

Total Information Awareness Program (TIA)
System Description Document (SDD)

Version 1.1*
July 19, 2002

* See Appendix A: Document Revision History

Gregory Mack, PhD (mackg@saic.com), System Architect

Hicks and Associates, Inc.

Business Model Systems Model
B. Bebee (bebeeb@saic.com) G. Wenzel (wenzel_greg@bah.com)

I. Shafi B. Medairy
 E. Yuan

Hicks and Associates, Inc. Booz-Allen and Hamilton, Inc.

1. Executive Summary
The Total Information Awareness (TIA) Program seeks to provide a true end-to-end
capability for analysts and decision-makers. As a result, the TIA System development
effort is characterized by four key elements:

1. Innovative architecture – based on the Open Grid Service Architecture (OGSA)
concepts, designed to be flexible, robust and scalable

2. A rapid turn-around experimentation process – using real data and addressing
real operational needs

3. A technology refresh process – enabling the introduction of the latest
technologies in real operational settings

4. An infrastructure development and tool hardening process – facilitating full
transition of the best of breed tools to users in their operational environments.

The TIA System Description Document (SDD) provides insight into each of the elements
mentioned above. A constantly evolving document, it provides “Topsight,” using the
Unified Modeling Language (UML) to visually tie all levels of the system together,
generating insight from architectural patterns, and facilitating drill-down to understand
underlying rationale. The SDD is designed for three primary groups of people:

1. Domain Users (analysts and decision-makers) – mapping their functional needs
to tools in the form of Use Case Models.

2. Developers (system and tool) – classifying and documenting core services and
user interfaces (functional requirements) in the form of Class and Collaboration
Diagrams, as well as links to utilities helpful in integrating applications with the
services.

3. Experiment Designers – identifying the system infrastructure used by the
analyst’s applications and the customer’s platform.

Each class of user has their own entry point to the architecture and a path to navigate to
any other element of the SDD. The TIA System Architecture is comprised of three
interdependent models, each with a corresponding set of views.

1. Core Conceptual Model (Section 2) – creates a set of consistent unifying
principles to link the Business Model and the System Model.

2. Business Model (Section 3.1) – captures the TIA functionality from the domain
perspective.

3. Systems Model (Section 3.2) – captures the design of the supporting IT system.

The division into Business and Systems Models provides benefits in three areas:

 Page 1 of 150 – Version 1.1

1. Improving the specification of the user needs by clearly distinguishing between
functional (business) and system requirements.

2. Facilitating multiple implementations of the processes for service composition.

3. Providing a foundation for evaluation of the system at the process level.

1.1. Core Conceptual Model
The Core Conceptual Model has a Core Model and an Application Model. The Core
Model (See Section 2.1.1) provides the conceptual underpinnings for operations, business
and system. This becomes an important aspect in the practical inclusion of the semantic
aspects of the services and content. The Application Model (See Section 2.2) provides the
conceptual underpinnings for the design of applications.

1.2. Business Model
The Business Model is a description, from a domain perspective, of the tasks and
activities, operational elements, metrics, and information flows required to accomplish or
support operations. The Business Model contains five views: (1) Actor Roles View (See
Section 3.1.1), (2) Business Process View (See Section 3.1.2), (3) Business Information
View (See Section 3.1.4), (4) Business Application Service View (See Section 3.1.3), and
(5) Experiment Deployment View (See Section 3.1.5).

1.3. System Model
The System Model describes the arrangement, interaction, and interdependence of system
elements at a systems and platform level. It provides the technical systems
implementation guidelines upon which engineering specifications are based, common
building blocks are established. The System Model contains seven views, the first five
are system analogs of the Business Model views, with a Component Catalog View (See
Section 3.2.8) and a Core Services View (See Section 3.2.5) added. The Component
Catalog view enables the user to easily identify the source of a component (vendor and
funding program).

1.4. Distinguishing Aspects of the Approach

 Page 2 of 150 – Version 1.1

The TIA SDD has several additional distinguishing aspects. First, there is an Experiment
Deployment View (See Section 3.1.5) for each experiment. It is a snapshot of the
TIA System, as built, at that point in time. It serves not only as the documentation for the
experimental objectives and setup, but also as a chronology, which constitutes an
experimental configuration management system that could be used to roll back and repeat
an experiment. The rest of the Business Model constitutes the “as envisioned” model.
Therefore, the chronology also provides a retrospective road map of the evolution of the
TIA System. In addition, the chronology helps TIA Program Management map the
progress of the system into Program goals. The System Implementation View (See
Section 3.2.9) provides the same capability for the system infrastructure evolution.
Second, it contains a Semantic Architecture as part of the Information View (See Section
3.2.6). A working definition of semantics is provided that facilitates the definition and
implementation of semantic interfaces for services. The Semantic Architecture is
comprised of a means for accessing content semantics through services and a mechanism
for communicating service semantics along with the content.

Table of Contents
1. EXECUTIVE SUMMARY... 1

1.1. CORE CONCEPTUAL MODEL... 2
1.2. BUSINESS MODEL .. 2
1.3. SYSTEM MODEL ... 2
1.4. DISTINGUISHING ASPECTS OF THE APPROACH ... 2

TABLE OF CONTENTS... 3
2. RATIONALE AND AN OVERVIEW (CORE CONCEPTUAL MODEL)................................... 6

2.1. TOPSIGHT... 6
2.1.1. The TIA System has been designed from its inception to operate within complex situations
on a huge scale. .. 6
2.1.2. A critical design element in these situations is containing complexity. Our approach uses the
fractal principal of self-similarity. .. 6
2.1.3. The TIA System Description provides “Topsight” to the TIA System, tying all levels of the
system together and facilitating drill-down. ... 7

2.2. TIA APPLICATION .. 7
2.2.1. The Application is where Function meets the System. .. 7
2.2.2. The definition of a TIA Application is derived from the Core Model and links Processes, Use
Cases, and Services... 8
2.2.3. There are three levels of service coupling. ... 8

2.2.3.1 Service Application Example... 9
3. TIA SYSTEM DESCRIPTION OVERVIEW.. 10

3.1. BUSINESS MODEL .. 11
3.1.1. Actor Roles View .. 11

3.1.1.1 Actor (Role) Functional Responsibilities ... 12
3.1.1.2 TIA Roles... 13

3.1.2. Business Process View.. 14
3.1.2.1 Reference Use Cases.. 16
3.1.2.2 Analysis and Assessment ... 17
3.1.2.3 Presentation and Visualization ... 21
3.1.2.4 Information Management... 23
3.1.2.5 Enterprise Support ... 30
3.1.2.6 Canonical Use Case Coverage Map ... 32

3.1.3. Business Application Services View ... 36
3.1.3.1 Analysis and Assessment Business Application Services .. 36
3.1.3.2 Enterprise Support Business Application Services... 37
3.1.3.3 Information Management Business Application Services.. 38
3.1.3.4 Presentation and Visualization Business Application Services .. 39

3.1.4. Business Information View ... 40
3.1.4.1 TIA Product ... 40
3.1.4.2 TIA Product Syntax ... 41
3.1.4.3 TIA Product Semantics .. 42
3.1.4.4 Experiment Metrics.. 42

3.1.5. Experiment Deployment View... 43
3.1.5.1 UML Deployment Diagram ... 43
3.1.5.2 System Topology Diagram .. 43
3.1.5.3 Mistral Experiment (22 May 2002).. 43
3.1.5.4 Sirocco Experiment (August 2002).. 43

3.2. SYSTEMS MODEL ... 44

 Page 3 of 150 – Version 1.1

3.2.1. Introduction .. 44
3.2.2. Layered Model Overview.. 45

3.2.2.1 Service Oriented Architecture Overview ... 45
3.2.3. Collaboration View... 47
3.2.4. Application Services View .. 49
3.2.5. Core Services View... 50

3.2.5.1 Security Services.. 50
3.2.5.2 Registry Services ... 53
3.2.5.3 Data Services ... 56
3.2.5.4 Messaging Services.. 59
3.2.5.5 Transformation Services .. 62
3.2.5.6 Computational Services ... 65
3.2.5.7 Edge Gateway Services.. 70

3.2.6. Information View .. 71
3.2.6.1 Semantic View... 71
3.2.6.2 Syntactic View... 75

3.2.7. Services Management ... 79
3.2.7.1 Services Management System Use Cases .. 79
3.2.7.2 Services Management Interface ... 80

3.2.8. Component Catalog View... 81
3.2.8.1 Evidence Extraction and Link Discovery (EELD) ... 81
3.2.8.2 Genoa (I) .. 83
3.2.8.3 Human Identification at a Distance (HID) ... 86
3.2.8.4 Translingual Information Detection, Extraction, and Summarization (TIDES) 87
3.2.8.5 Commercial Off The Shelf Software (COTS).. 88

3.2.9. System Implementation View .. 89
3.2.9.1 Multi-Level Security Approach ... 89

3.2.10. References.. 90
4. EXPERIMENT MODELS ... 91

4.1. MISTRAL EXPERIMENT (2002-05-22)... 91
4.1.1. Actor Roles View .. 91

4.1.1.1 INSCOM Analyst... 91
4.1.1.2 EUCOM Analyst.. 91
4.1.1.3 NGIC Subject Specialist .. 91

4.1.2. Objectives and Results.. 92
4.1.2.1 Objectives (Metrics for Success).. 92
4.1.2.2 Sources of Potentially New Insights .. 92
4.1.2.3 Results.. 93

4.1.3. Experiment Deployment View... 93
4.1.3.1 UML Deployment Diagram ... 94
4.1.3.2 System Topology Diagram .. 95
4.1.3.3 Business Information View.. 95

4.1.4. Business Process View.. 100
4.1.4.1 Reference Use Cases.. 101
4.1.4.2 Gathering Data ... 102
4.1.4.3 Detecting Facts and Events .. 102
4.1.4.4 Matching Models ... 103
4.1.4.5 Structured Argumentation.. 103
4.1.4.6 Reporting ... 104
4.1.4.7 Storing and Sharing Information.. 104
4.1.4.8 Activity Diagrams.. 105
4.1.4.9 Workflow Sequences ... 111

4.2. SIROCCO EXPERIMENT (AUGUST 2002 - PLANNED) ... 113
4.2.1. Actor Roles View .. 113

4.2.1.1 INSCOM Analyst... 114
4.2.1.2 EUCOM Analyst.. 114

 Page 4 of 150 – Version 1.1

4.2.1.3 NGIC Subject Specialist .. 114
4.2.1.4 CENTCOM Analyst... 114

4.2.1.5 902nd MI Analyst .. 114
4.2.1.6 JCAG Analyst .. 114

4.2.2. Objectives and Results.. 114
4.2.2.1 Objectives (Metrics for Success).. 114
4.2.2.2 Sources of Potentially New Insights .. 115
4.2.2.3 The operational nature and data being used in the experiment have the potential to create unique
insights and contribute to solving a real-world problem. .. 115
4.2.2.4 Models of real-world problems.. 115
4.2.2.5 Metrics and milestones associated with CI and CT collaboration on an established peer-to-peer
network 115

4.2.3. Results... 115
4.2.4. Experiment Deployment View... 115
4.2.5. Business Information View ... 115

4.2.5.1 Information Flow ... 116
4.2.5.2 Information Products.. 116

4.2.6. Business Process View.. 117
4.2.6.1 Reference Use Cases.. 118
4.2.6.2 Activity Diagrams.. 119
4.2.6.3 Workflow Sequences ... 119

5. APPENDIX A: DOCUMENT REVISION HISTORY .. 120
6. APPENDIX B: UML FOR SYSTEM ENGINEERING ... 122

6.1. THE UNIFIED MODELING LANGUAGE AS A SYSTEM ENGINEERING AID 122
6.2. UML AS A MODELING TOOL, SYSTEM OPERATIONS .. 122

6.2.1. Use Case Diagram Example... 122
6.2.2. Sequence Diagram Example... 123
6.2.3. Collaboration Diagram Example ... 123
6.2.4. Activity Diagram Example.. 124

6.3. UML AS A MODELING TOOL, MULTIPLE VIEWS .. 125
6.4. UML AS MODELING TOOL, SYSTEM IMPLEMENTATION .. 126

6.4.1. Deployment Diagram Example... 126
7. APPENDIX C SERVICES WSDL SPECIFICATIONS.. 127

7.1. C.1 SECURITY SERVICES WSDL SERVICE DESCRIPTION.. 127
7.2. C.2 REGISTRY SERVICES WSDL SERVICE DESCRIPTION.. 130
7.3. C.3 DATA SERVICES WSDL SERVICE DESCRIPTION .. 132
7.4. C.4 MESSAGING SERVICES WSDL SERVICE DESCRIPTION .. 135
7.5. C.5 TRANSFORMATION SERVICES WSDL SERVICE DESCRIPTION.. 138
7.6. C.6 COMPUTATIONAL SERVICES WSDL SERVICE DESCRIPTION.. 141
7.7. C.7 SERVICES MANAGEMENT WSDL SERVICE DESCRIPTION .. 145

8. APPENDIX D: SYSTEM DESIGN VIEWER.. 148
8.1. END USER REQUIREMENTS .. 148
8.2. DESIGN... 149

 Page 5 of 150 – Version 1.1

2. Rationale and an Overview (Core Conceptual Model)
2.1. Topsight

“Topsight” is the ability to “see the whole thing” — and to plunge
in and explore the details. [Gelernter, Mirror Worlds, 1991]

2.1.1. The TIA System has been designed from its inception to
operate within complex situations on a huge scale.

• There are seven entities in the Core
Model

– Processes cause Actors and
Services to act on Content in
Places.

– Actors can be humans or
“bots.”

– Places are virtual.
– Processes may include both

systems and business
processes.

– In the main, the system is
event-driven, which can be
either system or external.

– All entities have Context.

Each of the entities have metadata, even the context itself...

Core Model
rev 4/16/01 gam

Place

Actor

Service
uses

EventProcess

1..*1..*

Context

Content

acts on

2.1.2. A critical design element in these situations is containing
complexity. Our approach uses the fractal principal of self-similarity.

 Page 6 of 150 – Version 1.1

• A self-similar system “looks”
the same when viewed at any
scale.

• Keys to a successful Self-
Similar Architecture:
– “Instrumentation”

• Ability/responsibility for
each node to expose
descriptive information
to other nodes.

– Role-based interfaces.
– Comprehensive Context

with dynamic schemas.
– Information currency (i.e.,

CIPs).

Core Model
rev 4/16/01 gam

Place

Actor

Service
uses

EventProcess

1..*1..*

Context

Content

acts on

Core Model
rev 4/16/01 gam

Place

Actor

Service
uses

EventProcess
1..*1..*

Context

Content

acts on

Core Model
rev 4/16/01 gam

Place

Actor

Service
uses

EventProcess

1..*1..*

Context

Content

acts on

Core Model
rev 4/16/01 gam

Place

Actor

Service
uses

EventProcess
1..*1..*

Context

Content

acts on

2.1.3. The TIA System Description provides “Topsight” to the TIA
System, tying all levels of the system together and facilitating drill-
down.

• It provides a reference model for:
– Domain users

• It maps the functional requirements from the Applications to
the Services.

– System developers.
• It classifies and documents core algorithms and user

interfaces (functional requirements) as UML Use Case
Models.

– Provide, where appropriate, SDKs to application
developers for integrating with the services

– Link to documentation and experiments
– Experiment designers.

• It identifies the system infrastructure used by the applications
as developed in UML Diagrams.

– Identify, describe, and define the services required by
the application

– Identify, describe, and define the services required by
the customer’s platform (IAC)

• A web-based (XML) system design document provides access to users
(IACs, DARPA PMs, Contractors).

Core
Algorithm(s)

User
Interface

Authentication
Collaboration

Data Manipulation
Data Access

Functional Requirements

Application A

System Architecture

2.2. TIA Application
2.2.1. The Application is where Function meets the System.

 Page 7 of 150 – Version 1.1

• Users care about how an
application helps them do their job.

– A specification of the core
algorithms and the user
interface

• The System “cares” about the
services and infrastructure required
to deploy functional capabilities to
the users.

• An Application will capture a
specification of a (set of) functional
requirement (s) in a Semantic
Wrapper (i.e., the self-describing
nature of XML documents)

Core
Algorithm(s)

User
Interface

Authentication
Collaboration

Data Manipulation
Data Access

Functional Requirements

Application A

System Architecture

Eventually, the specification will become executable.

2.2.2. The definition of a TIA Application is derived from the Core
Model and links Processes, Use Cases, and Services.
• The TIA Application is the

abstraction that links TIA
Architecture efforts.

– TIA Application is
composed of platform
services and is
dependent upon use
cases.

– Process maps into
functional and user
requirements.

– Service maps into Grid
Services and
components developed
within IAO and others
(e.g., CIM, SEAS)

TIA Application
Meta-model
03/20/02 brb

Use Case
(from Genoa Core Model)

Process
(from Genoa Core Model)

1..*1..* 1..*1..*

Actor

(from Genoa Core Model)...)

Participates in

TIA Application
<<MetaProgram>>Uses

Service
(from Genoa Core Model)

1..* 1..*1..* 1..*

Content
(from Genoa Core Model)

0..*0..*

Acts on

TIA Application
Meta-model
03/20/02 brb

Use Case
(from Genoa Core Model)

Process
(from Genoa Core Model)

1..*1..* 1..*1..*

Actor

(from Genoa Core Model)...)

Participates in

TIA Application
<<MetaProgram>>Uses

Service
(from Genoa Core Model)

1..* 1..*1..* 1..*

Content
(from Genoa Core Model)

0..*0..*

Acts on

TIA Applications are inherently services-based. ...

2.2.3. There are three levels of service coupling.

 Page 8 of 150 – Version 1.1

• Applications provide the UUID
of the service they need.

– Named Services
• Applications provide the

syntactic description of the
service they need (e.g., QoS).

– Described Services
• Applications provide the

semantics to discover the
service they need.

