly for the other variance ratios shows that devia-
tions from parallelism such as those observed would be quite common
if the true (population) lines were parallel. The same (or larger devia-
tions from parallelism would be expected in more than 20 per cent of
repeated experiments if the population lines had the same slope
(Bs = Bu)- There is therefore no evidence against the hypothesis of
parallelism.

Similarly there is little evidence that the average responses are
different for standard and unknown. Of course it is most unlikely that
they are exactly equipotent, but differences as large as, or larger than
those observed would not be very uncommon if they were (see p. 93).

There appears to be a real difference between blocks. Differences as
large as, or larger than, those observed would be expected in less than
1 in 1000 experiments if the population block means were equal; of.
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§ 11.6. Inspection of the results reveals a tendency for the responses to
get larger with time, and the analysis suggests that this cannot be
attributed to experimental error. The arrangement in blocks has
therefore helped to decrease the experimental error.

All these inferences depend on the assumption of §§ 4.2, 7.2, 11.2,
and 12.2 being sufficiently nearly true. If they were, the conclusion
would be that there is no evidence that the assay is invalid so it is
not unreasonable to carry on and calculate the potency ratio and its
confidence limits.

The potency ratio and the question of units
The simplified result for the symmetrical (2+2) dose parallel line
assay, eqn. (13.10.6), gives the least squares estimate of the potency as

— (*2) . antilog,,| 22 ]
R = (21. ) .antllogw[ L:long

U
14.0 _ 13-0 50.64
= (0_28 . antilog,, 1370 @ og;0(1-14286) | — (@D «g/ml.

D is the ratio between high and low doses (see (13.8.1)), i.e.
D = 0-32/0-28 = 16-0{14-0 = 1-14286, and the contrasts, L, and L,
have been already calculated. In §13.3 and later sections it was
assumed that all doses were expressed in the same units. This means
that z;4/2.,y, and hence R, is a dimensionless ratio. In this case the
dose of standard was given in ug, and that of unknown in ml, so
z 8/2Ly = 14°0 ug[0-28 ml = 50-0 ug/ml. If these units are used z.g/
2Ly, and hence R, will have the units ug/ml, suggesting that, if these
units are used, R is actually the potency (concentration in ug/ml) of the
unknown, rather than a potency ratio. It can easily be seen that this
is so by converting standard and unknown to the same units. For
example the doses of standard could be assumed to be 16:0 ml and
14-0 ml of a 1-0 ug/ml standard solution of (4 )-tubocurarine (the fact
that they are more likely in reality, to have been 0-16 ml and 0-14 ml]
of a 100 ug/ml solution does not alter the dose given). This would give
z8/zLy = 140 m1/0-28 m] = 50 (a dimensionless ratio). The potency
ratio would therefore be 50-61, as above, also a dimensionless ratio.
The concentration of the unknown is, from the definition of the
potency ratio (13.3.1), R X concentration of standard = 50-61 x 1-0 ug/
ml = 50-61 ug/ml, as found above.
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Confidence limits for the potency ratso

The simplified form of Fieller’s theorem appropriate to this assay
is eqn. (13.10.9), which gives confidence limits for the population
value of the potency ratio as

(32) - enstoi] (15 gy (-0 9(32) ) o2

where g = Ns%3/L3, acoording to (13.10.10).

If the doses are expressed in their original units the equation will
give confidence limits for the concentration of unknown, rather than
for the potency ratio, for exactly the reasons explained above in
oonnection with the potency ratio caloulation. In this example:

2 s/2Ly = 14:0/0-28 = 50-0 ug/ml as above;

L,/L; = 13-0/137-0 = 0-00489;

log;oD = log (0-32/0-28) — (EEREE 0.05799

&[y] = 3-674, the error variance (from Table 13.11.2) with 9 degrees

of freedom;

t = 2:262 for P = 0-05 (a8 95 per cent confidence limits are wanted)
with 9 d.f. (from tables of Student’s ¢, see §§ 4.4 and 7.4); thus

g = 16X 3-674 x 2:2622/137:0% = 0-0160, from equation (13.10.10),
and (1—g) = 1—0-016 = 0-984.

The fact that g is considerably less than one implies that the slope, b,
is much larger than its standard deviation (as inferred from the large
variance ratio for linear regression in Table 13.11.2). This means that
it is safe to use an approximate equation, based on (2.7.18), for the
variance of the log potency ratio (as discussed in §§ 13.5, 13.6, and
13.10, and illustrated below). However, it is very little trouble to use
the full equation. Substituting the above quantities into the equation
for limits gives

0-09489 1-917x2-262
0-984 + 137-0¢ 0-984

50.antilog,, (16 X 0-984)+ 16(0-09489)>
[ J! ).

X 0-05529]

— 50 antilog, [—0-001757 and -+ 0-01242]
= @80 g /m] and (I .g/m!.
49.79 51.52

t If necessary, see p. 325 for a footnote describing how to find the antilog of a
negative number.
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Approzimate confidence limits

Because g is much leas than 1 the approximate formula for the limits,
eqn. (13.10.11), can be used (see §§ 13.5, 13.6, and 13.10). Substituting

the quantities already calculated into (13.10.11) gives the estimated
standard deviation of log,,R a8

0-05529
137-0

s[log,oR] ~ V/[3-674 X 16(140-094893)] = 0-003108.

The approximate confidence limits are therefore, as in § 7.4,

logyoR + ts[log,oR] = log,;o50-614(2-262 X 0-003108) = 1-6972
and 1-7113,

Taking antilogs gives the approximate 95 per cent Gaussian confidence
limits for the true value of R as 49-80 and 51-44 ug/ml, not much
different from the values found from the full equation, which are
themselves, of course, only approximate as explained in § 7.2.

Summary of the result

There is no evidence that the assay is invalid, and the estimated
potency of the unknown tubocurarine solution is 50-61 ug/ml, with
95 per cent (Gaussian confidence limits 49-9 ug/ml to 51-45 ug/ml. These
oonclusions are based on the assumptions discussed in §§ 4.2, 7.2, 11.2,
and 12.2. The confidence limits are, as usual, likely to be too narrow
(see § 7.2). Notice that the confidence limits for R are not equally
spaced on each side of R, unlike the limits encountered in Chapter 7.
In fact even the limits for log R are not equally spaced on each side of
log R unless g is small (see §§ 13.5, 13.6, and 13.10).

How to plot results. Conversion to convenient units

When the results of the assay is plotted, as in Fig. 13.11.1, it will
be preferable to plot the least squares lines. The calculated average
slope, b, has been found using logs to base /D (see §13.2) so these
must be used in plotting the graph (they can be found from logs to
base 10 using (13.3.5)). Alternatively, if the graph is plotted with log,,
(dose) along the abacissa, as in Fig. 13.11.1, the calculated slope must
be converted to the correct units. In this example b = L[N = 137-0/
16 = 8:5623 (from eqn. (13.10.2)).

To convert from logs to base /D to logs to base 10, it is necessary,
using (13.3.5), to multiply the former by log;, /D as in § 13.3. Because



§ 13.11 Assays and calsbration curves 319

dose occurs in the denominator of the slope, b must be dividedt by
logiov/ D, i.e. by § log;oD = § log;0(0-32/0-28) = 0-0290. The required
slope is therefore &' — 8-5625/0-0290 = 295-3. The dose response
curves have the eqns. (13.3.3),

Yg = §g+b'(xg—%g),
Yy = gu+b' (zy—2y),

where z is now being used to stand for log,,(dose), the abscissa of
Fig. 13.11.1. The response means are, from Table 13.11.1, §5 = (196
+260)/8 = 57-0 and §, = (198+271)/8 == 58-626. The dose means
have not been needed explicitly because of the simplifications resulting
from the choice of dose metameter. For the standard, log;q16-0
= 1-2041 and log;o14:0 = 1.1461 80 Zg = (4X 1:2041+4x 1-1461)/8
= 1-1751 (each dose occurs four times remember). Similarly log;ozgy
= log,40-32 = —0-4949 and log,,z y = log;(0-28 = —0-5528, so Zy
= (4X —0-4040+4 X —0-5528)/8 = —0-5238.

Substituting these results gives the lines plotted in Fig. 13.11.1 as
Yo = 57-0+205-3(xg—1:1751), Yy, = 58-625+ 205-3(z,+0-5238).

13.12. A numerical example of a symmetrical (3 +3) dose
parallel line assay

The results in Table 13.12.1, which are plotted in Fig. 13.12.1, are
measures of the tension developed by the isolated guinea pig ileum in
response to pure histamine (standard), and to a solution of a histamine
preparation containing various impurities as well a8 an unknown
amount of histamine. Five replicates of each of the six doses were
given, all to the same tissue, so there is & danger that one response
may affect the size of the next, contrary to the necessary assumption
that this does not happen (see disoussion in § 13.1, p. 286). The doses
were arranged into five random blocks. The purpose of this arrange-
ment is the same as in § 13.11, and, as in that example, the order in
which the six doses were arranged in each block was decided strictly
at random using random number tables (see § 2.3).

This is & symmetrical assay a8 defined in (13.8.1), there being n = 5
responses at each of the k = 6 dose levels; kg = ky = 3 dose levels
for standard and for unknown; ng = ny = 15 responses for standard

t+ More rigorously, the slope using log;, (dose) is
dy dy 1 dy b
dlog,z  d(log , pz.logioy/ D)  logiey/Ddlog ,pz — logiey' D

22
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TaBLE 13.12.1

Responses of the isolated tleum. The doses were given in random order
(see text) in each block (time period), not in the order shown in the table

Standard histamine dose Unknown dose
81 82 83 Ul U2 U3
Block 4 ng/ml 8 ng/ml 16 ngl/ml 8 ng/ml 16 ng/ml 32ng/ml  Total
1 20-56 27-0 38-0 18-5 30-0 350 169-0
2 18-56 31-6 44-0 150 240 34-5 167-5
3 20-0 26-0 365 18-0 26-0 38-0 158-56
4 180 28-5 416 18-5 26-0 35-0 167-56
b 20-0 25-0 386 12-0 25-0 32-0 152-56
Total 97-0 133-0 197-6 72-0 131-0 174-5 805-0
40 -
30+
&
g
£
201
10 1 1 1 i
0-602 0-903 1-204 1-505 log,, dose
2 3 4 5 log, dose
4 8 16 32 dose (ng/ml)
(logarithmic

scale)
Fi1c. 18.12.1. Results of symmetrical 3+ 3 dose assay from Table 13.12.1.

(© Observed mean responses to standard.

/A Observed mean responses to unknown.

— Least squares lines constrained to be parallel (see §§ 13.4,
13.10 and end of this section).

The analysis indicates that these straight lines may well not fit the observations
adequately. The abscissa shows three equivalent ways of plotting the log dose.
Note that the ordinate does not start at zero.
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and for unknown. The ratio between each dose and the one below it is
D = 2 throughout. The first stage is to perform an analysis of varianoe
on the responses to test the assay for non-validity. As for all assays,
this is & Gaussian analysis of variance, and the assumptions that
must be made have been discussed in §§ 4.2, 7.2, 11.2, and 12.2, which
should be read. Uncertainty about the assumptions means, as usual,
that the results are more uncertain than they appear.

Analysis of varsance of the response (y)
The first thing to be done is, as in § 13.11, a conventional Gaussian
analysis of variance for randomized blocks. Proceeding as in § 11.6,
@ 805

(1) correction factor ¥ =30 = 21600-8333;

(2) sum of squares between doses (treatments), with k—1 =15
degrees of freedom, from (11.4.5),
97-07 133-07 174-53
5 ' b ‘
(3) sum of squares between blocks, with n —1 = 4 degrees of freedom,
from (11.6.1),
169-0? 15253

=76 Tt

(4) total sum of squares, from (2.6.5) or (11.4.3),
= T(y—F)? = 20-52+18-53+ ...+ 3507+ 32:07—21600-8333 =
2328-6667;
(8) error (or residual) sum of squares, by difference,
= 2328-6667—(2179-0667-132-8333) = 116-7667
with 20 —5 = 6(5—1) = 24 degrees of freedom.

—21600-8333 = 2179-0667;

—21600-8333 = 32-8333;

These results can now be entered in the analysis of variance table,
Table 13.12.2, The next stage is to account for the differences observed
between the responses to the six doses, i.e. to partition the between
doses sum of squares into components representing different sources
of variability, as described in § 13.7. The simplified method described
in § 13.8 can be used because the assay is symmetrical. The coefficients,
a, for construction of the contrasts are given in Table 13.8.2,

(a) Linear regression. From the coefficients in Table 13.8.2, and the
response totals in Table 13.12.1, the linear regression contrast is

L, = —9704+197-6—72:04+ 17456 = 2030,
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The corresponding sum of squares for linear regression is found, using
(13.9.4), to be

In this expression n = 5 is the number of responses at each dose level
(i.e. in each total), and Za?, the sum of squares of the ooefficients, is
given in Table 13.8.2.

(b) Deviations from parallelism. The deviations from parallelism
contrast, from Table 13.8.2, is

L{ = 97-0—197-5—72-0+174-5 = 2:0.
The corresponding sum of squares is

ssp =21 _ 2% _ a0
T nXa? B5x4 )

(c) Between standard and unknown preparations. The contrast, from
Table 13.8.2, is

L, = —97-0—133-0—197-5+72:0+131-04174-5 = —50-0,

The sum of squares, from (13.9.4) (using Ta? = 6 from Table 13.8.2), is

SSD L, _ 500 asas
T nla? B5x6

(d) Deviations from linearity. The contrast, from Table 13.8.2, is
L, = 97-0—(2x 133:0)+197-54+72-0— (2 X 131-0)+ 174-5 = 13-0

and the corresponding sum of squares, as before, is

(e) Difference of curvature. The contrast, from Table 13.8.2, is
L} = —97-0+(2x 133-0)—197-5472-0—(2 X 131-0)+ 174-5 = —44-0,

and the corresponding sum of squares
(L3P (—44-0)3

= = 32-27.
nXa? 65x12

SSD =
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(f) Check on arithmetical accuracy. The total of the five sums of squares
just calculated is

2060-45+4-0-204-83-33+2-82432-27 = 2179-07

agreeing, as it should, with the sum of squares between doses which
was calculated independently above.

All these results are now assembled in an analysis of variance table,
Table 13.12.2, which is completed as usual (cf. §§11.6 and 13.7).
Divide each sum of squares by its number of degrees of freedom to find

TaBLE 13.12.2
The P value marked t is found from reciprocal F = 5-838/0-2,

see lext
Source d.f. 88D M8 F P
Lin regression 1 2060-45 2060-45 3529 <£0-001
Deviation from
parallelism 1 0-20 0-20 0-034 0-8—0-9%
Between S and U 1 83-38 83-33 14:27 ~(-001
Deviations from
linearity 1 2-82 2-82 0-48 >0-2
Difference of
curvature 1 82.27 32:27 5-53 <0-06
Between doses 153 2179-07 435-813 74-65 <0001
Between blocks 4 32-83 8-208 1-41 >0-2
Error 20 118-77 5-838
Total 20

the mean squares. Then divide each mean square by the error mean
square to find the variance ratios. The value of P is found from tables
of the distribution of the variance ratio as described in §11.3. As
usual P is the probability of seeing a variance ratio equal to or
greater than the observed value if the null hypothesis (that all 30
observations were randomly selected from a single population) were
true.

Interpretation of the analysis of variance

The interpretation of analyses of variance has been discussed in
§§ 6.1, 11.3, and 11.6 and in the preceding example, § 13.11. As usual
it is conditional on the assumptions being sufficiently nearly true, and
must be regarded as optimistic (see §§ 7.2, 11.2, and 12.2). There is no
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evidence for differences between blocks, so little or nothing was gained,
and some degrees of freedom were lost, by using the block arrangement
in this particular case (cf. § 13.11). The average slope of the dose
response curves, shown in Fig. 13.12.1, is clearly not likely to be zero
because if it were, a value of F > 352-9 would be exceedingly rare.
The question of parallelism is interesting, especially as the standard
and unknown were not identical substances. The variance ratio,
F(1,20) = 0-2/5-838 = 0-034, is very small so there is no hint of
deviations from parallelism. To find the P value for F < 1 the method
described in §11.3 can be used. Looking up F(20,1) = 5-838/0-2
= 29-2 in tables of the variance ratio gives the probability of observing
an F value of 29-2 or larger as something between 0-1 and 0-2. Therefore
the probability of observing F(1,20) < 0-034 is 0-1—0-2,—not so rare
that the lines must be considered as more nearly parallel than would
be expected on the basis of the observed experimental error. Another
way of stating the result is that in 80-90 per cent of repeated experi-
ments the F value for deviations from parallelism would be predicted
to be greater than 0-034 if the population lines were parallel.

Though neither the standard nor the unknown observations lie
on straight lines, as seen in Fig. 13.12.1, the analysis of variance gives
no hint of deviations from linearity. This is because the average of the
two lines (to which the analysis refers) i3 very nearly straight. The
observations lie on lines that curve in opposite directions so the curva-
tures cancel when the slopes are averaged. In fact an F value corres-
ponding to a difference in curvature as large as, or larger than, the
observed one would be expected to occur, as a result of experimental
error, in rather less than 5 per cent of repeated experiments. This
cannot be explained further without doing more experiments. There
could be a real difference in curvature as a result of the impurities in
the unknown solution. In intuitive pharmacological grounds this
does not seem very likely so perhaps there is no real difference in
curvature and a rarish (rather less than 1 in 20) chance has come off
(see § 6.1). More experiments would be needed to tell.

If the possibility of a real difference in curvature were not considered
to invalidate the assay, the potency ratio and its confidence limits
would be calculated as follows.

The potency ratio
In this example the doses of both standard and unknown are ex-
pressed in the same units (ng/ml), so the units problem discussed in
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§ 13.11 does not arise. The least squares estimate of the potency ratio,
from (13.10.17), is

4L
R = (z—ﬂ) . antilogm(—’ . long)

Zn
(4 _ 4% (—50) )
= (8) . antllogm( 3203 ° log, 42

= 0-5 antilog,(—0-09885) = 0-5 X 0-7964 = 0-398t

From the definition of the potency ratio, (13.3.1), concentration of
unknown = R X concentration of standard. The unknown preparation
is thus estimated to contain 39-8 per cent by weight of histamine,
assuming that the impurities in it do not interfere with the assay.

Confidence limits for the polency ratio

The simplified form of Fieller's theorem for the (34-3) dose sym-
metrical assay is (13.10.18), which gives confidence limits for the
population value of the potency ratio as

() o
— ] . antuio
Zo1 810 \3L,(1—¢) "3L,(1—g)

Jva-a () ]

where g = 2Ns?3/3L? according to (13.10.19). For this example

2171 = 48 = 05,

L,/L, = —50/203 = —0-2463,

log, oD = log;42 = 0-3010,

83[y] = 5-838, the error variance (from Table 13.12.2) with 20 degrees
of freedom,

8 = 1/(5-838) = 2416,

t = 2-086 for P = 0-05 (for 95 per cent confidence limits) and 20 d.f.

(from tables of Student’s ¢, see §§ 4.4 and 7.4).

t To find the antilog of a negative number write it as the sum of a negative integer and
& positive part between 0 and 1. Thus, to find antilog (—0-09885), write —0-09885 in
the form —1+0-9011, which is conventionsally written 1-9011. Look up antilog 0-8011
= 7-964, and move the decimal point one place to the left (because of the I} giving
antilog (—0-09885) = 0-7984. Working from first principles, antilog,q(—0-09885)
= 10-0-99888 from the definition of logarithma, and 10-0:09888 = ]0-1]Q+0-#011 = ]Q-1
antilog (0-9011).
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Thus g = 2 x 30 X 5-838 X 2-0863/(3 X 203?) = 0-01233
and (1—g) = 0-9877.

As in the last example, g is small so the approximate formula for the
limite could be used, but before doing this the full equation given above
will be used to make sure that the approximation is adequate. Substitut-
ing the above quantities into the general formula gives

4% (—0-2463)
0.5 3 —_
mhlog”[( 3 0-9877 5
4x2-416x2-086j{ 30 }) ]
—0- .301
3203 X 09877 (30x(>9877)+.;—( 0-2463)3} }0-3010

= 0-5 antilog (—0-1561, —0-04405) = 0-349 to 0-4521.

Approximate confidence limits

Because g is much less than 1, the approximate formula for the
oonfidenoe limits (see §§ 13.5, 13.6, and 13.10) can be used, as in the
last example. Substituting into (13.10.20) gives the estimated standard
deviation of log,,R as

4x0-3010

sflog, o R]=~ 3% 203

J[5-838X 30(1 +§(—-0-2463)’)] = 0-02669.

The approximate 95 per cent confidence limits are therefore, as in § 7.4,

log,oR + tsflog,o R) = log,, 0-3982 + (2-086 X 0-02669)
= —0-3999 4 0-05568 = —0-4566 and —0-3442.

Taking antilogst gives the confidence limits as 0-350 and 0-453, similar
to the values found from the full equation.

Summary of the result

The assay may have been invalid because of a difference in curvature
between the standard and unknown logdose-response curves. If this
difference were attributed to (a rather unlikely) chance the estimated
potency ratio would be 0-398, with 96 per cent Gaussian confidence
limits of 0-349 to 0-452. As usual, these confidence limits must be re
garded as optimistic (see § 7.2).

1 See footnote p. 325.
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Plotting the resulls

The slope of the response-log dose lines, from (13.10.13), is b = 203/20
= 10-15. This is the slope using z = logy, (dose) (see § 13.2). It must be
divided by log,oD = 0-3010, giving b’ = 3372, the slope of the response
against log,, (dose) lines, whioh are plotted in Fig. 13.12.1. The full
argument is gimilar to that for the 2+ 2 dose assay given in detail in
§13.11,

13.13. A numerical example of an unsymmetrical (3 +2) dose
parallel line assay

The general method of analysis for parallel line assays, when none of
the simplifications resulting from symmetry (defined in (13.8.1)) can be

30

Response (y)

10

T

1 1
00 0-5 1-0
log,, dose ()

ol—L

Fi1a. 13.13.1. Results of an unsymmetrical 3+2 dose assay from Table
13.13.1.

(O Observed mean responses to standard.
/A Observed mean responses to unknown.
—— Least squares lines constrained to be parallel (see
§ 13.4 and this section).

used, will be illustrated using the results shown in Table 13.13.1 and
plotted in Fig. 13.13.1. The figures are not from a real experiment—
in real life a symmetrical design would be preferred. The 15 doses
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should be allocated strictly at random (see § 2.3) s0 a one way analysis
of variance (see § 11.4) is appropriate (given the assumptions described

in §11.2).
TaBLE 13.13.1
Results of @ 3 + 2 dose assay
Standard doees Unknown doses
Dose (z) 1-0 30 10-0 1-0 40
log;o dose
(z = logye%) 0-0 0-4771 10 0-0 06021 Total
Responses(y) 94 18-0 277 13-6 251
10-8 188 28-1 12-8 250
10-1 17-9 28-2 24-0
18-1
n 3 4 3 2 3 15
Mean 10-1 182 28-0 13-2 24-7
Total 30-3 72-8 84-0 26-4 74-1
\ v — M—\,——J
Total 187-1 100-5 287-8

The analysis of variance of the responses

The one way analysis of variance is exactly as in § 11.4.

(1) Correction factor

o2
N

287-6%
16

— = ——— = 5514-25066.

(2) Total sum of squares (from (2.6.5) or (11.4.3)), with N—1 = 14
degrees of freedom,

= 9-43410-8% ...+ 24-03 —5514-25066
= 650-16933.

(3) Sum of squares between doses (from (11.4.5)) with 6—1 = 4
degrees of freedom,

30-32

72-82
3 T 4

= 647-48933.

(4) Error sum of squares, by difference,
= 650-16933 —647-48933 = 2-:6800
with 14 —4 = 10 degrees of freedom.

74-1

2

—5514-25066

The next stage is to divide up the sum of squares between doses, as
described in §13.7. It will be convenient first to calculate various
quantities from the results.
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For the standard the figures in Table 13.13.1 give

ng = 10,
g = (0X 3)+(0-4771 X 4)+(1-0 X 3) = 4-9084
(remember that each dose occurs several times; of. Table 12.6.2),
Zg = 4-9084/10 = 0-48084,
Tyg = 30-3+72-8+84-0 = 1871,
s = 187-1/10 = 1871,
S(2g—g)? = (02X 3)+(0-47712 X 4)+(1-0 X 3) —4-90842/10
= 1-50126 (from (2.6.5); again each z occurs several
times),
Sys(ts —Fs) = (0 X 9-4)+(0X10-8)+...+(1-0 x 28-2) —
(4.9084 X 187-1)/10
= 26-89672 (found from (2.6.9) and (12.2.9), as in
(12.6.1)).

Similarly, for the unknown preparation,

ng = 5,

Zzy = (0Xx 2)4(0-6021 x 3) = 1-80630,

Zy = 1-80830/6 = 0-36126,

Zyy = 2644741 = 1005,

§u = 100-5/5 = 20-10,

Z(xy—=Ey)? = (0% x 2)4(0-6021% x 3) —1-80632/6 = 0-43503,

Zyy(ry —Ty) = (0X 26-4)4-(0-6021 X 74-1)—(1-8063 x 100-5)/5
= 8-30898.

Now these results can be used to find the components of the sum of
squares between doses, as described in § 13.7.

(1) Linear regression, from (13.7.1),

SSD (26-89672+ 8-30898)2 640-111405
T 1-5012640-43503 :

(2) Deviations from parallelism, from (13.7.2),

gD — 26896727 8308988 11405 — 0-472584
= 150126 1 043503 - )

(3) Between standard and unknown, from (13.7.3),

187-12 100-5%

10 —b5514-25066 = 6-4403.

SSD =
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(4) Deviations from linearity, by difference,
88D = 647-48933 —640-1114056 —0-472684 —6-4403
= 0-465045.

These figures can now all be filled into the analysis of variance table
(Table 13.13.2), which has the form of Table 13.7.1.

TaABLE 13.13.2

Source of variation da.f. 88D MS F P
Linear regreesion 1  640-111 64011 2388 <£0-001
Deviations from
parallelism 1 0-473 0-4783 1-76 >0-2
Between 8 and U 1 6-440 68-440 24-08 <0-001
Deviations from linearity 1 0-465 0-4685 1-74 >0-2
Between doses 4 647-489 161-872 604-0 <£0-001
Error (within doses) 10 2-680 0-268
Total 14 650-169

The interpretation of the analysis is just as in §§ 13.11 and 13.12.
There is no evidence of invalidity, though if the responses to standard
and unknown had been more nearly the same it would have increased
precision slightly (see § 13.6).

Plotting the results
The average slope of the dose response lines, from (13.4.5), is

26-89672-1-8-30898
= 1.501264-0-43503

18-18.

The slopes of lines fitted separately to standard and unknown would be
bg = 26-89672/1-50126 = 17-92, and by = 8-30898/0-43503 = 19-10.
The lines plotted in Fig. 13.13.1 are therefore, from (13.3.3),

Y = 18-71418-18(z5 —0-4908),
Yy = 20-10+18-18(z;—0-3613).

This calculation, but not the preceeding ones, has been made rather
simpler than in §§13.11 and 13.12, because there is no simplifying
transformation to bother about.
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The potency ratio

From (13.3.7), the potency ratio is estimated to be (because z = log,,
dose)
(20-10—18-71)]

R= antxlogm[(0'49084"0'36126)+ 18-18

= antilog,,(0-2060) = 1-607.

Confidence limits for the potency ratio
Using the quantities already found,

83[y] = 0-2680 (the error mean square with 10 d.f. from Table 13.13.2),
s = 4/(0-2680) = 0-5177,

(Gu—7s)/b = (20-10—18-71)/18-18 = 0-076458,

2 S (z—2)* = 1-50126+0-43503 = 1-9363,

t = 2:228 for P = 0-95 limits and 10 d.f. (from tables of Student’s ¢;
see §§ 4.4 and 7.4).

Thus, from (13.6.5),

222802680
9= 18182x 19363

80 (1—g) = 0-9979.
Logs to the base 10 have been used, so the oconversion factor
logyo 10 = 1. The 95 per cent confidence limits for the population value
of R are therefore, from the general formula (13.6.6),

0-076458
0-9979

0-5177 x 2-228J{0 9979(1 1 ) 0-076458’}]
18-18 X 0-9979 5+ 10 + 1-9363

antilog, ¢ [(0-49084——0-36126)-}—

= antilog,,(0-2062 4 0-03496)
1-484 and 1-743.

Approximate confidence limits

Because g is small (even smaller than in the last two examples),
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the approximate formula, its general form, can be used. In this case
M = log, R so, using (13.8.8),

0-268(1 1 0-0764582)
18-182 5+10+ 1-9363

= 2:4570 X 104,

varflog,, R}~

The confidence limits for log,, R are therefore log, R + t4/(var{log;,R]),
and 4/(var{log,oR]) = 1/(2:467) x 10-2 = 0-015675, giving the limits
as 0-20604-2-228 x 0:0166756 = 0-20604-0-03492 = 0-1711 and 0-2409.
Taking antilogs gives the approximate confidence limits as 1-483 and
1-742.

Summary of the result

The assay is not demonstrably invalid. The potency ratio is estimated
to be 1-607, with 95 per cent Gaussian confidence limits of 1-484 to
1:743. The analysis depends on the assumptions discussed in §§ 4.2,
7.2, 11.2, and 12.2 and, as usual, the confidence limits are likely to be
too narrow (see § 7.2).

13.14. A numerical example of the standard curve (or calibration
curve). Error of a value of x read off from the line

In Chapter 12 the method for estimation of the error of a value of Y
(the dependent variable) read from the fitted line at & given value of
was described. In § 12.4 it was mentioned that the reverse problem,

TABLE 13.14.1

z Observations (y) Total n Mean
1 2.3 1.7 4.0 2 20
2 54 4.7 4.9 150 3 50
standard 3 74 66 140 2 70
4 97 89 84 270 3 90
Unknown 81 86 166 2 83

estimation of the error of a value of x interpolated from the fitted line
for a given (observed or hypothetical )value of y, is more complicated.
In fact the method is closely related to that used to estimate confidenoce
limits for the potency ratio, and an example will now be worked out.
The results in Table 13.14.1, which are plotted in Fig. 13.14.1, are
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results of the sort that are obtained when measurements are made from
a standard calibration curve. This method is often used for chemical
assays. For example z could be concentration of solute, and y the
optical density of the solution measured in a spectrophotometer.
In this example z can be any independent variable (see § 12.1), or any
transformation of the measured variable, as long as y (the dependent
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F1a. 13.14.1. The standard calibration curve plotted from the results in
Table 13.14.1.
(© Observed mean responses to standard.
—— Fitted least squares straight line (see text).
————— 95 per cent Gaussian confldence limits for the population
(true) line, i.e. for the population value of y at any
given z value (see text).
——— 96 per cent Gaussian confldence limits for the mean of
two new observations on y at any given z value (see text).

The graphical meaning of the confidence limits for the value of # corresponding
to the value of ¥ observed for the unknown is illustrated.

variable) is linearly related to z (unlike most of the rest of this chapter,
in which the discussion has been confined to parallel line assays in which
z = log dose). It is quite possible to deal with non-linear calibration
ourves using polynomials (see § 12.7 and Goulden (1952)) but the
straight line case only will be dealt with here.
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Frequently the standard curve is determined first and it is assumed,
as in this section, that it has stayed constant during the subsequent
period in which measurements are made on the unknowns. This
requires separate verification, and it would obviously be better if
standards and unknowns were given in random order orin random blocks.
If this is done the unknowns can be incorporated in the analysis of
variance as described in § 13.15, the effect of this being to reduce the
risk of bias and to improve slightly the estimate of error by taking
into account the scatter of replicate observations on the unknown. It
will of course be an assumption that the scatter of responses is the same
for all of the standards and for the unknowns, in addition to the other
assumptions of the Gaussian analysis of variance which have been
described in §§ 11.2 and 12.2.

The straight line and sts analysis of variance
First a straight line is fitted to the results for the standard. The
method has already been described in § 12.6, so only the bare bones
of the calculations will be given here. The basic design is a one way
classification with kg = 4 independent groups (see § 11.4).
(1) Correction factor
‘ns = 10
Syg = 404 15:0+14-0427-0 = 60-0,
.03
10
(2) Total sum of squares, from (2.6.5) (cf.(11.4.3))
= 2-3241-7%+...4-8-43—360-0 = 65-6200.

oorrection factor = == 360-0.

(8) Sum of squares between groups, from (11.4.5),
£ e 360-0 = 64-0000
=zt Tt ts - :

Although the z values are equally spaced, the simplifying trans-
formation described at the end of § 12.6 cannot be used, because the
number of observations is not the same at each z value.

(a) Sum of squares due to linear regression. First calculate
Trg = (1X2)+(2x3)+(3x2)+(4x3) = 260
and Zg = 26-0/10 = 2-60.



§13.14 Assays and calibration curves 335
The sum of products, from (2.6.7) (see § 12.6), is
Tya(tg—Tg) = (1 X 4:0)+(2X 15:0)4 (3 X 14-0)+ (4 X 27-0) —
26-0 x 60-0 9800,
10

The sum of squares for z is, from (2.6.5),

S(wg—%g)? = (13% 2)+(23 % 3)+ (33 x 2)+ (43 % 3)_26_'02

10
= 12-40.
Thus, sum of squares due to linear regression, from (12.3.4),
= 38_(13 = 63-2258.
12-4

(b) Sum of squares for devialions from linearity. By difference
SSD = 64:0000—63-2258 — 0-7742.

(4) Sum of squares for error (within groups sum of squares). By
difference
SSD = 65-6200 —64-0000 = 1-6200.

These results can now be entered in the analysis of variance table,
Table 13.14.2.

TABLE 13.14.2

Source d.f. SSD MS F P

63-2258 63-2258 234 <£0-001

Lin. regression
0-7742 0-3871 1-43 >0-2

Dev. from linearity

Error (within groups) 1-6200 0-2700

1
2
Between groups (z values) 3 64-0000 21-3333 790
6
9

Total 65-6200

The interpretation is as in § 12.8. There is strong evidence that y
increases with z. If the true line were straight then an F value for
deviations from linearity equal to or greater than 1-43 would be expected
in more than 20 per cent (P > 0-2) of repeated experiments (given the
assumptions—see § 11.2 and 12.2), so there is no reason to believe the

23
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true line is not straight. However this analysis does not distinguish
between systematic and unsystematic deviations from linearity.
Looking at Fig. 13.14.1 suggests the deviations in this case, though no
larger than would be expected on the basis of experimental error, are of
a systematic sort. The line appears to be flattening out. Now physical
considerations, and past experience suggest that this is just the sort of
nonlinearity that would be expected in a plot of, say, optical density
against concentration. In a case like this it would be rather rash to fit
a straight line, in spite of the fact that there are no grounds for rejeccing
the null hypothesis that the true (population) line is straight. This is a
good example of the practical smportance of the logical fact explained in
§ 6.1, that if there are no grounds for rejecting a hypothesis this does not
mean that there are good grounds for accepting it. In a small experiment,
such as this, with substantial experimental errors, it is more than
likely that deviations from linearity that are real, and large enough to be
of practical importance, would not be detected with any certainty.
The verdict is not proven (see §6.1). For purposes of sllustration, a
straight line will now be fitted, though the foregoing remarks suggest that a
polynomial (see above) would be safer. The least squares estimates of the
parameters (see § 12.2) are thus, from (12.2.6),

and, from (12.2.8),

Tyglzg—Ig) 28-00

bs = S(rg—7Fg)2 1240

= 2:2581,

so the fitted line is

Yo = ag+bg(xg—ig) = 6:0042:2681 (z5—2-60) (13.14.1)
= 0-1289+2-2681 24

and this is the straight line plotted in Fig. 13.14.1.

Interpolation of the unknown

The mean of the two observations (ny; = 2) on the unknown, from
Table 13.14.1, is §; = 8-30. The equation for the standard line, (13.14.1),
is ¥ = a+b(x—%), and rearranging this to find x gives

o= gt 20, (13.14.2)

bs
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The estimate of z; (e.g. concentration) corresponding to the mean
observation §y (e.g. optical density) on the unknown is therefore, from
(13.14.1) and (13.14.2),

Ty = Tg+(yu—7Fs)lbs
= 2:604-(8-30—86-00)/2-2581
= 3-619, (13.14.3)

as shown graphically in Fig. 13.14.1.

Gaussian confidence limits for the interpolated x value

The approach is exactly like that in §13.6. In (13.14.3) &5 is an
accurately measured constant. If the observations are normally
distributed (see §4.2), then §y—a = §y—ig will be a normally dis-
tributed variable, and so will the slope of the standard line, by (see
§ 12.4, especially (12.4.1)). Therefore (§y—¥g)/bs = m, say, will be the
ratio of two normally distributed variables and Fieller's theorem (see
§ 13.5) can be used, as in § 13.6, to find confidence limits for its true
value. If the error mean square from Table 13.14.2 (s2 = 0-2700) is
taken as the variance of the observations on the unknown as well as
the variance of the observations on the standard then, from (2.7.9),
var(ijg) = 8%[ng, var(§jy) = 83/ny. Because the observations on standard
and unknown are assumed independent, it follows from (2.7.3) that
var(jy—fs) = var(jy)+-var(fs) = #%(1/ny+1/ng), and so from (13.5.3),

vy = (1/ny+1/ng),
vy = 1/Z(2g—Zg)? (from (12.4.2)),
v, = 0 (as in § 13.6).

In the present example

83 = 0-2700 with 6 d.f. (from (13.14.2)),
8 = 4/(0-2700) = 0-5196,
t = 2-447 for P = 0-96 and 6 d.f. (from tables of Student’s ¢; see
§ 4.4),
 (Gu—s) _ (8:30—6:00)

™ b 2.2581 56,

t282v22 2'4472 X 0'2700
9= "9 T 225812x 1240

= 0-025657 (from (13.5.8)),

(1—g) = 0-9744.
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The 95 per cent oonfidence limits for the true value of zy therefore
follow from (13.5.9) (by adding Z4 to the confidence limits for (§;—3)/b;
cf. §13.6) and are

m

(l —g) b(l—y)

i.e in the present case

2.80 1-01856 0-5196)(2-447"/[ 9744(1 l) 1-01856’]
+0'9744 i2-2581x0-974 2+10 t 12-40

————4/[(1 ~g)v;, +mvy),

= 3-173 and 4-118.

Because g is fairly small, similar limits would have been found by
using the approximate formula, from (13.5.12), var(zy) =~ §%(v;,
+m?v,,)/b2. The limits are not symmetrical about z; = 3-619 unless g is
negligibly small (or unless §y = #g), a8 discussed in § 13.5. In thia
case the limits expressed as percentage deviations from 3-619 are
—12-3 per cent to 4 13-8 per cent. The graphical meaning of the limits
is discussed below.

Summary of the result

The unknown value of z corresponding to §y = 83 is zy = 3-619
with 95 per cent Gaussian confidence limits from 3-173 to 4-118. These
results depend on the assumptions described in §§ 7.2, 11.2, and 12.2
and, as usual, must be considered to be optimistic (see § 7.2).

Confidence limits for the population calibration line

Assuming the true line to be straight, limits for its position can be
caloulated as described in § 12.4. Another example was worked out in
§12.6. In this case var(y) = 0-2700, the error mean square with
6 d.f. from Tables 13.14.2, N = 10 (the number of observations used
to fit the line), ¢ = 2447 a8 above, #5 = 2:60 and Z(z—Z)? = 12:40 as
above. Using these values var(y), and hence the confidence limits,
can be calculated at enough values of z to plot the limits, which are
shown as dot-dashed lines in Fig. 13.14.1. Two representative caloula-
tions follow.

(1) Atz = 1-0. At this point the estimated value of yis, from (13.14.1),
Y = 0-1289+(2-2581 x 1-0) = 2-387
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and, from (12.4.4),

1 (1-0—2-60)3

E-}- 1240 ) = 0-082742.

var(Y) = 0-2700(
The 95 per cent Gaussian confidenoce limite for the population value of
Y at z = 1-0 are therefore, from (12.4.5), 2-387 + 2-447 X 4/0-082742
= 1683 and 3-091.

(2) At z = 2:0, ¥ = 0:1289+ (2:2581 X 2-0) = 4-645,

Y)=0 2700( 1 (2'0_2°60)2) 0-034839
var(Y) = o 12e0 /)" '
giving confidence limite of 4-645 4 (2-447 X 4/0-034839) = 4-188
and 5-102.

Confidence limits for the mean of two new observations at a given z. The
graphical meaning of Fieller's theorem.

In § 12.4 a method was described for finding limite within which new
observations on y (rather than the population value of y), at a given z,
would be expected to lie. In the present example there are ny = 2
new observations on the unknown. Using eqn (12.4.6) with m = 2,
N = 10, and the other values as above, these limits can be caloulated
for enough values ot z for them to be plotted. They are shown as
dashed lines in Fig. 13.14.1. Two representative caloulations, using
(12.4.6), follow.

(1) At x = 1-0. At this point ¥ = 2-387 as above The 95 per oent
confidence limits for the mean of two new observations are, from
(12 4.6),

1 1 (1-0—2-60)2

2:387 4 2-447 J [0-27 —t—t

0t3 12.40 ,] = 1:245 and 3-529.

(2) At z = 2:0, Y = 4645 as above, and the limits are, from
(12.4.6),

1 1 (2:0—260)
4-645 4 2-447 J 0-2700 =

wrt 1240 ,] = 3-637 and 5-653.

These limits are seen to be wider than the limits for the population
value of Y as would be expected when the uncertainty in the new
observations is taken into account. They are also less strongly curved.
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The mean of the two observations on the unknown in Table 13.14.1,
was §j; = 8:3, and the corresponding value of zy read off from the line
was 3-619 as calculated above, and as shown in Fig. 13.14.1. The
95 per cent confidence limits for z; at y = 8:3 were found above to be
3-173 to 4-118. It can be seen in Fig. 13.14.1 that these are the points
where the line for y = 8-3 intersects the confidence limits just cal-
culated (the limits for the mean of two new observations at a given z).
The limits found from Fieller’s theorem (13.5.9) are, in general, the
same as those found graphically via (12.4.6).

13.15. The (k+1) dose assay and rapid routine assays

In this section the kg4 1 dose parallel line assay will be illustrated
using the same results that were used to illustrate the calibration
curve analysis in § 13.14.

Routine assays

The (24 2) or (34-3) dose assays should be preferred for accurate
assays. The (kg-41) dose assay probably occurs must frequently in
the form of the (24 1) dose assay in which the unknown is interpolated
between 2 standards. This is the fastest method and is often used when
large number of unknowns have to be assayed. It is rare in practice
for the doses to be arranged randomly, or in random blocks of 3 doses
(kg+1 doses in general). Even worse, standard and unknowns are often
given alternately, so each standard is used to interpolate both the
unknown immediately before it and the unknown immediately after it.
This introduces correlation between duplicate estimates, making the
estimation of error difficult. Quite often the samples to be assayed will
come from an experiment in which replicate samples were obtained,
and several assays will be done on each of the replicate samples. In
this case a reasonable compromise between speed and statistical
purity is to do (24 1) dose assays with alternate standard and unknown,
and to interpolate each unknown response between the standard
responses (one high and one low) on each side of it. The replicate assays
on each sample are then simply averaged. An estimate of error can
then be obtained from the scatter of the average assay figures for
replicate samples rather than doing the calculations described below.
The treatments should have been applied in random order (see § 2.3)
in the original experiment and the samples should be assayed in random
order. If the ratio between the high and low standard doses is small
(say less than 2) it will usually be sufficiently accurate to interpolate
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linearly (rather than logarithmically) between the standards. See
Colquhoun and Tattersall (1969) for further discussion.

A numerical example of a (4+ 1) dose parallel line assay

In a parallel line assay x = log (dose) by definition (see §13.1),
unlike § 13.14 in which z could have been any independent variable.
In biological assays it is usual to specify the dose of unknown (e.g. in
ml or g of impure solid) and to compute a potency ratio R (see § 13.3),

10

2+ ® r~—log,, R= 1‘619—-:
{ i
| I
0 1 I 1 ! J
0 1 2 3 3619 4
log,, dose (x)

Fia. 13.15.1. If 2z in §13.14 (Table 13.14.1) were log dose, then the results

in Table 13.14.1 could be treated as a 4+ 1 dose parallel line assay, as illustrated,

a8 an alternative to the treatment as a standard curve problem which was worked

out in § 13.14. The observations and fitted line are as in Fig. 13.14.1 with the

addition that the dose of unknown required to produce the unknown responses
has been specified.

rather than to interpolate the unknown response on the standard curve
as in §13.14. (Equation (13.14.3) together with (13.3.7) is seen to
imply log R = 0,i.e. R = 1, which simply means that a given dose, in
terms of the active substance, gives the same response whether it is
labelled standard or unknown.) Suppose, for example, that z in Table
13.14.1 represents the log;, of the standard dose (measured in ml) in a
(4+1) dose parallel line assay. Suppose further that a log,, (dose
in ml) of unknown, z = 2-0, is administered twice and produces
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responses Yy = 8:1 and 8-5, 8o §y = 8:3 as in Table 13.14.1. This
assay is plotted in Fig. 13.15.1. Using the general formula for the
log potency ratio, (13.3.7), gives, using (13.14.3),

Yu—Ys
b
= 3-619—2:00 = 1-619.

logyoR = £g—Zy+

Taking antilogs gives R = 41-59 which means that 41-59 ml of standard
must be given to produce the same effeot as 1 ml of unknown.

It was mentioned in § 13.14 that it is dangerous to determine the
standard curve first and then to measure the unknowns later unless
there is very good reason to believe that the standard ourve does not
change with time. It is preferable to do the standards and unknowns
(all 12 measurements in Table 13.14.1) in random order (or in random
block of 5§ measurements, cf. §§ 13.11 and 13.12). If this had been done
the analysis of variance would follow the lines described in §13.7,
exoept that there can obviously be no test of parallelism with only one
dose of standard (a 241 dose assay would have no test of deviations
from linearity either). There are now 6 groups and 12 observations. The
total, between group and error sum of squares are found in the usual way
(see §§ 11.4, 13.13, or 13.14) from the 5 groups of observations in Table
13.14.1. The results are shown in Table 13.15.1. The between groups sum
of squares can be split up into components using the general formulae
(13.7.1)}+13.7.3). In & (kg 1) dose assay there is only one unknown
dose 80 Ty = zy, i.e. (xy—Zy) = 0 so the expressions for the slope
(13.4.5) and the sum of squares for linear regression, (13.7.1), reduce
to those used already in § 13.14, which are entered in Table 13.12.1
(it is only common sense that the observations on the unknown can
give no information on the slope of the log dose-response line). The
sum of squares for differences in responses to standard and unknown,
from (13.7.3), is

602 16-62 76-67

— ——— = 8:8167.
otz "1z 8167

When this is entered in Table 13.15.1 the sum of squares for deviations
from linearity can be found by difference. It is seen to be identical
with that in Table 13.14.2, as expected.

The error variance in Table 13.15.1 is 0-2429, less than the figure of
0-2700 from Table 13.14.2, Inclusion of the unknown responses has
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slightly reduced the estimate of error because they are in relatively
good agreement. The interpretation is the same as in § 13.14.

The confidence limits for the log potency ratio be found from the
general parallel line assay formula, (13.6.6). The calculation is, with

TasBLE 13.15.1

Source d.f. B8SD M8 F P
Linear regression 1 63-2258  63-2258 260 £0-001
Bet. std. and unknown 1 8:8167 8-8187 36-3 <0-001
Deviations from lnearity 2 07742 0-3871 1-59 >02
Between doses 4 72-:8167  18-2042 749 <£0-001
Error (within doses) 7 1-7000 03429

Total 11 75-56167

any luck, seen to be exactly the same as in § 13.14 exoept zy = 2:00
is subtracted from the result. The limits are therefore 3-173 —2-00
= 1173 and 4118 —2-00 = 2-118. Taking antilogs gives the 95 per cent
Gaussian confidence limits for the true value of R (estimated as
41-59) as 14-89 to 131-2—not a very good assay.



14. The individual effective dose,
direct assays, all-or-nothing
responses and the probit
transformation

14.1. The individual effective dose and direct assays

THE quantity of, for example, a drug needed to just produce any
specified response (e.g. convulsions or heart failure) in an animal is
referred to as the individual effective dose (IED) for that animal and
will be denoted z. More generally, the amount or concentration of any
treatment needed to just produce any specified effect on a test object
can be treated as an IED. A standard preparation of a drug, and a
preparation of the same drug of unknown concentration, can be used
to estimate the unknown concentration. This sort of biological assay is
usually referred to as a direct assay.

A group of animals is divided randomly (see § 2.3) into two sub-
groups. On each animal (test object, in general) of one group the IED
of a standard solution of the substance to be assayed is measured. The
IED of the unknown solution is measured on each animal of the
other group.

It is important to notice that in this case the dose is the variable not
the response as was the case in Chapter 13.

If the doses of both solutions are measured in the same units (see
§ 13.11) then the dose (z ml, say) needed for a given amount (in mg,
say) of substance is inversely proportional to the concentration of the
solution. The object of the assay is to find the potency ratio (R) of the
solutions, i.e. the ratio of their concentrations. Thus

concentration of unknown
" concentration of standard
population mean IED of standard

. 4.1,
population mean IED of unknown (14.1.1)

In practice the population meant IEDs must, of course, be replaced

t See Appendix 1.
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by sample estimates, the average, Z, of the observed IEDs. The question
immediately arises as to what sort of average should be used.

If the IEDs were normally distributed there are theoretical reasons
(see §§ 2.5, 4.5, and 7.1) for preferring to calculate the arithmetic
mean IED for each preparation (standard and unknown). In this case
the estimated potency ratio would be R = Zg/z;;. Because the IED has
been supposed to be a normally distributed variable, this is the ratio
of two normally distributed variables. A pooled estimate of the variance
8%(z] could be found from the seatter within groups (as in § 9.4). The
confidence limits for R could then be found from Fieller’s theorem,
eqn. (13.5.9), with v;; = 1/ng and vy3 = 1/ny, where ng and ny are the
numbers of observations in each group. (Because each IED is supposed
to be independent of the others, v;; = 0.)

However, if the IEDs are lognormally distributed (see § 4.5) then
the problem is simpler. Tests of normality are discussed in § 4.6.