– Semantic Services

Named Services

Described Services

Semantic Services

Time

Ready
Now

Testing
Now

Emerging
Research

Tightly
Coupled

Loosely
Coupled

2.2.3.1 Service Application Example

 : Ac tor : XMB : Tool : Content : Registry : CIP

Displays a list of CIPs.

Selects a CIP.
Displays Metadata.

Displays a list
of products.

Selects a product.
Displays Metadata.

Selects title.
Displays Product.

Queries the registry to determine the appropriate tool/service to invoke.

Returns a service descriptor.

Invokes tool/service.
Displays content.

Operates on.
Modifies content.

An example of a "Service Application" using the XMB

 Page 9 of 150 – Version 1.1

3. TIA System Description Overview
The TIA System Description contains two models, a Business Model and Systems
Model. Each model is partitioned into views as shown below. The linking between the
models is shown in the Business Information View and the Business Application Services
View. The responsibility for the implementation of the TIA System Description is
partitioned by dividing the views within the models. A table of development
responsibilities is presented in the table below.

Business Model

Actor Roles View
<<H&AI>>

(from Business Model)

Business Application
Services View

<<H&AI>>

(from Business Model)

Business Information
View

<<H&AI>>

(from Business Model)

Business Process
View

<<H&AI>>

(from Business Model)

Systems Model

Information View
(from Systems Model)

Derived from

Syntactic View
(from Information View)

Semantic View
(from Information View)

View Relationships
between the Business and
Systems Models
2002-07-05 brb

Experiment
Deployment View

<<H&AI>>

(from Business Model)

Application Services
View

<<BA&H>>

(from Systems Model)

Component Catalog
View

<<Shared>>

(from Systems Model)

Defined in

Core Services View
<<BA&H>>

(from Systems Model)

Defined in

Systems
Management View

<<BA&H>>

(from Systems Model)

Collaboration View
<<BA&H>>

(from Systems Model)

TIA System Description Models

Hicks and Associates is responsible for: Booz-Allen & Hamilton, Inc. is responsible for:
• Actors Roles View • Application Services View
• Business Process View • Core Services View
• Business Information View • Systems Management View
• Business Application Services View • Collaboration View
• Experiment Deployment View

Shared Packages
• Information View
• Component Catalog View

 Page 10 of 150 – Version 1.1

3.1. Business Model
The Business Model is a description of the tasks and activities, operational elements,
metrics, and information flows required to accomplish or support operations. It contains
representations of the operational elements, assigned tasks and activities, metrics, and
information flows. It relates the types of information exchanged, the frequency of
exchange, which tasks and activities are supported by the information exchanges, and the
nature of information exchanges to the operational use cases. The Business Model
contains five views: (1) Actor Roles View, (2) Business Process View, (3) Business
Information View, (4) Business Application Service View, and (5) Experiment
Deployment View.

Business Model
2002-05-19 brb Actor Roles

View

<<H&AI>>

Business Application Services View
<<H&AI>>

Business
Information View

<<H&AI>>
Business

Process View

<<H&AI>>

Experiment
Deployment View

<<H&AI>>
Metrics

(from Business Application Services View)

Business Model Views

3.1.1. Actor Roles View
The Actors Roles View contains the identification and description of roles within the TIA
System. A role, in this sense, consists of a set of responsibilities where responsibilities
are a collection of goals, constraints, and rules. The aggregation of the responsibilities
contained in the Actor Roles View is intended to be the complete set required to
accomplish the goals of the implementing organization.

 Page 11 of 150 – Version 1.1

3.1.1.1 Actor (Role) Functional Responsibilities
Business Process View
Actor Responsibilities
Synthesized Functions
2002-04-30 brb

Gathering Data

(from Information Management)

Detecting Facts and Events

(from Information Management)

Discovering Links

(from Information Management)

Matching Models

(from Analysis and Assessment)

Learning Patterns

(from Analysis and Assessment)

Structured Argumentation

(from Analysis and Assessment)

Generating Hypotheses

(from Analysis and Assessment)

Storing and Sharing Information

(from Enterprise Support)

Understanding Intent

(from Analysis and Assessment)

Generating Options

(from Information Management)

Reporting

(from Presentation and Visualization)

Analyst

(from Actor Roles View)

Alerting

(from Presentation and Visualization)

Decision Maker

(from Actor Roles View)

TIA System Role Functional Responsibilities

 Page 12 of 150 – Version 1.1

3.1.1.2 TIA Roles
An actor within the system may assume multiple roles. For example, a Decision Maker
can assume the role of a Presenter and Editor. The combination of responsibilities
represented by each role is modeled as operations on the Actor Roles as shown below.

TIA Actor Roles
2002-07-02 brb

Analyst

monitor()
Decision Maker

makeDecision()
suggestHypothesis()

suggestOption()
monitor()
actOn()

Thinker and Understander

review()
assess()

suggestOption()
createModel()

Presenter

presentBriefing()
designBriefing()

Data Acquisition

Hunter

hunt()

Gatherer

gather()

Organizer

organize()

Editor

editBriefing()
editProduct()
editModel()

TIA System Functional Roles

3.1.1.2.1 Analyst Role
The Analyst Role monitors a goal and is the parent role for all other analyst subroles
within the system.

3.1.1.2.1.1 Data Acquisition Specialist
The Data Acquisition Specialist Role is specialized into three roles:

1. Hunter

2. Gatherer

3. Organizer

3.1.1.2.1.2 Thinker and Understander

 Page 13 of 150 – Version 1.1

The Thinker and Understander Role reviews analyses, assesses their importance, suggests
options, and creates models.

3.1.1.2.1.3 Presenter
The presenter designs and presents briefings.

3.1.1.2.1.4 Editor
The Editor Role edits briefings, products, and models.

3.1.1.2.2 Decision Maker Role
The Decision Maker Role makes decisions, suggests hypotheses, suggests options,
monitors a goal, and acts on the outputs of the analysis process.

3.1.2. Business Process View
The Business Process View provides the reference model for the functional operations. It
defines a set of use cases representing the TIA Functional model and maps processes and
workflow into those use cases. It is built from use cases and models the end-to-end
functionality of the system. It can contain Activity Diagrams or Sequence Diagrams
associated with individual Use Cases. Metrics for evaluating technology, as they are
developed, will be associated with the Use Cases.

Analysis and
Assessment

Information
Management

Enterprise
Support

Presentation and
Visualization

Business Process View Packages
2002-05-07 brb

Business Process View Packages

 Page 14 of 150 – Version 1.1

The Business Process View contains four packages representing high-level groups of
operations: (1) Analysis, (2) Presentation and Visualization, (3) Enterprise Support, and
(4) Information Management. Part of the Business Process View (BPV) captures the
actual and planned functional processes that the TIA System supports. This section
presents these initial high level uses derived and captured in the BPV. This section also
provides a “coverage map” to link existing technology components to the canonical use
cases developed as part of the TIA System Architecture Business Process View. The
coverage map is provided in two forms: (1) Canonical Use Case Diagrams and (2)

Coverage Map Table. Both versions utilize the color-coding shown below. For the
purposes of this document, the technology components considered have been scoped to
examples from past or current DARPA Programs, COTS Technologies currently under
consideration by DARPA, and contractor-developed technology current in use at
INSCOM (IAC). It is intended as a partially representative, rather than exhaustive, map
of technologies to use cases. As a result, some use cases may be associated with more
than one technical component and others may have a single component (or none) that
only partially cover the required functionality.

TBA
TBA area has been identified by the TIA Team as a class of
technology components associated with the functional Use Case that
have yet to be acquired or developed.

Developing
Technology Component is in the Developing State. It has been
identified by the TIA Team and its development progress is being
monitored.

Prototyping
Technology Component is in the Prototyping State. It has been
acquired by the TIA Team and is actively being applied to the TIA
System. Metrics are under development.

Experimenting

Technology Component is in the Experimenting State. It has been
selected for experimentation by the TIA Team. Measurements are
being made according to metrics where indicated in the class
attributes.

Transitioning
Technology Component is Transitioning. Technology has been
validated by metrics and users and is being transitioned into
operational use. Measured values for metrics are being verified.

Technology Readiness Color Codes

 Page 15 of 150 – Version 1.1

3.1.2.1 Reference Use Cases
The TIA Reference Use Cases, shown below, represent the Use Cases and analytical process supported by the TIA System.
They contain aspects synthesized from multiple processing models (e.g., the ASW Signal Processing Model). As a Use Case
model, it represents the relationships between Use Cases as opposed to a sequential flow. Business Processes exist across
configurations of the Use Cases.

Business Process View
Reference Use Cases
2002-05-07 brb

Gathering Data

(from Inform ation Managem ent)

Detecting Facts and Events

(from Information Management)

<<precedes>>

Discovering Links

(from Information Management)

Matching Models

(from Analysis and Assessment)

Generating Hypotheses

(from Analysis and Assessment)

Structured Argumentation

(from Analysis and Assessm ent)

Learning Patterns

(from Analysis and Assessment)

Understanding Intent

(from Analysis and Assessment)

Generating Options

(from Information Management)

Reporting

(from Presentation and Visual ization)

Storing and Sharing Information

(from Enterprise Support)

<<uses>>

Alerting

(from Presentation and Visual ization)

 Page 16 of 150 – Version 1.1

TIA System Functional Processing Flow

3.1.2.2 Analysis and Assessment

3.1.2.2.1 Matching Models
Matching Models represents the capability for analysts to select, build, update, simulate,
and detect changes within models representing activities of interest.

Matching Models
Canonical Use Cases and Tools
2002-05-01 brb

CIM
(from Veridian)

<<Genoa>>

SEAS
(from SRI)

<<Genoa>>

SIAM
(from SAIC)

<<Genoa>>

XMB
(from H&AI)

<<Genoa>>

Detecting Changes

Simulation

Building Models

Updating Models

Selecting Models

Analyst

(from Actor Roles View)

Matching Models

(from Analysis and Assessment)

<<uses>> <<uses>>

<<uses>>

<<uses>>

<<uses>>

Transitioning

Experimenting

Prototyping

Developing

TBA

Transitioning

Experimenting

Prototyping

Developing

TBA

Color Key

Matching Models Canonical Use Cases

3.1.2.2.1.1 Detecting Changes
Detecting Changes represents the capability for analysts to monitor fully or partially
populated model instantiations based on new information entering the system, implicitly
or explicitly, to determine when and how state changes within the models occur.

3.1.2.2.1.2 Simulation
Simulation represents the capability for analysts to create simulations of the effects of
new information and links on past, present, or future scenarios.

3.1.2.2.1.3 Updating Models
Updating Models represents the capability for analysts to insert new information into
both models and model instantiations.

 Page 17 of 150 – Version 1.1

3.1.2.2.1.4 Selecting Models
Selecting Models represent the capability for analysts to determine a model (or set of
models) that is potentially useful for understanding a specific situation. It includes both
manual and automatic selection.

3.1.2.2.1.5 Building Models
Building Models represents the capability for analysts to create models, capturing expert
knowledge about methods to achieve a strategic goal (e.g., CW/BW Acquisition Models)
and model instantiations, which is the population of a model with specific information.

3.1.2.2.2 Generating Hypotheses
Generating Hypotheses represents the capability for analysts to create scenarios and
potential explanations of a complete or partial set of facts, events, links, and models.

Generating Hypotheses
Canonical Use Cases and Tool Models
2002-04-30

Generating Threat ScenariosAnalyst
(from Actor Roles View)

Generating Hypotheses

(from Analysis and Assessm ent)

<<uses>>

Generating Hypotheses Canonical Use Cases

3.1.2.2.2.1 Generating Threat Scenarios
Generating Threat Scenarios represents the capability for analysts to create scenarios
representing possible threats that have potential to occur given a partial set of facts,
events, links, and models.

 Page 18 of 150 – Version 1.1

3.1.2.2.3 Structured Argumentation
Structured Argumentation represents the capability for analysts to use models, which
capture expert knowledge, to reason about potential threats, intent, and the like.

Structured Argumentation
Canonical Use Cases and Tools
2002-04-30 brb

SEAS
(from SRI)

<<Genoa>>

CIM
(from Veridian)

<<Genoa>>

SIAM
(from SAIC)

<<Genoa>>

Analyst

(from Actor Roles View)

Structured Argumentation

(from Analysis and Assessment)

Transitioning

Experimenting

Prototyping

Developing

TBA

Transitioning

Experimenting

Prototyping

Developing

TBA

Color Key

Structured Argumentation Canonical Use Cases

3.1.2.2.4 Learning Patterns
Learning Patterns represents the capability for analysts to associate sequences of facts,
events, links, and models with known activities. It includes the leveraging of prior
knowledge to explain current situations.

Learning Patterns
Canonical UCs
2002-04-24 brb

Predictive Modeling

Updating Models

(from Matching Models)

Analyst

(from Actor Roles View)

Learning Patterns

(from Analysis and Assessment)

<<uses>>

<<uses>>

Learning Patterns Canonical Use Cases

3.1.2.2.4.1 Updating Models

3.1.2.2.4.2 Predictive Modeling
Predictive Modeling represents the capability for analysts to create and instantiate models
representing the future effects based on current understanding.

 Page 19 of 150 – Version 1.1

3.1.2.2.5 Understanding Intent
Understanding Intent represents the capability for analysts and decision-makers to
develop an understanding of the intent of an individual or set of individuals with regards
to a future action based on current understanding.

Understanding Intent
Canonical Use Cases and Tools
2002-04-30 brb

Performing Risk Analysis

CIM
(from Veridian)

<<Genoa>>

Analyst

(from Actor Roles View)

Decision Maker

(from Actor Roles V...)

Understanding Intent

(from Analysis and Assessment)

<<uses>>

Transitioning

Experimenting

Prototyping

Developing

TBA

Transitioning

Experimenting

Prototyping

Developing

TBA

Color Key

Understanding Intent Canonical Use Cases

3.1.2.2.5.1 Performing Risk Analysis
Performing Risk Analysis represents the capability for analysts and decision-makers to
evaluate the current understanding of intent with respect to the risk the achievement (or
lack) of that intent creates. This analysis crosses multiple domains including military,
civilian, policy, and so on.

 Page 20 of 150 – Version 1.1

3.1.2.3 Presentation and Visualization

3.1.2.3.1 Reporting and Alerting
Reporting and Alerting represents the capability for analysts and decision-makers to
communicate and understand the results of analysis performed. It represents the process
of managing the outputs of analysis. In addition, it represents the capabilities for analysts
and decision-makers to receive “alerts” when the outputs of the analysis process are of
critical interest.

Reporting and Alerting
Canonical Use Cases and Tools
2002-05-1 brb

Verona
(from Global InfoT ek)

<<Genoa>>
Storytelling

Creating Explanations

PersuadingReporting

(from Presentation and Visual ization)

<<uses>>

<<uses>>

<<uses>>

Subscribing

Publishing

Analyst

(from Actor Roles View)

Decision Maker

(from Actor Roles V...)

Alerting

(from Presentation and Visual ization)

<<uses>>

<<uses>>

Transitioning

Experimenting

Prototyping

Developing

TBA

Transitioning

Experimenting

Prototyping

Developing

TBA

Color Key

Reporting and Alerting Canonical Use Cases

3.1.2.3.1.1 Storytelling

 Page 21 of 150 – Version 1.1

Storytelling represents the capabilities for analysts and decision-makers to use
storytelling and narrative techniques to communicate analysis output. Conveying
information in a story provides a rich context, remaining in the conscious memory longer
and creating more memory traces than decontextualized information. Thus, a story is
more likely to be acted upon than “normal” means of communication. Storytelling,
whether in a personal or organizational setting, connects people, develops creativity, and
increases confidence. The use of stories in organizations can build descriptive
capabilities, increase organizational learning, convey complex meaning, and
communicate common values and rule sets.

3.1.2.3.1.2 Persuading
Persuading represents the capabilities for analysts and decision-makers to present the
analysis output and convince the intended audience of the validity, options, and the like,
of the results.

3.1.2.3.1.3 Creating Explanations
Creating Explanations represents the capabilities for analysts and decision-makers to
aggregate the set of information used in analysis into a coherent explanation of intent, a
particular event, and the like.

3.1.2.3.1.4 Subscribing
Subscribing represents the capabilities for an analyst and decision-makers to register to
receive alerts when outputs of the intelligence process correspond to a particular area of
interest.

3.1.2.3.1.5 Publishing
Publishing represents the capabilities for delivering alerts to analysts and decision-makers
who have subscribed to a particular area of interest.

3.1.2.3.2 Visualizing GIS Data
Visualizing GIS Data represents the capability for analysts and decision-makers to view
and navigate GIS Information.

 Page 22 of 150 – Version 1.1

Visualizing Use Cases
2002-05-20 brb

EarthViewer
(from Keyhole)

<<COTS>>

Analyst

(from Actor Roles View)

Decision Maker

(from Actor Roles V...)