Use of the logarithmic dose scale for direct assays

In those cases in which it has been investigated it has often been
found that the logarithm of the IED (z = log z, say) is normally
distributed (i.e. z is lognormally distributed, see § 4.5). It therefore
tends to be assumed that this will always be so, though, as usual, there
is no evidence one way or the other in most cases. If it were so then it
would be appropriate to take the logarithm of each observation and
carry out the calculations on the z = log z values, because they will be
normally distributed. (In parallel line assays a logarithmic scale is
used for the dose, which is the independent variable and has no distribu-
tion, for a completely different reason; to make the dose-response
curve straight. See §§ 11.2, 12.2, and 13.1, p. 283.)

Taking logarithms of both sides of (14.1.1) gives the log of the
potency ratio (M, say) as

IED of standard)
IED of unknown/

= log (IED of S)—log (IED of U).
[f the log IED is denoted x = log z then it follows that the estimated
log potency ratio will be
M =log R = &g—iy. (14.1.2)
The variance of this will, because the estimates of IED have been
assumed to be independent, be

M =log R = log(
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var(M) = var(zs)+ var(Zy) = “ff:”f"‘”"),
from (2.7.3) and (2.7.8). It is neoessary, as in § 9.4, to assume that the
scatter of the measurements (z values) is the same in both groups so a
pooled estimate of var(z) is caloulated from the scatter of the logs of
the observations within groups as in § 9.4, and used as the best estimate
of both var(zg) and var(zy). The confidence limits for the log potency
ratio are then M 4 t4/{var(M)} as in § 7.4. Taking antilogarithms of
these, and of (14.1.2), gives the estimates of R and its confidenoe limits.
A numerical example is given by Burn, Finney, and Goodwin (1950,
PP 44-8).

(14.1.3)

14.2. The relation between the individual effective dose and
all-or-nothing (quantal) responses

In the sort of experiment described in § 14.1 the individual effective
dose (IED) just sufficient to produce a given effect is measured directly
on each individual. For example, the amount of digitalis solution needed
to produoe cardiac arrest can be measured on each of a group of animals
by giving it as a slow intravenous infusion and observing the volume
administered at the point when the heart stops. The results given in
Table 14.2.1 are an idealized version of experimental measurements
of 100 individual lethal doses (z) of cocaine cited by J. W. Trevan
(1927). The results have been grouped so that a histogram can be
plotted from them and the percentage of individual effective doses
falling in each dose interval is denoted f. The logarithms (z) of the
doses are also given (1 has been added to each of the values to make
them all positive).

From the results in Table 14.2.1 the mean individual effective dose is

the total of the z values divided by the total number of observationst
3

. Xfz 51475 0-515
=% T 100 SO ME
The median effective dose (dose for p = 50 per cent) L (14.2.1)

(interpolated from Fig. 14.2.2) ~ 0-49 mg.
The modal effective dose (interpolated from Fig.
14.2.1) ~ 0-44 mg. J

t+ This mean is calculated from the grouped results, each IED being assumed to have
the central value of the group in which it falls. If the original ungrouped observations
were available, the mean of these would be preferred. If it is accepted that z is lognormal
(see below) then the mean can also be estimated using the equation on p. 78 with
w= T1.707 and ¢ = 0-104 from Fig. 14.2.6. This givea antilog,, (1.707 + 1-1518 x
0:1043) = 0-524 mg.
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A histogram of the distribution of the individual effective doses is
plotted in Fig. 14.2.1 and the estimated mean, median, and modal
IEDs (see § 2.5) plotted on it. The distribution looks positively skewed
and therefore, as expected, mean > median > mode (see § 4.5).

TABLE 14.2.1
Fregquency f = percentage of animals responding in each dose snierval.
Cumulative frequency p = total percentage of animals responding to dose
equal to or less than the upper limit of each dose inierval. Probits (see
§ 14.3) were obtained from Fisher and Yales tables (1963, Table I1X,
p. 69). The p values are found as the cumulative sum of the observed f
values. For example 54 = 3841541

Dose log dose Probit
interval Mid-point interval 41 b4 P (] of
(mg of cocaine) (z) (x) P
0-0-2 0-10 — 00-0-301 0 0 0 —o
0-2-0-3 026 0-301-0-477 1 1 025 2674
0-3-0-4 0-36 0-477-0-602 16 16 526 4005
0:4-06 0-46 0:602—0-699 88 54 17-11 5-100
0:6—0-6 0-566 0-699-0-778 26 79 1876  5-806
0-6-0-7 0-65 0-778-0-845 11 90 716  6-282
0-7-0-8 076 0-845-0-803 6-6 96-6 488 6812
0-8-0-9 0-85 0-903-0-964 2-6 99 2-125 17-826
0-9-1-0 095 0-9654-1-000 1 100 0-96 +
if Ife =
= 100 51-476

The individual effective dose is of course a confinuous variable
and the distribution of IEDs is a continuous distribution (see § 4.1).
However, in order to get an idea of the shape of the distribution it has
been necessary to group the observed IEDs so that the histogram in
Fig. 14.2.1 can be plotted. A continuous line has been drawn by eye
through the histogram as an estimate of what the actual continuous
distribution should look like.

In Fig. 14.2.2 the histogram of cumulative frequency (p) is plotted
against dose. When a continuous line is drawn through the top right-
hand corner (see below) of each block an unsymmetrical sigmoid curve
is obtained. This is the cumulative distribution, or distribution func-
tion, F(z), (defined in (4.1.4)) corresponding to the distribution of IED
shown in Fig. 14.2.1. That is to say the ordinate of the curve in Fig.
14.2.2 for any specified value of the dose, z, is equal to the area under
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the curve in Fig. 14.2.1 below z (cf. Fig. 5.1.2 and its cumulative form,
Fig. 5.1.1, and Figs. 4.1.3 and 4.1.4).

The relation between the IED and quantal responses can now be
illustrated. When a quantal response is obtained the IED itself is not
measured. A fixed dose, 2z, of drug is given to a group of n subjects
and the number, 7, of subjects showing the chosen response is observed.
The proportion of subjects responding in the group is r/n. This is, of
course, a disconlinuous variable; and if the same dose were given

m -
Mode ~ 0-44 mg
50+ Median ~ 0-49 mg
Arithmetic mean ~ 0-52 mg
S 91
g
g ;
g 30 \
o
&
[
20} \
10+ \
.
TN
0 :
0-1 0-2 0-3 04 0-5 06 07 0-8 0-9 10

2(dose in mg)

Fi1c. 14.2.1. Histogram of the individual effective dose measurement in
Table 14.2.1. The frequency, f, is plotted against dose (z). The continuous line
has been drawn by eye through the histogram as an estimate of the true (con-
tinuous) distribution of individual effective doses. The distribution is skew so
median effective dose (shaded area = 50 per cent of total area under curve) is
less than the mean but greater than the modal effective dose (see § 4.5).

repeatedly to many groups of n subjects then the number showing a
response, r, would be expected to vary from trial to trial according to
the discontinuous btnomial distribution (see §§ 3-2-3.4). The subjects
that respond will be those in the group whose IED is equal to or less than
the dose given, 2. Therefore if the doses chosen were the upper limits
of each interval in Table 14.2.1 (i.e. doses of 0-2, 0-3, 0-4, . . ., 1-0 mg)
then the values of r/n observed in each of the 9 groups of animals
would be the same (apart from experimental error) as the values of »
@B table (which is why p and probit [p] are plotted against the upper
limits of each dose interval in Fig. 14.2.2, 14.2.4, 14.2.5, and 14.2.6).
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F1a. 14.2.2. Results from Table 14.2.1. The histogram is plotted using the
cumulative frequency p, against dose z. The blocks, each of height f, from Fig.
14.2.1, have been put above each other so that the total height is p. The sigmoid
curve has been drawn by eye through the top right-hand corner of each block
(see text) as an estimate of the true (continuous) cumulative distribution (i.e.
the distribution function, see § 4.1) of individual effective doses, i.e. the ordinate
is the percentage of animals with an individual effective dose equal to or less
than 2.
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Mean, median, and modal IED
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Fra. 14.2.3. Results from Table 14.2.1. Histogram of individual effective

dose measurements with dose on a logarithmic scale, rather than on an arith-

metic scale as in Fig. 14.2.1 (1 has been added to the logs to avoid negative

values). Now that the blocks of the histogram are not of equal width, their area

is no longer proportional to their height, so a convention must be adopted as to
whether area or height shall represent frequency.

(a) In this figure height represents frequency i.e. frequency (left-hand scale)
is plotted against log dose. The heights of the blocks are as in Fig. 14.2.1. The
continuous curve is a Gaussian (normal) distribution, calculated using the mean
of the log individual effective doses (I-707), and the standard deviation of the
log IED (0-104), estimated from Fig. 14.2.68 as described in the text. The prob-
ability density (right-hand) scale has been chosen to make the areas under
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So if the quantal responses (values of r/n) were plotted against the
dose an unsymmetrical sigmoid dose-response curve like the continuous
line in Fig. 14.2.2 would be expected.

Thus when quantal responses are measured the dose is fixed by
the experimenter and the number (or proportion) of subjects responding
is the variable measured. On the other hand, in direct assays the dose
is not fixed but is the variable quantity measured by the experimenter.

The subjects responding in the quantal experiment are the subjects
in the group with an IED equal to or less than the fixed dose given. No
information is obtained about IEDs of a single animals so Fig. 14.2.1
cannot be plotted directly (though it can of course be obtained by
plotting the slope of the quantal dose-response curve, Fig. 14.2.2,
against dose, i.e. by differentiation of Fig. 14.2.2 (this was shown in
(4.1.5)).

The cumulative curve in Fig. 14.2.2 is analogous to an ordinary
dose-response curve, for example the tension (a continuous variable)
developed by a smooth muscle preparation in response to various
doses of histamine. Because it is easier to handle a straight line than a
ourve, it is usual to look for ways of converting dose—response curves to
straight lines. A method of doing this that often works in the case of

histogram and the Gaussian curve equal, but the two are still not comparable
because area represents frequency for the continuous curve (see § 4.1), but not
for the histogram.

(b) The histogram in this figure has been constructed so that the area of each
block represents frequency, f, or, more precisely, the proportion f/Zf = f/100
in this example. The area is the height (A say) times the width of the log dose
interval (Azx say). For example, the first and last blocks represent a frequency of
J = 1 per cent (see Table 13.2.1) so the first and last blocks are of equal height in
Figs. 14.2.1 and 14.2.8(a). However, in Fig. 14.2.3(b) they have equal areas (each
have 1 per cent of the total area), and therefore unequal heights. By deflnition,
proportion = f/100 = AAz = area. For example, for the first block Az = 0-477
—0-301 = 0-176, so the height (probability density) is A = f/100Az = 1/17-8
= 0-05682, as plotted. For the last block Az = 1-:0—0:854 = 0:046, s0 A =
7/100Az = 1/4:8 = 0-2174 as plotted.

The area convention shown in Fig. 14.2.3(b) is the preferable one, because it
shows the shape of the distribution correctly when the widths of the groups are
not equal (though only at the expense of making it not obvious when frequencies
are equal, because it is more difficult to judge relative areas than relative heights
by eye). The continuous curve is a Gaussian curve with the same mean and
standard deviation as in Fig. 14.2.8(a), and it can now be compared directly
with the histogram because both have been plotted using the same (area) con-
vention (see § 4.1), and both have a total area of 1-0. The Gaussian curve is seen

to fit the observations reasonably well.

24
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Fia. 14.2.4. Results from Table 14.2.1. Cumulative frequency, p, plotted
against dose (x = log £). This flgure is related to Fig. 14.2.3 in the same way as
Fig. 14.2.2 is related to Fig. 14.2.1.

The blocks (obeervations) are each the height of the f values in Table 14.2.1,
and they are put above each other so the total height gives the p value from
Table 14.2.1. The blocks are the same as those in Fig. 14.2.3(a), and the height
of each block is proportional to the area of each block (i.e. the frequency, f) in
Fig. 14.2.3(b).

The continuous curve i8 an estimate of the true (continuous) cumulative
distribution (i.e. the distribution function, see § 4.1) of log IED valuea. In other
words, the ordinate is the percentage of animals with a log IED equal to or less
than z. The continuous curve in this flgure is related to that in Fig. 14.2.3(b)
in exactly the same way as the blocks are related; it is a calculated Gaussian
distribution function (see § 4.1 and text)—the ordinate is the area to the left of .
under the calculated Gaussian distribution in Fig. 14.2.3(b), just as the ordinate
for the blocks is the total area of the blocks below z under the histogram in
Fig. 14.2,3(b). The calculated Gaussian function fits quite well (the continuous
curve in Fig. 14.2.2 fits exactly only because it was drawn through the observations

by eye).
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F1a. 14.2.5. Results from Table 14.2.1. Plot of the probit of p against the

dose (z). The corresponding percentage scale is shown on the right for comparison.

The non-linearity indicates that IED values are not normally distributed. A

smooth curve has been drawn through the points by eye and the median IED

(p = 50 per cent, probit [p] = 5) is estimated to be 0-40 mg, as was also found

by interpolation in Fig. 14.2.2 (cf. Fig. 14.2.8, which gives a slightly different
estimate).

quantal responses is discussed in § 14.3, and illustrated in Fig. 14.2.3—
14.2.6, which show various manipulations of the original results.

14.3. The probit transformation. Linearization of the quantal
dose response curve
When dealing with continuously variable responses it is common
practice to plot the response against the logarithm of the dose (z
= log z, say) in the hope that this will produce a reasonably straight
dose response line. If p (from Table 14.2.1) is plotted against the log
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F1a. 14.2.6. Results from Table 14.2.1. Plot of the probit of p against log
dose (z = log 2). The graph is reasonably straight, indicating that log IED
values are approximately normally distributed (i.e. IED values are approximately
lognormal, see § 4.5). The reciprocal of the slope (1/9-60 = 0:104) estimates the
standard deviation of the normal distribution of log IED values, and the dose
corresponding to p = 50 per cent (probit{p] = 5), i.e. antilog 1.907 = 0-509 mg,
estimates the median (= mean = mode) of the distribution of log IED values.
The distribution plotted with this mean and standard deviation is shown in
Fig. 14.2.3. The estimate of the median effective dose from this plot, 0-5609 mg,
is different from that obtained from Fig. 14.2.2 and 14.2.5 (0-49 mg). This is
because a straight line has been drawn in this figure, using all the points; and
the dose corresponding to probit{p] = 5 has been interpolated from the straight
line even though it does not go exactly through the points, This would be the
best procedure if the true line were in fact straight (i.e. if the population of log
IED values were in fact Gaussian). In Figs. 14.2.2 and 14.2.5, curves were
drawn by eye to go exactly through all the points, so effectively on the observa-
tions on each side of probit{p] — 6 were being used for interpolation of the
median, whereas when & straight line (or other specified function) is fitted, all the
observations are taken into account. In a real quantal experiment the straight
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dose, the result, shown in Fig. 14.2.4, is not a straight line but a
symmetrical sigmoid curve. (In fact similar results are often observed
with continuous responses also.)

A way of converting the results to a straight line is suggested by
Fig. 14.2.3, in which f rather than p is plotted against log dose. The
histogram has become roughly symmetrical compared with the skewed
distribution of IEDs seen in Fig. 14.2.1. The continuous line in Fig.
14.2.3 is a calculated normal (Gaussian) distribution with a mean
and standard deviation estimated as described below and illustrated
in Fig. 14.2.6. The calculated normal distribution is seen to fit the
observed histogram quite well suggesting that the logarithms of the
IEDs (values of 2 = log z) are normally distributed, i.e. that the
IEDs (values of z) are lognormally distributed (see § 4.5). Any curve
can be linearized ¢f the mathematical formula describing it is known.
The sigmoid curve in Fig. 14.2.4, the cumulative form of the distribu-
tion in Fig. 14.2.3, is a cumulative normal distribution. This was
illustrated in Fig. 4.1.4, which shows the cumulative form, p = F(z),
of the normal distribution in Fig. 4.1.3. If the abscissa in Fig. 4.1.4 is
some measure of the effective dose then the ordinate of the cumulative
normal distribution is

p = F(x) = area under normal curve below z
= proportion of animals for which IED < z, (14.3.1)

i.e. exactly what is plotted as the ordinate in Fig. 14.2.2 and 14.2.4.
The formula for the integral normal curve shown in Fig. 14.1.4,
from (4.1.4) and (4.2.1), is

(x—p)
p= F(x)= x/(2vr) I:— ’] dz. (14.3.2)

This curve can be transformed to a straight line if, instead of plotting
P against z, the abscissa corresponding to p is read off from a standard
normal curve (see §4.3) and this is plotted against z. For example,
if a dose of z = 3 produces an effect in 16 per cent of a group of animals,
the abscissa (viz. ¥ = —1, see §4.3) of the standard normal curve
corresponding to an area in the lower tail of the curve of 16 per cent

line would be fitted to the points in this figure using the iterative method dis-

cussed in § 14.4. In this example, the quantal data has been generated, for

illustrative purposes, using actual IED measurements rather than by giving

flxed doses to groups of animals, so the best that can be done is to fit an un-
weighted straight line (shown) as described in § 12.5.
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would be read off as shown in Fig. 14.3.1. This value of the abscissa
would then be plotted against the dose (or some transformation of it,
such as the logarithm of the dose), as shown in Fig. 14.3.2.

The abscissa of the standard normal curve, is, as described in § 4.3,
u = (x—u)/o, where o is the standard deviation of z (i.e. of the log
IED in the present case). So in effect, instead of plotting p against z,
the value of u corresponding to p (which is called the normal equivalent
deviation or NED) s plotted against x. But because the relation between

u and z,

z— 1

S (-)z—(’—‘). (14.3.3)
ag ag ag

has the form of the general equation for a straight line « = bz+-a, the
plot of NED against = will be a straight line with slope 1/o and intercept
(—ufo) if, and only if, the values of = are normally distributed. This
is because the NED corresponding to be observed p were read from a
normal distribution curve.

The values of u are negative for p < 50 per cent response and so,
to avoid the inconvenience of handling negative values, 5-0 is added to
all values of the NED and the result is called the probit corresponding
to p or probit [p]. Tables of the probit transformation are given, for
example, by Fisher and Yates (1963, Table IX, p. 68). From Fig.
14.3.1, it is seen that p = 50 per cent response corresponds to v = NED
= 0, i.e. probit [50 per cent] = 5. Thus

probit [p] = u+5 = NED+5 = 5+”—:-’f

(1

80 the plot of probit [p] against 2 will be a straight line (if « is Gaussian)
with slope 1/o (as above) and intercept (5 —u/s). Here, as above, g is the
standard deviation of the distribution of z, i.e. of the log IED in the
present case. It is therefore a measure of the heterogeneity of the
subjeots (see § 14.4 also).

From Fig. 14.3.1, it can be seen that the NED of a 16 per cent
response (i.e. 16 per cent of individuals affected) is —1 or, in other
words, the probit of a 16 per cent response is +4. This follows from the
fact (see §4.3) that about 68 per cent of the area under a normal
distribution curve is within 4o (i.e. within 4-1 on a standard normal
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Fia. 14.3.1. Standard Gaussian (normal) distribution (see Chapter 4).
Sixteen per cent of individuals responding corresponds to a value of u of —1
(the NED), i.e. to a probit of 4.
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F1a. 14.3.2. If the dose (or transformed dose, e.g. log dose) # = 8 caused

16 per cent of individuals to respond, the probit of 16 per cent, i.e. 4:0, from

Fig. 14.3.1, would be plotted against 2 = 8. See complete plots in Figs. 14.2.5 and
14.2.6.



358  Probits § 14.4

curve), and of the remaining 32 per cent of the area, 16 per cent is
below u = —1 and 16 per cent is above +1.

In Fig. 14.2.5 the probit of the percentage response is plotted against
the dose z. The curve is not straight, implying that individual effective
doses do not follow the Gaussian distribution in the animal population.
This has already been inferred by inspection of the distribution shown
in Fig. 14.2.1 which is clearly skew. However, in the usual quantal
response experiment the distribution in Fig. 14.2.1 is not itself observed.
The directly observed results are of the form shown in Fig. 14.2.2; and
it is not immediately obvious from Fig. 14.2.2 that individual effective
doses are not normally distributed. When the probit of the percentage
response is plotted against log dose, in Fig. 14.2.6, the line is seen to be
approximately straight, showing that (in this particular instance) the
logarithms of the individual effective doses are approximately normally
distributed (cf. Fig. 14.2.3).

The use of this line is discussed in the next section.

14.4. Probit curves. Estimation of the median effective dose and
quantal assays

The probit transformation described in § 14.3 can be used to estimate
the median effective dose or concentration; that is, the dose (or con-
centration) estimated to produce the effect in 50 per cent of the popula-
tion of individuals (see § 2.5). This dose is referred to as the ED50
(or, if the effect happens to be death, as the LD&0, the median lethal
dose). If the individual effective doses (IEDs) are measured on a
scale on which they are normally distributed the ED50 will be the
same a8 the mean effective dose (e.g. in § 14.3 the median effective log
dose is the same as the mean effective log dose, see § 4.6 and Figs. 14.2.1
and 14.2.3).

The procedure is to measure the proportion (p = r/n) of individuals
showing the effect in response to each of a range of doses. The propor-
tions are converted to probits and plotted against the dose or some
function (usually the logarithm) of the dose. If the curve does not
deviate from a straight line by more than is reasonable on the basis of
experimental error (see below) the ED50 can be read from the fitted
straight line. From Fig. 14.2.6 it can be seen that the graphical estimate
of the ED&0 is 0-509 mg, the antilog of the log dose corresponding to a
probit of 5 as explained in § 14.3.

Furthermore, the slope of Fig. 14.2.6 is an estimate of 1/o, acoording
to (14.3.4); so the reciprocal of this slope (i.e. 1/9-60 = 0-104 log,,
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units, from Fig. 14.2.6) is an estimate of o, the standard deviation of
the distribution of the log IED, and this value of ¢ was used to plot
the distribution in Fig. 14.2.3. This standard deviation is a measure of
the variability of the individuals, i.e. of the extent to which they do not
all have the same individual effective dose.

Assays of the sort described in Chapter 13 can also be done using
quantal responses, and if a log dose scale is used they will be parallel
line assays (see § 13.1).

In all the applications discussed the problem arises of how to fit the
‘best’ line to the observed points. Methods for doing this have been
described in Chapters 12 and 13 but they all assume that the scatter of
the observations is the same at every value of z, i.e. that the results
are homosoedastic (see §§ 12.2 and 13.1). This is not the case for probit
plots (see § 14.5 for an exception) and this complicates the process of
curve fitting. Numerical examples of the methods are given by Burn,
Finney, and Goodwin (1950, p. 114), and Finney (1964, Chapters
17-21).

The reason for the heteroscedasticity is not difficult to see. The
number of individuals (r) responding, out of a randomly selected (notice
that random selection is, a8 usual, essential for the analysis) group of
n, should follow the binomial distribution (§§ 3.2-3.4), and the variance
of the proportion responding, p = r/n, would be estimated from
(3.4.5) to be var{p] = p(1 —p)/n. Because the line is to be fitted to the
plot of probit{p](= y, say) against dose metameter, it is the variance of
y = probit{p] that is of interest. From (2.7.13) it is seen that var{y]
=~ var{p].(dy/dp)? = (dy/dp).p(1—p)/n. Now the standard normal
curve, in Fig. 14.3.1 can be written (by (4.1.1)) as dp = f dy, and thus
dy/dp = 1/f, where f is the ordinate of the standard normal curve
(the probability density, see § 4.1 and (4.2.1); f was used with a different
meaning in § § 14.2 and 14.3). This result follows, slightly more rigorously
from (14.3.1) and (4.1.5). Therefore var{y] ~ p(1 —p)/nf2, and this is
not & constant but varies with p. The probit plot is therefore hetero-
scedastic and each probit (y value) must be given a weight 1/var{y]
=~ nf?[p(1 —p) when fitting the dose response lines (cf. §§ 2.5 and 13.4);
it is this that gives rise to the complications. When a line is fitted it will
lead to a better estimate of the y corresponding to each z, and hence to
better estimates of the weights and hence to a better fitting line. The
calculation is therefore iterative.

It is because of the existence of this theoretical estimate (cf. § 3.7)
of var[y] that the deviations from linearity of Fig. 14.2.6 can be tested
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even though there is only one observation (y value) at each z value
(cf. §§ 12.56 and 12.6).

If the weight is plotted against p (Fisher and Yates (1963, p. 71)
give a table of f2/p(1—p)), it is found to have a maximum value when
p = 05, i.e. 50 per cent response rate. This is the reason why the
EDS50 is calculated as a measure of effectiveness. It is the quantity that
can be determined most precisely.

The mintmum effective dose

This term is fairly obviously meaningleast as it stands (unless the
IED is the same for all individuals). The larger the sample the larger
the chance that it will contain a very susceptible individual (from the
lower tail of Fig. 14.2.3) so the lower the estimate of the minimum
effective dose will be. Clearly it is necessary to specify the proportion of
individuals affected in the population. It was 50 per cent in the discus-
sion above.

Unfortunately, it is often not of interest to known the ED&0. If
one were interested in the proportion of individuals suffering harmful
radiation effects from the fall-out muclear explosions it is (or should
be) only of secondary interest to known what dose of radiation will
harm 50 per cent of the population. What ¢s required is an estimate of
the dose of radiation that will not harm anyone. No answer other than
zero dose is consistent with the lognormal distribution of individual
effective radiation doses usually assumed because the normal distribu-
tion of the log IED is asymptotic to the dose axis (see §4.2), zero
effect being produced only by log dose = —oo0, i.e. zero dose. The
question is not compatible with a normal distribution of doses either,
a8 this would imply the existence of negative doses. This is a very real
problem because when dealing with a very large population a very small
proportion harmed means a very large number of people harmed. Suppose
that it is decided that the EDO0-01 shall be estimated, i.e. the dose
affecting 0-1 per cent of the population (about 0-0001 X 3500 million
= 350 000 people on a world scale!). The weight, f2/p(1 —p), correspond-
ing to p = 0:0001 (i.e. probit [p] =~ 1.3) is seen from the tables to be
0:00167, compared with 0-6366 (about 380 times larger) for p = 0-5.
Thus to estimate the ED0-01 with the same precision as the ED50, the

t+ This neceasitatesa the abandonment of the conventional definition of the unit of
beauty (Marlowe 1604), viz. one milliHelen = that quantity of beauty just sufficient
to launch a single ship. An alternative definition could follow the lines of the purity in
heart index discussed in § 7.8.
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sample size (n) would have to be much bigger. And this is not the
only problem. Working with small proportions means working with
the tails of the distribution where assumptions about its form are least
reliable. For example, the straight line in Fig. 14.2.6 might be extra-
polated—a very hazardous process, as was shown in § 12.5, Fig. 12.5.1.

14.5. Use of the probit transformation to linearize other sorts
of sigmoid curve .

The probit transformation can be tried quite empirically in attempt-
ing to linearize any sigmoid curve if the ordinate can be expressed as a
proportion (see § 14.6). If this is done the variability will not usually be
binomial in origin so the method discussed in § 14.4 cannot be used,
and curves should not be fitted by the methods described in books on
quantal bioassay. It would be necessary to have several observations at
each z value to test for deviations from linearity, and the assumptions
discussed in § 12.2 must be tested empirically.

An example is provided by the osmotic lysis of red blood cells by
dilute salt solutions. It is often found that the plot of the probit of the
proportion (p) of cells not haemolysed against salt concentration
(not log concentration) is straight over a large part of its length.
This implies (see § 14.3) that the concentration of salt just sufficient to
prevent lysis of individual cells (the IED) is approximately normally
distributed in the population of cells with a standard deviation esti-
mated, by (14.3.4), as the reciprocal of the slope of the plot. In this
sort of experiment each test would usually be done on a very large
number (n) of cells so the variability expected from the binomial
distribution, p(1—p)/n, would be very small. However, in this case
most of the variability (random scatter of observations about the
probit—concentration line) would not be binomial in origin but would
be the result of factors that do not enter into the sort of animal experi-
ment described in § 14.3, such as variability of » from sample to sample,
and errors in counting the number of cells showing the specified response
(not lysed).

14.8. Logits and other transformations. Relationship with the
Michaelis—Menten hyperbola
The use of the probit transformation for linearizing quantal dose
response curves is, in real life, completely empirical. The probit of the
proportion responding is plotted against some function (z, say) of the
dose, and the plot tested for deviations from linearity. However, there
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are many other curves that closely resemble the sigmoid cumulative
normal curve in Figs. 4.1.4 and 14.2.4. One example is the logistic
curve definedt by

1

p= 1+e—(a+bz)' (14-6'1)

This plotted in Fig. 14.6.1, curve (b), and is seen to be very like the
cumulative normal curve. If the relation between p and x was repre-
sented by (14.6.1) then it could be linearized by plotting logit{p]

f’0=y/y...
[

L (a) p against z

(b) p against x=log z

o 1 I i
0 00 64 128 256 384 512 2 (ordinary arithmetic scale)

- different
7 8 9 10 x=logz waya of

——1t2
—_
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o 8

64 1128 2.‘1')6 5{2 1(324 z(log scale)
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r=log z
06931:39 208 277 347 418 485 555 624 693 z=log,z

Fi16. 14.6.1. Curve (a) Plot of p against z from eqn. (14.6.3). When d = 1
this curve is part of a hyperbola.

Curve (b) Plot of p against 2 from egn. (14.6.1). This curve is the same as
curve (a) with z plotted on a logarithmic scale (three equivalent ways of plotting
x = log z are shown). It is a logistic curve and can be linearized by plotting
logit{p] against x.

The particular values used to plot the graphs were K = 100, b = 1.

t+ An equivalent definition of the logistic curve that may be encountered is
1 a+bz):|
P=3 l“““h( 2

where the hyperbolic tangent is defined by tanh¢ = (62¢ —1)/(63®+1). In terms of thia
definition logit [p] = 2tanh~}(2p—1) = a+bz.
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(instead of probit) against z, where logit{p] is defined as log,{p/(1 --p)}.
This follows from (14.6.1) which implies

1
logit{p] = 1%.(&) = 103.(8—_m) =a+br (14.6.2)

which is a straight line with slope b and intercept a. (Remember that,
in general, log,e* = x because the log is defined as the power to which
base must be raised to give argument. This implies, also, that e* can be
written, in general as antilog,z, which is used below in deriving
(14.6.3).) The use of this and other transformations for analysing
quantal response experiments is described by Finney (1964). The
probit and logit transformations are too similar for it to be possible
to detect which fits the results better, with quantal experiments of the
usual size.

The logit transformation is also a linearizing transformation for
the hyperbola discussed in § 12.8, and plotted in Fig. 14.6.1, curve
(a). In this application the response, y, is a continuous variable, not a
quantal variable. The linearity follows by taking z = log,z (using 2
to represent dose, or concentration, rather than x which was used for
this purpose in § 12.8), and p = y/Ymax, i-€. y expressed as a proportion
of its maximum possible value, the value approached as z becomes
very large (in § 12.8 y.,., was called V). If the constant, a, is redefined
as —log,K then putting these quantities into (14.6.1) gives

y 1 1
p= ;m“ = 1 olwE ~bioes = 1 elosE - logs®
1 1
- 1+elo¢K/z' - 1+ K/2°
2b
= K1z (14.6.3)

which is the hyperbola (12.8.1), in the special case when b = 1. As
mentioned in § 12.8, this is the Michaelis-Menten equation of bio-
chemistry (when b = 1). The more general form, (14.6.3), has been
used, for example, in biochemistry and pharmacology (the Hill equa-
tion). The plot of logit [p] against log z is known as the Hill plot. The
use and physical interpretation of the Hill plot are discussed by Rang
and Colquhoun (1973).
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Summarizing these arguments, if the response y, plotted against
dose or concentration 2z, follows (14.6.3) (which in the special case
b =1 is the hyperbola plotted in Fig. 14.6.1, curve (a), and in Fig.
12.8.1), then the response plotted against log concentration, x = log z,
will be a sigmoid logistic curve defined by (14.6.1) and plotted in Fig.
14.6.1, curve (b). And logit [/yma] plotted against z will be a straight
line with intercept a = —log K, and slope b. Quite empirically,
equations like (14.6.3) are often found to represent dose-response
curves in pharmacology reasonably well (the extent to which this
justifies physical models is discussed by Rang and Colquhoun
(1973)), so plots of response against log dose are sigmoid like Fig.
14.6.1, curve (b). The central portion of this sigmoid curve is sufficiently
nearly straight to be not grossly incompatible with the assumption,
made in most of Chapter 13, that response is linearly related to log
doee.

It is worth noticing that the sigmoid plot of y against x in Figs.
14.2.4 or 4.1.4 (the cumulative normal curve, linearized by plotting
probit[p] against z) looks very like the sigmoid plot of y against z in
Fig. 14.6.1, curve (b) (the logistic curve, linearized by plotting logit
[p] against ). However, if x is log z, then the corresponding plots of y
against z (e.g. response against dose, rather than log dose) are quite
distinct. The corresponding plots are, respectively, that in Fig. 14.2.2
(the cumulative lognormal distribution, see §4.5), which has an
obvious ‘foot’, it flattens off at low z values; and the hyperbola in
Fig. 14.6.1, curve (a), which rises straight from the origin with no
trace of a ‘foot’ or threshold’. This distinction is effectively concealed
when a logarithmic scale is used for the abscissa (e.g. dose).

In order to use the logit transformation for continuously variable
responses it is8 necessary to have an estimate of the maximum response,
Ymax- This introduces statistical complications (see, for example,
Finney (1964, pp. 69-70)). A simple solution is not to bother with
linearizing transformations except as a convenient method for pre-
liminary assessment and display of results, but to estimate the para-
meters Yma,, K, and b directly by the method of least squares as des-
oribed in § 12.8.



Appendix 1

Expectation, variance, and non-experimental bias

THE object of this appendix is to provide a brief acoount of some rather
more mathematical ideas which, although they are not necessary for following
the main body of the book, will be useful to anyone wanting to go further.
Also some of the following results will be useful in Appendix 2. Further
explanation will be found, for example, in Brownlee (1865, pp. 51, 67, and
87), Mood and Graybill (1963, p. 103), or Kendall and Stuart (1963, Chapter
2). All the ideas discussed in this section require that the distribution of the
variable be specified.

A1.1. Expectation—the population mean

The population mean value of a variable is called its expectation and is
defined ast

E(z) = Y z P(z) for discontinuous distributions, (Al.1.])
allz
+ 0
E(z) = J- z f(z) dz for continuous distributions. (Al.1.2)

This can be regarded as the arithmetic mean of an indefinitely large number
of observations on the variable 2z, the distribution of which is specified by
the probability P(z) (discontinuous), or the probability density f(x) (con-
tinuous), as explained in §§ 3.1 and 4.1. The reasonableness of the definition
(Al.1.1)is obvious if a large but finite number of observations, N, is considered.
On the average proportion P(z) of the observations will have the value z, so the
number of observations with the value z will be f = N P(z) and the total of
the f observations will be fz. The total of all N observations will be Xfz,
and their mean will therefore be Xfxz/N, which is exactly eqn. (Al.1.1) if
JIN is substituted for P. The form for continuous variables, (A1.1.2), is just
the same as (Al.1.1) except that the P is replaced by dP = f(z) dz (from
(4.1.1)), and consequently summation is replaced by integration.

As a numerical example take the binomial distribution with n = 3 and
#(B) = 0-9 from Table 3.2.2 and Fig. 3.2.4. From (Al.1.1)

E(r)="zarp(r) = (0 0-001)+(1 X 0-027)+ (2 x 0-243)+(3 X 0-729) = 2.7,

r=0

t If z, considered as a random variable, is denoted £ to distinguish it from z considered
as an algebraic symbol (a8 in (4.1.4) and § A2.6), the definition of expectation can be
written in the preferable form E(&) = XzP(z), ete.
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which is n® (= 3x0:9 = 27), the population mean value of r (number
of successes in three trials), as mentioned in § 3.4. Notice that in this case
the mean value is never actually observed. All observations must be integers.

Several properties follow directly from the definition of expectation.
For example, for a linear function, where @ and b are constants,

E[e+b2] = E[a]+E[bx] = a+bE[x] (Al.1.3)

and also, more generally,

E[‘-ZNxc] = ‘-ZN(E[x.]) in general (Al.1.4)
im]l im]
= NEl[z] if all z,, have the same mean. (Al1.1.5)
But for a nonlinear function, g(z) say,}
Elg(z)] # g(E[z]), (Al1.1.6)

80 averaging a funotion of x will not give the same answer as averaging
z first and then finding the function of the average (cf. (2.5.4); the arithmetio
mean of log z is not the log of the arithmetic mean of z, but the log geometric
mean). See also (A1.2.2).

Mean of the Poisson distribution

It was stated in §§3-6 and 5-1 that s in (3.5.1) was the mean of the
Poisson distribution. This follows, using (Al.1.1) and (3.5.1), giving

=0 =0

E(r) = i r P(r) = i (r.%'e‘”')
- o’ ! P

|
= e“"[0+ m(1+ m+§—l-+...):| = e~ m.e™ (Al1.1.7)
= m

Mean of the normal distribution

Using (A1.1.2) the statement that the parameter x in (4.2.1) can be inter-
preted as the mean of the normal distribution can be justified. From (A1.1.2),

E() = f " 2f(zpdz = f " et e—plf (@) dz
—u f " flara+ f " (e—p) f(2) dz

=u+0=u (A1.1.8)

t The expectation of a function of z is defined in (Al.1.16) and (A1.1.17).
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because the first integral is the ares under the whole distribution curve,
i.e. 1. The second integral is zero because, using (4.2.1) for the density, f(z),
of the normal distribution and putting y = (x—u)? so that dy = 2(z—u) dz,
it becomes

1 . 1 (1 .
Wf(x_y)e-(x-u) 1308 Q4 =W1r_),|“§e viao®dy

_\/:'2”’) [e_ (2_“)2,9,2] ® = 0. (Al.1.9)

Mean and median of the exponential distribution

The exponential distribution of intervals between random events was
introduced in Chapter § and is discussed in more detail in Appendix 2. It
was defined in (5.1.3) by the probability density

f(x) = Ae~* forz > 0,
fi)=0 forz <O,

which is plotted in Fig. 5.1.2. It was argued in §5.1 that the population
mean interval between events must be 1-1. This follows from (Al.12) which
gives

(A1.1.10)

E(z) = J‘Qx.le‘ Ardy,
0

The lower limit can be taken as 0 rather than — c0 because, from (A1.1.10),
f(z), and hence the integral, is 0 for < 0. This can be evaluated using inte-
gration by parts. See, for example, Thompson (1965, p. 188), or Massey and
Kestelman (1964, pp. 332 and 402).) Putting v = z, so du = dz, and dv
= A"%dzxso v = fle~**dx = [—e™*], gives

E(z) = fudv = [uv]—fvdu

<[] [

e 4] 1
=0—]e] =-=3"1 1.
=0 [1 Io 1 ATL (Al.1.11)

To evaluate this notice that ze~** — 0 a8 z — w; see, for example, Massey
and Kestelman (1964, p. 122). The area under the distribution curve up to
any value z, i.e. the probability that an interval is equal to or less than z
is, from (5.1.4),

Flx)=1—e"* (Al.1.12)
so the proportion of all intervals that are shorter than the mean interval,
putting z = A-1in (Al.1.12), is

F(A-1) = 1—e"! = 0-6321, (A1.1.13)

i.e. 63-21 per cent of the area under the distribution in Fig. 5.1.2 lies below
the mean (1.0 in Fig. 8.1.2).

23
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The median (see § 2.5, p. 26) length of the intervals between random
events is the length such that 50 per cent of intervals are longer, and 50 per
cent shorter than it, i.e. it is the value of z bisecting the area under the
distribution curve. If the population median value of z is denoted z,, then,
from (Al.1.12),

l1—e™4m = 05,
ie. 2, = A"1log 2 = 0-693154~". (Al.1.14)

This is shown on Fig. 5.1.2. As expected for a positively skewed distribu-
tion (see § 4.5), the population median is less than (in fact 69-315 per cent of)
the population mean, A-!. The mode of the distribution is even lower at
z = 0, as seen from Fig. 5.1.2.

The variance of an exponentially distributed variable, from (Al.2.2), is

vat(z) = 172 (Al1.1.15)
For details see, e.g. Brownlee (1965, p. 59).
The expectation of a funciion of x

The expectation, or long run mean, of the value of any function of z, say
g(z), can be found without first finding the probability density of g(x).
The derivation is given, for example, by Brownlee (1965, p. 55). The results,
analagous to (Al.1.1) and (A1.1.2), are

E[g(z)] = Zg(x) P(z) for discontinuous distributions, (Al.1.18)

+ @

E[g(z)] = f g(z) f(z) dx for continuous distributions. (Al1.1.17)

The expectation of a function of fwo random variables is discussed in
§Al4.

A1.2. Variance

For any variable z, with expectation u, the population variance of z is
defined as the expected value (long run mean) of the square of the deviation
of x from u = E(z), i.e.

vas(z) = E[(z—p)?] (Al.2.1)
= E[z%]—(E[z])*. (A1.2.2)

The second form of the definition follows from the first by expanding the
square. It shows that E[27] is not the same, in general, as (E{x])? (this is an
example of the relation (Al.1.6)).

Use of this definition in conjunction with (Al.1.1) or (Al.1.2) gives, for
example, the variance of the binomial distribution as n#(1—-2), of the
Poisson as s, of the exponential as 1-2, and of the normal as 02, as asserted
in (3.4.4), (3.5.3), (A1.1.15), and (4.2.1). For details of the derivations see
the references at the beginning of this section. The mean and variance of a
function of two random variables is discussed in § Al.4.
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The standardized form of any random variable, z, can be defined as X say,
where
z—E[x]

= Vvai(z)

(see for example, the standard normal distribution, §4.3). X must always
have a population mean of zero, and population variance of one because

(A1.2.3)

_ o[z—E[z]] _ E[=]—E[x]
EX] = E[ \/vad(:c)] = Jvat@) — 0 (Al.2.4)
and, from (A1.2.2), (A1.2.4), and (Al.2.1),
vay(X) = E[X?]—(E[X])* = E[X7]
(z—E[z]) vai(z)
= E[ var@) | = varm) = 1. (A1.2.5)

A1.3. Non-experimental bias

It has been mentioned in § 2.8 in connection with the standard deviation,
and in § 12.8, that estimates of quantities calculated from observations may
be biased even when the observations themselves have no bias at all. In this
cage the estimation method (i.e. the formula used to calculate the sample
estimate, say §, of a parameter 6 from the observations) is said to be biased.
An estimation method is said to have a bias = E[f]—6, and it is said to be
unbiased if

E[6] = 6. (A1.3.1)
For example, the sample arithmetic mean is an unbiased estimate of the
parameter E[z] (whatever the distribution of z) because E[£] = E[z].
Using (Al.1.4),

E(#] = EE'z':z/N:I = E[Zx)/N = X(E[«])/N = NE[z}/N = E{z] — p.
(A1.3.2)

Furthermore, (2.6.3) gives an unbiased estimate of the population variance,
var(z) or a3(z), for any distribution because, from (Al.1.3), (Al.1.4), and
(Al.2.1),

E E(z—#)’] _ ER(z—p)] _ ZE[(z—p)*]  Nvas(z)
N - N - N - N

= vai(zx).
(A1.3.3)
However, if u is replaced by its (unbiased) sample estimate, £, an unbiased

estimate of vas(2) is no longer obtained (as discussed in §2.8). If 4 =
Z(z—£)?/N then

N§* =3 (z—8)? = Ello—p)—~(E—)]

im]1

= Z@—p)—N(E—p)
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becsuse 2(—u). E(z—p) = 2E—p) (Sz—Np) = 2(E—p) (NE—Np) =
2N(2—u)?. Thus, using (A1.1.3), (AL.1.4), (A1.2.1), and (2.7.8),
NE[3*] = E[Z(z—p)*—N(@EZ—p)]
= SE[(z—p)Y)— NE[(Z—p)?)
= NE[(—u)*]—NE[(Z—p)’]
= N vas(z)—N var(Z) = N var(z)—N var(z)/N

. N-—1 N-—1
and so E[#%) = um(x)( N )or a’(T) (Al1.3.4)
Because 62 is a biased estimate of vas(z), its expectation being less than
vat(z), it is not used. Instead it is multiplied by N/(N—1) to correct the
bias, giving the usual estimate, (2.6.2), with N—1 rather than N in the
denominator.

A1.4. Expectation and variance with two random variables. The
sum of a variable number of random variablest

In dealing with a function of two random variables, a proper procedure is to
average over one of them holding the other flxed, and then to average over the
other. This is rather like averaging the rows in a square table, and then averaging
the row averages to find the grand average. The proof will be outlined for the
case of the sum of a randomly variable number of random variables, but the result
(§§ A1.4.11 and A1.4.12) is general. The result is used and illustrated in § 8.6.
Relevant information will be found, for example, in Mood and Graybill (1963,
p. 117) and Bailey (1964).

It will be necessary, as on pp. 68 and 388, to distinguish between random
variables denoted 2, m, etc., and particular values that these variables may
take, denoted z, m, etc.

Suppose we are interested, as in § 3.8, in the sum, itself a random variable
denoted Sy, of m values of z, where 1 and Z are random variables, i.e.

Sa=zn+4+zn+t..+2m (Al1.4.1)

The population means and variances of the variables will be denoted, for brevity
E(h) = ppm vas(h) = 03 (A1.4.2)

E@) =y, vas(d) =o? (A1.4.8)

We shall deal only with the case where the z values are independent, and each
S value is made up of a random sample (of variable size) from the population of
2 values. It is assumed in (A1.4.3) that the 2 values all have the same mean and
variance, for example, that they are from a single population.

The probability that S is equal or less than a specifled value 8, i.e. the dis-
tribution function of the sum (see § 4.1), can be written, looking at each possible
value of m separately, as

PS8 <S]=Pii=1and 8, <S)or (i = 2and 5, < S)or...].
(Al.4.4)

t I am very grateful to R. Galbraith, Department of Statistics University College,
London for showing me how to obtain the results in this section.
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The events in parentheses are mutually exclusive so, using the addition rule
(2.4.2), this becomes a sum (over all possible m values), viz.

S Pi/% = m and 8, < 81 (A1.4.5)
m
Now, using the multiplication rule in ite general form (2.4.4) shows that

P = m and §,, << ] can be written in terms of the conditional probabilities
as PIS,, < 8]/ = m].Plrh = m] and so (A1.4.5) becomes

PS5 < 8] = I PISa < 8| = m]. P = m]. (A1.4.6)
m
This can be written in terms of distribution functions (see § 4.1) as
F(S) = 3 F(S|m).Plri = m] (AL.4.T)
m

and differentiating this with respect to S gives, as in (4.1.5), the probability
density function as

J(8) = X f(S|m).Pish = m]. (A1.4.8)
m

To find the expectation of any function of the sum, g(Sj), we now simply use
this result in the deflnition of expectation, (A1.1.17), giving

Elg(Sm)] = J;"‘S’ 1(8)as

= Lg(S).Zj(S[m).P[rﬁ = m).dS
m
= z{ f g(8) 1(8|m) dS}.P[ﬁs = m] (Al1.4.9)
m S
= D (Edg(Sw)|h = m]}. Plris = m]. (A1.4.10)
m

The last step follows because the term in curly brackets in (A1.4.9) is simply the
expectation of the function g, when s has a fixed value, m. The value of this
will of course depend on (be a function of) the value, m, chosen, so (A1.4.10) has
the form z (function of m. P = m)], just like (A1.1.18), 8o it means that the

m
term in curly brackets is being averaged over all m values and (A1.4.10) can
therefore be written

Elg(Sw)] = Ea{Edg(Sp)|m = m]}, (Al.4.11)

which describes in symbols the two-stage averaging process mentioned at the
beginning of the section. The result is much more general than it appears from
this derivation. If £ and ¢ are any two random variables, continuous or dis-
continuous, then, analagously to (A1.4.11) we have

E[g(2,§)] = E(Elg@@H|§ = y]}- (A1.4.12)

The mean value of the sum follows directly from (Al.4.11) if the function
g(Sy) is simply identifled with §;. Averaging the sum for a fixed value of m,
using the deflnitions in (A1.4.1)-(A1.4.8), gives the term in curly brackets in
(Al.4.11) a8

ElSali = m] = mu,, (A1.4,18)



372 Appendix 1 §Al4

i.e. the average value of the total of a fixed number, m, of values of z is m times
the average value of z, fairly obviously. Actually, this step is not quite as obvious
as it looks. Written out in full we have

ESalh = m] = El(z;+2a+... +2) |1 = m]
= E(z;| = m]+E(zg)h = m]+...+ E[z4|h = m]
(Al.4.14)

and only if m is independent of the z values, i.e. if the size of z values does not
depend on whether m is large or small, can this be written

= E(2;]+E(z]+... + E(zn] (Al.4.15)

and if all the 2 values have the same mean, u,, as assumed, this is simply mu,
as stated in (A1.4.13).

Having found this for a flxed value of m, we now do the second stage of
averaging, over m values, treating m as a random variable though 4, is, of course,
a constant. This gives, using (A1.4.11) with (A1.4.13) and (A1.4.2),

E[S,g] = Enlfiu,]
= pEpli] = poim, (Al.4.18)

which is just what would be expected for the average value of the sum of m
values of z. :
To find the variance of § we use the deflnition (A1.2.2) which is

vas(Sp) = ESa21— (B8l (A1.4.17)

The only thing needed now is to find the expectation of §;33. To do this we
use (Al.4.11) again, but this time g(S,n) is identifled with S,l’. So first we want to
find the term in curly brackets in (A1.4.11), the expectation of S,;;’ when m has a
fixed value, m. This we find by rearranging the deflnition of variance (A1.2.2)
to give the general relation

E[#] = vas(2)+ (E[2])? = o3+ul. (A1.4.18)
The term in curly brackets is therefore
E(S}lm = m] = vaa Syl = m)+ (BISalH = m))
= mo?+miul, (Al1.4.19)
the first term being the variance of the sum of m independent variables, from
(2.7.4), and the second term following from (A1.4.13) above. (This step again
assumes that the z, are independent of 1, as in (A1.4.13).) Now we average

over m values, i.e. we now treat m as a random variable though ¢2 and 4, are
constants of course. Thus (Al.4.11) gives, using (A1.4.19) and (A1.4.2),

E[$?] = E [1o2+m3u3]
= 6JE o[17]+ p2E %]
= ont+uiontun) (A1.4.20)
the last line following by the use of (Al.4.18) to find E[#7].
The variance of §; can now be found by substituting (A1.4.18) and (A1.4.20)
into (A1.4.17) giving the required result
var(§) = odun+pd(od+pd) —plud
= 02um+oduld (Al.4.21)
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Using the coefficients of variation defined in (2.6.4), i.e.
€(2) = o,/p,, €(h) = 0p/un and €(8p) = v[vas(Sa)/ESaL

we get, using (A1.4.21) and (A1.4.168),
(A1.4.22)

«:
(S = P( )+7’('f-).