GIS Viewer
(from Presentation and Visual ization)

<<TBA>>

Visualizing GIS Data

(from Presentation and Visual ization)

<<uses>>

Transitioning

Experimenting

Prototyping

Developing

TBA

Transitioning

Experimenting

Prototyping

Developing

TBA

Color Key

Visualizing GIS Data Canonical Use Cases

3.1.2.4 Information Management

3.1.2.4.1 Gathering Data

Gathering Data
Canonical Use Cases and Tools
2002-05-1 brb

Chinese
Arabic
Other

HID-IR
(from Equinox Sensors)

<<HID>>
FaceIt

(from Visionics)

<<HID>>

CyberTrans

Portuguese
French
Italian
German
Russian
Spanish

(from M itre)

<<TIDES>>

Identifying Physiology

Identifying VoiceIdentifying Expressions
Identifying Face

Policy Detector
(from Information Management)

<<TBA>>
Segmentors

(from Information Management)

<<TBA>>
Captioning

(from Information Management)

<<TBA>>

Speech to Text Converter
(from Information Management)

<<TBA>>
MiTap

(from M itre)

<<TIDES>>

Noise Filter
(from Information Management)

<<TBA>>

Signal Enhancer
(from Information Management)

<<TBA>>

Signal Identification
(from Information Management)

<<TBA>>

Identifying Humans

<<uses>>

<<uses>><<uses>>

<<uses>>

Understanding Policy Processing Video Sources

Processing Audio Sources

Translating Languages

Processing SensorsAnalyst

(from Actor Roles View)

Gathering Data

(from Information Management)

<<uses>>

<<uses>>
<<uses>>

<<uses>>

<<uses>>

<<uses>> Redundancy Detector
(from Information Management)

<<TBA>>

OnTopic
(from BBN)

<<EELD>>

Processing Text Sources<<uses>>

Themelink Verity Indexer
(from Veridian)

Transitioning

Experimenting

Prototyping

Developing

TBA

Transitioning

Experimenting

Prototyping

Developing

TBA

Color Key

 Page 23 of 150 – Version 1.1

Gathering Data Canonical Use Cases

3.1.2.4.1.1 Understanding Policy
Understanding Policy represents the capability for analysts performing Gathering Data
activities to understand and adhere to the current policies regarding data gathering,
monitoring sources and individuals, etc. Understanding Policy is included in all aspects
of Gathering Data. There is one class of tool specifically identified as capabilities for
Understanding Policy:

a. Policy Detector

3.1.2.4.1.2 Processing Sources
Processing Sources represents the capability for analysts to review and process the large
numbers of information sources entering the system. There are three Use Cases of
processing sources specifically identified:

1. Processing Video Sources: There are two classes of technology components
specifically identified as capabilities for Processing Video Sources:

a. Segmentors
b. Captioning

2. Processing Text Sources: There are two classes of technology components
specifically identified as capabilities for Processing Text Sources:

a. Indexers
b. Redundancy Detector

3. Processing Sensors: There are three classes of technology components specifically
identified as capabilities for Processing Sensors:

a. Noise Filter
b. Signal Enhancer
c. Signal Identification

4. Processing Audio Sources: There is one class of tool specifically identified as
capabilities for Processing Audio Sources:

a. Speech to Text Converter

3.1.2.4.1.3 Translating Languages
Translating Languages represents the capability for analysts to find and interpret needed
information, quickly and effectively, regardless of language or medium. A huge volume
and variety of speech and text is available electronically in many forms (e.g., news
broadcasts, newswire, World Wide Web, Internet). This raw data flows and grows
constantly, spanning many languages. A great deal of vital information exists only in, or
appears sooner in, languages other than English. The Translating Use Case addresses
technology that enables English speakers to access this data. Examples of targeted
languages include, among others Chinese and Arabic.

3.1.2.4.1.4 Identifying Humans

 Page 24 of 150 – Version 1.1

Identifying Humans represents the capability for analysts to use multimodal surveillance
capabilities for identifying humans in order to enhance the protection of U.S. forces and

facilities from terrorist attacks. It enables successfully detecting, classifying, and
identifying humans under a variety of conditions including groups, weather, disguises,
etc. There are four sub use cases:

1. Identifying Faces
2. Identifying Expressions
3. Identifying Voice
4. Identifying Physiology

3.1.2.4.2 Detecting Facts and Events
Detecting Facts and Events represents the capability for analysts to extract pertinent facts
and events collected within the Gathering Data Use Cases. Examples of extracted
information include an entity with its attributes, a relationship between two or more
entities, or an event with various entities playing roles and/or being in certain
relationships.

Detecting Facts and Events
Canonical Use Cases and Tools
2002-04-30 brb LSI Categorizer

(from SAIC)

<<INSCOM>>

OnTopic
(from BBN)

<<EELD>>

Themelink
(from Veridian)

<<Genoa>>

MiTap
(from M itre)

<<TIDES>>
Data Mining

(from Information Management)

<<TBA>>
Data Aggregation

(from Information Management)

<<TBA>>

Data Interpretation
(from Information Management)

<<TBA>>

Indexing

Searching and Filtering

Categorizing

Summarizing Text

Summarizing Data

Analyst

(from Actor Roles View)

Detecting Facts and Events

(from Information Managem ent)

<<uses>>

<<uses>>

<<uses>>

<<uses>>
<<uses>>

Experimenting

Prototyping

Developing

TBA

Experimenting

Prototyping

Developing

TBA

Color Key

Detecting Facts and Event Canonical Use Cases
TransitioningTransitioning

 Page 25 of 150 – Version 1.1

3.1.2.4.2.1 Summarizing
Summarizing represents the capability for analysts to develop and visualize summary
information representing the agreement of facts and events. Summarizing includes
visualizations, automated alert systems, and/or automatic document summarizers. There
are two use cases of summarizing identified:

1. Summarizing Data: Includes three specific classes of technology components:
a. Data Mining
b. Data Aggregation
c. Data Interpretation

2. Summarizing Text

3.1.2.4.2.2 Searching and Filtering
Searching and Filtering represents the capability for analysts to search and filter
information, specifically in this case Facts and Events. Types of searching include free-
text searching, Boolean searching, SQL queries, concept-based searching, among others.
Filtering represents the capability for analysts to use searching mechanisms to create
“views” of collections of Facts and Events. For example, an analyst may wish to see all
of the “Events” that occurred in Xinjiang for a certain date range. Searching and Filtering
capabilities may be applied to multiple levels of data and information constructs, for
example links.

3.1.2.4.2.3 Categorizing
Categorizing represents the capability for analysts to associate sets of facts and/or events
into a taxonomy or topic/subject hierarchy. The taxonomy may be defined by the
organization or generated automatically as in the case of a Clusterizer.

3.1.2.4.2.4 Indexing
Indexing represents the capability for analysts to store information about facts and events
that have been recorded in the system for future retrieval. Indexing may occur at multiple
levels including term-indexing and/or concept-indexing.

 Page 26 of 150 – Version 1.1

3.1.2.4.3 Discovering Links
Discovering Links is the ability for an analyst to identify, correlate, and expose
relationships between facts and events relevant to a particular area of interest. It creates
the ability to find and discover relationships across a breadth of information and between
seemingly unrelated items.

Discovering Links
Canonical Use Cases and Tools
2002-05-01 brb

Entity Extractors
(from Information Management)

<<TBA>>
Entity Resolver

(from Information Management)

<<TBA>>

CCM
(from Applied Technical Systems)

<<INSCOM>>

Analyst Notebook
(from i2)

<<EELD>>

Subdue
(from UTA)

<<EELD>>

TMODS
(from 21st Century Technology)

<<EELD>>

Analyzing Entities

Visualizing Links

Searching and Filtering

(from Detecting Facts and Events)

Clustering

Resolving Cover Terms

Analyst

(from Actor Roles V...)

Discovering Links

(from Information Management)

<<uses>> <<uses>>
<<uses>>

<<uses>>

<<uses>>

Categorizing

(from Detecting Facts and Events)

<<uses>>

OnTopic
(from BBN)

<<EELD>>

Transitioning

Experimenting

Prototyping

Developing

TBA

Transitioning

Experimenting

Prototyping

Developing

TBA

Color Key

Discovering Links Canonical Use Cases

 Page 27 of 150 – Version 1.1

3.1.2.4.3.1 Analyzing Entities
Analyzing Entities is the ability to search, identify, match, and research entities across
aliases and other obfuscating events and tactics. It applies techniques from disciplines
such as linguistics, information theory, statistics, probability, cultural anthropology, and
formal systems design. There are two classes of technology components specifically
identified as capabilities for Analyzing Entities:

a. Entity Extractors

b. Entity Resolver

3.1.2.4.3.2 Visualizing Links
Visualizing Links (or network analysis) is a visualization technique intended to reveal
structure in a collection of related records. Link data is modeled using a graph where
nodes represent entities and links represent relationships or transactions. It includes
aspects of information visualization,8 the ability to navigate and search "naturally"
through unfamiliar information spaces and to manage large-scale and complex data sets.

3.1.2.4.3.3 Searching and Filtering

3.1.2.4.3.4 Clustering
Clustering provides the capability for analysts to group sets of facts or links in a coherent
manner to reveal a higher-level link between facts, events, or links.

3.1.2.4.3.5 Categorizing
Categorizing provides the capability for analysts to classify sets of facts or links in a user
or system-defined hierarchy (e.g., taxonomy) to reveal a higher-level link between facts,
events, or links.

3.1.2.4.3.6 Resolving Cover Terms
Resolving Cover Terms provides the capability for analysts to identify coded events and
patterns of events across entities. It can be considered a type of pattern-matching for link
attributes across time.

 Page 28 of 150 – Version 1.1

3.1.2.4.4 Generating Options
Generating Options
Canonical Use Cases and Tools
2002-04-24 brb

Generating Plausible Futures

Analyst

(from Actor Roles View)

Decision Maker

(from Actor Roles View)

Generating Options

(from Information Management)

<<uses>>

Generating Options Canonical Use Cases

Generating Options represents the capability for analysts and decision-makers to create
options for mitigating (and response) based on the current understanding of intent and
information gathered.

3.1.2.4.4.1 Generating Plausible Futures
Generating Plausible Futures represents the capability for analysts and decision-makers to
perform post-event analysis reasoning about the options under consideration.
Colloquially, it can be considered the capability to ask, “What will happen if we take this
action?”

 Page 29 of 150 – Version 1.1

3.1.2.5 Enterprise Support

3.1.2.5.1 Storing and Sharing Information
Storing and Sharing Information represents the capability for analysts to explicitly and
implicitly capture and persist information within the system and exchange information
between parties with intersecting operational and functional interests.

Storing and Sharing Information
Canonical Use Cases
2002-05-1 brb

XMB
(from H&AI)

<<Genoa>>

SaffronNet
(from Saffron T echnologies)

<<Genoa>>

VIA Repository
(from M aya)

<<Genoa>>

Groove
(from Groove Networks)

<<COTS>>

Directories
(from Enterpri se Support)

<<TBA>>

Team Formation
(from Enterpri se Support)

<<TBA>>

Metadata Search
(from Enterpri se Support)

<<TBA>>

Event and Metadata Capture
(from Enterpri se Support)

<<TBA>>

Event Associations
(from Enterpri se Support)

<<TBA>>

Temporal Reasoning
(from Enterpri se Support)

<<TBA>>

MiTap
(from M itre)

<<TIDES>>

Archive/Corporate Memory
(from Enterpri se Support)

<<TBA>>

Collaboration

Building Teams

Building Context
Searching and Filtering

(from Detecting Facts and Events)

Storing

Presenting Recommendations
Presenting Analysis Results

Presenting Options

Presenting Situation Status

Analyst

(from Actor Roles View)

Storing and Sharing Information

(from Enterprise Support)

<<uses>>

<<uses>>

<<uses>>

<<uses>><<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

 Transitioning

Experimenting

Prototyping

Developing

TBA

Transitioning

Experimenting

Prototyping

Developing

TBA

Storing and Sharing Information Canonical Use Cases Color Key

3.1.2.5.1.1 Collaboration
Collaboration represents the capability for analysts to exchange information and create
participatory processes. Collaboration can be implicit, as in sharing information, or
explicit, as in a live chat. Furthermore, collaboration can be “polymorphic,” or “deep,”
whereby participants use different technology components to operate on the same
information structure in a synchronized fashion.

3.1.2.5.1.2 Presenting
Presenting represents the capability for analysts to effectively communicate information
to other stakeholders (e.g., decision-makers, other analysts, etc.). It includes visualization,
information packaging, information summaries, and other aspects. There are four use
cases of presenting identified:

 Page 30 of 150 – Version 1.1

1. Presenting Situation Status

2. Presenting Analysis Results
3. Presenting Options
4. Presenting Recommendations

3.1.2.5.1.3 Building Teams
Building Teams represents the capability for analysts to assemble groups of experts to
gain additional input and expertise. Building Teams includes identifying team members
and coordinating team activities. There are three classes of technology components
specifically identified as capabilities for Building Teams:

a. Directories
b. Team Formation
c. Metadata Search

3.1.2.5.1.4 Building Context
Building Context represents the capability for analysts to capture the context surrounding
the information space created by other capabilities. The Core Model for context is shown
in the TIA Architecture Fractal Core Model. Context is drawn from a variety of sources
and, as a result, has a very high dimensionality of attributes. Furthermore, Context is
dynamic. It grows even as analysts handle the content. There are three classes of
technology components specifically identified as capabilities for Building Context:

a. Temporal Reasoning
b. Event Associations
c. Event and Metadata Capture

3.1.2.5.1.5 Searching and Filtering

3.1.2.5.1.6 Storing
Storing represents the capability for analysts to persist, retrieve, and operate upon
information received from external sources. It includes the ability to store a broad range
of information types and provide unified operations and views upon disparate
information formats and schemas. There is one classes of technology component
specifically identified as capabilities for Storing:

a. Archive/Corporate Memory

 Page 31 of 150 – Version 1.1

3.1.2.6 Canonical Use Case Coverage Map
This section provides a “coverage map” table linking existing technologies to the
canonical use cases developed as part of the Business Process View. This section can be
considered an alternative view of the technology components and capabilities shown in
the preceding section’s diagrams. The table uses the color-coding shown below. For the
purposes of this document, the technology considered has been scoped to examples from
past or current DARPA programs, COTS technologies currently under consideration by
DARPA, and contractor-developed technology currently in use at INSCOM (IAC). As
this is intended as a partially representative map of technologies to Use Cases, some use
cases might be associated with more than one technical component and others might have
a single component (or none) that only partially cover the required functionality.

TBA
TBA area has been identified by the TIA Team as a class of
technology components that is associated with the functional use
case that has yet to be acquired or developed.

Developing
Technology Component is in the Developing State. It has been
identified by the TIA Team and its development progress is being
monitored.

Prototyping
Technology Component is in the Prototyping State. It has been
acquired by the TIA Team and is actively being applied to the TIA
System. Metrics are under development.

Experimenting

Technology Component is in the Experimenting Stage. It has been
selected for experimentation by the TIA Team. Measurements are
being made according to Metrics where indicated in the class
attributes.

Transitioning
Technology Component is Transitioning. Technology has been
validated by metrics and users and is being transitioned into
operational use. Measured values for metrics are being verified.

Technology Readiness Color Code

 Page 32 of 150 – Version 1.1

3.1.2.6.1 Coverage Map Table

 Page 33 of 150 – Version 1.1

Functional View Canonical Use Case Capability No. Program / Tool

Understanding Policies Policy Detector 1

Segmentors 2
Preparing Video Sources

Captioning 3

EELD / OnTopic

Genoa / Themelink
Verity Indexer

4

Preparing Text Sources

Redundancy Detector 5

Noise Filter 6

Signal Enhancement 7 Processing Sensors

Signal Identification 8

TIDES / MiTap
Processing Audio Sources Speech to Text Converter 9

TIDES / MiTap
TIDES / CyberTrans
Portuguese, French,
Italian, German,
Russian, Spanish

Translating Languages 10

HID / FaceIt

HID / HID-IR Identifying Face
11

Identifying Expressions 12

Gathering Data

Identifying Humans

Identifying Voice 13

Data Mining 14

Data Aggregation 15 Summarizing Data

Data Interpretation 16

TIDES / MiTap
Summarizing Text 17

TIDES / MiTap

Genoa / ThemeLink

EELD / OnTopic

INSCOM / LSI
Categorizer

Searching and Filtering
18

EELD / OnTopic

INSCOM / LSI
Categorizer

Genoa / ThemeLink

Detecting Facts
and Events

Categorizing

 19

EELD / OnTopic

Genoa / ThemeLink

INSCOM / LSI
Categorizer

Indexing 20

Groove
Collaboration 21

Presenting Situation Status 22

Presenting Analysis Results 23

Presenting Options 24

Presenting
Recommendations 25

Directories 26

Team Formation 27

Genoa / XMB
Building Teams

Metadata Search 28

Temporal Reasoning 29

Genoa / SaffronNet
Event Associations 30

Genoa / XMB
Building Context

Metadata Capture 31

TIDES / MiTap
Searching and Filtering 32

Genoa / VIA Repository

Storing and
Sharing
Information

Storing
Archive /
Corporate Memory

33

Entity Extractors 34
Analyzing Entities

Entity Resolvers 35

Analyst Notebook (i2)

EELD / CCM Visualizing Links 36

EELD / Analyst
Notebook (i2)

EELD / CCM

EELD / Subdue

EELD / TMODS

Searching and Filtering

37

EELD / Subdue

EELD / TMODS Clustering 38

EELD / OnTopic

Discovering Links

Categorizing 39

 Page 34 of 150 – Version 1.1

 Resolving Cover Terms 40

Detecting Changes 41

Simulation 42

XMB
Selecting Models 43

Genoa / CIM

Genoa / SEAS

SIAM

Building Models

44

Genoa / CIM

Genoa / SEAS

SIAM

Matching Models

Updating Models 45

Generating
Hypotheses Generating Threat Scenarios 46

Genoa / CIM

Genoa / SEAS

Genoa / SIAM

Structured
Argumentation

 47

Updating Models 48 Learning Patterns
Predictive Modeling 49

Genoa / CIM Understanding
Intent Performing Risk Analysis 50

Generating
Options Generating Plausible Futures 51

Storytelling 52

Genoa / Verona
Persuading 53

Reporting

Creating Explanations 54

Subscribing 55 Alerting
Publishing 56

EarthViewer Visualizing GIS
Data 57

 Page 35 of 150 – Version 1.1

3.1.3. Business Application Services View
The Business Application Services View provides the key bridge between the processes
in the Business Model and the services in the System Model. It associates Actor Roles
(see Section 3.1.1) with Business Application Services, which are modeled as UML
Interfaces. The Business Application Services are an aggregate of the operations’
specifications (services) and the business rules required for the roles (Actor Roles) to
accomplish the activities (use cases). The aggregation of the interfaces associated with a
particular use case comprises the capabilities that must be present in the application(s)
that implements a use case. A tool or application is thus a realization, complete or partial,
of a set of the interfaces.