An illustration of the use of this result is given in § 8.8 (p. 59).



Appendix 2

Stochastic (or random) processes

Some basic results and an attempt to explain the unexpected properties of random
processes

The Science of the age, in short, is physical, chemical, physiological; in all
shapes mechanical. Qur favourite Mathematics, the highly prized exponent of all
these other sciences, has also become more and more mechanical. Excellence in
what is called ite higher departments depends less on natural genius than on
acquired expertness in wielding its machinery. Without under-valuing the
wonderful results which a Lagrange or Laplace educes by means of it, we may
remark, that their calculus, differential and integral, is little else than a more
cunningly-constructed arithmetical mill; where the factors being put in, are, as it
were, ground into the true product, under cover, and without other effort on our
part than steady turning of the handle.

THoMAS CARLYLE 1829
(Signs of the Times, Edinburgh Review, No. 98).

THE following discussions require more calculus than is needed to follow
the main body of the book so they have been confined to an appendix to
avoid scaring the faint-hearted. However, the principles involved are the
important thing, so do not worry if you cannot see, for example, how an
integral is evaluated. That is merely a techincal matter that can always be
cleared up if it it becomes necessary.

A2.1. Scope of the stochastic approach

In many cases the probabilistic approach is necessary for, or at least is
enlightening in, the description of processes that are variable by their nature
rather than because of experimental error. This approach might, for example,
involve consideration of (1) the probability of birth and death in the study of
populations, (2) the probability of becoming ill in the study of epidemics,
(3) the probability that a queue (e.g. for hospital appointments) will have a
particular length and that the waiting time before a queue member is served
has a particular value, (4) the random movement of a molecule undergoing
Brownian motion in the study of diffusion processes, and (5) the probability
that a molecule will undergo a chemical reaction within a specified period of
time (see examples in §§ A2.3 and A2.4).

The appendix will deal with aspects of only one particular stochastic
prooess, the Poisson prooess which has already been discussed in Chapters
3 and 5. It is a characteristic of this process that events occurring in non-
overlapping intervals of time are quite independent of each other. The same
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idea can also be expressed by saying, at the risk of being anthropomorphie,
that the process has ‘no memory’ and therefore is unaffected by what has
happened in the past, or that the process ‘does not age’ (see also Cox
(1962, pp. 3-5 and 29)).

Examples of Poisson processes discussed in Chapters 3 and 5 were the
disintegration of radioactive atoms at random intervals and the random
occurrence of miniature end plate potentials (MEPP). Other examples are
(1) the random length of time that a molecule remains adsorbed on a mem-
brane before being desorbed (e.g. an atropine molecule on its cellular receptor
site, see § A2.4), and (2) the random length of time that elapses before a
drug molecule is broken down in the experiment described in § 12.8.

The lifetime of a molecule on its adsorption site (or of a drug molecule
in solution, or of a radioactive atom) is a random variable with the same
properties as the random intervals between MEPP (see § 5.1). In the case
of the adsorbed molecule, this implies that the complex formed between
molecule and adsorption site does not age, and the probability of the complex
breaking up in the next 5 seconds, say, is a constant and does not depend
on how long the molecule has already been adsorbed, just as the probability
of a penny coming down heads was supposed to be constant at each throw,
regardless of how many heads have already occurred, when discussing the
binomial distribution in Chapter 3. Consequently the Poisson distribution
can be derived from the binomial as explained in §3.5. Another derivation
is given in § A2.2 below.

The arrival of buses would not, in general, be a Poisson Process, although
it often seems pretty haphazard. The waiting time problem for randomly
arriving buses, discussed in §5.2, is typical of the sort of result that is
usually surprising and puzzling to people who have not got used to the
properties of random processes. I certainly found it surprising and puzzling
until recently, and so I hope the reader will find the results presented below
as enlightening as I did.

Fur further reading on the subject see, for example, Cox (1962), Feller
(1957, 1966), Bailey (1964, 1967), Cox and Lewis (1966), and Brownlee
(1965, p. 190).

A2.2. A derivation of the Poisson distribution

As mentioned in § 3.5, the distribution follows directly from the condition
that events in non-overlapping intervals of time or space are independent
each, using the definition of independence discussed in § 2.4.

The probability of one event occurring in the time interval between ¢
and ¢+ At can be defined as AA¢, if At is small enough. From the discussion
of the nature of the Poisson process in §§ 3.5 and A2.1, it follows that A
must be a constant (i.e. it does not vary with time, and does not depend on
the past or present state of the system) that characterizes the rate of ocour-
rence of events. More properly, it should be said that the probability of
one occurrence in the infinitesimal time interval, df, between ¢ and t4d¢
is constant and can be written Ad:. This definition, plus the condition of
independence, is sufficient to define the Poisson distribution. If finite
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time intervals, At, are considered then the probability of one event in the
interval between ¢ and ¢+ At should be written AAf+4o(At) (see (A2.2.9)).
Furthermore, the probability of more than one event occurring in the interval
At becomes negligible when the interval is very short, and so it is also
written o( At), as shown in (A2.2.11).

The symbol o At), which occurs often when discussing stochastic processes,
is used to stand for any quantity that becomee negligible relative to At
when the interval length At becomes very small (it does not always stand for
the same quantity, and may be used twice in the same expression standing for
a different quantity each time). More precisely, any quantity is written
o( At) if it obeys the definition

m("(::)) =0 (A2.2.1)
A0
80 no approximation will be involved in the limit in ignoring o(At) terms.

The probability that there will be no events between t and t+4 As is thus,
from the addition rule ((2.4.2) and (2.4.3)), 1 —probability of one or more
events = 1 —AAt—o(At).

The probability that r events ocour between 0 (the time when measure-
ment is started) and ¢ will be symbolized P(r, t), an extension of the notation
used in § 3.5 and Chapter 5. Using this notation, P(0, ¢4 At) stands for the
probability that zero events occur between 0 and t+ At. For this to happen
there must be both

(zero events between 0 and ) and (zero events between ¢ and ¢+ At).

The probability of the first of these contingencies is P(0, t), and the prob-
ability of the seoond is, as above, 1 —AAt—o(At). If the events in the non-
overlapping time intervals from 0 to ¢ from ¢ to ¢+ At are sndependent (this is
the crucial, and very strong, assumption), the probability that both con-
tingencies will happen follows from the multiplication rule (2.4.6), and is
the product of separate possibilities, i.e.

P(0, t+ Af) = P(0, ¢). [1 —AAt—o(At)]. (A2.2.2)
Rearranging this gives
PO, t+A9—P(0, 1) _ ol At)

At = —AP(0, t)—P(0, t).T
In the limit, letting At—0, the left-hand side becomes, by definition of
differentiation, d P(0, t)/d (see, for example, Massey and Kestelman (1964,
p. 569)), and the second term on the right-hand side becomes zero (from
(A2.2.1)) s0

d PO, ?)
dt
and the solution of this differential equation is

PO, t) = o™, (A2.2.4)

= —AP(0, 1) (A22.3)
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This is found using the condition that P(0, 0) = e° =1 (i.e. it is certain
that zero events will occur in zero time). The solution is easily checked by
differentiating (A2.2.4), giving (A2.2.3) back again, thus dP(0, ¢)/dt =
de-4t/dt = —AP(0, t). Equation (A2.2.4) is just the probability of zero
events ocourring in time ¢ given by the Poisson distribution (3.5.1), if A
is interpreted as the average number of eventsin unit time (see §§ 3.5, and
5.1 and eqn (A1.1.7)), 80 # = At is the mean number of events in time ¢.

To find the Poisson distribution when r > 0 notice that r events will
occur between 0 and ¢+ At if either

[(r events ocour between 0 and ¢) and (zero events ocour between ¢ and ¢+ At)]

or
[(r—1 events occur between 0 and ¢)

and (one event occurs between ¢ and ¢+ At)].

The probabilities of the four events in brackets have been defined as P(r, ¢),
(1—AAt—o(At)), P(r—1, t), and AAt+o0(At) respectively. Therefore, using
the addition rule (2.4.2) and the multiplication rule for independent events
(2.4.6), the probability of r events occurring between 0 and ¢+:A¢ becomes
P(rt+ At) = P(rt). [1 —AAt—o(Al)]+ P(r—1,t).[AAt+0(AL)].
(A2.2.5)
Rearranging this gives

Prt+An—Plrt) _ —1P(r,¢)+1P(r—1,¢)+M:i[1>(r-1,c)—P(r,t)].

At A
(A2.2.6)

Again letting At — 0 gives, using (A2.2.1) as above,
9—%"’ = —AP(r)+AP(r—1}). (A2.2.7)

This holds for any r greater than 0, so putting r = 1 gives an equation
for P(1,), the probability of r =1 event occurring in a time interval of
length ¢. Inserting the value of P(r—1t) = P(0,t) = e~* from (A2.2.4)
into (A2.2.7) results in an equation that can be solved giving P(1,t) = (it)e~*¢,
which is the Poisson probability for r = 1 defined in eqn (3.5.1) and §5.2.
This can be inserted into (A2.2.7) with r = 2 to find P(2,), the next term
of the Poisson series. Alternatively, simply notice that the probability of
r events in a time interval of length ¢, the solution of (A2.2.7) for any value of
r, (greater than 0) is
(A2

P(ra) =™, (A2.2.8)



3718  Appendiz 2 §A2.2

which is the Poisson distribution defined in (3.5.1) (see also § §.1), because it
has been shown in (A2.2.4) that (A2.2.8) does actually hold for r = 0 as well.
This solution is easily checked by differentiating (A2.2.8) giving

de(;v‘) = dit((i?r. -M) 1 r‘r 1 e-u+(”')r (_h-“)
@) (1‘)'
=G Ao

= AP(r—1,8)—AP(r }).
Thus (A2.2.8) is a solution of (A2.2.7).

Why the remainder terms can be neglected

Having derived the Poisson distribution, the remainder terms, which were
written o( At) above, can be written explicitly, so it can be seen that they do in
fact become negligible relative to At when At—0, as stated in (A2.2.1).

The probability of r = 1 event occurring in the interval At is found by putting
r = 1 in (A2.2.8). The exponential is then expanded in series (as in (8.5.2)) giving

(lAt)’ _(aan?

AAte~*At = JAL (1 —AAt+

3
= 1At—(1M)’+% -

= AAt+o(At) (A2.2.9)

as stated at the beginning of this section. All the terms but the first on the
penultimate can be written as o(A?) because they obey the deflnition (A2.2.1),

thus
lim(o(At)) _ Iim(—(1M)’+(1Al)3/2!—...)
A0\ Af A0 At
1 2
= ]1m( }.At-f-( N) )
A0
=0 (A2.2.10)

because every term is zero when Af becomes zero.
The probability that more than one event (r>1) occurs in At is, from (A2.2.8),

().At)'
T

and for all r>1 this can also be written o(At). For example, for r = 2 we have,
using the definition (A2.2.1),

. (o(Al) . [(AA3[21, e~ 2At
im(*57) = (A5
Atwg\ Af Al+0 At
= lim (AN - M‘)

= (A2.2.11)
as stated at the beginning of this section.
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A2.3. The connection between the lifetimes of individual
adrenaline molecules and the observed breakdown rate
and half-life of adrenaline

In the experiment analysed in § 12.6 it is found that when adrenaline
was incubated with liver slices #n vitro the concentration of adrenaline
fell exponentially or, to be more precise, there was no evidence that the
relationship was not exponential. The estimated rate oonstant was
k = 0-07219 min~* (from (12.6.14)), i.e. the estimated time constant was
1/k = 13-85 min (from (12.8.16)), and the estimated half-life, from (12.6.8),
was 0-69315/k = 9-602 min. The arguments in this section apply equally to
the disintegration of radioisotopes since the number of radioactive nuclei is
observed to fall with an exponential time course. One then considers the
lifetimes of individual unstable nuclei.

Focus attention on single adrenaline molecules. Suppose that they are
perfectly stable until, at zero time, the adrenaline solution is added to the
liver preparation that contains enzymes catalysing its catabolism. Suppose
that after the addition of enzymes at ¢ = 0, there is a constant probability,}
AAt+o(At) say, that any individual adrenaline molecule will be catabolized
in any short interval of time Af. As before, 4 is a constant (it does not
vary with time) that characterizes the rate of catabolism. The probability
that the molecule will not be catabolized, from (2.4.3), is therefore 1 —1Az
—o(At). The argument is now exactly like that in § A2.2, Denote as P(t)
the probability that the molecule is still intact at time ¢. The molecule will
still be intact at time ¢+ At if

(it is still intact at time ¢) and (it is not catabolized between ¢ and ¢+ At).

If these events are independent, then the multiplication rule of probability,
(2.4.6), implies

P(t+ At) = P(¢).[1 —2At—o(At)]. (A2.3.1)
This is like eqn. (A2.2.2). Rearranging gives
P+ A)—P(h) _ (A?)

and, using (A2.2.1) just as in § A2.2, when Af-— O this becomes dP(t)/ds
= —AP(t) (see, for example, Massey and Kestelman (1964, p. 59)). The
solution (using the condition that P(0) = 1, i.e. it is certain that the molecule
is still intact at zero time) is, as in § A2.2,

P(t) = o2, (A2.3.2)

Now in a large population of molecules the probability that a molecule
will be still intact at time ¢ can be identified with the proportion of molecules

t Bee § A2.2. A fuller explanation of the nature of the term o(At), which becomes
negligible for short enough time intervals, is given in § A2.5.
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that are still intact at time ¢, i.e. y/y, where y is the concentration of adrena-
line at time ¢, and y, is the initial concentration. Equation (A2.3.2) is now
seen to be identical with the observed exponential decline of concentration
(eqn. (12.8.4)) if the rate constant, k, is identified with A.

Furthermore, the probability that a molecule is still intact at time ¢,
given by (A2.3.2), can be identified, just as in § 5.1, with the probability
that a molecule has a lifetime greater than ¢ (if it did not it would not still
be intact). The probability that the lifetime is equal to or less than t is
therefore, from the addition rule (2.4.3), and (A2.3.2),

1—P(t) = 1—e~=F(g), (A2.3.3)

which is exactly like (5.1.4) (the distribution function, F, was defined
in (4.1.4)). This is consistent with (see § 5.1) the hypothesis that lifetimes
of individual adrenaline molecules are random variables following the
exponential distribution (see Fig. 5.1.1 and 5.1.2), with probability density
(from (4.1.6) and (A2.3.3))

1) = ‘% =Ae~* (t > 0) (A2.3.4)

as previously defined ((56.1.3) and (Al.1.10)). In other words, the mean
lifetime of molecules is A~! (as explained in § 5.1 and proved in (Al.1.11)).

Referring again to the example in § 12.8, it can now be seen that the time
oonstant for the observed exponential fall in adrenaline ooncentration,
k~'=A"! = 13-85 min (from (12.6.18)), can be interpreted as the mean
value of the lifetimes of individual adrenaline molecules (measured from
the time of addition of enzyme at ¢t = 0, or, as shown in the following sections
of this appendix, from any other arbitrary time). It follows from the argu-
ments in § A2.8 that if adrenaline molecules were being synthesized in the
system, their mean lifetime measured from the moment of synthesis to the
moment of catabolism would also be -1 = 13-85 min.

Furthermore, the half-time for the observed decay of concentration
0-69315/k = 9-602 min (from (12.6.6) and (12.6.17)), can be interpreted as
the median value of the lifetimes of individual adrenaline molecules, because
it was shown in (Al.1.4) that the population median of the exponential
distribution is 0-89315/4. Fifty per cent of molecules survive longer than
9-602 min.

A2.4. A stochastic view of the adsorption of molecules from
solution

Suppose that a surface (e.g. cell membrane) containing many identical
and independent adsorption sites is immersed in a solution and is continually
bombarded with solute molecules. Some of these will become adsorbed on to
adsorption sites, remain on the sites for a time, and then desorb back into
the solution. Macroscopic observations of the amount of material adsorbed
can be related to what happens to individual molecules using the same sort
of approach as in §§ A2.2 and A2.3. This is, for example, the simpleat model
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for the interaction of drug molecules with cell receptor sites and, as such,
it is discussed by Rang and Colquhoun (1973).

Consider a single site. The probability that a site is occupied by an ad-
sorbed molecule at time ¢ will be denoted P,(¢), and the probability that the
site is empty at time ¢ will be denoted Py(t). Thus, from (2.4.3),

Poft) = 1—Py(1). (A2.4.1)

The probability that an empty site will become occupied would be ex-
pected to be proportional to the rate at which solute molecules are bombard-
ing the surface, i.e. to the concentration, ¢ say, of the solute (assumed
constant). The probability that an empty site will become occupied during
the short interval of time At, between ¢t and ¢+ At, will therefore be written
AcAt where Ac, a8 in §§ A2.2 and A2.3, is a constant (i.e. does not change
with time). The probability that an occupied site becomes empty during the
interval At will not depend on the concentration of solute, and so will be
written uAt, where u is another constant. The probability that an ocoupied
site does not become empty during At is therefore, from (2.4.3), 1 —uAt.t
Now a site will be occupied at time ¢+ At if either [(site was empty at time t)
and (site is occupied during interval between ¢ and ¢+ At)] or [(site was
occupied at time ¢) and (site does not become empty between ¢ and ¢+ At)].

Now the probabilities of the four events in parentheses have been defined as
Py(t), AcAt, P\(t), and (1 —uAt) respectively. So, by application of the
addition rule (2.4.2), and the multiplication rule (2.4.8) (assuming, as in
§§ A2.2 and A2.3, that the events happening in the non-overlapping intervals
of time, from 0 to ¢ and from ¢ to t+ At, are independent), it follows that the
probability that a site will be occupied at time ¢+ At will be

Py(t+A) = Py(t).AcAt+ Py(t)(1 —udt)+o(AD), (A2.4.2)

where o(At) is a remainder term that includes the probability of several
transitions between occupied and empty states during At. As in §§ A2.2
and A2.3, o(At) becomes negligible when At is made very small. Rearranging
(A2.4.2) gives

Py(t+ At)— Py (¢) O(A‘)
At At
Now let At— 0. As before the left-hand side becomes, by definition of

differentiation (e.g. Massey and Kestelman (1964, p. 59)), d P,/d¢, so, using
(A2.4.1) and (A2.2.1),

dP(t)
ds

t The probabilities should really be written AcAt+o(At), uAt+o(At) and 1 —uAt
—o(At), as in §§ A2.2 and A2.8, if the time interval, At, is finite. Alternatively, it could
be said, as in § A2.2, that the probability that an occupied site becomes empty during
the infinitesimal interval between ¢ and ¢ 4-d¢ can be written udt, etc. A fuller disoussion
of the nature of the o(At) terms is given in § A2.5. All theee terms have been gathered
together and written as o(At) in (A2.4.2), which holds for finite time intervals.

= Py(t).Ac—P,(t).u+

= Ac(1— P, () —uPy(t). (A24.3)
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If P(t), the probability that an individual site is ocoupied at time ¢, is
interpreted as the proportion of a large population of sites that is occupied
at time ¢, then (A2.4.3) is exactly the same as the equation arrived at by a
conventional deterministic approach through the law of mass action, if
2 and u are identified with the mass action adsorption and desorption rate
constants. Thus A/u is the law of mass action affinity constant for the solute
molecule-site reaction. The derivations and solution of (A2.4.3), and its
experimental verification in pharmacology is discussed by Rang and
Colquhoun (1973).

The length of tsme for which an adsorption site 8 occupied; its distribusion and
mean

In order to investigate the length of time for which a molecule remains
adsorbed consider the special case of (A2.4.3) with Ac = 0. The probability
of an adsorbed molecule desorbing does not depend on the probability, 4,
that an empty site will be filled, or on the concentration of solute, so this
does not spoil the generality of the argument. For example, at ¢ = 0 the
surface, with a certain number of adsorbed molecules, might be transferred
to a solute-free medium (i.e. ¢ = 0) so that adsorbed molecules are gradually
desorbed, but no further molecules can be adsorbed, so that a site that
becomes empty remains empty. When ¢ = 0, (A2.4.3) becomes

= _uP). (A2.4.4)

This equation has already been encountered in §§ A2.2 and A2.3. Integration
gives the probability that a site will be occupied, at time ¢ after transfer to
solute free medium, as

P,(t) = P,(0)e~** (A2.4.5)

where P,(0) is the probability that a site will be occupied at the moment of
transfer (¢ = 0). In other words, the proportion of sites occupied, and there-
fore the amount of solute adsorbed, would be expected to fall exponentially
with rate constant u. Such exponential desorption has, in some cases, been
observed experimentally.

Now if the total number of adsorption sites is N, then the number of
sites occupied at time ¢ will be N(t) = N, P;(t), and the number occupied
at t = 0 will be N(0) = N, P,(0). The proportion of initially occupied sites,
that are still occupied after time ¢ will, from (A2.4.5), be

yo _ Py

N©O)  Py(0)
and this will also be the probability that an individual site, that was ocoupied
at ¢t = 0, will still be occupied after time ¢t.

. A site will only be occupied after time ¢ if the length,for which the molecule
remains adsorbed (its lifetime) is greater than ¢, so (A2.4.8) is the probability

t i.e. has been continuously occupied between 0 and ¢.

et (A2.4.6)
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that the lifetime of an adsorbed molecule is longer than t. Analogous situations
were met in §§ 5.1 and A2.3. The probability that the lifetime of an adsorbed
molecule is ¢ or less is therefore, from (2.4.3),

P0<lifetime<t) = F(t) = 1 —e™**. (A2.4.7)

This is exactly like (6.1.4) and (A2.3.3), and is consistent with (see § 5.1) the
hypothesis implied by the physical model of identical and independent
adsorption sites, that the lifetime of individual adsorbed molecules is an
exponentially distributed variable, with probability density as before, from
(4.1.5),
dF(t

J) = % = pe~ht, (A2.4.8)
The mean lifetime of a molecule on an adsorption site is therefore x~? (from
(A1.1.11)), the observed time constant (see {(12.6.4)) for desorption of adsorbed
molecules into a solute-free medium; and, just as in § A2.3, the observed
half-time for desorption, 0-69315/u (from (12.6.8)) can be interpreted, using
(Al.1.14), as the median lifetime of a molecule on an adsorption site. Fifty
per cent of molecules stick for a longer time than 0-89315/u.

What is meant by lifetime? In the discussion above, the lifetime of an
adsorbed molecule was measured from the arbitrary instant (¢ = 0) when the
surface was transferred to solute-free medium until the instant when the
molecule desorbed. The average length of this residual lifetime (see § A2.7)
was u~ L. It is of more fundamental interest to known the average length of
time a molecule remains adsorbed, i.e. the lifetime measured from the instant
of adsorption to the instant of desorption. The mean length of this lifetime
is also u~!, as implied in §5.1. It might be expected that, because the
adsorbed molecules have already been adsorbed for some time at the time
that the surface is transferred to the solute-free medium, and the lifetime
measured from moment of adsorption to moment of desorption would be
longer than u~! (see Fig. A2.7.3). This cannot be because of the ‘lack of
memory’ or ‘lack of ageing’ of the Poisson process. It is nevertheless sur-
prising to most people, in just the same way as the analogous bus-waiting
time ‘paradox’ described in § 5.2 is, at first sight, surprising.

If the mean interval between bus arrivals (supposed random) is 10 min
then the waiting time from an arbitrary moment until the next bus was
stated in § 5.2 to be 10 min also, just as the waiting time from an arbitrary
moment until desorption (residual lifetime) is the same (u~!) as the mean
time between adsorption and desorption (lifetime). In words, the reason for
this is that if one looks at the surface at an arbitrary moment of timet it is
more likely that it will oontain long-lived molecule-adsorption site complexes
than short-lived ones which, because they exist for only a short time do not
stand such a good chanoce of being in existence at any specified arbitrary
moment. Similarly in § 5.2, it is more probable that a person will arrive at

t An arbitrary moment of time means & time chosen by any method at all as long
as it is independent of the ocourrence of events, i.e. independent of the times when
molecules move on and off adsorption sites in this case.

26
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the bus stop during a long interval than a short one. In fact, the mean life-
time (from the moment of adsorption to the moment of desorption) of
molecules present at an arbitrary moment (such as the moment when the
surface with its adsorbed molecules is transferred to solute-free medium) is
exactly twice the mean lifetime of all molecules, i.e. it is 242, so the average
residual waiting time until desorption is 4! as stated, and the mean length
of time that a molecule has already been adsorbed at the arbitrary moment
is also u~1, cf. § 5.2). These statements are further discussed and proved in
§§ A2.6 and A2.7.

The length of time for which an adsorption sste i3 empty

The argument follows exactly the same lines as that presented above
for the average length of time for which a site is occupied. As above it is
convenient to consider the special case when the combination of molecule
with adsorption site is irreversible so that once ocoupied a site remains
ocoupied, i.e. 4 = 0 (the probability of an empty site becoming occupied
does not depend on u so this does not spoil the generality of the arguments).
In this case, because it follows from (A2.4.1) that dP,/dt = —dP,/dt,
equation’(A2.4.3) becomes

dp,

5= —MPolt), (A2.4.8)

which has exactly the same form as (A2.4.4). Using the same arguments as
above, it follows that the length of time for which a site remains empty is
an exponentially distributed random variable with a mean length of
(Ac)~!. The mean length is inversely proportional to the concentration of
solute (c). As above, this is the lifetime measured either from an arbitrary
moment, or from the time when the site was last vacated by a desorbing
molecule.

Adsorption at equslibrium

After a long time (¢t — c0) equilibrium will be reached, i.e. the rate at
which molecules are desorbed will be the same as the rate at which they are
adsorbed. Therefore, the proportion of sites occupied, P;, will be constant,
i.e. dP;/dt = 0. Equation (A2.4.3) gives

Ac(l—P)—pP, =0
from which it follows that, at equilibrium,
Ac Kc

Pi=i

5~ Ko+l
if K = Afu, the law of mass action affinity constant. This equation is the
hyperbola in §§12.8 and in 14.6. Now it has been shown that the mean

length of time for which an individual site is occupied is u~!, and the mean
length of time for which it is empty is (Ac)~!. These values hold whether or

(A2.4.10)
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not equilibrium has been reached.f After transferring a membrane with
empty sites, to a solution containing a constant concentration, ¢, of solute,
the empty sites will have to wait, on average, (Ac)~! seconds before they
become occupied so equilibration will take time; see Rang and Colquhoun
(1973). Using these values, it follows that

K¢ = (ocoupied time/empty time) (A2.4.11)
and therefore (A2.4.10) can be written
1
P, (A2.4.12)

= 14 (empty time/occupied time)

For example, if the probability that a site is occupied is P, = 0-5 (this will
be independent of time at equilibrium), i.e. 50 per cent of sites, on the average,
are occupied at any moment of time, it follows from (A2.4.12) that empty
time = occupied time, i.e any given site is occupied for 50 per cent of the
time. This state is attained, at equilibrium, when (d¢)~! = u~?, i.e. when
the concentration of solute is ¢ = u/A = 1/K (as inferred directly from
(A2.4.10)).

A2.5. The relation between the lifetime of individual radioisotope
molecules and the interval between disintegrations

The examples of random intervals between miniature and plate potentials
(MEPP) discussed in § 5.1) and between bus arrivals (in § 5.2) were straight-
forward in that there was in each case a single continuous stream of events.
In the case of radioisotope disintegration (§§ 3.5-3.7), catabolism of adrena-
line (§ A2.3), or adsorption of solute molecules (§ A2.4) the situation is
not quite the same. For each isotopic atom there is only one event, disintegra-
tion. Nevertheless the random intervals between MEPP or buses have the
same properties as the random intervals defined as the lifetimes of isotope
atoms (or adrenaline molecules, or solute molecule-adsorption site complexes).

The mean lifetime of isotope molecules, measured from any arbitrary
time (see §§ A2.3, A24, A2.6, and A2.7) may be thousands of years. For
example the half-life (i.e. median lifetime, see § A2.3) of carbon-14 molecules
is 5760 years, so the mean lifetime of a molecule is A-! = 5760 (NSl 0.69315
= 8310 years (from (Al.1.11) and (Al.1.14)), i.e. multiplying by the number
of seconds in a Gregorian year, 8310 3-156695x 107 = 2-6224 x 10! s,
This is obviously independent of the amount of 14C present.

However, in §3.7 the Poisson distribution considered was that of the
number of disintegrations per second (it will be assumed, for the sake of
example, that the isotope involved was !4C). Because this variable is Poisson-
distributed with mean, for the example in § 3.7, of 2't = A’ = 20895 disintegra-

t If the movements of molecules could be observed, the mean length of time for
which a site was occupied could be measured, but the average would obviously have
to be taken over a long period of time, relative to u~?, and (Ac)-?, even if many sites,
rather than just one, were observed. It can be shown that the time constant for equilibra-
tion of the sites ia (Ac+u)~? (see, for example, Rang and Colquhoun (1973)), so in faot
the average can only be given & frequency interpretation over a period that is long
relative to the time taken to reach equilibrium.
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tions per second, the mean number of events in ¢ = 1 second (assuming that
the counter detects all disintegrations), it follows from the arguments in
§ 5.1 that the intervals between disintegrations are exponentially distributed
with mean interval (1’)-! = 1/2089-6 = 0-000478583 second (this obviously
depends on the amount of !*C present). Compare this with the lifetimes
of individual molecules that are also exponentially distributed with mean
lifetime A-! = 8310 years. These two exponential distributions are, as
expected, closely related. This will now be shown.

The probability that any individual **C atom disintegrates in an interval
of time of length At, from the arguments in §§ 5.1 and A2.3, must be AAs.1
Suppose that at time ¢ a sample of !4C contains N(t) undisintegrated 4C
atoms. Define as an ‘event’ the digintegration of any of these atoms, i.e.
if the atoms could be numbered, the disintegration of either atom number
1 or atom number 2 or . . . or atom number N(t). The probability of this
event occurring in an interval of time of length A, is, from the addition rule
(24.1),

AM+AAL+ ... +AAL—o(AL) = N(t)AAt—o(As), (A2.5.1)

where o(At) is a remainder term (see (A2.2.1)) that includes all the prob-
abilities of more than one disintegration occurring during A¢, which will be
negligible when At is made very small. The argument now follows exactly
the same lines as in § A2.3. Define the probability that no event occurs up
to time ¢ a8 P(t). No event will occur up to time ¢+ At if (no event ocours up
to t) and (no event occurs between ¢ and ¢+ At), and the probability of this is,
from the multiplication rule (2.4.6),

P(t+At) = P()[1 —N(@®)AAt+o(AL)]. (A2.5.2)

ing this and allowing At — 0 gives, as in (A2.2.2) and (A2.3.1),
dP(t)/dt = —N(t)AP(t). Now if the length of time considered is short enough
for the decay of the radioisotope to be negligible (as assumed in § 3.7) then
N(t) can be treated as a constant. It follows that the solution for P(t),
using the condition that P(0) =1 (i.e. it is certain that no events will
occur in zero time), will be, as before,

P(t) = e~ Nt (A2.56.3)

just as (A2.3.2). This probability, that no disintegration will occur up to
time ¢, can be identified with the probability that the interval between
disintegrations is longer than ¢. Using the same arguments as in § A2.3 it
follows that the interval between disintegrations is an exponentially dis-
tributed variable with a mean length, defined above as (4')~2, of (N(t)4)7?,
and the mean number of disintegrations per second is therefore

A= N(@)A (A2.6.4)
+ This probability should really be written AAt+o(At), if At is finite, a8 in §§ A2.3

and A2.4. The nature of the o{At) terms, and a more rigorous derivation of (A2.5.1),
are discussed at the end of this eection.
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which decreases, as expected, as the total number of isotope molecules,
N(t), decreases. The intervals, will of course, only be exponentially distributed,
and the disintegration rate will only be Poisson distributed, over time
intervals short enough for N(t) to be substantially constant. Using (A2.5.4)
and the figures given above for the example in § 3.7 shows that the number
of 14C atoms present at the time the sample was counted must have been

N(t) = A'[A = 20895 (atoms 8~!) X 2:6224 x 10"! (s).
= §-4795 % 10! atoms,
Therefore the weight of 14C was
5-4795 x 1014/6-023 x 102® = 9-098 x 10~!° gramme molecules, or
9-098 x10719x 14 = 1274 x10"? g,

A more careful look at the nature of the o(At) terms in processes like the
catabolism of adrenaline, the decay of radio-isotopes and the adsorption of
molecules

The basic Poisson procees consista of a continuous stream of events, such as the
occurrence of miniature end plate potentials (see § 5.1) or the random arrivals of
buses at a bus stop. It was shown in § A2.2 that in this sort of procees the prob-
ability of one event occurring in a flnite time interval At can be written as AAf
-+ o{At). Obviously this probability cannot be written simply as AAf because this
would become indefinitely large, if long enough time intervals were considered,
whereas all probabilities must be lees than 1.

In processes like the catabolism of adrenaline, the decay of radioisotopes, or
the adsorption of molecules, the situation is not quite the same. Each adrenaline
molecule can only be destroyed once, 8o one cannot consider the probability of it
being ‘‘destroyed r times during Af"”’ as in § A2.2. Nevertheless it clearly will not
do to say that the probability of catabolism (decay, adsorption, etc.) during
At is AAt, because, as above, this can be greater than 1. Suppose that this prob-
ability can be written AAf+o(At). The argument in the first part of this section
can now be made more rigorous.

The catabolism (decay, etc.) of different atoms during a finite time Af are not
mutually exclusive events, so the simple addition rule cannot be used. Instead,
the binomial theorem should be used. In the language of §§ 3.2-3.4, let a ‘trial’
be the observing of a molecule during the time At, and let a ‘success’ be the
occurrence of catabolism (decay, etc.) during this period. If, as above, there are N
molecules present altogether, then the probability that one of them will be
catabolized (decay, etc.) during Af can be identifled with the probability of
r = 1 success occurring in N trials, and this is given by the binomial distribution,
(3.4.3), as NP(1—-PL)¥-! where it has been supposed that the probability of
success at each trial can be written # = AAt+o(At). This probability is the same
at every trial as discussed in § 8.5. Substituting it for # in N#(1—-2)""1, and
expanding the resulting expression (use the binomial expansion on (1—2)¥"1),
it is found that the required probability of one of the N molecules being cata-
bolized during Af can indeed be written

NP(1—P)P-t = NAAt+o(Al) (A2.5.5)

a8 asserted, on the basis of a simplified argument, in (A2.5.1).
This argument can now be turned upside down starting from the experi-
mental observations and working backwards. The decay of radioisotopes, and,
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in some circumstances at least, the catabolism of molecules, and the desorbtion
of adsorbed molecules, are observed to follow an exponential time course. In each
case the implication is that the probability that a molecule is still intact at time
t, 1—F(t), is e~4t, This is consistent, as described in earlier sections, with the
physical model that specifies that the lifetime of individual molecules is an
exponentially distributed variable with mean A-!. In the case of radioisotope
decay, this can be conflrmed experimentally by the observation that the number
of disintegrations in unit time is Poisson distributed (over times during which N
is substantially constant). Now, if the number of molecules catabolized, etc.
during At is Poisson distributed, and the mean number of events during Af is
A’At as above, then the probability that one molecule of the N present will be
catabolized, etc. during A¢ is given by the Poisson distribution, (3.5.1), with
r = 1and s = 1’4, i.e. it is A’Afe~4 ¢, Substituting i’ = NA from (A2.5.4), and
expanding the exponential term exactly as in (A2.2.9), gives the probability of
one of the N molecules being catabolized, etc. during Af as

NiAte-N3At — NAAL+o(At). (A2.5.6)

just as in (A2.5.5) and (A2.5.1). Now, according to the argument above, this can
be equated with N#(1 —P) -1, where & is the probability of any individual
molecule being catabolized during At. The only two solutions of this equation for
P are P = LAt or P = AAt40(At). The former will not do, as explained above,
80 the probability must be written 1Af0(Af) as asserted in §§ A2.3—A2.5.

A2.6. Why the waiting time until the next event does not
depend on when the timing is started, for a Poisson
process

The assertion that waiting time does not depend on when timing was
started has been made repeatedly in Chapter § and this appendix. For
example, the mean waiting time until a molecule is desorbed does not depend
on the arbitrary time when the timing is started, and will be the same,

A~1, ag if the timing were started from the moment the molecule was adsorbed.

Suppose that the interval from one event to the next is exponentially

distributed with mean A-!. It will be convenient, as at the end of §4.1,

to use ! to stand for time measured from the last event considered as a

random variable, and ¢, ¢,, etc., to stand for particular values of I. Suppose

that a time ¢, is known to have elapsed from the last event. Given this fact,
what is the probability that the time from ¢, until the next event (the
residual lifetime) is less than any specified time ¢, i.e. what is the probability
that I<t,+¢t (event E, say) given that i>t, (event E, say)? In symbols
this is P(E,|E,), i.e. from the definition of conditional probability (2.4.4),

Pi<t,+t and I>t,)

VSN (A2.6.1)

Pl<t,+t|i>t,) =

Now the event that (I<t¢,+t and #>¢) is the same as the event
t,<i<t,+t and, because the intervals between events are being supposed
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to follow the exponential distribution (5.1.3), f(t) = Ae~** with mean interval
between events = A~2, the probability of this is, as in (4.1.2),

to+t
P, <l<t,+t) =f Ao~ Adt
t

to+t
= | —a-* = @~ Mo_g~AMlg+t)

to
= @ " Ho—pAop~ A, (A2.6.2)

The denominator of (A2.6.1) is (cf. (5.1.4)),

PE>1) = f “le-H i
to

= [-—e“‘] = @~ 4, (A2.6.3)
to

Substituting (A2.6.2) and (A2.6.3) into (A2.6.1) gives the required conditional

distribution function (cf. (4.1.4)) for the residual life-time, ¢, (measured from

t, to the next event) as

e~ Mo—g@~Mog~ At

Pl <ttt > t;) = PEFTA

=1l—e"%, (A2.6.3)

which is identical with the distribution function ((5.1.4) or (A2.3.3)) for
the intervals between eventa (measured from the last event to the next event).
Differentiating, as in (A2.3.4), gives the probability density for the residual
lifetime, t, as f(t) = Ade~*, the exponential distribution with mean 1-!
(from (Al.1.11)), exactly the same as the distribution of intervals between
events. The common-sense reason for this curious result has been discussed
in words in §§ 5.2 and A2.4, and is proved in § A2.7.

A2.7. Length-biased sampling. Why the average length of the
interval in which an arbitrary moment of time falls is
twice the average length of all intervals for a Poisson
process

In § 5.2 it was stated that if buses arrive randomly with an average interval
of 10 min then, if a person arrives at the bus stop at an arbitrary time, the
mean length of the interval in which he arrives is 20 min. Similarly, in

§ A24 it was asserted that the mean lifetime of adsorbed molecule-

adsorption site complexes in existence at a specified arbitrary moment of

time was twice the average lifetime. In each case this was explained by
saying that a long interval has a better chance than a short one of including
the arbitrary moment, i.e. the interval lengths are not randomly sampled
by choosing one that includes an arbitrary time, just as rods of different
length would, doubtless, not be randomly sampled by picking a rod out of
a bag containing well mixed rods. The long rods would stand a better chance
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of being picked. Sampling of this sort is described as length-biased (gee,
for example, Cox 1962, p. 65).

The specifying of the arbitrary moment of time constitutes the choice of
an interval (the interval in which the time falls) from the population of
intervals between events. Imagine that intervals are repeatedly chosen in
this way. What will their average length be ? First, the distribution of their
length must be found.

The distribution of intervals chosen by length-biased sampling

One difficulty in deriving the required result arises because it is necessary
to consider an infinite population of intervals. It will be much easier to
start off with a finite population. Imagine a finite set of N intervals, and call
the length of an interval (the ith interval) ¢,. The total length of time occupied
by the intervals is thus }¢,. The fraction of this total time occupied by the

all ¢
tth interval will be

S (A2.7.1)

If these fractions are added up for all intervals that are longer than some
specified length ¢, the result is the proportion of time occupied by intervals
longer than ¢:

2t __ time occupied by intervals longer than

4>t
X total time (A2.7.2)
all ¢
= probability that a point chosen at randomt
falls in an interval longer than ¢ (A2.7.3)
= 1-Fy(t) (A2.7.4)

if F,(t) stands for the distribution function of intervals chosen by length-
biased sampling (defined as the proportion of intervals thus chosen with
length less than the specified value, ¢, so 1—F,(¢) is the proportion with
length greater than ¢; see (4.1.4) and (5.1.4)).

The crucial step, the equating of (A2.7.2) and (A2.7.3), certainly looks
reasonable. Another way of looking at it is to suppose that the probability
of choosing any particular interval is directly proportional to its length,
¢, 80 longer intervals are more likely to be chosen. The proportionality
constant must be chosen so that all the probabilities add up to 1, because it is
certain that one interval or another will be chosen. The proportionality

constant is therefore 1/ 3 ¢, giving
el

t i.e. & point chosen at random with the uniform (or rectangular) distribution over
the interval 0, lzl e
a 1
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probability of choosing an interval of length ¢, is

5
constant X ¢; = —z—“ (A2.7.5)
all £

It follows, using the addition rule, (2.4.2), that the probability of choosing
an interval longer than ¢ is found by adding these probabilities for all inter-
vals longer than ¢ giving

24
probability of choosing an interval longer than ¢ = %. (A2.7.8)

1
all ¢

which is exactly the same a8 found above, eqn. (A2.7.3).

Now suppose that in the finite population of N intervals, some of the
intervals are of identical lengths. There are f, intervals of length ¢,, say
(80 Zf, = N). The time occupied by the f, intervals of length ¢; must be f¢,,
and the total time ocoupied by all N intervals must be ) fit,. The proportion

ire
of the total time occupied by intervals longer tha.:1 a.‘ specified value, t,
by modificating of (A2.7.2) (or A2.7.6)) must now be written

time occupied by intervals longer than ¢
total time

= probability that an interval chosen by
length-biased sampling is longer than ¢ (A2.7.7)

=1-—F,@)

¢z> lf‘t‘ tz> ¢ P“'
_ ff«h= sz B (A2.7.8)

all ¢ all ¢

if P, is defined as f,/N, the proportion of intervals of length ¢, in the popula-
tion. The values of P, define the (discontinuous) distribution of interval
lengths ¢,, in the finite population under consideration.

It is now possible, at last, to revert to the real problem, in which there is
an infinite population of intervals and the intervals can potentially be of
any length, i.e. they have a continuous distribution (see Chapters 4 and 5).
Allthatisnecessaryistoreplace P, by dP = f(t) d¢ (from (4.1.1)). As described
in Chapter 4, dP is the probability that the length of an interval will lie
within the very narrow range between ¢ and ¢+dz. When this is substituted
in (A2.7.8) the summations must, of course, be replaced by integrations.
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The result is

proportion of time occupied by intervals longer than ¢

= probability that an interval chosen by length biased

sampling is longer than ¢
= 1-F,()
K
=2 . (A2.7.9)
of (1)
10
-
08t
b r
£ost \so
Z L
2 Mean for f(1)
£ o4l
h -Mean for f,(1)
]
3 .
o2 i E JAU)
00y ] 2 3 3 5

At(duration of interval as a multiple of the mean of all intervals)

Fi1a. A2.7.1. Distributions of the length of random intervals. The abscissa
is plotted as in Figs. 5.1.1 and A2,7.2. The distribution of durations in the
population, f(t), is the exponential distribution, exactly as in Fig. 5.1.2. The
dist ribution of the lengths of intervals chosen by length-biased sampling, f;(t),
sh ows that relatively few short intervals will be chosen, and the mean interval is
twic e as long as the mean of the whole population. If the abacissa is multiplied by
A=1 to convert it into time units, the probability density would be divided by
A=1, so the area under the curves remained 1-0.
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For the exponential distribution of intervals in the population, which is
what we are interested in, substitute the definition of this distribution,
J() = Ae~*, in (A2.7.9). The integral in the denominator of (A2.7.9) has
already been shown in (Al.1.11) to be A~!. The numerator of (A2.7.9),
integrating by parts exactly as in (Al.1.11), is

© AN o
[—te"‘] _[e_l-'] _— —0+‘0-“—0+l-16-“
¢ H

= (A"14t)e 4, (A2.7.10)
Substituting these results in (A2.7.9) gives
-1 —~ At

1—Fy(t) = (ljﬁﬂ)e = (1+At)e~* (A2.7.11)

as the proportion of intervals longer than ¢, when the intervals are chosen
by length-biased sampling. Compare this with the proportion of intervals
longer than ¢ in the whole population which, from (5.1.4) or (Al.1.12), is
1—F(¢t) = e~ *'. The cumulative distributions are plotted in Fig. A2.7.2.

The proportion of intervals longer than the mean interval

The mean length of all intervals in an exponentially distributed population
is 271, as proved in (Al.1.11). It was shown in (A1.1.13) that 83-21 per cent
of all intervals are shorter than the mean, A~!. Therefore 100—63-21 = 36:79
per cent of all intervals are longer than the mean length. The proportion of
time occupied by intervals that are longer than the mean follows directly
from (A2.7.11) and (A2.7.9.), putting ¢ = 47!, and is thus

(1444 1)e~#"" = 2¢-1 — 0-7358, i.e. 73-58 per cent.
(A2.7.12)
Thus, although only 36-79 per cent of intervals in the population are
longer than the mean length, this 36-79 per cent occupy 73-58 per cent of

the time, and this is one way of looking at the reason for there being a greater
chance of an arbitrary time falling in a long interval than a short interval.

The mean length of an interval chosen by length-biased sampling

The question posed at the beginning of this section can now be answered.
The probability density function (see §4.1) defining the distribution of
lengths of intervals chosen by length-biased sampling follows from (A2.7.11),
using (4.1.5), and is

d d
hH(t) = an(‘) = d—‘{l —(1+A)e™4]
= A%e~* (for ¢ > 0). (A2.7.13)

This distribution curve is drawn in Fig. A2.7.1, and compared with the
distribution curve, f(t) = de~*, for all intervals in the population.
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Fra. A2.7.2. Cumulative distributions of the lengths of random intervals.
The distribution function, F(t), for the lengths of all intervals is exactly as in
Fig. 5.1.1. The abscissa is the interval length as a multiple of the mean length of
all intervals, l.e. it is Af as in Fig. 5.1.1. If the mean length of all intervals were
A~1 = 10 s, the figures on the abscissa would be multiplied by 10 to convert them
to seconds. The cumulative distribution, F,(f), for intervals chosen by length-
biased sampling, is seen to have more long intervals than there are in the whole
population, the mean being 24~! (i.e. 20 s in the example above).
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The mean length of an interval chosen by length-biased sampling now
follows from (Al.1.2), and is

E@) = f tfi(t)dt = f A%3e-2ds, (A2.7.14)
(1] 0
To solve this, integrate by parts (see, for example, Massey and Kestelman,

(1964, pp. 332, 402)), as in (Al.1.11). Put u == ¢2, so du = 2t dt, and put
dv = A%e~*dt, so v = [A%e~*dt = [—Ae~*!]. Thus

E() = J‘audv = [uv]—fvdu
[1]
— [—t’le"‘:la—‘[a(—le‘“) (2¢d)
1] 0

— 042 f “the- ttdt
0
— 211, (A2.7.16)

i.e twice the mean (4~1) of all intervals, as stated. In the evaluation of the
first term on the second line of (A2.7.15) notice that t?e~% — 0 as t — o0;
see, for example, Massey and Kestelman (1964, p. 122). The integral on the
third line of (A2.7.15) is simply the mean of the exponential distribution,
shown in (Al.1.11) to be ™1,

a7
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TaBLE Al
Nonparametric confidence limits for the median
Bee §§ 7.3 and 10.2. Rank the n observations and take the rth from each end as
limits, tWith samples smaller than n = 6, 95 per cent limita cannot be found,
but the P value for the limits formed by the largest and smallest (r = 1) obeerva-
tions are given (Nair 1940).