3.1.3.1 Analysis and Assessment Business Application Services

Business Application Services View
Analysis and Assessment
2002-07-02 brb

Editor

editBriefing()
editProduct()
editModel()

(from Actor Roles View)

Thinker and Understander

review()
assess()

suggestOption()
createModel()

(from Actor Roles View)

Analyst

monitor()

(from Actor Roles View)

SIAM

createModel()
updateModel()
addSupportingInformation()
assignWeight()

(from SAIC)

<<Genoa>>

CIM

createCIMModel()
modifyCIMModel()
populateCIMModel()

(from Veridian)

<<Genoa>>

Modeler Service

createModel()
addModelInfo()
editModelStructure()
deleteModel()
saveModel()
reviewModel()

<<Interface>>

Editor Service

add()
delete()
modify()
print()
save()
annotate()

<<Interface>>

Viewer Service

display()
navigate()
print()

(from Presentation and Visualization)

<<Interface>>

XMB

addProductMetadata()
addCIPMetadata()
searchMetadata()

(from H&AI)

<<Genoa>>

Partial

Partial

Partial

Partial

SEAS

createArgument()
modifyArgument()
createModel()
attachEvidence()

(from SRI)

<<Genoa>>

Partial

Partial

Annotation Service

addAnnotation()
editAnnotation()
deleteAnnotation()
viewAnnotation()
searchAnnotation()
printAnnotation()
saveAnnotation()

(from Information Management)

<<Interface>>

Complete

Partial

 Page 36 of 150 – Version 1.1

3.1.3.1.1 Annotation Service

3.1.3.1.2 Viewer Service

3.1.3.1.3 Editor Service

3.1.3.1.4 Modeler Service

3.1.3.2 Enterprise Support Business Application Services

Business Application Services View
Enterprise Support
2002-07-02 brb

Analyst

monitor()

(from Actor Roles View)

VIA Repository

LocalRepository()

(from Maya)

<<Genoa>>

XMB

addProductMetadata()
addCIPMetadata()
searchMetadata()

(from H&AI)

<<Genoa>>

Context Service

capture()
retrieve()
search()
associate()

<<Interface>>

Collaboration Service

shareFile()
shareApplication()
shareDiscussion()

<<Interface>>

Groove

createSharedSpace()
addFiletoSharedSpace()
useCollaborativeTool()

(from Groove Networks)

<<COTS>>

Security Service

authenticate()
authorize()
encrypt()
decrypt()

<<Interface>>

SaffronNet

captureEvents()
associateEvents()
learnEvents()

(from Saffron Technologies)

<<Genoa>>

Metadata Service

add()
update()
delete()
browse()
search()

<<Interface>>

Partial

Partial

Partial

Partial

Partial

Decision Maker

makeDecision()
suggestHypothesis()

suggestOption()
monitor()
actOn()

(from Actor Roles View)

Repository Service

add()
delete()
search()
replicate()

<<Interface>>

Partial

3.1.3.2.1 Collaboration Service

3.1.3.2.2 Security Service

3.1.3.2.3 Metadata Service

 Page 37 of 150 – Version 1.1

3.1.3.2.4 Repository Service

3.1.3.3 Information Management Business Application Services

Business Application Services View
Information Management
2002-07-02 brb

Data Acquisition

(from Actor Roles View)

Analyst

monitor()

(from Actor Roles View)

Hunter

hunt()

(from Actor Roles View)

Entity Service

extract()
search()
save()
resolve()

<<Interface>>

Gatherer

gather()

(from Actor Roles View)

Organizer

organize()

(from Actor Roles View)

OnTopic

classifyDocuments()
indexDocuments()
retrieveDocuments()

(from BBN)

<<EELD>>

CCM

displayNode()
displayEdge()
searchLinks()

(from Applied Technical Systems)

<<INSCOM>>

Subdue

graphBasedClustering()
searchGraph()

(from UTA)

<<EELD>>

Link Service

addLink()
deleteLink()
saveLink()
searchLink()

<<Interface>>

Partial

Translation Service

translateText()
translateAudio()
save()

<<Interface>>

MiTap

summarizeStory()
searchText()

(from Mitre)

<<TIDES>>

Summarization Service

summarizeDocument()
summarizeDocumentCollection()

<<Interface>>

Themelink

indexDocumentConcepts()
searchDocumentConcepts()

(from Veridian)

<<Genoa>>

Categorization Service

categorizeDocument()
addCategory()
deleteCategory()

<<Interface>>

Partial

Partial

Partial
Partial

Partial

Annotation Service

addAnnotation()
editAnnotation()
deleteAnnotation()
viewAnnotation()
searchAnnotation()
printAnnotation()
saveAnnotation()

<<Interface>> XMB

addProductMetadata()
addCIPMetadata()
searchMetadata()

(from H&AI)

<<Genoa>>

Search Service

search()
save()

<<Interface>> Partial

Complete

Partial

3.1.3.3.1 Annotation Service

3.1.3.3.2 Translation Service

3.1.3.3.3 Search Service

3.1.3.3.4 Entity Service

 Page 38 of 150 – Version 1.1

3.1.3.3.5 Link Service

3.1.3.3.6 Categorization Service

3.1.3.3.7 Summarization Service

3.1.3.4 Presentation and Visualization Business Application Services

Business Application Services View
Presentation and Visualization
2002-07-02 brb

Analyst

monitor()

(from Actor Roles View)

Presenter

presentBriefing()
designBriefing()

(from Actor Roles View)

Decision Maker

makeDecision()
suggestHypothesis()

suggestOption()
monitor()
actOn()

(from Actor Roles View)

Status Service

view()
query()
selectTopic()
selectRegion()

<<Interface>>

GIS Service

find()
navigate()

<<Interface>>

Verona

createBook()
presentBook()
linkInformationIntoBook()

(from GlobalInfoTek)

<<Genoa>>

Briefing Service

design()
save()
print()
present()

<<Interface>>

EarthViewer

navigate3D()

(from Keyhole)

<<COTS>>

Viewer Service

display()
navigate()
print()

<<Interface>>

Partial

Partial

Partial

Partial

3.1.3.4.1 Status Service

3.1.3.4.2 GIS Service

3.1.3.4.3 Viewer Service

 Page 39 of 150 – Version 1.1

3.1.3.4.4 Briefing Service

3.1.4. Business Information View
The Business Information View contains classes representing the information products a
user associates as inputs and outputs of the tools in the Business Application Services
View. The products are defined in terms of a TIA Product (Section 3.1.4.1) and related
TIA Product Format (Section 3.1.4.1.1).

3.1.4.1 TIA Product
The TIA Product represents the externalized information that a user associates as inputs
and outputs. Externalized means that the “product” is in a format enabling it to be
“passed-by-value”, completely independently of the tool for which the product is an input
and/or output. The TIA Product contains a description of the product format. The
products shown in the diagram below represent those current used in the experimentation
process.

TIA Product
2002-07-18 brb

TIA Product Syntax
MIME Type

CIM Model
(from TIA Products)

SEAS Argument
(from TIA Products)

SEAS Model
(from TIA Products)

SEAS Template
(from TIA Products)

Virtual Situation Book
(from TIA Products)

Product MetadataCIP Metadata

TIA Product
Externalized

TIA Product Semantics
Semantic Description
Semantic Interface

3.1.4.1.1 CIM Model
The CIM model is used by Veridian’s CIM (See Section 3.2.8.2.1).

3.1.4.1.2 SEAS Model
The SEAS Argument and Template are used by SRI’s SEAS (See Section 3.2.8.2.2).

3.1.4.1.3 Virtual Situation Book

 Page 40 of 150 – Version 1.1

The Virtual Situation Book is used by GITI’s Verona (See Section 3.2.8.2.5).

3.1.4.1.4 CIP and Product Metadata
CIP and Product Metadata may be created and managed using the XMB (See Section
3.2.8.2.6).

3.1.4.1.5 TIA Product Syntax
The TIA Product Syntax, shown in the next figure, describes the structure of TIA
Information Products. Initially, this has been divided into three types: (1) Text, including
structured and unstructured text, (2) Custom Binary, including all binary formats
requiring a proprietary tool to access, and (3) Structured Data, including relational and
other databases.

Business Information View
TIA Product Syntax
2002-07-17 brb

HTMLXML

Virtual Situation BookCIM Model

SEAS Model

Text Structured Data
Custom Binary

Themelink Database

RDBTuple List

TIA Product Syntax

MIME Type
(from Business Information View)

CIP Metadata Product Metadata

AML
(from Schemas)

RDF
(from Schemas)

ASCII

DC
(from Schemas)

GMF
(from Schemas)

SEAS TemplateSEAS Argument

SMIL
(from Schemas)

3.1.4.1.5.1 Relationship to the Information View
The TIA Product Syntax provides the linking between the Business Information View
and the Information View (See Section 3.2.6) in the System model. Each type of product
format may be associated with one or more Schemas from the Semantic View (See
Section 3.2.6.1), e.g. Genoa Metadata Framework (GMF), Dublin Core (DC), Resource

 Page 41 of 150 – Version 1.1

Description Framework (RDF),Argument Markup Language (AML), and Streaming
Multi-media Interchange Language (SMIL).

3.1.4.2 TIA Product Semantics
The TIA Product Semantics, shown in the next figure, represents the semantics of
products from the perspective of the user. It is the semantic portion of the Business
Information View. As the model develops, related taxonomies, ontologies, and other
portions of the semantic description and interface (See Section 3.2.6.1.1) will be
associated with each product.

Business Information View
TIA Product Semantics
2002-07-17 brb

TIA Product Semantics

Semantic Description
Semantic Interface

(from Business Information View)

Model

Report

Content Summary /
Aggregate

Log

Event List

Transcript Video

Audio

Template

CIM Model
(from TIA Products)

SEAS Argument
(from TIA Products)

SEAS Template
(from TIA Products)

Themelink Database
(from TIA Products)

Virtual Situation Book
(from TIA Products)

CIP Metadata
(from Metadata Structure)

Product Metadata
(from Metadata Structure)

3.1.4.3 Experiment Metrics
As experimentation is defined, metrics will be defined for each software application
included in the experiment. They will be captured in the System Description and linked
to the tool and information products that they are used to measure.

 Page 42 of 150 – Version 1.1

3.1.5. Experiment Deployment View
The Experiment Deployment view describes the mapping(s) of the software, identified in
the Business Application Service View and used in Experiments, onto the hardware and
reflects its distributed aspect. It is analogous to the Physical View of the Rational 4 + 1
View of System Architecture.

Each experiment can be considered a snapshot of the system architecture and business
model as it exists during an experiment. It serves to record the implementation status and
evolution of the system.

The Experiment Deployment View currently forward-references the existing experiment
models contained in this document.

3.1.5.1 UML Deployment Diagram
See Section 4.1.3.1.

3.1.5.2 System Topology Diagram
See Section 4.1.3.2.

3.1.5.3 Mistral Experiment (22 May 2002)
See Section 4.1.

3.1.5.4 Sirocco Experiment (August 2002)
See Section 4.2.

 Page 43 of 150 – Version 1.1

3.2. Systems Model
The Systems Model describes the arrangement, interaction, and interdependence of
elements at a systems and platform level. It provides the technical systems
implementation guidelines upon which engineering specifications are based and common

building blocks are established.

Views of the System Model

3.2.1. Introduction
ems Model is based on a Service Oriented Architecture (SOA)

Core Services
View

Application
Services View

Services
Management View

Information View

Component
Catalog View

Semantic View

Syntactic View

Collaboration
View

As seen above, the Syst
and encompasses a set of interoperating Application Services that use core services and a
common information model. These services will be accessed through an edge-based
collaboration environment or a center-based portal and managed using a services
management console. It is intended as an evolving work-in-progress to encompass the
services “substrate” required by the TIA System to operate in a loosely coupled, highly
cohesive system. The component view of the Systems Model, which will describe the
application components provided by commercial off-the-shelf (COTS) or government
off-the-shelf (GOTS) contractors, will be used to instantiate the functions in the systems
model. The initial set of identified services will be described using a modeling process,
which also can be applied to explain other services as necessary.

 Page 44 of 150 – Version 1.1

3.2.2. Layered Model Overview

Grid Platform

Web Services

Groove Platform
Protocols HTTPMOM Grid Platform

Protocols

Transform
Service

Msg
Service

Data
Service

Registry
Service

Security
Service

Computational
Service

Application Services

Core Services

Edge
Service

The figure above depicts the Systems Model’s critical functions in a layered format,
which also identifies the various dependencies for each function. As shown, there are
four identified platforms, at different layers, that will be required to enable the transport
of the service protocols to fulfill the intended service: a Web Services platform, a Grid
platform, the Groove Platform, and a Messaging Oriented Middleware (MOM) platform.
The purpose of four interoperating platforms is that no one platform can support the
complete set of transport or service functions required to enable all services. In addition,
this approach will enable the incremental release of services until a potential candidate,
such as the Open Grid Services Architecture (OGSA), is able to support all the necessary
functions required for a complete, integrated system.

3.2.2.1 Service Oriented Architecture Overview
Web Services is a set of standards and techniques that represent a major paradigm shift in
distributed computing from Distributed Object Architecture (DOA) to SOA. Under SOA,
a set of network-accessible operations and associated resources are abstracted as a
“service,” which is described in a standard fashion, made available by publishing the
service description to service registries, and found by the service requestor through
querying the registry.

 Page 45 of 150 – Version 1.1

Service
Registry
Service
Registry

Service
Requester
Service

Requester
Service
Provider
Service
Provider

Find Publish

Invoke

Service
Registry
Service
Registry

Service
Requester
Service

Requester
Service
Provider
Service
Provider

Find Publish

Invoke

The TIA architecture will support Web Services that can be invoked using traditional
static binding or dynamic invocation techniques. When employing the dynamic
invocation of services, the service consumer will query the registry to find the service
definition and bind to the service implementation at run-time. When using the static
binding approach, service end-point information is known a priori and incorporated into
the client code rather than accessing via registry lookup.

Web Services standards include the following:

• Simple Object Access Protocol (SOAP), which performs the low-level XML
“plumbing” for transmitting web service calls across the wire;

• Web Service Definition Language (WSDL) is the language that defines the
functional interfaces. In other words, a WSDL document (which is itself in XML)
represents the official “contract” between the service consumers and providers.
All TIA core services described in the later sections of this document are defined
using WSDL.

• Universal Discovery, Description, and Integration (UDDI) is the standard for
organizing and accessing the service registry, in the previous figure, service
registry services as the “yellow” page of a set of Web Services, providing
mechanisms for a service provider to publish its capabilities and for a user to find
matching services.

Compared with traditional distributed computing technologies such as CORBA and DCE,
Web Services a variety of significant advantages, including:

• Maximum Interoperability. Web Services standards are entirely based on XML
and are programming language-, platform-, and programming model-neutral. For
example, a Visual Basic client (written in a procedural model) on a Microsoft
.NET server can readily invoke a Web Service hosted by a Java J2EE application
server (written in an OO model) on a Red Hat Linux platform.

• Loose Coupling. Web Services standards focus on defining the functional
interfaces, which represent the minimal understanding between service requestor
and provider. Knowledge of the service provider is discovered dynamically from
a service registry rather than statically coded in the client program.

• Ubiquity. Web Service calls are essentially XML messages over HTTP (or,
potentially, other standard Internet protocols), which represent the “least common
denominator” of network protocol stacks. This makes it easier to overcome
firewall and infrastructure constraints. When it comes to cross-agency information
sharing among different autonomous networks, Web Services is likely to be the
only viable option.

 Page 46 of 150 – Version 1.1

• Usability. The same SOAP/XML/HTTP technologies also represent a low entry
barrier for programmers, administrators, and users, making web services much
easier to adopt and implement.

By laying its foundation on SOA and Web Services standards, the TIA system
architecture is able to integrate a diverse set of core service capabilities, including
security, messaging, and data transformation, into a unified yet highly scalable platform,
as higher-level services may be composed using other services.

3.2.3. Collaboration View
The collaboration view contains the components that support the human interaction with
the TIA system actors and between human actors. It contains the user interface that
provides a common look, feel, and brand to which any counterterrorism analyst will
become accustomed.

There are two main platforms for collaboration: edge and center. Furthermore, these
platforms intersect with two collaborating methodologies: synchronous and
asynchronous. Edge collaboration is a decentralized approach to collaboration that
supports a peer-to-peer methodology in which each end-user is empowered with a full set
of information replicated on their individual computers and is accessed through a rich
heavy client-based user interface. Due to the replication of content to the edge, it is best
used for short duration, synchronous collaboration with a smaller member set in the
collaboration space. In the case of center-based collaboration, information is stored
centrally on a server and is accessed typically using a web browser. Center-based
collaboration is best used in longer duration asynchronous collaboration situations with a
larger set of members in the space. Note, however, that there are areas where edge-based
collaboration platforms can support asynchronous collaboration and center-based
collaboration can support synchronous collaboration.

It has been envisioned that TIA will employ a process using a combination of these two
collaboration platforms and methodologies. All Application Services will be accessed
using one of two collaboration user interfaces. For edge-based collaboration, a peer-to-
peer product such as Groove will be used to support the decentralized collaboration
activities. Application Services requiring an edge-based approach will be integrated as a
tool within the Groove platform and will provide a rich user interface based on the
Groove UI as in the figure below.

 Page 47 of 150 – Version 1.1

For the center-based collaboration user interface, a TIA portal will be established to
organize the UI using a thin client running within a browser. Collaboration “portlets” will
be developed for Application Services that are best suited to running in a center-based
thin client mode.

 Page 48 of 150 – Version 1.1

Finally, the TIA architecture will support interoperability between these two
collaborating platforms. Using the core services described below, TIA will support a full
round-trip collaborating environment between the edge- and center-based platforms. The
intent for round-trip collaboration, shown in the next figure, is so that the user does not
have to manually copy data between these environments.

TIA
Portal MiTAP

Portlet

MITAP
search
results

Groove
Shared
Space

Groove
Files
Tool

TIA
Portal
Re-
pository

Step 1: An
analyst enters
the TIA Portal

Step 2: The analyst views
the MiTAP portlet

Step 3: The analyst
performs a search
against the MiTAP
repository

Step 4: Based upon results
returned from the MiTAP query,
the analyst creates a Groove
shared space to collaborate on the
issue

Step 5: As a result of the
collaboration, work products
are generated and archived
in the files tool

Step 6: Before closing out
the shared space, work
products are archived in the
TIA Portal document
repository

Analyst

3.2.4. Application Services View
Application Services are higher order services built upon TIA core services and possibly
other higher order services. Application Services encapsulate an application’s business
logic and/or algorithms and expose this information as a service for other applications to
consume. This approach will enable a “chaining” effect, that is, that incremental logic of
differing applications can be built successively on top of other services, which, in turn,
will create a more powerful tool. Typical candidates that could be used for Application
Services are applications or algorithms that do not have a user interface and run via
command line. Another candidate are those cases where the application logic can be
separated from the user interface, such as for evidence extraction or link discovery,
making it available to external applications as a “black box.”

This section serves as the placeholder for the elaboration of the Application Services,
which will evolve and be defined throughout the evolution of the TIA system. Once a
service is identified during TIA experiments, Use Cases, Interface Description, and

 Page 49 of 150 – Version 1.1

WSDL Interface will be created describing the service. These artifacts will be developed
for each of these higher order services.

3.2.5. Core Services View
The following sections will describe the fundamental Core Services required of the TIA
System. These sections will be broken down into their constituent parts by identifying the
System Use Cases for each service, the Class Diagrams describing their external
interfaces to the consumers and the high level underlying design behind the interface. A
Web Services Definition Language (WSDL) [4] interface for each service is provided as
an Appendix.

The figure below depicts the logical view of the Core Services. This diagram describes
the inter-dependencies of the services to provide the security and administration functions
required of an interoperating system of services

Security Services
(from Design View)

Registry Services
(from Design View)

Data Services
(from Design View)

Message Services
(from Design View)

Transformation
Services

(from Design View)

Computational
Services

(from Design View)

Edge Gateway
Services

(from Design View)

MOM Platform Groove Platform Grid Platform

3.2.5.1 Security Services
Central to an integrated system, Security Services will provide the necessary functions to
enable applications to authenticate and authorize consumers of each service to operate
within a central security framework. Security Services will provide a centralized
administration scheme to manage users and their privileges across the consumers of the
services, realizing a single sign-on across the systems.

 Page 50 of 150 – Version 1.1

Currently, native security provisions in the existing Web Services standards are
extremely lacking. Core features of a base security framework including authentication

and authorization have not been sufficiently addressed. The high-level design in this
section represents a baseline custom solution that will provide interim support for
authentication and authorization. We anticipate that the emergence of new standards for
Web Service security [6] introduced by IBM and Microsoft (WS-Security, WS-
Authentication, and WS-Policy) will supersede the design reflected below.

3.2.5.1.1 Security Services System Use Cases

Authent icate User

Authorize User

System

(from Repository)

End User

Add User

Remove User

Edit User

Retrieve Users

Assign User to Role

Remove User from Role

Manage Users

Includes

The Use Case diagram above highlights the initial set of functionality proposed for
security services. The core set of functionality includes the management of user accounts
along with security authentication and authorization.

The Manager Users Use Cases reflect the ability to add new user accounts to the system,
update user metadata, remove a user from the system, retrieve a list of users from the
system, and manage a user’s role assignments. User information likely will be persisted
in an underlying store, such as LDAP or a relational database.

 Page 51 of 150 – Version 1.1

Authentication of a user is intended to restrict access of Core Service and Application
Service components to validated users of the TIA system. If a user has not been
authenticated with the Security Service, the end-user request will be denied.

Authorization of a user request involves the validation of a user’s credentials to ensure he
or she has the proper role assignment and privilege to invoke the service operation. If a
user is not authorized to perform a request, he or she will receive a security exception and
the operation will be aborted.

3.2.5.1.2 Security Services Interface
Based upon the Use Case diagram defined above, the following class diagram has been
defined to satisfy the base requirements:

 Page 52 of 150 – Version 1.1

BusinessManager

process(operation : OperationMessage) : ResultMessage

(from manager)

<<Interface>>

SecurityManagerEJB
(from manager)

<<Stateless EJB>>

Se cu rit yMan ag erExce pt ion
(from common)

NotAuthorizedException
(from common)

SecurityManager

authenticate(userName : String, password : String) : TiaSession
authorize(userUuid : UUID, privilege : String) : void
addUser(user : User) : void
editUser(user : User) : void
removeUser(userId : UUID) : void
getUsers() : List
getUser(userId : UUID) : User
assignUserToRole(userId : UUID, roleId : UUID) : void
removeUserFromRole(userId : UUID, roleId : UUID) : void
getRoles() : List

(from manager)

<<Interface>>

throws

Both of these classes are BAH implementation
classes. The Service class will receive a
message from the SOAP servlet. This class will
be responsible for transforming the data into
native objects and passing along the request to
the central controller that will perform security
functions (auditing, authorization) and route the
request along to the appropriate EJB to perform
the business logic.

SecurityManagerService
(from service)

<<Web Service>>

The class diagram above depicts the initial high-level design representation of the TIA
Data Services. An interface called “SecurityManager” has been created to serve as the
service view to the external world. The SecurityManager interface exposes key methods
that enable both user account management and base Security Services, including
authentication and authorization. The SecurityManager interface will generate the WSDL
service description that developers will use to generate programs that communicate with
the service.

The SecurityManager is required to throw an exception called
“SecurityManagerException” if a request cannot be fulfilled. The
SecurityManagerException will map to a fault as specified in Section 4.3.6 of the JAX-
RPC .8 specification[1].

Similar to the implementation patterns applied in other service components, two
implementation-specific classes have been included in the diagram to serve as
placeholders until the detailed design details have been determined. Initially, the
SecurityManagerService will implement the SecurityManager interface and serve as the
entry point for incoming Web Service requests. The SecurityManagerService class will
likely perform any necessary object assembly and forward the request to a central control
for security, logging, and routing. The SecurityEJB class will likely be implemented as a
stateless Enterprise Java Bean (EJB) and perform the necessary business logic to service
the request. The diagram above reflects the SecurityEJB implementing a
BusinessManager interface. The BusinessManager interface will enable the
SecurityManagerEJB to be plugged seamlessly into the TIA framework and integrate
with the central controller where other services, such as security and logging, will occur.

3.2.5.2 Registry Services
The TIA Registry Services will provide a mechanism to enable the location of service
providers and the retrieval of service description documents for the TIA system. Registry
Services will take advantage of a central registry server that will be enabled through the
Universal Description, Discovery, and Integration (UDDI) specification [5].

Initially, software requesters will manually search registries to discover service
descriptions and use traditional static binding techniques to employ the service. In the
future, software programs will use the registry service to dynamically discover and bind
services at runtime.

 Page 53 of 150 – Version 1.1

3.2.5.2.1 Registry Services System Use Cases

Publish Service Entry

Modify Service Entry

Remove Service Entry

Search Registry

End User

(from Security Services)

The Use Case diagram presented above highlights the initial set of functionality proposed
for registry services. The core set of functionality includes publishing, modifying, and
removing a service entry and searching the registry.

Publishing a service entry involves creating the service description in the UDDI registry.
A service description will comply with the WSDL, which is based on XML and used to
describe a Web Service. [4]. The WSDL service description will contain the operations
supported by the service, the network endpoint for the service, and the protocol binding
of the service. Modifying a service entry involves the update of the WSDL service
description or any of the metadata capture about the service description. Removing a
service entry involves deleting the WSDL service description and associated metadata
from the UDDI repository. Once information has been removed from the repository, it
cannot be recovered. Searching the registry will enable developers and application
programs to locate service descriptions based upon specified search criteria.

 Page 54 of 150 – Version 1.1

3.2.5.2.2 Registry Services Interface

Both of these classes are BAH implementation
classes. The Service class will receive a
message from the SOAP servlet. This class will
be responsible for transforming the data into
native objects and passing along the request to
the central controller that will perform security
functions (auditing, authorization) and route the
request along to the appropriate EJB to perform
the business logic.

RegistryManagerEJB
(f rom manager)

<<stateless ejb>>

RegistryManager

registerService(entry : RegistryEntry) : void
editService(entry : RegistryEntry) : void
removeService(uuid : UUID) : void
getServices() : List
getByDepartment(department : String) : List
getByName(name : String) : List

(f rom manager)

<<Interface>>

BusinessManager

process(op erat ion : Operati onMessa ge) : ResultM essa ge

(f rom manager)

<<Interface>>

RegistryManagerException
(f rom c ommon)

throws

RegistryManagerService
(f rom serv ice)

<<Web Service >>

The class diagram above depicts the initial high-level design representation of the TIA
Registry Services. An interface called “RegistryManager” has been created to serve as
the service view to the external world. The RegistryManager interface exposes key
methods to enable basic Create/Read/Update/Delete (CRUD) functionality. The registry
manager interface will be used to generate the WSDL service description that will be
used by developers to develop programs that communicate with the service.

The RegistryManager is required to throw an exception called
“RegistryManagerException” in the event a request cannot be fulfilled. The
RegistryManagerException will map to a fault as specified in Section 4.3.6 of the JAX-
RPC .8 specification.

 Page 55 of 150 – Version 1.1

Two implementation-specific classes have been included in the diagram to serve as
placeholders until the detailed design details have been determined. The initial intent of
the RegistryManagerService is to implement the RegistryManager interface and serve as
the entry point for incoming web service requests. The RegistryManagerService class
will likely perform any necessary object assembly and forward the request to a central
control where security, logging, and routing will occur. The RegistryManagerEJB class

will likely be implemented as a stateless Enterprise Java Bean (EJB) and perform the
necessary business logic to service the request. The diagram above reflects the
RegistryManagerEJB implementing a BusinessManager interface. The BusinessManager
interface will enable the RegistryManagerEJB to be plugged seamlessly into the TIA
framework and integrate with the central controller where services such as security and
logging will occur.

3.2.5.3 Data Services
Data Services provides a loosely coupled access to local and remote data sources. In
contrast to a standard enterprise (local) approach using JDBC or ODBC access to a data
source, Data Services will extend the data across a WAN and will enable the dynamic
binding of data resources to enable an aggregation of data again creating a “chaining”
effect providing a richer set of information (i.e., knowledge) rather than offering simple
raw data sources. Additionally, Data Services will be dependent on the Security Services
described earlier, thus adding security and access control over different aspects of the
data based on the privileges of the consumer role. This will provide users with different
privileges—different “views”—of the same data set facilitating discretionary access
control (DAC).

 Page 56 of 150 – Version 1.1

3.2.5.3.1 Data Services System Use Cases

Get Data

Update Data

Remove Data

Search Repository

Add Data

Register Schema

Unregister Schema

System

The Use Case diagram depicted above highlights the initial set of functionality proposed
for Data Services. The core set of functionality includes managing schemas, managing
data, and searching the repository. Additional Use Cases will be added for domain-
specific data access as requirements are identified during experimentation.

Management of schemas involves the Register Schema and Unregister Schemas Use
Cases. Registering a schema enables external applications and administrators to register a
valid XML schema with the repository manager. The registered schema will validate
incoming XML documents to be stored in the repository. The Unregister Schema Use
Case removes the registered schema from the system. After the schema has been
unregistered, new requests that coming in to add XML data will be unable to validate
with the repository.

 Page 57 of 150 – Version 1.1

The management of data encompasses the Add Data, Update Data, Remove Data, and
Get Data Use Cases. When adding data to the system, the incoming XML document will

be validated against known XML schemas that have been registered with the repository.
If the incoming XML document does not validate against a known schema, the add data
request can be denied.

The Searching Repository use case encompasses a key component of the repository and
data services, information retrieval. The current vision is to provide an approach for
queries to be passed into the Repository Service where they will be executed against
stored data and the results returned. Since the initial intent of the repository is to provide
a store for XML-based data, the queries will likely be in the form of XPath or Query
statements. Data can also be retrieved by querying based on the Universally Unique
Identifier (UUID) that is assigned when data is entered into the repository.

3.2.5.3.2 Data Services Interface

RepositoryManagerService
(from service)

<<Web Service>>

RepositoryMa nager

registerSchem a(xmlSch ema : Schema) : UUID
removeSchema(schemaUuid : UUID: void)
addContent(schemaUuid : UUID, content : Conten t) : UUID
editContent(schemaUuid : UUID, contentUuid : UUID, conten t : Content) : vo id
removeContent(schema Uuid : UUID, co ntentUuid : UUID) : void
getContent(schemaUuid : UUID, contentUuid : UUID : String) : Content
searchRepository(schemaUuid : UUID, xQueryS tring : String) : Co ntent

(from manager)

<<Interfa ce>>

BusinessMan ager

process(opera tion : Ope rationMessage) : ResultMessag e

(from manager)

<<Interface>>

RepositoryMa nagerExce ption
(from common)

throws

RepositoryManagerEJB
(from manager)

<<Stateless EJB>>

RepositoryMa nagerDao

getInstance() : RepositoryManagerDao
registerSchema(xmlSchema : Schema) : UUID
removeSchema(schemaUuid : UUID) : void
addContent(schemaUuid : UUID, content : Content) : UUID
editContent(schemaUuid : UUID, contentUuid : UUID, content : Content) : void
removeContent(schemaUuid : UUID, contentUuid : UUID) : void
getContent(schemaUuid : UUID, contentUuid : UUID : String) : Content
searchRepository(schemaUuid : UUID, xQueryString : String) : Content

(from dao)

<<Abstract>>

+theRepositoryManagerDao
uses

SoftwareAgDao
(from dao) OracleDao

(from dao)

Data access o bject
designed to a bstra ct
the unde rlying database
impleme ntation of the
repository

Both of these classes are BAH implementati on
cla sses. T he Service class will receive a
message from the SOAP servlet. This class will
be responsible for transforming the data into
native objects and passing a long the request to
the central co ntroller that will perform security
functions (auditing, auth orization) and route the
request along to the appropriate EJB to perform
the business logic.

 Page 58 of 150 – Version 1.1

The class diagram above depicts the initial high-level design representation of the TIA
Data Services. An interface called “RepositoryManager” has been created to serve as the
service view to the external world. The RepositoryManager interface exposes key

methods to enable the registration and management of schemas along with the ability
Create/Read/Update/Delete/Search data stored against the schema. The
RepositoryManager interface will be used to generate the WSDL service description that
will be used by developers to develop programs that communicate with the service.

The RepositoryManager Manager is required to throw an exception called
“RepositoryManager ManagerException” in the event a request cannot be fulfilled. The
RepositoryManagerException will map to a fault as specified in Section 4.3.6 of the
JAX-RPC 8 specification [1].

Similar to the implementation patterns applied in other service components, two
implementation specific classes have been included in the diagram to serve as
placeholders until the detailed design details have been determined. The
RepositoryManagerService is initially intended to implement the RepositoryManager
interface and serve as the entry point for incoming Web Service requests. The
RepositoryManagerService class will likely perform any necessary object assembly and
forward the request to a central control for security, logging, and routing. The
RepositoryEJB class will likely be implemented as a stateless Enterprise Java Bean (EJB)
and perform the necessary business logic to service the request. The diagram above
reflects the RepositoryEJB implementing a BusinessManager interface. The
BusinessManager interface will enable the RepositoryManagerEJB to be plugged
seamlessly into the TIA framework and integrate with the central controller where
services such as security and logging will occur.

A key design goal of the Repository Manager Service is to hide the underlying
implementation of the actual data repository. Given the dynamic nature of the database
market, the product we choose today will likely be replaced with a different, more robust
solution in the future. To accomplish this design goal, we have applied the Data Access
Object (DAO) design pattern. In the figure above, the RepositoryManagerDAO is an
abstract base class that implements the singleton pattern. When the getInstance()
operation is invoked on the RepositoryManagerDAO, the DAO class will make a
decision, based on the environment in which it deployed, on what DAO implementation
class to instantiate. The diagram currently represents DAO implementation classes for
Oracle and Software AG, however, this can easily be expanded to support virtually any
repository. The RepositoryManagerEJB will program to the RepositoryManagerDAO
interface and will not be effected by “plugging in” a new implementation class.

3.2.5.4 Messaging Services

 Page 59 of 150 – Version 1.1

Messaging Services provides the asynchronous approach to data and computing intensive
service requests. The Messaging Services allows multiple providers and consumers to
subscribe to a messaging topic as a single interface rather than creating multiple sets of
point-to-point connections. Furthermore, the asynchronous nature allows consumers to
continue processing other activities and to be notified when their requests are completed.
A callback mechanism will be put in place that will, upon notification, automatically
invoke a function on the consumer to process the service results.

3.2.5.4.1 Messaging Services System Use Cases

Create Topic

Change Topic Properties

Remove Topic

Find Topic

Publish to Topic

Subscribe to Topic

System

Unsubscribe to Topic

The Use Case diagram depicted above highlights the initial set of functionality proposed
for messaging services. The core set of functionality includes managing topics and
message retrieval.

Managing topics involves the creation, modification, and removal of a topic. Once a topic
has been removed from the system, messages can no longer be published to the topic and
any connections from active subscribers will be terminated.

Message retrieval involves systems locating topics they wish to subscribe to and, once the
topic has been discovered, subscribing to the topic. When a system subscribes to a topic,
it will receive all messages that are published to the topic. Published messages will likely
be in the form of XML; other message formats include standards text messages and
binary messages.