Sample P approx. P approx. Sample P approx. P approx.
size 95 per cent 99 per cent size 85 per cent 99 per cent
n r 100 P r 100 P n r 100 P r 100 P
31 10 97-08 8 99-66
2 1¥ 500 32 10 98-00 9 99-30
3 1+ 750 33 11 96-50 ® 99-54
4 1¥ 875 4 11 97-56 10 99-10
5 1t 9375 35 12 95-90 10 99-40
6 1 96-88 36 12 9712 10 99-60
7 1 98-44 37 13 95-30 11 99-24
8 1 99-22 1 99-22 38 13 96-64 11 99-50
9 2 96-10 1 99-60 39 13 97-62 12 99-06
10 2 97-88 1 99-80 40 14 96-16 12 99-36
11 2 98-82 1 99-90 41 14 97-24 12 99-62
12 3 96-14 2 99-36 42 15 95-64 13 99-20
13 3 97-76 2 99-68 43 15 96-84 13 99-46
14 3 98-70 2 99-82 44 16 95-12 14 99-04
15 4 96-48 3 99-26 45 16 96-44 14 99-34
16 4 97-88 3 99-58 46 16 97-42 14 99-54
17 5 96-10 3 99-76 47 17 96-00 15 9920
18 5 96-02 4 99-24 48 17 97-08 15 99-44
19 5 98-08 4 99-56 49 18 95-56 18 99-08
20 (] 95-86 4 99-74 50 18 96-72 16 99-34
21 8 97-34 5 99-28 51 19 956-12 16 99-54
22 6 98-30 5 99-56 52 19 96-38 17 99-22
23 7 96-54 5 99-74 53 19 97-30 17 99-46
24 7 97-74 8 99-34 54 20 95-98 18 99-10
25 8 95-68 8 99-60 56 20 97-00 18 99-36
26 8 97-10 7 99-06 56 21 95-60 18 99-54
27 8 98-08 7 99-40 57 21 06-68 19 09-24
28 9 96-44 7 99-62 58 22 85-20 19 99-46
29 9 97-58 8 9918 59 22 96-36 20 99-14
30 10 85-72 8 99-48 60 22 97-26 20 99-38
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Sample P approx. P approx. S8ample P approx. P approx.

size 95 per cent 99 per cent size 95 per cent 99 per cent

n r 100 P r 100 P n r 100 P r 100 P

el 23 96-04 21 99-02 71 27 86-80 25 99-14

62 23 97-00 21 99-28 72 28 95-56 25 99-36

63 24 9570 21 99-48 73 28 96-56 26 99-04

64 24 96-72 22 99-18 74 29 95-26 26 99-30

65 25 95-36 22 99-40 75 29 96-30 26 99-48

a6 25 96-44 23 99-08

67 26 95-02 23 99-32

68 26 86-16 23 99-50

69 26 97-08 24 99-24

70 27 95-86 24 99-44
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mse

Confidence 1

population proportion of ‘successes’

See 7.7, 7.8, 10.2 and 3.2-3.4. If r ‘successes’ are observed in a sample of

', the confldence limits (1002, and 100 #y from eqns. (7.7.1) and (7.7.2))
for &, the proportion of ‘successes’ in the population (see § 3.2) from which the
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TaBLE A3

The Wilcoxon test for two independent samples
See § 9.3. The sample sizes are n, and n,. If the sample sizes are not equal n,
is taken as the smaller. If the rank sum for sample 1 (that with n; obeervations)
is equal to or lees than the samaller tabulated value, or equal to or greater than the
larger tabulated value, then P (two tail) is equal to or lees than the figure at the
head of the column. If the null hypothesis were true P would be the probability
of observing a rank sum equal to or greater than the larger figure, or equal to or
less than the smaller. If one or both samples contain more than 20 observations,
use the method described at the end of §9.3. M. 1. Sutcliffe’s table reproduced

from Mainland (1963) by permission of the author and publisher.

P (approx.) (.01 P (approx.)
n, ng 010 0-05 @B 5 n o010 0-05 0-01
2 4 — — —_ 3 18 15;51 13; 53 8; 58

5 3;13 — — 19 16;53 13; 58 9; 60

(] 3;15 — — 20 17;58 14; 58 9; 63

ki 3;17 —_ —_

8 4;18 3;19 — 4 4 11; 25 10; 26 —

5 12;28 11; 29 —

9 4;20 3; 21 — 8 13;31 12; 32 10; 34
10 4;22 3;23 — 7 14; 34 13; 35 10; 38
11 4;24 3;25 —_ 8 15; 37 14; 38 11; 41
12 5; 25 4;26 —_

13 5; 27 4;28 — 9 18;40 14; 42 11; 45
10 17;43 15; 45 12; 48
14 6;.28 4;30 —_ 11 18; 46 16; 48 12; 52
15 8; 30 4;32 — 12 19; 49 17; 51 13; 58
16 6; 32 4;34 —_ 13 20; 562 18; 54 13; 69
17 6; 34 5; 35 —
18 7;35 5;37 — 14 21;88 19; 67 14; 62
16 22;58 20; 60 15; 85
19 7; 37 5;39 3; 41
20 7; 39 ; 41 3;43 16 24;60 21; 63 15; 69
17 25;63 21; 67 16; 72
3 3 8;15 — — 18 26; 68 22;170 16; 76

4 8; 18 — —

6 7; 20 8; 21 — 19 27;69 23;173 17; 79

(] 8; 22 7;23 — 20 28;72 24; 76 18; 82

ki 8; 25 7;26 —_—

5 5 19;38 17; 38 15; 40

8 9; 27 8; 28 — 8 20;40 18; 42 16; 44

9 10;29 8; 31 8;33 7 21;44 20; 45 18; 49
10 10;32 9; 33 8; 36 8 23;47 21; 49 17; 53
11 11; 34 9; 36 8; 39 9 24;61 22; 53 18; 67
12 11; 37 10; 38 7; 41

10 28; 54 23; 57 19; 61
13 12;389 10; 41 7; 44 11  27;68 24; 61 20; 65
14 13;41 11; 43 7; 47 12 28;862 26; 64 21; 69
16 13; 44 11; 46 8; 49 13 30;65 27; 68 22;178
16 14;486 12; 48 8; 52 14 31;69 28; 72 22;178
17 15; 48 12; 51 8; 55
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Tables 403
P (approx.) P (approx.)

n, ng 0-10 0-05 0-01 n ng 010 0-05 0-01
15 33;172 29; 76 23; 82 8 11 659;101 55;106  49; 111
16 34;76 30; 80 24; 86 12 62;108 58;110 51;117
17 35;80 32; 83 25; 90
18 37,83  83;87  26;94 13 64;112 60;116  53;123
19  38;87 34; 91 27; 98 14 67;117 62;122  54;130

15 69;123 65;127  56; 136
20 40;80  35;06  28;102 18 72;128 67;133  58; 142
17 75;133  70;138  60; 148
6 6 28;50 26; 52 23; 55
720,66 27;57  24; 60 18 77;130  72; 144  62; 164
8 31;69  29;61  26;65 19 80;144 74,150  64; 160
9 33;63 31,66  26;70 20 83;149 77;156 66, 166
10 35; 67 32; 70 27; 76 ’ ' '
11 37; N 34; 74 28; 80 9 9 86; 105 62; 109 56; 116
13 40; 80 37; 83 31; 89 11 72; 117 68; 121 61; 128
14 42.. 84 38; 88 32; o4 12 75; 123 71; 127 63; 136
18  46; 92 42; 96 34; 104 14 81;136 76; 140 687; 149
17 47;97 43;101  36; 108 16 84;141 79;146  69; 1586
18 49;101  45;106 37;113 16 87;147 82;152 72;162
19 51;106 46;110 38;118 17 90;153  84;159 74;169
20 53;100 48;114  39;123 18  93;159 87;185 176;176
7 1 39;66 36; 69 32; 73 19 96;165 90;171  78;183
8 41;7 38; 74 34; 78 20 99;171 93;177  81;189
9 43;76 40; 79 35; 84
10 45; 81 42; 84 37;80 |10 10 82;128 78;132  71;139
11  47; 86 44; 89 38; 95 11 86;134 81;139  73; 147
12 89;141 84;146  76; 154
12 49; 901 46; 94 40; 100 13 92;148 88;152  79; 161
13 52;96 48; 99 41; 108 14 96;154 91;159  81; 169
14 54;100 50;104 43;111
16 56;106 52;100  44; 117 16 99;161 04;166 84;176
16 58;110 b54;114  46;122 16 103;167 97;173  86; 184
17 106;174 100; 180  89; 191
17 61;114 56;119 47;128 18 110;180 103;187  92;198
18 63;119 58;124  49;133 19 113;187 107;193  94; 208
19 65;124 60;120 50;139
20 67;120 62;134 52;114 20 117;193 110;200 97;213

8 8 51;85 49; 87 43;93 |11 11 100;153 96;157 87; 166
9 54;90 51; 93 45; 99 12 104;160 99;165  90; 174
10 56;96 53; 99 47; 108 13 108;167 103;172  93; 182




404 Tables
0.10 p (approx.) P (approx.)
n, ng 0-01 0-05 0-01 n, ny 0-10 0-05 0-01
11 14 112;174 108; 180 98; 190 | 14 19 192;284 183;293 188; 308
15 116; 181 110; 187 99; 198 20 197;293 188;302 172; 318
16 120;188 113;1956 102;208 | 15 15 192;273 184;281 171;294
17 123;1986 117;202 105; 214 16 197;283 190; 280 175; 305
18 127;203 121;209 108; 222 17 203;292 195; 300 180;315
19 131;210 124;217 111;230 18 208; 302 200;310 184; 3268
20 135;217 128;224 114; 238 19 214; 311 205; 320 189; 336
12 12 120;180 115;185 105; 195 20 220;320 210;330 193; 347
13 125;187 119;183 109; 203
14 129;195 123;201 112;212 {16 16 219;309 211;317 198; 332
15 133;203 127;209 115; 221 17 225;319 217;327 201; 343
16 138;210 131;217 119;229 18 231;829 222;338 208; 354
19 237;339 228; 348 210; 366
17 142; 218 135; 2256 122; 238 20 243;349 234;358 215; 377
18 146;226 139; 233 125; 247
19 150;234 143;241 129;25656 | 17 17 249;346 240;365 223;372
20 155; 241 147;249 132; 264 18 255; 357 246;368 228;384
19 262; 367 252;377 234; 395
13 13 142;209 1368;216 125; 226 20 268;378 258;388 239; 407
14 147;217 141; 223 129; 235
15 152;225 145;232 133;244 | 18 18 280;388 270;396 252; 414
18 156; 234 150; 240 136; 254 19 287;397 277;407 258; 426
17 161;242 154;249 140; 263 20 294;408 283;419 283; 439
18 166;250 158;258 144;272 (19 19 313;428 303;438 283;458
19 171;258 163;268 147; 282 20 320; 440 309; 451 289; 471
20 175;287 167;2756 151;291
20 20 348;472 337;483 315; 505
14 14 166;240 160;246 147; 259
15 171;249 164;256 151; 2489
16 176; 2568 169; 285 155; 279
17 182;288 172;276 159; 289
18 187;275 179;283 163;299
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TaBLE A4

The Wilcoxon signed ranks test for two related samples

See § 10.4. The number of pairs of obeervations is n. The table gives the values
of T (deflned as the sum of positive ranks, or the sum of negative ranks, which-
ever is the amaller) for various values of P (the probability of a value of T equal
to or less than the tabulated value if the null hypothesis is true). If there are
more than 25 pairs of observations, use the method described at the end of § 10.4.
Adapted from Wilcoxon and Wilcox (1964), with permission.

P value (two tail)

n 0-05 0-02 0-01
4 10(P = 0-125) — —
5 10(P = 0-0825) — —
8 0 — —
7 2 0 —
8 4 2 0
9 8 3 2
10 8 5 3
11 11 7 5
12 14 10 7
13 17 13 10
14 21 18 13
15 25 20 18
18 30 24 20
17 35 28 23
18 40 33 28
19 46 38 32
20 52 43 38
21 59 49 43
22 66 56 49
23 73 62 55
24 81 69 81
25 89 77 68

t It is not possible to reach a value of P as small as 0-05 with such small samples
(see §§ 6.2 and 10.4). The values of P for T = 0 are given,



TaBLE AS
The Kruskal-Wallis one way analysis of variance on ranks (independent
samples)

See § 11.5. For each value of H, the table gives the exact value of P (the
probability of observing a value of H equal to or greater than the tabulated value
if the null hypothesis is true, found from the randomization distribution of rank
sums). This table deals only with k¥ = 3 groups, the number of obeervations
(my, ng, and ng) in each being up to 5. For larger samples or more groups use the
method described at the end of § 11.5. From Kruskal and Wallis (1952, J. Amer.
Statist. Ass. 47, 614; 48, 910) with permission of the author and publisher.

Sample sizes S8ample sizes
H P H P
m Ny 1y m Ny Ny
2 1 1 2-7000 0500 4 2 1 4-8214 0-057
4-5000 0-076

2 2 1 3-6000 0-200 4-0179 0114
2 2 2 4-5714 0-087

3-7143 0-200 4 2 2 6-0000 0-014

5-3333 0-033
51250 0-052
3 1 1 3-2000 0-300 4-4583 0:100
4-1667 0-105

3 2 1 4-2857 0-100

3:8671 0-133 4 3 1 5-8383 0-021
5-2083 0-050
3 2 2 5-3572 0-029 5-0000 0-057
4-7143 0-048 4-0556 0-093
4-5000 0-087 3-8889 0-129
4:4643 0-1056
4 3 2 6-4444 0-008
3 3 1 5-1429 0-043 6-3000 0-011
45714 0-100 54444 0-046
4-0000 0-129 5-4000 0-051
45111 0-098
3 3 2 6-2500 0-011 44444 0-102

5-3611 0-032
5-1389 0-061

4-5556 0-100 4 3 3 6-7455 0-010
4-2500 0121 6-7091 0-013
5-7909 0-046
3 3 3 7-2000 0-004 57273 0-050
6-4889 0011 47091 0-092
5-6889 0-029 47000 0-101
5-6000 0-050
5-0867 0-086 4 4 1 6-6667 0-010
4-6222 0-100 6-1667 0-022

4-9667 0:048
4 1 1 3-5714 0-200 4-8867 0-054




Tables 407

Sample sizes Sample sizes
H P H P
noong omy mone om
41667 0-082 5 3 8 70788  0-009
40867 0102 69818  0-011
56485  0-049
4 4 2 70384 0006 56162 0051
8-8727 0-011 45333 0:007
54545 0-048 44121 0-109
52384 0062
45645 0098
5 4 1 69545 0008
44455 0103 68400  0-011
4 4 3 7-1439 0-010 ::::gg g:g::
7-136¢  0-011 39873 0088
55985 0:049 39600  0-102
55758  0-051
45455 0099
44773 0.102 5 4 2 712045 0009
71182 0010
4 4 4 716538 0008 52727 0-049
75385  0-011 52682  0-050
56923 0049 45400 0098
56538  0-054 45182 0101
46539  0-097
45001 0104 5 4 3 aue o010
73949 0011
5 1 1 38671 0-143 ons  oon
5 2 1 52500 0038 56308 0050
45487  0-099
8:0000 0048 45231 0103
44500 0071
42000 0095
40500 0119 5 4 & 77604 0009
77440 0011
5 2 2 65333 0008 56571 0-049
6-1333 0-013 56176 0-050
5-1600 0-034 4-8187 0-100
5-0400 0-056 4-5527 0-102
43733 0090
42033 012\ 5 5 1 73081 0009
5 3 1 64000 0012 68364 ool
49800 0.048 51213  0-046
48711 0052 4-9001 0-053
40178 0098 41091 0-086
0364 0106
38400 0123 4
5 3 2 69091 0-009 65 5 2 7338 0010
68218 0010 72692 0-010
52500  0-049 53385  0-047
51055 0052 52462 0061
46509  0-09] 4-6281 0-097
44945 0101 £5017  0-100




408 Tables
Sample sizes Bample sizes
H P H P
n, n; ny ny Ny Ny
5 5 3 7-5780 0-010 5-6429 0-050
7-5429 0-010 4-5229 0-099
5-7055 0-0468 4-5200 0-101
6-6264 0-051
4-5451 0-100 5 5 5 8-0000 0-009
4-5363 0-102 7-9800 0-010
5-7800 0-049
5 5 4 7-8229 0-010 5-6600 0-051
7-1914 0-010 4-5600 0-100
5-6857 0-049 4-5000 0-102




TABLE A6

The Friedman two way analysis of variance on ranks for randomized block experiments

See § 11.7. For each value of S the table gives the exact value of P (the probability of observing a value of S equal to or greater
than the tabulated value if the null hypothesis is true, found from the randomization distribution of rank sums). Approximate P
values are given at the head of the column. If the number of treatments, k, or the number of observations per treatment = number
of blocks, n, is too large for this table, use the method described at the end of § 11.7. From Friedman, M. (1937, J. Amer. Siatist. Asa.
32, 688), by permission of the author and publisher.

Number of treatments
k=3 k=4 k=25

No. of P =~ 0-056 P ~ 001 P ~0-001 P =~ 0-05 P >~ 0-01 P ~:0-001 P ~ 005 P ~0-01 P =~ 0001
blocks

n S P S P S P S P S P S P S P S P S P

2 —_ —_ — —_— — — 20 0-042 — — —— —_ — —_ — _— — —

3 18 0-028 — _— — — 37 0-033 e — e e 64 0045 76 0-0078 86 0-0009

4 26 0-042 32 0-0046 o — 52 0-036 64 0-0069 74 0-0009

5 32 0-039 42 0-0085 50 0-0008 65 0-044 83 0-0087 105 0-0008

6 42 0-029 54 0-0081 72 0-0001 76 0-043 100 0-0100 128 0-0009

7 50 0-027 62 0-0084 86 0-0003

8 50 0-047 72 0-0099 98 0-0009

9 56 0-048 78 0-0100 114 0-0007

10 82 0-046 96 00075 1268 0-0008




TABLE A7
Table of the critical range (difference between rank sums for any two
treatments) for comparing all pairs in the Kruskal-Wallis nonparametric
one way analysis of variance (see §§ 11.5 and 11.9)
Values for which an exact P is given are abridged from the tables of McDonald
and Thompseon (1967), the remaining values are abridged from Wilcoxon and
Wilcox (1964). Reproduction by permission of the authors and publishers. tNot

attainable. Number of treatments (samples) = k. Number of obeervation (repli-
cates) per treatment = n.

P (approximate) P (approximate)
0-01 0-06 0-01 0-
orit. erit. orit, erit,
k n range P range P k n range P range P
3 2 t 8 0087 |5 2 16  o0-016 15  0-048
3 17 0011 15 0-064 3 32 0007 28 0-080
4 27  0-011 24 0-045 4 50 0-010 4 0056
5 39 0-009 33 0-048 5 758 63-5
[ 51 0-011 43  0-049 (] 99-3 83-2
7 67-6 544 7 1248 104-6
8 824 66-3 8 1522 127-6
9 981 789 9 1814 152-0
10 1147 92-3 10 2122 177-8
11 1321 108-3 11 2446 205-0
12 150-4 120-9 12 2785 2334
13 1694 136-2 13 3138 263-0
14 1891 152-1 14 38505 293-8
15 2096 168-6 15 3885 825-7
16 2307 185-6 16 4279 358-6
17 2525 203-1 17 4684 392-6
18 2750 221-2 18 5102 427-6
19 2981 239-8 19 5531 463-6
20 3218 258-8 20 597-2 500-5
4 2 t 12 0029 |6 2 20 0-010 19  0-030
3 24 0012 22 0043 3 39  0-009 35 0-055
4 38 0012 34 0049 4 67-3 570
5 58-2 48-1 [ 93-6 79-3
(] 763 62-9 6 1228 104-0
7 95-8 79-1 7 1544 130-8
8 1168 96-4 8 1884 159-6
9 1392 114-8 9 2245 190-2
10 1628 134-3 10 262-7 222-6
11 1876 154-8 11 3029 256-6
12 2135 176-2 12 3449 292-2
13 2406 1985 13 3887 329-3
14 268-7 221-7 14 4342 367-8
15 2978 245-7 15 4813 4078
16 3279 270-6 16 5301 4491
17 3590 296-2 17 580-8 4917
18 391-0 322-8 18 6321 535-5
19 4238 349-7 19 6854 580-6
20 4576 377-6 20 7400 626-9




TaBLE AS

Table of the critical range (difference between rank sums for any two
treatments) for compasring all pairs in the Friedman nonparametric two
way analysis of variance (see §§ 11.7 and 11.9)

Values for which an exact P is given are abridged from McDonald and
Thompson (1867), the remaining values are abridged from Wilcoxon and Wilcox
(1964). Reproduction by permission of the authors and publishers. tNot attain-
able. Number of treatments = k. Number of replicates (= number of blocks) =n.

P (approximate) P (approximate)
0-01 0-05 0-01 0-05
crit. erit. crit. orit.
k n range P range P k n range P range P

3 3 ¢ 6 002 |5 2 ¢ 8 0080
4 8 0005 7 0042 3 12 0002 10 0.087
5 9 0008 8 0039 4 14 0008 12 0-054
6 10 0-009 9 0029 5 16 0-006 14 0040
7 11 0008 9 0051 6 17 0013 16  0-049
8 12 0007 10 0039 7 19 0009 16 0-052
9 12 0013 10 0048 8 20 0012 18 0-036

9 22 0008 19 0-037
10 13 0010 11 0-037 10 23 0009 20  0-038
11 14 0008 11 0049 11 24 0010 21  0-038
12 14 0012 12 0038 12 25 0011 22 0038
13 156 0-009 12 0-049 13 26 0011 23 0-035
14 18  0-007 13 0038 14 27 0011 24 0-034
15 16 0010 13 0047 15 28 0010 24 0045
16 165 13-3 18 291 24-4
17 170 137 17 300 25-2
18 175 141 18 309 25-9
19 180 144 19 317 26-6
20 184 14-8 20 325 27.3

4 2 i 6 0083 |6 2 ¢ 10 0033
3 9 0007 8 0049 3 14 0008 13 0-030
4 11 0005 10 0026 4 17 0008 16 0-047
5 12 0013 11 0037 5 19 0010 17 0047
6 14 0006 12 0-037 6 21 0010 19 0-040
7 156 0008 13 0037 7 23 0010 20 0049
8 18 0009 14 0034 8 25 0008 22 0039
9 17 0010 15 0032 9 26 0012 23 0-043

10 18 0-010 15 0-048 10 28 0009 24 0047
11 19 0009 18 0041 11 29 0012 26 0-036
12 20 0-008 17 0038 12 31  0-009 27 0039
13 21  0-008 18 0.032 13 32 0010 28 0039
14 21 0011 18 0042 14 33 o011 20 0-040
16 22 0010 19 0037 15 34 0012 30 0-040
18 227 19 16 356 302
17 234 19:3 17 367 31-1
18 241 19-9 18 378 320
19 248 20-4 19 388 329

28



TABLE A9

Rankits (expected normal order statistics)

The use of Rankits to test for a normal (Gaussian) distribution is described
in § 4.6. The observations are ranked, the rankit is found from the table, and
plotted against the value of the observation (or any desired transformation of the
observation). Negative values are omitted for samples larger than 10. By analogy
with the smaller samples the rankit for the seventh observation in a sample of 11
is clearly —0-225 and that for the seventh in a sample of 12 is —0-103. The
table is Bliss’s (1067) adaptation of that of Harter (1961, Biomelrika 48, 151-65).
Reproduced with permission.