 Page 60 of 150 – Version 1.1

3.2.5.4.2 Messaging Services Interface

MessagingManager

CreateTopic(topic : Topic) : void
ChangeTopicProperties(topic : Topic) : void
RemoveTopic(topic : Topic) : void
FindTopic(topicName : String) : Topic
PublishToTopic(message : Message) : void
SubscribeToTopic(topic : Topic) : void

(from manager)

<<Interface>>

MessagingManagerService
(from service)

<<Web Service>>
MessagingManagerEJB

(from manager)

<<Stateless EJB>>

BusinessManager

process(operation : OperationMessage) : ResultMessage

(from m anag er)

<<Interface>>

MessagingManagerException
(f rom co mmo n)

throws

Both of these c lasses are BAH implementation
classes. The Service c lass will receive a
message from the SOAP servlet. This class will
be respons ible for t rans forming the data into
native objects and passing along the request to
the central controller that wil l perform security
functions (auditing, authorization) and route the
request along to the appropriate EJB to perform
the business logic.

The class diagram above depicts the initial high-level design representation of the TIA
Messaging Services. An interface called “MessagingManager” has been created to serve
as the service view to the external world. The MessagingManager interface exposes key
methods to enable the management of messaging topics and the subscription and
publishing to those topics. The MessagingManager interface will be used to generate the
WSDL service description that will be used by developers to develop programs that
communicate with the service.

 Page 61 of 150 – Version 1.1

The MessagingManager is required to throw an exception called
“MessagingManagerException” in the event a request cannot be fulfilled. The

MessagingManagerException will map to a fault as specified in Section 4.3.6 of the JAX-
RPC .8 specification.

Similar to the implementation patterns applied in other service components, two
implementation specific classes have been included in the diagram to serve as
placeholders until the detailed design details have been determined. The
MessagingManagerService is initially intended to implement the MessagingManager
interface and serve as the entry point for incoming Web Service requests. The
MessagingManagerService class will likely perform any necessary object assembly and
forward the request to a central control where security, logging, and routing will occur.
The BusinessManager interface will enable the MessagingManagerEJB to be plugged
seamlessly into the TIA framework and integrate with the central controller where
services such as security and logging will occur.

3.2.5.5 Transformation Services
Transformation Services provide the functions required to enable bidirectional syntactic
transformation of data between heterogeneous applications within different domains.
These services reference the Information View of the TIA System Architecture and will
identify the approach to semantic transformation between the domain objects.

 Page 62 of 150 – Version 1.1

3.2.5.5.1 Transformation Services System Use Cases

E xec ute Trans form ation Rule

E nd Us er

(fro m S e cu ri ty S e rvi ce s)

A dm inis trator

A dd Trans form ation Rule

Remove Transform ation Rule

Update Trans form ation Rule

Retrieve Trans form ation Rule

M anage Trans form ation Rules

The Use Case diagram above highlights the initial set of functionality proposed for
Transformation Services. The core set of functionality includes executing a
transformation and managing the set of transformation rules.

Executing a transformation rule involves passing in an existing well-formed XML
document and applying a transformation rule to the document to produce a new well-
formed XML document. The transformation rules will utilize XSLT technology to
perform the document translation. The management of transformation rules includes the
ability to create, update, remove, and retrieve transformation rules from the system. The
management of transformation rules can only be performed by authorized administrators
of the system.

 Page 63 of 150 – Version 1.1

3.2.5.5.2 Transformation Services Interface
Based upon the Use Case diagram defined above, the following class diagram has been
defined to satisfy the base requirements:

TransformationManagerException
(from common)

TransformationManager

transform(dom : Document, ruleUuid : UUID) : Document
addRule(ruleName : String, xsl : String) : void
editRule(uuid : UUID, ruleName : String, xsl : String) : void
removeRule(uuid : UUID) : void
getRule(uuid : UUID) : TransformationRule
getRules() : java.util.List

(f ro m man ager)

<<Interface>>

throws

TransformationManagerEJB
(from manager)

<<Stateless EJB>>

BusinessManager

process(operat ion : OperationMessage) : ResultMessage

(from manager)

<<Interface>>

Both of these classes are BAH implementation
classes. The Service class will receive a
message from the SOAP servlet. This class will
be responsible for transforming the data into
native objects and passing along the request to
the central controller that will perform security
functions (auditing, authorization) and route the
request along to the appropriate EJB to perform
the business logic.

TransformationManagerService
(f rom service)

<<Web Service>>

The class diagram above depicts the initial high-level design representation of the TIA
Transformation Services. An interface called “TransformationManager” has been created
to serve as the service view to the external world. The TransformationManager interface
exposes key methods to enable the transformation of an XML document and the basic
administration of rules including CRUD functionality. The TransformationManager
interface will be used to generate the WSDL service description that will be used by
developers to develop programs that communicate with the service.

 Page 64 of 150 – Version 1.1

The TransformationManager is required to throw an exception called
“TransformationManagerException” in the event a request cannot be fulfilled. The

TransformationManagerException will map to a fault as specified in Section 4.3.6 of the
JAX-RPC .8 specification.

Similar to the implementation patterns applied in other service components, two
implementation specific classes have been included in the diagram to serve as
placeholders until the detailed design details have been determined. The
TransformationManagerService is initially intended to implement the
TransformationManager interface and serve as the entry point for incoming Web Service
requests. The TransformationManagerService class will likely perform any necessary
object assembly and forward the request to a central control for security, logging, and
routing. The TransformationManagerEJB class will likely be implemented as a stateless
Enterprise Java Bean (EJB) and perform the necessary business logic to service the
request. The diagram above reflects the TransformationManagerEJB implementing a
BusinessManager interface. The BusinessManager interface will enable the
TransformationManagerEJB to be plugged seamlessly into the TIA framework and
integrate with the central controller, where services such as security and logging will
occur.

3.2.5.6 Computational Services
Many mission-critical TIA applications, such as those in artificial intelligence (AI),
information mining (IM), and data warehousing (DW), are highly resource-intensive.
Such applications require orchestrated access to a diverse collection of resources,
including computational resources, storage resources, networks, programs, and databases.
Traditionally, such applications often have to be hosted in a centralized, custom-designed
environment with high-end server clusters or even supercomputers. Such an environment
is generally homogeneous, static, non-interoperable, vendor-dependent, and costly to
operate and maintain.

Computational Services uses recent technology advances in grid computing to give better
support for such resource-intensive applications. It provides (1) a generic distributed
architecture that allows for dynamic resource access across multiple heterogeneous
platforms, and (2) a set of open, accessible interfaces to access and manage resource-
intensive applications under this architecture.

Just like other TIA Core Services, Computational Services expresses its interfaces using
Web Service protocols, which are programming language-, programming model-, and
system software-neutral, to achieve maximum interoperability. Furthermore,
Computational Services is built upon the OGSA model, the de facto standard for grid
computing. Under the service-oriented OGSA architecture:

• Applications, resources, and so on are all represented as services.

• Services are dynamically created, discovered, and accessed using standard
interfaces regardless of the native computing platform.

• Services are managed in a controlled, fault-resilient, and secure manner.

 Page 65 of 150 – Version 1.1

As a result, this architecture dramatically lowers the entry barrier to resource-intensive
computing. Resources from heterogeneous networks, possibly across multiple
administrative domains, can be organized into a massive “parallel computer,” drastically
improving application performance and response time.

3.2.5.6.1 Computational Services System Use Cases

Submit Computational Service

Get Service Results

Cancel Computational Service

Query Computational Resources

Query Service Status

System

(from Use Case View)

Manage Computational Resources

Create & Configure Comp. Service

Get Service Status Notificat ions

The Use Case diagram depicted above highlights the initial set of functionality proposed
for computational services. The core set of functionality can be divided into two
categories:

1. Use cases related to managing computational resources

2. Use cases related to managing computational services or jobs.

 Page 66 of 150 – Version 1.1

Computational resources are those used by a computational-intensive application,
including but not limited to machines, CPUs, memory, storage, network bandwidth, and

so on. Under the OGSA architecture, the relationship between resources and
computational jobs are dynamically configured rather than statically assigned. The
system provides a “resource directory” that keeps track of available computational
resources and their properties. Querying this directory will provide the system with a set
of resources that meet certain criteria. For example, it will answer the question such as
“Which Red Hat 7.2 machines are available with a load of less than 30%?”

Management of computational resources involves creating, removing, and updating the
status of different kinds of resources. All resources are described in structured XML,
enabling users to construct queries using standard query languages such as XPath and
XQuery. Depending on domain specific requirements, different implementations may be
provided such as Relational Database (RDBMS) or Lightweight Directory Access
Protocol (LDAP). Again, the Web Services APIs ensure that users always use the same
interface to access the resource information regardless of the underlying implementation.

Before a computational job can be submitted and executed, the system needs to gather
two kinds of information about this job, namely, (1) job configuration, such as the
program(s) to run, environment variables, input and output requirements, and the like;
and (2) resource requirements, such as machine type, OS level, memory, and so on. The
“Create and Configure Computational Service” Use Case allows the system to gather
such information.

The Submit Computational Service enables the system to submit a request to execute a
computational job. Based on the job configuration and its resource requirements, a job
manager will attempt to match and allocate resources from the resource directory, make
preparations (e.g., I/O data) for the job, then submit the job for execution on the assigned
resources. The OGSA architecture enables local or remote location transparency,
alleviating users from the “plumbing” details such as network communication and data
transport.

Likewise, the system provides other Use Cases for managing the lifecycle of a
computational job, such as canceling a job, monitoring job status, and getting the job
execution results.

It is worth noting that the Use Cases for job management are designed under an
asynchronous model, whereby the external users do not have to wait for the service to be
completed. Rather, clients may choose to subscribe to notifications or “callbacks” which
is sent after the service is completed.

 Page 67 of 150 – Version 1.1

3.2.5.6.2 Computational Services Interface

ResourceDirectoryService

queryResource()
addResource()
removeResource()
reserve()
unreserve()

(from OGSA)

<<Web Service>>

JobManagerService

submitJob(jobArgs : String[]) : jobHandle
getJobStatus(jobHandle : URI)
cancel(jobHandle : URI)
getJobOutput(jobHandle : URI)

(from OGSA)

<<Web Service>>

TIAJobManager
(from job)

<< Interface >>
TIAResourceDirectory

(from job)

<< Interface >>

derived from

TIAJobManagerEJB
(from manager)

<<Stateful EJB>>

implements

JobRegistryService

register()
unregister()
inspectJob()

(f ro m OGSA)

<<Web Service>>

TIAJobRegistry
(from job)

<< Interface >>

TIAJobRegistryEJB
(from manager)

<<Stateful EJB>>
TIAResourceDirectoryEJB

(from manager)

<<Stateful EJB>>

JobManagerFault
(from OGSA)

<<Fault>>

throws

JobManagerException
(from common)

implements

GridResourcePool

assignResource()
releaseResource()
addResource()
removeResource()
refresh()

(from common)

<<Abstract>>

CompResourcePool

CompResourcePool()

(from common)
StorageResourcePool

StorageResourcePool()

(from common)

uses

Other types of
resource pools
can also be
created

TIAJob
(from domain)

<<Abstract>>

get job defs from

allocate resources from
manages

The class diagram above represents the initial high-level design representation of the TIA
Computational Services. The intention here is not to provide an exhaustive list of all
implementation classes, but to identify interfaces that represent the key functionality
described in the use case diagram and illustrate the design patterns that guide the
implementation.

 Page 68 of 150 – Version 1.1

The JobManagerService is the key interface that clients will be dealing with, which
provides operations for submitting a job, canceling a job, inquiring job status, and getting
job outputs.

The JobManagerService uses JobRegistryService to manage the definitions of
computation-intensive jobs, which include job execution environment properties, I/O
requirements, resource requirements, and various preferences.

A ResourceDirectoryService keeps track of all available resources in the computational
“grid.” In addition to storing resource details (e.g. CPU, memory, and storage info for a
computer), it also receives dynamic updates to reflect resource availability.

The class diagram is self-explanatory to a large extent, but the following points are worth
noting:

• Web Services interface definitions, as defined in the WSDL language in the next
section, represent the official “contract” between clients and service providers.
Java interfaces and EJB implementations are derived from the WSDL interfaces.

• Likewise, Web Services “faults” represent abnormal or error conditions
encountered in the system and are thrown back to the invoker of a service. These
faults map naturally to Java exceptions.

• Different implementations can be provided for job management and resource
management, depending on the nature of the applications of interest and domain-
specific requirements. For example, as illustrated in the class diagram, the Java
implementation can use different resource pools internally to manage
computational resources, storage resource, etc. Alternatively, the
TIAResourceRegistryEJB can serve merely as a delegation point and hand off
requests to external resource managers (e.g., in LDAP). Regardless of the
implementation, the Web Services interface remains the same—a key benefit of
the SOA.

 Page 69 of 150 – Version 1.1

3.2.5.6.3 Computational Services Sequence Diagrams
The following sequence diagram illustrates how an upper-level Application Service
might use the Computational Services. It shows how the components listed in the Class
Diagram above interact with one another:

TIA Application
Service

 :
JobManagerService

TIA Regist ry
Service

 :
JobRegistryService

 :
ResourceDirectoryService

Administrator

register()

Comp. jobs
are defined
and registered
before they
are invoked

submitJob(String[])

look up job registry

inspectJob()

job decomposition

A comp. job may
be decomposed
into a set of
parallel, distributed
sub-tasks; these
steps are repeated
for each sub-task

Retrieve job
configuration
and resource
requirements

reserve()

excecute job on reserved resource

aggregate job results

unreserve()

job status not ifications

getJobOutput(URI)

look up job manager

3.2.5.7 Edge Gateway Services

 Page 70 of 150 – Version 1.1

Edge Gateway Services are designed to bridge the gap between traditional center and
edge-based computing. Edge Gateway Services will likely be implemented and deployed
using commercially available software products from Groove Networks.

Today, Groove Networks offers a product offering, Enterprise Integration Server (EIS),
designed to provide edge-based applications with the ability to securely share data with a
variety of external systems including knowledge management systems, document
management repositories, relational databases, and other legacy applications. The
following diagram extracted from http://www.groove.net/products/enterprise/bot/
highlights the basic workflow of integrating external resources with a Groove shared
space using the EIS.

In the diagram above, EIS “bot” technology is employed to broker the transfer of data
between the shared space and the enterprise data source. Here, a “bot” is invited to a
shared space similar to any other user on the network, however, the bot’s sole
responsibility is to perform a task such as retrieving data from a center-based relational
database and placing the data into the shared space. An architecture employing Edge
Gateway Services will likely have multiple bot services deployed including services for
backup/archiving, logging, and search indexing.

Moving forward, Groove Networks is planning a new product offering currently coined
Edge Services. Edge Services will introduce a SOAP-based “relay” server into the
architecture. This mechanism will extend the participation in a shared space to users
outside of the traditional Groove transceiver. Portals and portable device users will now
have access to data stored in a Groove shared space.

3.2.6. Information View
The Information View describes the data that traverses the system. This section is broken
into the Semantic View, which is the understanding of the data (i.e., what the data
means), and the Syntactic View (i.e., how the data is physically represented across the
system). Colloquially, the Syntactic View models the file formats, protocols, and
interface definitions that exist within the architecture. The Semantic View captures the
mechanisms of meaning exchange within the system.

3.2.6.1 Semantic View

 Page 71 of 150 – Version 1.1

The Semantic View represents the semantic architecture of the TIA System. It is
comprised of a means for accessing content semantics through services, and a mechanism
for communicating semantics along with the content and services. Initially, this view
contains a model of business rule types within the system and the Genoa Metadata

Framework (GMF). It will be expanded to contain DAML-S descriptions, RDF models of
context, and other semantic models.

A semantic interface in this architecture will contain a description of semantics, including
a Context representation (see Section 3.2.6.2.1), intent representation (rationale), and a
Worldview representation (DAML-S), accessible through a service description.
Operations include the ability to synchronize context with external sources. Context is
represented using the Genoa Metadata Framework (GMF). Intent can be captured using
an RDF extension to the Context for the text rationale.

3.2.6.1.1 Semantics Working Definition
Efforts such as the Semantic Web is based on Berners-Lee’s notion that “semantic”
means “machine-processable”. 1 The object is to provide enough “meaning” bundled
with the delivery of the data that applications will “do the right thing” with it. An
example is providing a semantic description of a travel reservations service enabling a
software agent to make airline bookings on behalf of a human actor. Service Registries
are built on the process of exposing descriptions of the service to inquiring applications.
However, current approaches (e.g. UDDI2, ebXML Registry3) are very limited
semantically, revealing little more than short text descriptions, flat attributes (e.g., JINI),
and interface syntax. A smaller (but increasing rapidly) number of approaches attempt to
provide higher-level semantic service matching references. However, in end-to-end
systems involving extensive interaction of Actors in complex decision-making or
analyses, “doing the right thing” requires an even richer representation of the semantics
of the content.

Semantics

Semantics Working
Definition
2002-05-29 gam/brb

Context
<<GMF>>

Metadata1..*1..*

Ontology

Worldview
<<DAML-S>>

1..*

Schema1..*1..*

1..*

Intent Rationale0..*0..*

 Semantics Working Definition

1 T,Berners-Lee. Keynote on the Semantic Web at XML 2000, Dec 2000.
(http://www.w3.org/2000/Talks/1206-xml2k-tbl)
2 UDDI Technical White Paper. Sep. 2000. (http://www.uddi.org/)

 Page 72 of 150 – Version 1.1

3 ebXML Project Team. “Using UDDI to Find ebXML Reg/Reps”. White Paper. Sep. 2001.
(http://www.ebxml.org/)

The Semantic View uses a definition of semantics that closer to the natural language
sense of “meaning” than Berners-Lee’s. The previous figure illustrates this definition of
semantics.

First, consider the Worldview upon which the content is based. As previously mentioned,
there is significant current work in communicating ontologies and/or schemas (e.g.
DAML+OIL and others). Ontologies support the definitions necessary to create the
vocabularies and units of measurement. This approach builds on this work.