Rank Size of sample = N

order 2 3 5 [ 8 9 10
1 0-564 0-864 1-029 1-163 1-267 1-352 1-424 1-485 1-530
2 —0-564 0-000 0-297 0-495 0-842 0-767 0-852 0-932 1-001
3 —0-864 —0-297 0-000 0-202 0-353 0-473 0-572 0-656
4 —~1-020 —0-495 -0-202 0-000 0-163 0-275 0-376
5 —1-1683 —0-642 —0-353 —0-153 0-000 0-123
[} —1-267 —0-757 —0-478 —0-275 -—0-128
7 —1-352 —~0-852 —0-572 —-0-376
8 —1-424 —0-932 —0-856
9 —1-485 —1-001
10 —1-530

11 12 13 14 15 18 17 18 19 20
1 1-536 1-629 1-868 1-703 1-738 1-766 1-794 1-820 1-844 1-867
2 1-082 1-116 1-164 1-208 1-248 1-285 1-319 1-350 1-380 1-408
3 0-729 0-703 0-850 0-901 0-948 0-980 1-029 1-068 1-099 1-131
4 0-462 0-537 0-603 0-662 0-715 0-763 0-807 0-848 0-888 0-921
5 0-225 0-312 0-383 0-456 0-5168 0-570 0-819 0-665 0-707 0-745
6 0-000 0-103 0-191 0-267 0-335 0-396 0-451 0-502 0-548 0-580
7 0-000 0-083 0-165 0-234 0-295 0-351 0-402 0-448
8 0000 0-077 0146 0208 0-264 0-815
9 0000 0-069 0131 0187
10 0-000 0-082

21 22 23 24 25 26 27 28 29 30
1 1-88! 1-910 1-929 1-948 1-9685 1-932 1-998 2:014 2-029 2043
2 1-434 1-458 1-4381 1-603 1-524 1:544 1-563 1-581 1-589 1-616
3 1-160 1-188 1-214 1-239 1-263 1285 1-308 1-327 1-346 1-365
4 0-954 0-985 1-014 1-041 1.087 1-091 1-115 1-137 1-158 1-179
5 0-782 0-815 0-847 0-877 0-805 0-932 0857 0-981 1-004 1-026
] 0:830 0-667 0-701 0-734 0-764 0-798 0-820 0-846 0-871 0-894
7 0-491 0-532 0-569 0-804 0-837 0-868 0-697 0-725 0-752 0-777
8 0-362 0-408 0-446 0-484 0-519 0-553 0-534 0-614 0-642 0-869
9 0-238 0-286 0-330 0-370 0-409 0-444 0-478 0-510 0-540 0-588
10 0-118 0-170 0-2138 0-262 0-303 0-341 0-377 0-411 0-443 0-473
11 0-000 0056 0108 0156 0200 0-241 0280 0-316 0-350 0-382
12 0-000 0-052 0-100 0-144 0-185 0-224 0-260 0-294
13 0-000 0-048 0-092 0-134 0-172 0-209
14 0-000 0044 0-088 0-125
15 0-000 0-041




TABLE A9 (Continued)

Rank Sire of sample = N
order 81 32 33 35 36 37 38 39 40
1 2-056 2:070 2-082 2:005 2107 2118 2120 2140 2-151 2-161
2 1-632 1-647 1662 1676 1600 1-704 1-717 1-729 1-741 1-753
3 1-383 1400 1:416 1432 1448 1462 1477 1:401 1-504 1517
4 1188  1.217  1-235 1-252  1-260 1-285 1-300 1:316 1-330 1-344
5 1-047 1067 1087 1105 1-123 1-140 1-157 1-178 1188 1-203
8 0917 0938 0959 0979 0988 1-016 1-034 1-05] 1-087 1-083
7 0-801 0-824 0846 0867 0-887 0608 0925 0-943 0960 0977
8 0604 0719 0742 0764 0788 0808 0-826 0-845 0-863  0-881
9 0-595  0-821 0646 0670 0692 0-714 0735 0755 0774 0-798
10 0-502 0529 0-556 0580 0604 0627 0640 0670 0660 0-710
11 0-413 0442 0460 0486 0521 0545 0568 0-560 0-611 0-632
12 0-327 0358 0-387 0-414 0-441 0-466 0490 0614 0536  0-567
13 0-243 0276 0-307 0336 0364 0300 0416 0440 0-463 0-486
14 0-161 0-196 0228 0250 0280 0-317 0-343 0360 0393 0417
15 0-080 0117 0-151 0184 0215 0245 0278 0300 0325 0-350
16 0-000 0039 0076 0-110 0-143 0174 0203 0232 0258 0-284
17 0-000 0037 0071 0-104 0-135 0-165 0193 0220
18 0:000 0035 0-067 0099 0128 0158
19 0-000 0-033 0064 0004
20 0-000 0-081
41 42 13 44 45 46 47 43 49 50
| 2171 2:180 2190 2109 2-208 2216 2225 2:233  2:241 2249
2 1-765 1-776  1-787 1797 1807 1-817 1-827 1-837 1-846 1855
3 1:530 1-542 15654 1565 1577 1584 1508 1-609 1-619 1-629
4 1-357 1-370 1-383  1-396 1-408  1-420 1-431 1-442  1:453 1-464
5 1-218 1232 1246 1259 1272 1-284 1296 1-308 1-320 1:331
] 1009 1114 1128 1-142 1-156 1-160 1182 1-194 1207 1-218
7 0993 1009 1-024 1-039 1054 1068 1-081 1004 1107  1-119
8 0-808 0-915 0-931 0-946 0-961 0-976 0-890 1-004 1-017 1-030
9 0811 0-828 0845  0-861 0:877 0892 0907 0-02] 0935  0-949
10 0-729 0747 0764 0781 0-798 0814 0820 0844 0859 0-873
11 0-651 0-671 0-689 0707 0724 0740 0757 0772 0787 0-802
12 0-574 0598 0617 0636 0654 0671 0-688 0-704 0720 0-735
13 0-507 0528 0048 0568 0580 0604 0622 0639 0655 0-871
14 0439  0-461 0482 0502 0522 0540 0559 0576 0-508 0-610
15 0-378  0:396  0-418  0-439  0-459 0-479 0498 0-516 0-534  0-551
16 0-30p 0333 0-355 0-377 0398 0410 0438 0457 0476 0-494
17 0-246 0270 0204 0317 0339 0-360 0-381 0-400 0-419  0-438
18 0-183 0-209 0-234 0-258 0-281 0-303 0-324 0-345 0-364 0-384
19 0122 0149 0175 0200 0224 0247 0-269 0-260 0-310 0-330
20 0-081 0-089 0116 0142 0167 0-191 0-214 0-236 0257 (278
21 0:000 0030 0058 0085 0111 0136 0160 0183 0205 0227
22 0000 0028 0055 0081 0106 0130 0153 0178
23 0-000 0027 0058 0078 0-102 0125
24 0-000 0028 0051 0-075
25 0-:000 0-026
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Index

acetylcholine release, se¢ quantal release
adding up, ses summation operation
addition rule, 19; see aleo probability
additivity assumption, 173
adrenaline catabolism
fitting exponential, 23443
stochastic interpretation, 379
adsorption, stochastic interpretation,
380-5
all-or-nothing responses, 344-64
linearization, see probit
relation with IED, 348
analysis of varianoce, 171-213
a338Y8, 866 A38AYE
assumptions in, 172
control group in, 208
ourve fitting, 21457
expectation of mean squares, 178, 186
Friedman rank, 200, 209, 409 (table)
Gaussian
independent samples, 182, 191, 210,
234, 827
randomized blocks, 195, 210, 286, 311,
819
homogeneity of group variances, 176
Kruskal-Wallis, 191, 208, 408, (table)
mean squares, 187, 197, 229, 238
models for observations, 172-8, 186, 196
multiple signiflcance tests, 207-13
multiple regression approach, 256
nonparametrio
independent samples, 191, 208, 408
randomized blocks, 200, 209, 409
one way, 182, 210
ranks, 171, 191, 200, 208-10
relation
with chi-squared, 180
with ¢ teste, 179, 190, 198, 226, 2324
sum of squares, 27, 184-90, 217-20,
24453
additivity of, 189, 223
working formulse, 30, 188, 224
testing all pairs, 207-13, 410-11 (table)
two way, 182, 210
variance, maximum/minimum, 176
arbitrary moment in time, 84, 383
area under distribution curve, 649
assays, 279-364
analytical dilution, 280
comparative, 280

assays—{cont.)
oontinuous (graded) responses, 280
designs for, 285
direct, 8448
discontinuous (quantal) responses, 280,
34464

incomplete block, 2068, 286
interaction between responses, 286, 319
Latin square, 286
metameters for dose and response, 280,
287, 285, 327
random, 285, 327
randomized blocks, 286, 311, 319
rapid routine, 340
single subject, 286
slope ratio, 281
parallel line
average slope, 292
oonfidence limits for, 297, 308
confldence limits, examples, 333, 317,
325, 331
convenient base for logs, 287
designs for, 285
four point, see (2 + 2) dose
interpretation, 314, 323
(k 4+ 1) dose, 340
logite in, 361
matching, 284
numerical examples, 31143
optimum deeign, 299
orthogonal contrasts, 3037
parallelism teet, 300
plotting results, 318, 330
potency ratio, 282, 290, 308
potency ratio, examples, 316, 324,
331, 341
six point, see (3 + 3) dose
slope (linear regreasion test), 300, 303,
308
symmetrical, 285, 287, 289, 302, 308
symmetrical, examples, 311, 319
(3 4+ 3) doee, 284, 289, 305, 310
(3 + 38) dose, example, 319
(3 + 2) dose, 327
(2 4 1) doee, 284, 340
(2 4+ 2) doee, 283, 287, 302, 308
(2 + 2) dose, example, 311
unite for doses, 316
unsymmetrical, 285, 280, 300
unsymmetrical, example, 827



420

assays—{cont.)
validity tests, 300-7
assumptions, 70-2, 86, 101-3, 111, 139,
144, 148, 153, 158, 167, 172, 205-86,
207 ; see also sndsvidual methods
in fitting curves, 220, 234
in multiple regression, 2564
asymptotic relative efficiency of
significance tests, 97
averages, se¢ means

bacterial dilutions, 56
balanced incomplete blocks, see incomplete
Bayes' method, 6-8, 21, 95; see also
probability and significance tests
example in medical diagnosis, 214
best estimate, 101, 216, 257-72; see also
bias, least squares, and likelihood
bias
of estimates in curve fitting,
266-72, 369-70
in sampling, 3, 16, 85, 102, 389-95
statistical, 8, 29, 216, 266-72, 369-70
binomial distribution, see distribution
bio-assays, see assays

216,

calibration curves, 280, 332
relation with assays, 340
card-shuffling analysis, 118, 138, 192; see
also randomization tests
catabolism, exponential, see adrenaline
cell distribution, random, 55
chi-squared
rank, 202
tables, 129, 132, 134
test
continuity correction in, 129
for goodness of fit, 132
for more than two samples, 131
relation with other methods, 116
for two samples, 116, 127-32
written as normal deviate test, 124
classification measurements, 99, 116-36
two independent samples, 116
two related samples, 134
coefficient of variation
method for quantal content, 58—80
population, 30
sample, 30
use, 40, 220
combinations and permutations, 50, 140,
158, 187, 192-3, 201
confidence limits, 101-15
for binomial £, 109, 398 (table)
for fitted straight line, 224, 231
for half-life, 242

Index

confidence—{cont.)
interpretation, 101-3, 108, 114, 333
for median, nonparametric, 103, 396
(table)
for new observations, 107
on straight line, 227
for normally distributed variable, 105
for potency ratio, 297, 308, 3445
examples, 317, 325, 331, 343
for purity-in-heart index, 111
for rate constant, 242
for ratio
approximate, 41, 107
exact, 203, 33240, 345
for slope of straight line, 224
for time constant, 242
trustworthiness, 101-3
for variance, 128
for z value read off straight line, 224,
293, 33240
for Y value read off straight line, 2247,
231, 33240
continuous distribution
meaning, 434, 64-9
population mean (expectation) of, 3658
see also distribution
control group in analysis of variance, 208
correlation, 5, 31, 169, 272-8
coefficient
Pearson, 109, 273
Spearman (rank), 274, 277 (table)
interpretation of, 5, 2548, 273
covariance
population, 31
sample, 31
working formula, 32
cross-over trials, 134
cumulative distribution, see distribution
function
curve fitting, 214-72
assumptions in, 220; ses also analysis of
variance
best estimate, meaning of, 101, 2186,
266-72
confidence limits, see separaie entry
definition of sum of squares, 217
errors in, 222
exponential curve, 23443
hyperbola, 257-72
least squares method, se¢ separate entry
linear problems, meaning of, 252
Michaelis-Menten hyperbola, 257-72
multiple linear, 2528
non-linear, 257-72, 262, 336
polynomial curves, 252, 253, 336
role of statistics, 215
straight line, 216-567
transformations in, 221, 238, 243



Index

data selection (‘data snooping’), 166, 207
deduction, 1, 6
degrees of freedom, meaning, 29, 369
density, see probability density
dependent variable, 214, 218
discontinuous distribution, #ee distribution
distribution
binomial, 43-52, 54, 59, 104, 109-14,
124, 154, 859, 365, 398 (table)
continuous, meaning, 649
cumulative, see distribution function
discontinuous, meaning of, 434, 64-9,

350
exponential, 81-5, 367-8, 380, 383,
388-95
stochastic interpretation, 81-5,
379-95

function, 67-9, 367, 389
examples of, 68, 82, 34658, 380, 383,
389
length-biased, 389-95
Gaussian (normal), 69-75, 96-9, 101,
34564, 366
approximation to binomial,
116, 124
tests for fit, 80
transformations to, 71, 78, 80, 221-2
goodness-of-fit tests
chi-squared, 132
probit and rankit, 80
length-biased, 85, 389-95
lognormal, 78-80, 107, 176, 221, 239,
34564
meaning of, 434, 64-9
multinomial, 44
Poisson, 52-63, 81-5, 375-8, 388-93;
see also quantal release
skew and symmetrical, 78-80
standard form of, 369
standard Gaussian, 72-5, 126
Student’s ¢, 756-8, 148, 167
dose metameter, 280, 287
ratio, 283
drug-receptor interaction, see adsorption
Dunnett’s d statistic, 208

52-3,

EDA&0, see median effective dose
efficiency of significance tests, 87
epinephrine, see adrenaline
error
distribution of, see distribution
estimates of, 1-8, 28-42;
variance
of the first kind, 93
homogeneity of, see homoscedastic
limits of, see confidence limits
of the second kind, 93

see also

421
error—(cont.)
trustworthiness of estimates of, 1-8,
101-3

estimation, see bias, least squares, likeli-
hood, and best estimate
exp(z), 69
expectation, 305-8
of any function, 368
of function of two variables, 370-3
of mean squares in analysis of variance,
178, 186
see also mean
experimental method, meaning, 3-8
exponential
curve fitting, 23443
distribution, see distribution

F ratio, see variance ratio
factorial function, 9, 50
fiducial limits, see confidence limits
Fieller’s theorem, 293
Fisher exact test for 2 x 2 table, 116, 117
use of tables for, 122
four-point assay, see assays, parallel line,
(2 + 2) dose
Friedman method, 200, 409 (table), 411
(table)
function
expectation of, 365-8, 370-8; see also
mean
factorial, 10
mathematical, meaning of, 9
variance of, see variance

Gaussian (normal) distribution, see distri-
bution

generalization, 1-8, 91, 102

Gosset, W. 8., see ‘Student’

half-life, 239
confidence limits for, 242
stochastic interpretation, 380, 885
heteroscedastic, se¢ homoscedastic
Hill plot, 363
histogram, 44, 53, 64—8, 846-53
area convention, 66, 350
homoscedastic, 167, 175, 221, 266, 269,
272, 281, 359
hyperbola, fitting of, 257-72, 3614
hypothesis, 8, 87-96

IED, see individual effective dose
incomplete block designs, 206-7
for assays, 286
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independence, statistical, 20, 21, 22, 31, 44,
54, 84, 99, 276-7, 286, 375, 379, 381
of contrasts, 302-7
independent
samples
classification measurements, 91, 116
numerical measurements, 91, 137-51,
182
rank measurements, 91, 18748, 191
see also significance tests, random, and
sample
variable in curve fitting, 214
individual effective dose, 112, 344-64
relation with all-or-nothing response,
848
induotion, 6
inference, scientific, 68
precision of, 101-3, 114; ses also
variance, confidence limits, and
bias
intervals between random events, 81-8,
374965 ; see aleo lifetime
isotope, see radioisotope

Kruskal . Wallis method, 191, 406 (table)
for testing all pairs, 410 (table)

uir equation
fitting of, 287-72, 361
stochastic interpretation, 380—5
Latin , 204
LD50, ses median effective dose
east squares method
for assays, 279
and ‘best’ estimates, 216, 257-72
for ourve fitting, 216-20
geometrical interpretation,
25962
for means, 27
for Michaelis-Menten hyperbola, 267-72
without caloulus, 27, 220
lifetime, 81-8
of adrenaline molecule, 380
of adsorbed molecule, 382
of empty adsorption site, 384
independence of when timing started,
388
of isotope, 385-7
length biased sample, 84, 389-95
meaning of, 81-5, 385
residual, 84, 383, 388-95
twioce average length, 84, 380-85
likelihood
maximum, 8, 266-72
technical meaning, 7, 214
limits of error, see confidence limits

243-53,

Index

Lineweaver-Burk plot, 266-72
logarithm

changing base of, 201

negative, 3256

transformation, see transformation
logistic curve, 3614
logit transformation, 3614
lognormal distribution, ses distribution

Mann-Whitney test, 143
mean
of any function, 366, 368
arithmetio, population (expectation),
365-8
arithmetio, sample
loast squares estimate, 27
standard deviation of, 33-8, 39
varianoe of, 33-8, 39
weighted, 24, 39
of binomial distribution, 50, 365
deviation, 28
of exponential distribution, 81-5, 367
of function of two variables, 370-3
of Gaussian (normal) distribution, 69,
368
geometrio, 256
lifetime and residual lifetime, see life-
time
of lognormal distribution, 78, 346-57
of Poisson distribution, 54, 81, 366, 375
relation with median and mode, 78-80,
101, 348, 368
squares, 187, 197, 229, 238; ses aleo
analysis of varianoce
median
effective dose (ED50), 34664
lifetime, see lifetime and stochastic
processes
population, 26
relation with mean and mode, 78-80,
101, 346-64, 368
sample, 26, 101, 103
metameter, dose and reeponse, 280, 287;
see also transformations
Michaelis-Menten equation,
257-72, 861
minimization, ses optimization
minimum
effective dose, definition of, 360
lethal doee, 360
mode, 27
relation to mean and median, 78-80,
34664, 368
models for observations
fixed and random, 178, 178, 186, 204-6
mixed, 196
multinomial distribution, 44

fitting of,
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maultiple
comparisons, 207
linear regreesion, 2528
and analysis of variance, 258
maultiplication
operator, 10, 25-6
rule, 20, 376

neuromuscular
release
non-linear regreesion, s¢¢ curve fitting
nonparametric methods, characteristics,
95, 96-9
normal
distribution, ses distributions, Gaussian
equivalent deviation, see probit
null hypothesis, 8, 87-98

junction, eee quantal

observational method, meaning, 5; ses
also correlation
Occam’s razor, 215
operation, meaning, 9; see also summation,
eto.
optimism, of estimates of error, 101-3
optimization, 262-7
orthogonal contrasts, 3027
numerical examples, 31143
variance of, 306

P value, from significance test, meaning,
86-100, 207
parallelism, test for, see assays, parallel
line
parameter, 4
patternsearch minimization, 263
permutations, see combinations
random, vii, 16-19
permutation teets, see randomization tests
Poisson distribution, see distribution
polynomial curve fitting, 2524, 366
population, 4, 15, 20, 43, 64-9; see also
standard deviation and mean
power, of significanoce teets, 93-100
prior probabilities, see probability
probability
addition rule, 19
Bayee’ theorem, 214, 85
binomial, 45, 109-14
confidence, see confldence limite
density, 64-9
direct, 6-8
distribution, see distribution
inverse, 8-8, 87
meaning of, 15-16, 95
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probability—(cons.)
multiplication rule, 20, 376
posterior, 6-8, 214, 95
prior, 8-8, 214, 95

igni value, 86-98, 207

subjective, 16, 956

probit transformation, 347, 356
and haemolysis, 361
linearizing sigmoid curves, 361
test for Gaussian distribution, 80

purity in heart, assay for, 111

quadratic equation
fitting, #ee curve fitting, polynomial
solution of, 294
quantal
release of acetylcholine
number of quanta per impulse, 57-60
intervals between quanta, 81-8
responses, se¢ all-or-nothing responses
and probit transformation
quantitative numerical measurements, 99

radiation, ‘safe dose’ of, 360
radioisotope disintegration
errors in, 52, 60-8
stochastic interpretation, 385-7
random
blocks, 171, 195, 200, 207
Latin square, 2068
permutations, vii, 16-19
prooess, 5283, 81-5, 374-95; eee also
lifetime and stochastic
sample
reasons for neceesity, 119
rejection of unacceptable, 123
selection of, 3, 16-19, 43-5
sampling numbers, use of, vii, 16-19
randomization tests, 96, 99
olassification measurementa, 117
Cushny and Peebles’ data, 143
numerical and rank measurements, 138,
143, 153, 1587, 160, 191, 200
rationale, 96, 117
unacoeptable randomizations, 123
see aleo card shufling analysis
randomized blooks, 171, 195, 200, 207
range, 28
rank measurements, 96, 99, 116, 137, 152,
171, 191, 200, 207-10
correlation, 274
rankits, as test for Gaussian distribution,
80, 412 (table)
rate oonstant, 238
stochasatic interpretation, 380, 385
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ratio
dose, 283
of maximum to minimum variance of
set, 176
potency, see assays and confidence limits
of two Gaussian variables, see confidence
limite and variance of funotions
of two estimates of same variance, see
variance ratio
receptor—drug interaction, see adsorption
regression
analysis, see ourve fitting
equation, 214
linear, 216-257
non-linear, 243-272
related samples
advantages of, 169
classification measurements, 91, 134
rank measurements, 91, 152-86, 200
numerical measurements, 91, 152-70,
195, 200
see also randomized blocks
root-mean-square deviation, see standard
deviation

sample
length-biased, 85, 389-95; see also
lifetime and stochastic processes
simple, 44
small, 49, 75, 80, 89, 96-9
strictly random, vii, 3-8, 16-19, 43-5,
117, 207; see also random
Scheffé’s method, 210
scientific method, 3-8
sign test, 153
significance tests, see guide to partioular
testa on end sheet
for all possible pairs, 191, 200, 207-10
assumptions in, 70-2, 86, 101-3, 111,
139, 144, 148, 158, 158, 1687, 172,
206-8, 207
oritique of, 93-5
efficiency of, 97
interpretation of, 1-8, 70-2, 86-100
maximum variance/minimum variance,
176
multiple, 191, 200, 207-10
one-tail, 86
parametrio versus nonparametric, 96-9
randomization, #¢e randomization tests
ranks, 96, 99, 116 ,187, 152, 171
ratio of maximum to minirmnum variance,
176
relation
with confidence limits, 151, 155, 168,
232

Index

significance—(cont.)
between ¢ tests and analysis of
variance, 190, 196, 233
between various methods, 118, 137,
162, 171
relative efficiency, 97
two-tail, 88
for variance, population value of, 128
simulation, 268
six point assay, see assay, parallel line,
(8 + 3) dose
skew distributions, 78-80, 101, 348, 368
standard
deviation, see variance of functions
of observation, see variance of functions
error, 33, 35, 36, 38
form of distribution, 369
Gaussian (normal) distribution see
distribution
statistics
expected normal-order, 412
role of, 1-3, 86, 93, 96, 101, 214, 374
technical meaning, 4
steepest-descent method, 262
stochastic processes, 1, 81-5, 374-95
adsorption, 3805
catabolism, 379
isotope disintegration, 52, 603, 385-7
length bias, 85, 389-95
lifetime, see lifetime
meaning, 1, 81, 374
of o(At), 376, 378, 387
Poisson, derivation, 375-8
quantel release of acetylcholine, 57-80,
81-5
residual lifetime, see lifetime
see also distribution, exponential and
distribution, Poisson
straight-line fitting, 214-57
‘Student’ (W. S. Gosset), 71
paired ¢ test, 167
¢t distribution, 75-8
tables of, 77
test, 148
relation with analysis of variance, 179,
190, 196, 228, 2324
relation withconfidencelimits, 151, 168
sum
of products, 31
working formula, 32
of squared deviations (SSD), 27, 184-80,
197, 217-20, 24457
additivity of, 189, 223
working formula for, 30, 188, 224
see also least squares method and
analysis of variance
summation operator, X, 10-14
survey method, meaning, 5



Index

tables, published, vii
tail of distribution, 67, 72
tests
for additivity, 174
of assumptions, see assumptions
for equality of variances, 176
for Gaussian (normal) distribution,
probit and rankit, 80
for goodness of fit, 132
for Poisson distribution, 133
of significance, see significance
threshold dose, 360, 364
time constant, 238
stochastic interpretation, 380, 385
transformations
for additivity, 176-8
for analysis of variance, 176
in assays, 280-3, 287, 340, 3446
in curve fitting, 221-2, 238, 243
to Gaussian distribution, 71, 78, 80,
176-8, 221, 239, 287, 3446
linearizing, 221-2, 238, 266-72, 353
logarithmic, 78, 176, 221-2, 238, 280-3,
287, 291, 344-6, 3614
logit, 361
normalizing see
Gaussian
probit, 80, 347, 353-64
rankit, 80
reciprocal, 266-72
2 x 2 table
independent samples, 116-134
related samples, 134
two samples, difference between, see signifi-
cance tests; and guide on end sheet

transformation, to

unacceptable randomizations, 123

validity of assays, 81
variability, measures of, 28
variance of functions of observations
of any function (approx.), 3940
of any linear function, 39, 225, 307
of difference, 37
of function of correlated variables, 27, 41
of linear functions, 39, 225, 307
of logarithm of variable (approx.), 40
of mean, 33, 35, 36, 38, 101
meaning, 3342
multipliers, definition, 295
population, xviii, 28, 29
of binomial distribution, 50, 359, 368
constancy of, 167, 175-6, 221, 266,
269, 272, 281, 359
definition of, 368-9
estimation from probit plot, 35364
examples, 51, 60-3
of exponential distribution, 368
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variance—{cons.)
of lognormal
346-57
of Poisson distribution, 55, 368; see
also distribution and quantal
release
of potency ratio, ses confidence limits
of product of two variables, 40
of ratio of two variables
(approx.), 41, 107, 296
(exact), see confidence limits
of reciprocal of variable (approx.), 41,272
sample, xviii, 28, 29, 369
bias of, 29, 307, 369
ratio of maximum to minimum, 176
ratio of two estimates, see variance
ratio
when population mean known, 29,
307, 309
working formula for, 30
of slope of straight line, 225
of sum
or difference, 37
of N variables, 37, 307
of variable number of variables, 41,
58-60, 370-3
of value
of z read off straight line, see con-
fidence limits
of Y read off straight line, 227
of variable
-+ constant, 38
X constant, 38
of variance, 128
of weighted arithmetic mean, 39, 292
see also confidence limits
variance ratio (F)
less than one, 182
meaning of, 176, 179
relation
with chi-squared, 180
with Student’s ¢, 179, 190, 196, 226,
2324
tables of, 181
virginity, 111

distribution, 78-9,

waiting time, see lifetime and stoch-
astic processes
paradox, 84, 374-95
weighting, 25, 220, 272, 292
Wilcoxon
signed ranks test for two related
samples, 160, 405 (table)
test (Mann—Whitney) for two inde-
pendent samples, 143, 402 (table)

Yates’ correction for continuity, 126, 129,
132



This book is based on lec-
tures given to medical science
students with elementary
mathematical knowledge and no
statistical knowledge

The aim has been to include
those topics which are of

interest to all laboratory workers,

the discussion being based
mainly on medical, physiologi-
cal, and pharmacological prob-
lems. Some subjects, such as
random ('stochastic’) processes,
fitting curved lines other than
pelynomials, calibration curves
and parallel line assays, which
are usually omitted from
elementary courses, have been
discussed here because of their
great practical importance

An attempt has been made
to convey a critical understand-
ing while keeping the mathe-
matics elementary (except for
the appendices). For example,
by starting the discussion of
significance tests with the non-
parametric approach, every
step in obtaining the result Is
shown using little or no algebra.
There are worked numerical
examples for the methods
described.
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