The second part of the definition of semantics in this paper that is important in complex
situations is the Intent. This area is beginning to gather significant interest, especially
within the military. Intent answers the question “Why?”. It is the reasoning behind the
content and is an area needing significant research.

The last part of the definition, Context, is the aggregate of the metadata associated with
some specific content. It is an aspect of meaning that is rarely included in semantic
models. Including Context enables the definition to take into account the environment of
content and the services operating on it. Context is what makes content information
instead of just data. Context can answer the questions “Where?, How?, When?, and
Who?”. Indexing on context allows for the constructive accumulation of content that
provides opportunities create information value greater than the sum of the constituent
content.

Finally, Content bundled with its context has intrinsic value. The value of content to a
particular user is determined by its relevance and accessibility. Context can be used to
establish both relevance (e.g., version, source, annotations) and accessibility (e.g., mime
type, url). Therefore, the package of content and its context intrinsically contains the
mechanisms for the user to assess the value of the content.

 Page 73 of 150 – Version 1.1

3.2.6.1.2 Business Rules
The Business Rules package of the Business Information View captures the types of
business rules related to the business processes and information. This decomposition of
rules will be used to represent the business rules within the services defined in the
Business Application Services View. The structure of business rules is shown below.

Taken From
"Defining Business Rules --
What are they really?",
Guide International
Corporation, (c) 1998

Transformation
(from Transformation)

Mathematical Computation
(from Transformation)

Inference
(from Transformation)

Action Assertion
(from Action Assertion)

Controlling Assertion
(from Action Assertion)

Influencing Assertion
(from Action Assertion)

Structural Assertion
(from Structural Assertion)

Fact
(from Structural Assertion)

Ontology
(from Structural Assertion)

Term
(from Structural Assertion)

0..*

0..*

0..*

0..*
Term Map

(from Structural Assertion)
1..*1..* 1..*1..*

Business
Rule

Business Rule
Cluster

1..*1..* 1..*1..*

Business Rules Structure

 Page 74 of 150 – Version 1.1

3.2.6.2 Syntactic View
The Syntactic View of the information model describes the data as it is physically
represented within the TIA system. This representation is necessary as it provides the
basis for a unified security model and the ability to perform transformation services
between data in disparate domains or applications. This section is organized into the
description of the base object within the TIA domain that contains the common metadata
attributes to all domain objects. Further sections will be added describing information
specific to each domain and/or application within the TIA system.

3.2.6.2.1 TIA Domain Root Object
Within the TIA domain, all information that passes between systems via services, which
will have a core set of common information. This information, or metadata, is
fundamental to a common security and privilege model and to interoperability between
services and domains. Based upon the TIA Metadata Framework described in the
Semantic View, a base domain object, the TIAObject, has been defined and is shown

below.

TIAObject
title : String
creator : String
identifier : String
type : String
format : String
description : String
publisher : String
date : String
classification : String

TIAObject()
toXML()

The TIAObject includes the ability to serialize and deserialize an instantiation into XML
as required to exchange information with and be operated upon Application Services. The
XML Schema equivalent for TIAObject is shown in Section 3.2.6.2.1.1.

3.2.6.2.1.1 TIA Object XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="TiaObject">
 <xs:complexType>

 Page 75 of 150 – Version 1.1

 <xs:sequence>
 <xs:element ref="title"/>

 <xs:element ref="creator"/>
 <xs:element ref="identifier"/>
 <xs:element ref="type"/>
 <xs:element ref="format"/>
 <xs:element ref="description"/>
 <xs:element ref="publisher"/>
 <xs:element ref="date"/>
 <xs:element ref="classification"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="classification" type="xs:string"/>
 <xs:element name="creator" type="xs:string"/>
 <xs:element name="date" type="xs:string"/>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="format" type="xs:string"/>
 <xs:element name="identifier" type="xs:string"/>
 <xs:element name="publisher" type="xs:string"/>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="type" type="xs:string"/>
</xs:schema>

 Page 76 of 150 – Version 1.1

3.2.6.2.2 Genoa Metadata Framework
The Genoa Metadata Framework is uses the Resource Description Framework (RDF) to
define an XML schema for representing metadata on individual files, products, and
collections of products, creating Critical Information Packages (CIP). The diagrams
shown in the following sections represent a UML representation of an XML Schema.

3.2.6.2.2.1 Critical Information Package

Title
(from Dublin Core)

Creator
(from Dublin Core)

Identifier
(from Dublin Core)

Type
(from Dublin Core)

authorization.list
(from Security)

<<GMS>>

Description
(from Dublin Core)

Date
(from Dublin Core)

Publisher
(from Dublin Core)

classification
(from Security)

<<GMS>>

annotation.list
(from Annotation)

<<GMS>>

access.list
(from Security)

<<GMS>>

tool.specific.metadata
(from Tool-Specific Metadata)

<<GMS>>

product.relationship
(from Product)

<<GMS>>

CIP
(from CIP)

Description

about
ID

(from RDF Framework)

<<RDF>>

Bag

ID
(from RDF Framework)

<<RDF>>
0..*0..*

Bag

ID
(from RDF Framework)

<<RDF>>

References

Bag

ID
(from RDF Framework)

<<RDF>>
Product Metadata

(from Metadata Structure)
li.resource

(from RDF Framework)

<<RDF>>
0..*0..* References

Genoa Metadata Framework
CIP Encoding
2002-05-14 brb
(from GMF 28Jul99)

 Page 77 of 150 – Version 1.1

3.2.6.2.2.2 Product Metadata

Genoa Metadata Framework
Product Encoding
2002-05-14 brb
(from GMF 28Jul99)

Title
(from Dublin Core)

Creator
(from Dublin Core)

Identifier
(from Dublin Core)

Type
(from Dublin Core)

Description
(from Dublin Core)

Date
(from Dublin Core)

Publisher
(from Dublin Core)

classification
(from Security)

<<GMS>>

annotation.list
(from Annotation)

<<GMS>>

Product Metadata
(from Metadata Structure)

Format
(from Dublin Core)

other.product.metadata
(from Product)

<<GMS>>

Description

about
ID

(from RDF Framework)

<<RDF>>

 Page 78 of 150 – Version 1.1

3.2.7. Services Management
Services Management is a critical component to the SOA. This functional area will allow
a centralized approach to manage information on the services being utilized within the
TIA system. This information can be utilized to identify the performance of TIA services
to allow the services administrator the ability to normalize the system by possible
distributing the load across multiple servers. Additionally, this information can be used to
audit analyst access to information to help with data privacy issues, should they arise. A
tertiary category of services management is in the context of pattern analysis and
notification. In this category, analysts’ usage patterns can be detected and thus act as an
additional intelligence source notifying, for example, that there is a high degree of
activity within a specific service topic. The latter category of services management will
be reserved for future expansion.

3.2.7.1 Services Management System Use Cases

Subscribe to Service Topic

Publish to Service Topic

UnSubscribe to Service Topic

Create Service Topic

Auditor

(from Repository)

Manage Service Log Data

Service

Provided by

Create Service Metric

Manage Service Metrics

Provided by

Provided by

SysAdmin

Manage Services

 Page 79 of 150 – Version 1.1

This diagram depicts the functions that we view would be required to perform Services
Management. The actors portrayed here show the different categories of users of services
management. For example, the system administrator would be particularly interested in
the performance metrics of the service invocations. Sub-level Use Cases such as creating,
updating, and removing metrics will be incorporated. We envision metrics such as
number of service requests per minute, service latencies, and service downtime could be
extracted. In addition, the system administrator would need to manage the individual
services such as configuration, deployment, removal, and so on. It is envisioned that a
services management console would be developed to provide the ability to perform these
service management functions. Furthermore, auditors could gain access into privacy act
issues and view the usage of personalized data, if it becomes available. In future
documentation, we will provide the software architecture of the services management
console that is monitoring the Core and Application Services.

3.2.7.2 Services Management Interface

ServicesManager

createServicesTopic(topic : Topic) : void
publishToServiceTopic(message : String) : void
subscribeToServiceTopic(topicID : String) : void

<<Web Service>>

ServicesManagerFault

throws

ServicesManagerService
<<Interface>>

ServicesManagerEJB
<<Stateless EJB>>

BusinessManager

process(operation : OperationMessage) : ResultMessage

(from manager)

<<Interface>>

Both of these classes are BAH implementation
classes. The Service class will receive a
message from the SOAP servlet. This class will
be responsible for transforming the data into
native objects and passing along the request to
the central controller that will perform security
functions (auditing, authorization) and route the
request along to the appropriate EJB to perform
the business logic.

 Page 80 of 150 – Version 1.1

The class diagram above represents the initial high-level design representation of the TIA
Services Management interface. The exposed service only contains centralized interface
functions that the Core and Application Services will access to provide their service
statistics. This is based on a messaging-type approach rather than the services manager

having to poll all the services. The detail of the services management application logic
and user interface will be provided in a supplemental application architecture document.

We have created an interface called “ServicesManager” to serve as the Service View to
the external world. The ServicesManager interface exposes key methods required to
create and publish to a service topic. This is the initial set of external services available to
support auditing and performance analysis. As services management evolves, additional
interface functions will be provided. The ServicesManager interface will be used to
generate the WSDL service description that will be used by developers to develop
programs that communicate with the service.

The ServicesManager is required to throw a fault called “ServicesManagerFault” in the
event a request cannot be fulfilled. The ServicesManagerFault will map to an exception
as specified in Section 4.3.6 of the JAX-RPC .8 specification[1].

Similar to the implementation patterns applied in the other service components, two
implementation specific classes have been included in the diagram to serve as
placeholders until the detailed design details have been determined. The initial intent of
the ServicesManagerService is to implement the ServicesManager interface and serve as
the entry point for incoming web service requests. The ServicesManagerService class
will likely perform any necessary object assembly and forward the request to a central
control where security, logging, and routing will occur. The ServicesManagerEJB class
will likely be implemented as a stateless Enterprise Java Bean (EJB) and perform the
necessary business logic to service the request. The diagram above reflects the
ServicesManagerEJB implementing a BusinessManager interface. The BusinessManager
interface will enable the ServicesManagerEJB to be plugged seamlessly into the TIA
framework and integrate with the central controller where services such as security and
logging will occur.

3.2.8. Component Catalog View
The Components Class View is a catalog containing the static definitions of commercial
technology components and those produced by DARPA programs. It is arranged in
packages listed by provider.

3.2.8.1 Evidence Extraction and Link Discovery (EELD)
The goal of the EELD program is development of technologies and tools for automated
discovery, extraction and linking of sparse evidence contained in large amounts of
classified and unclassified data sources. EELD is developing detection capabilities to
extract relevant data and relationships about people, organizations, and activities from
message traffic and open source data. It will link items relating potential terrorist groups
or scenarios, and learn patterns of different groups or scenarios to identify new
organizations or emerging threats.4

 Page 81 of 150 – Version 1.1

4 More information about the EELD Program is available at http://www.darpa.mil/iao/EELD.htm.

Analyst Notebook

searchLinks()
displayLinkTopology()

(from i2)

<<EELD>>
CCM

displayNode()
displayEdge()
searchLinks()

(from Applied Technical Systems)

<<INSCOM>>

CrimeLink
(from PCI)

<<EELD>>
NetMap Analytics

(from NetMap Analytics)

<<EELD>>
Outline/Magic

(from Orion Scientific)

<<EELD>>

Visualinks
(from Visual Analytics)

<<EELD>>
Watson Pro
(from Xanalysis)

<<EELD>>

Fraud Investigator
(from InfoGlide)

<<EELD>>

TMODS
(from 21st Century Technology)

<<EELD>>

OnTopic

classifyDocuments()
indexDocuments()
retrieveDocuments()

(from BBN)

<<EELD>>

Subdue

graphBasedClustering()
searchGraph()

(from UTA)

<<EELD>>

Current EELD Components
2002-07-01 brb

3.2.8.1.1 Analyst Notebook
Analyst Notebook is visual investigative analysis software.5

3.2.8.1.2 CCM
CCM software provides intelligent search, visual navigation, automatic correlation.6

3.2.8.1.3 CrimeLink
Crimelink software includes matrix manipulation, link charts, time event charting, and
telephone toll analysis.7

3.2.8.1.4 Fraud Investigator

5 More information about Analyst Notebook is available at http://www.i2.com/.
6 More information about CCM is available at http://www.apptechsys.com/.

 Page 82 of 150 – Version 1.1

7 More information about CrimeLink is available at http://www.crimelink.com/.

Fraud Investigator performs similarity searches to find data and similarities in data that
other search technologies are unable to uncover using the Similarity Search Engine
(SSE).8

3.2.8.1.5 NetMap Analytics
NetMap Analytics finds relevant links in large amounts of data.9

3.2.8.1.6 Outline/Magic
Outline/Magic produces indexed documents, highlighted text, and link diagrams of
concepts.10

3.2.8.1.7 OnTopic
OnTopic, developed under the EELD program, accepts either text input or speech that
has been converted to text by our speech recognition system. The topic classification
process can produce multiple topics from a list of up to 5,000 topics.11

3.2.8.1.8 TMODS
TMODS is being developed under the EELD program by 21st Century Technologies.

3.2.8.1.9 VisualLinks
VisualLinks uncovers the interactions and relationships between terrorist groups and its
members.12

3.2.8.1.10 Watson Pro
Watson Pro is a link analysis product with embedded database connectivity. Also works
with Xanalysis' entity extraction tool Quenza.13

3.2.8.2 Genoa (I)
Project Genoa is developing tools and a system for collaborative crisis understanding and
management for the national security community including Commanders of the Unified
Commands.14

8 More information about Fraud Investigator is available at http://www.infoglide.com/.
9 More information about NetMap Analytics is available at http://www.netmapsolutions.com/.
10 More information about Outline/Magic is available at http://www.orionsci.com/.
11 More information about OnTopic is available at http://www.bbn.com/speech/ontopic.html.
12 More information about VisualLinks is available at http://www.visualanalytics.com/.
13 More information about WatsonPro is available at http://www.xanalys.com/watson.html.

 Page 83 of 150 – Version 1.1

14 More information about the Genoa Program is available at http://www.darpa.mil/iao/Genoa.htm.

Verona

Mistral Experiment
Sirocco Experiment

createBook()
presentBook()
linkInformationIntoBook()

(from GlobalInfoTek)

<<Genoa>>
XMB

Mistral Experiment
Sirocco Experiment

addProductMetadata()
addCIPMetadata()
searchMetadata()

(from H&AI)

<<Genoa>>
TAG Manager

(from ISX)

<<Genoa>>
SIAM

createModel()
updateModel()
addSupportingInformation()
assignWeight()

(from SAIC)

<<Genoa>>

SEAS

createArgument()
modifyArgument()
createModel()
attachEvidence()

(from SRI)

<<Genoa>> CIM

Mistral Experiment
Sirocco Experiment

createCIMModel()
modifyCIMModel()
populateCIMModel()

(from Veridian)

<<Genoa>>

Current Genoa Components
2002-07-01 brb

3.2.8.2.1 Critical Intent Modeler (CIM)
CIM was initially developed under Project Genoa (I) by the Veridian Corporation.

3.2.8.2.2 Structured Evidential Argumentation System or SRI Early Alert
System (SEAS)

SEAS is designed to aid intelligence analysts in predicting potential opportunities/crises.
It is implemented as a web server that supports the construction and exploitation of a
corporate memory filled with analytic products, methods, and their interrelationships,
indexed by the situations to which they apply.15

3.2.8.2.3 Situation Influence Assessment Module (SIAM)
SIAM is a software application designed to assist people in analyzing complex problems
and issues, especially when empirical information is sparse or uncertain. SIAM can be
used in a range of operational situations, from corporate decision making to national
security planning.16

3.2.8.2.4 Thematic Argument Group (TAG) Manager

15 More information about SEAS is available at http://www.ai.sri.com/~genoa/help/about.html.

 Page 84 of 150 – Version 1.1

16 More information about SIAM is available at http://www.inet.saic.com/inet-public/siam.htm.

The TAG Manager is an application developed under Project Genoa (I) by the ISX
Corporation.

3.2.8.2.5 Verona
Verona improves the way users create, organize, share and distribute knowledge. Users
can quickly access diverse information from multiple distributed sources. Users can
easily author and deliver the information in a context tailored to their needs.

Verona makes use of the familiar notebook metaphor, appearing on users' desktops as a
spiral binder separated into different tabbed chapters. The software allows users to easily
customize and categorize their information.17

3.2.8.2.6 XMB
The XMB (XML Metadata Browser) was developed under Project Genoa (I) by Syntek
Corporation. It is currently maintained by Hicks and Associates, Inc.

 Page 85 of 150 – Version 1.1

17 More information about Verona is available at http://www.gitisolutions.com/.

3.2.8.3 Human Identification at a Distance (HID)
The goal of the HID program is to develop automated biometric identification
technologies to detect, recognize, and identify humans at great distances. These
technologies will provide critical early warning support for force protection and
homeland defense against terrorist, criminal, and other human-based threats, and will
prevent or decrease the success rate of such attacks against DoD operational facilities and
installations. Methods for fusing biometric technologies into advanced human
identification systems will be developed to enable faster, more accurate and
unconstrained identification of humans at significant standoff distances.18

FaceIt

photographicFaceID()

(from Visionics)

<<HID>>
HID-IR

InfraRedFaceID()

(from Equinox Sensors)

<<HID>>

Current HID Components
2002-07-01 brb

3.2.8.3.1 FaceIt
FaceIt is a facial recognition software engine that allows computers to rapidly and
accurately detect and recognize faces.19

3.2.8.3.2 Human Identification at a Distance-Infrared (HID-IR)
HID-IR uses thermal imaging sensors to develop technologies to help improve sensitivity
and resolution. Our sensors offer exciting new opportunities for biometric
identification.20

18 More information about the HID Program is available at http://www.darpa.mil/iao/HID.htm.
19 More information about FaceIt is available at
http://www.identix.com/products/pro_sdks_faceit_what.html.

 Page 86 of 150 – Version 1.1

20 More information about HD-IR is available at http://www.equinoxsensors.com/products/HID.html.

3.2.8.4 Translingual Information Detection, Extraction, and
Summarization (TIDES)

The Translingual Information Detection, Extraction, and Summarization (TIDES)
program is developing advanced language processing technology to enable English
speakers to find and interpret critical information in multiple languages without requiring
knowledge of those languages.21

CyberTrans

Portuguese
French
Italian
German
Russian
Spanish

translatingToEnglish()

(from Mitre)

<<TIDES>>

MiTap

Sirocco Experiment

summarizeStory()
searchText()

(from Mitre)

<<TIDES>>

Current TIDES Components
2002-07-01 brb

3.2.8.4.1 MITRE Text and Audio Processing (MiTap)
The MiTAP system supports shared situational awareness through collaboration,
allowing users to submit other articles for processing, annotate existing documents, post
directly to the system, and flag messages for others to see. Multiple information sources
in multiple languages are automatically captured, filtered, translated, summarized, and
categorized into searchable newsgroups based on disease, region, information source,
person, and organization. Critical information is automatically extracted and tagged to
facilitate browsing, searching, and sorting.22

3.2.8.4.2 CyberTrans
Used by MiTAP, the CyberTrans machine translation system "wraps" either commercial
or research translation engines and presents a common set of interfaces to translate the
messages automatically into English.23

21 More information about the TIDES program is available at http://www.darpa.mil/iao/TIDES.htm.
22 Damianos, L. Day, D. Hirschman, L. et. al. “Real Users, Real Data, Real Problems: The MiTAP System
for Monitoring Bio Events,” Proceedings of BTR2002: Unified Science & Technology for Reducing
Biological Threats & Countering Terrorism, The University of New Mexico, March 2002.

 Page 87 of 150 – Version 1.1

23 Miller, K., Reeder, F., Hirschman, L., Palmer, D. (2001). “Multilingual Processing for Operational
Users,” NATO Workshop on Multilingual Processing at EUROSPEECH, September 2001.

3.2.8.5 Commercial Off The Shelf Software (COTS)
This section captures the COTS software that is being used explored for experimentation.

EarthViewer

Sirocco Experiment
(from Keyhole)

<<COTS>>
Groove

Mistral Experiment
Sirocco Experiment

(from Groove Networks)

<<COTS>>

Current COTS Components
2002-07-01 brb

3.2.8.5.1 EarthViewer
EarthViewer fuses high-resolution satellite and aerial imagery, elevation data, GPS
coordinates, and overlay information on cities and businesses to deliver a streaming
three-dimensional map of the globe.24

3.2.8.5.2 Groove
Groove Workspace provides a peer-to-peer, secure, collaborative environment for sharing
files and creating applications.25

3.2.8.5.3 Open Source
This section captures the Open Source software that is being used explored for
experimentation.

24 More information about EarthViewer is available at http://www.earthviewer.com/.

 Page 88 of 150 – Version 1.1

25 More information about Groove is available at http://www.groove.net/.

3.2.9. System Implementation View
The following is the planned release of functionality of the TIA system described above.
This initial set of functionality is focused on setting up the supporting application
infrastructures such as core services, TIA Portal, and the round-trip integration between
the multiple platforms. This section will be updated as additional functionality and
Application Services are identified through experimentation for incorporation into the
TIA System.

Release 1 : Base Portal 1 Jul 02

• Base Portal capabilities such as Login, Display of portlets, and foundation security
model

• Include Portal categories of “Welcome,” “Corporate Memory,” and “Integrated
Tools”

• Embedded document repository with integrated search

• Initial publish Data Services interface to the Portal corporate memory-document
repository

Release 2: Groove - Portal Integration 22 Jul 02

• Enhanced round trip interaction between Portal and Groove platforms.

• Tighter integration between Portal and Groove — spawn a shared space from Portal
activity such as MiTap search.

• Within TIA enhanced Groove files tool, an end user can drag and drop files of the
shared space to a specific folder within the Portal document repository.

Release 3: Integrated Security Services 26 Aug 02

• Consolidated integration of Portal and Groove with Core Services security framework

• Incorporate additional content in TIA Portal — TIA news, TIA general info, etc.

Release 4: Initial Application Service Integration TBD

• Identify and integrate application within TIA Portal (Web based) or Groove

3.2.9.1 Multi-Level Security Approach

 Page 89 of 150 – Version 1.1

Due to the multiple networks involved in the TIA system, Multi Level Security (MLS)
guard technology is needed to bridge the classification of networks and exchange
releasable information. There are several guard technologies in existence today such as
Getronics Command and Control Guard (C2G), ISSE guard, and Trusted Computing
Solutions WebGuard product. One of the most advanced in this area is the NetTop [7]
platform architecture developed by the National Security Agency. NetTop stands for a
Network on your Desktop. Based on Virtual Machine Monitor (VMM) technology,
Vmware, it resides on a trusted Linux operating system and isolates the operating system

from the client application. This architecture enables multiple applications to coexist on
the same hardware platform communicating in a TCP/IP loopback mode, or virtual
Ethernet. Using the NetTop architecture, multiple configurations can be assembled and
applied to the TIA system. The primary solution is for interconnecting different
classifications of networks. Another area of application is to use NetTop as a trusted
platform for TIA applications to reside on. This can provide an additional security
measure for system accreditation ensuring that no rogue applications can access OS
resources to perform malicious actions.

3.2.10. References
1. Java API for XML-based RPC (JAX-RPC) Specification version 0.8, Published
on March 5, 2002 by Sun Microsystems, Inc. http://java.sun.com/xml/jaxrpc/index.html

2. Open Grid Services Architecture (OGSA) Draft Specification, Published on Feb.
15, 2002 by S. Tuecke et all. http://www.globus.org/research/papers/gsspec.pdf

3. Simple Object Access Protocol (SOAP) 1.1 Specification, Published on May 8,
2000 by W3C. http://www.w3.org/TR/SOAP

4. Web Services Definition Language (WSDL) 1.1 Specification, Published on
March 15, 2002 by W3C. http://www.w3.org/TR/wsdl

5. Universal Description, Discovery and Integration (UDDI) 2.0 Specification,
Published on June 8, 2002 by UDDI.org. http://uddi.org/specification.html

6. Web Services Security (WS-Security), Published in April 2002 by IBM.
http://www-106.ibm.com/developerworks/library/ws-secure

7. NetTop – A Network on your desktop. Tech Trend Notes, Volume 9, Edition 4,
Published in Fall 2000 by National Security Agency.

 Page 90 of 150 – Version 1.1

4. Experiment Models
4.1. Mistral Experiment (2002-05-22)
4.1.1. Actor Roles View
Three Actors Roles are used in the 22 May 2002 experiments.

• INSCOM Analyst
• NGIC Analyst
• EUCOM Analyst

Analyst

(from Actor Roles View)

INSCOM Analyst NGIC Subject Specialist EUCOM Analyst

Organization Analysts
2002-05-20 brb

4.1.1.1 INSCOM Analyst
4.1.1.2 EUCOM Analyst
4.1.1.3 NGIC Subject Specialist

 Page 91 of 150 – Version 1.1

4.1.2. Objectives and Results

4.1.2.1 Objectives (Metrics for Success)

4.1.2.1.1 Deploy research and development software creating a collaborative
(Groove) environment on operational networks.

4.1.2.1.2 Create a baseline experiment CONOPS to support an end-to-end
ongoing experiment process.

4.1.2.1.3 Establish an infrastructure for software, hardware, and people that
will serve as the basis for future experiments and future IAC
deployments.

4.1.2.1.4 Include operational users early using a real-world problem, leveraging
existing real-world data.

4.1.2.1.5 Integrate Genoa, EELD, TIDES, and INSCOM tools and data to
create end-to-end functionality.

4.1.2.2 Sources of Potentially New Insights
The operational nature and data being used in the experiment have the potential to create
unique insights and contribute to solving a real-world problem.

4.1.2.2.1 New Models of XYZ Group

4.1.2.2.2 Focused search (with search tools)

 Page 92 of 150 – Version 1.1

4.1.2.2.3 Collaboration between analysts

4.1.2.3 Results

4.1.2.3.1 Team among INSCOM, technology providers, analysts, and soldiers.

4.1.2.3.2 Established Groove collaborative environment between INSCOM,
NGIC, and 66th MI.

4.1.2.3.3 TACLANE enabled VPN tunneling through JWICS.

4.1.2.3.4 Granted INSCOM-specified IATO.

4.1.2.3.5 NSANet IATO approved.

4.1.2.3.6 Infrastructure leave-behind payoffs.
1. File sharing with classified data over Groove.

2. NGIC SIPRNET data transfer through Groove.

3. Communications through a common CIM Model.

4. Immediate ability for operational personnel to use and test CIM/Verona tools, now
permanently installed.

5. CIM and Verona components are of immediate value to the operators.

6. Successful vetting of CIM model with NGIC including spontaneous comments.

4.1.3. Experiment Deployment View
The Experiment Deployment view describes the mapping(s) of the software, identified in
the Business Application Service View and used in Experiments, onto the hardware and
reflects its distributed aspect. It is analogous to the Physical View of the Rational 4 + 1
View of System Architecture.

The Experiment Deployment View currently contains two diagrams of the experimental
deployment. A UML Deployment diagram describes the hardware and software
configuration at the DPP. A System Topology Diagram describes the network
connectivity between INSCOM and the other experimental sites.

 Page 93 of 150 – Version 1.1

4.1.3.1 UML Deployment Diagram
The UML Deployment diagram shows the hardware and software configuration at the
Springfield Facility (DPP) and identifies individual packages running on workstation and
server machines.

Dell Poweredge
6300

Renoir
Directory
Starl ight
3D Apps

Dell Poweredge
6300

Renoir
Directory
Starl ight
3D Apps

Dell Poweredge
4300

Themel ink Server

Dell Precision 420

Groove
CIM
XMB
Verona
Situation Display
Themel ink

Express 510T
Switch Firewall

/ VPN

Network and Data Support
Dual Processes / 512 MB RAM

Dell Precision 620
(Workstation)

Groove
CIM
XMB
Verona
Situation Display
Themel ink

Analyst Workstations
Experiment 2002-05-22
Deployment View
2002-05-20 brb

Mistral Experiment Deployment Diagram

 Page 94 of 150 – Version 1.1

4.1.3.2 System Topology Diagram
The System Topology Diagram shows the server infrastructure and network topology
used to connect the three sites, INSCOM, NGIC, and EUCOM in the 22 May 2002
experiments.

Mistral Experiment System Topology Diagram

4.1.3.3 Business Information View
The Business Information View for the experiment describes:

• The products (formats) used in the experiment.
• The flow of roles, technology components, and information within the

experiment.
• Files used by the technology components in the experiment.
• The work flows of the experiment from an information perspective.

 Page 95 of 150 – Version 1.1

4.1.3.3.1 Information Flow
The flow for the experiment is partitioned into three diagrams, each corresponding to a
set of the use cases exercised in the 22 May 2002 experiment. The collaboration diagrams
represent the interactions between the technology components and Actor roles. In
addition, there is a data-flow arrow indicating the information product that is being
exchanged, modified, and/or used at each stage.

 Page 96 of 150 – Version 1.1

4.1.3.3.1.1 Matching Models and Structured Argumentation

 Page 97 of 150 – Version 1.1

2002-05-22 Experiment
Information Flow
Matching Models
Structured Argumentation
2002-05-20 brb

INSCOM Situation
Display

INSCOM Analyst

1: XYZ Alert Displayed.

XMB Model
Library

CIM

MiTap

Groove

NGIC Subject Specialist

Receives Transaction Data.

5: Identifies gaps in CIM Model

Determines query

7: Links document to the model.

INSCOM
Themelink

9: Opens XYZ Groove Space.

12: Receives weapons information and
thinks of other concept.

14: Relates Results to CIM Model.

2: Watches display.
Sees alert for XYZ.

3: Selects a CIM Model
CIM Metadata

4: Opens CIM Model

XYZ Act-Prep WMD CIM Model

8: Adds document to the model

HTML / Text document associated with model

15: Adds document to the model.

HTML / Text document associated with model

6: Searches for open-source
confirmation of the transfer of

WMD material
Retrieves document

10: Asks for details on
reweaponizing a 152mm

artillery round.
Posts Groove Message.

16: Shares CIM Model.

Posts CIM Model to the Groove space.

13: Queries for concept related to NGIC Weapons expertise.

Receives HTML Results

11: Provides artillery expertise.

Posts Groove Message.

4.1.3.3.1.2 Reporting

 Page 98 of 150 – Version 1.1

2002-05-22 Experiment
Information Flow
Reporting
2002-05-20 brb

INSCOM Analyst

EUCOM Analyst

Groove

Verona
(INSCOM)

Verona
(EUCOM)

1: Identifies key points of CIM model.

6: Understands XYZ Capabilities.

Associates key HTML and Text Data with capabilities.

2: Creates a Briefing Book.

Key points on XYZ
Briefing Book with key points

3: Places Briefing Book into Groove.

4: Receives Briefing Book in Groove.

Briefing Book with key points and XYZ Capabilities.

5: Views Briefing Book.

Key points and XYZ Capabilities.
7: Briefs CINC on XYZ Status

4.1.3.3.1.3 Information Products

TIA System Tools Files
2002-05-02 brb

Product Metadata
(from Metadata Structure)

CIP Metadata
(from Metadata Structure)

XMB
(from H&AI)

<<Genoa>> <<read and write>>

<<read and write>>

Situation Display
(from SAIC)

<<INSCOM>>

CIM Model
(from Veridian)

OnTopic
(from BBN)

<<EELD>>

Subdue
(from UTA)

<<EELD>>

TMODS
(from 21st Century Technology)

<<EELD>>

CIM
(from Veridian)

<<Genoa>>
<<read and write>>

Briefing Book
(from GlobalInfoTek)

HTML

<<read>>

<<read>>

<<read>>

<<read and write>>

Text

<<read>>

<<read>>

<<read>>

<<read>>

Verona
(from GlobalInfoTek)

<<Genoa>>
<<read and write>>

<<read>>

<<read>>

4.1.3.3.1.3.1 CIM Model

4.1.3.3.1.3.2 CIP Metadata

4.1.3.3.1.3.3 Product Metadata

4.1.3.3.1.3.4 HTML Files

4.1.3.3.1.3.5 Text Files

4.1.3.3.1.3.6 Briefing Book

 Page 99 of 150 – Version 1.1

4.1.4. Business Process View
The 22 May 2002 experiment includes capabilities in seven use cases of the TIA Business Model. Use Cases colored in Green
indicate their inclusion in the 22 May 2002 experiment.

 Page 100 of 150 – Version 1.1

Experiment 2002-05-22
Reference Use Cases Exercised
in the Experiment
2002-05-09 brb

Matching Models

(from Analysis and Assessment)

Generating Hypotheses

(from Analysis and Assessment)

Structured Argumentation

(from Analysis and Assessment)

Learning Patterns

(from Analysis and Assessment)

Understanding Intent

(from Analysis and Assessment)

Detecting Facts and Events

(from Information Management)

Discovering Links

(from Information Management)

Gathering Data

(from Information Management) <<precedes>>

Generating Options

(from Information Management)

Alerting

(from Presentation and Visual ization)

Reporting

(from Presentation and Visual ization)

Storing and Sharing Information

(from Enterprise Support)

<<uses>>

The colored use cases
represent those in
which the 5-22-2002
experiment is
prototyping technology.

4.1.4.1 Reference Use Cases

 Page 101 of 150 – Version 1.1

Structured Argumentation

(from Analysis and Assessment)

Matching Models

(from Analysis and Assessment)

Discovering Links

(from Information Management)

Gathering Data

(from Information Management)

Reporting

(from Presentation and Visualization)

Detecting Facts and Events

(from Information Management)

EUCOM Analyst

(from Mistral)

INSCOM Analyst

(from Mistral)

Storing and Sharing Information

(from Enterprise Support)

NGIC Subject Specialist

(from Mistral)

2002-05-22 Experiment
Reference Use Cases
2002-05-20 brb

4.1.4.2 Gathering Data
2002-05-22 Experiment
Gathering Data Use Cases
2002-05-20 brb

Processing Text Sources

(from Gathering Data)

Gathering Data

(from Information Management)

<<uses>>

Translating Languages

(from Gathering Data)
<<uses>>

MiTap
(from Mitre)

<<TIDES>>

INSCOM Analyst

(from Mistral)

4.1.4.3 Detecting Facts and Events

2002-05-22 Experiment Detecting
Facts and Events Use Cases
2002-05-20 brb

Indexing

(from Detecting Facts and Events)

Categorizing

(from Detecting Facts and Events)

Detecting Facts and Events

(from Information Management)

<<uses>>

<<uses>>

Themelink
(from Veridian)

<<Genoa>>

NGIC Subject Specialist

(from Mistral)

Summarizing Text

(from Detecting Facts and Events)

<<uses>>

Searching and Filtering

(from Detecting Facts and Events)

<<uses>>

<<uses>>

INSCOM Analyst

(from Mistral)

<<uses>>

<<uses>>

 Page 102 of 150 – Version 1.1

4.1.4.4 Matching Models

2002-05-22 Experiment Matching
Models Use Cases
2002-05-08 brb

XMB
(from H&AI)

<<Genoa>>

Matching Models

(from Analysis and Assessment)

CIM
(from Veridian)

<<Genoa>>

Selecting Models

(from Matching Models)

<<uses>> Building Models

(from Matching Models)

<<uses>>

Updating Models

(from Matching Models)

<<uses>>

INSCOM Analyst

(from Mistral)

<<uses>>

<<uses>>

<<uses>>

4.1.4.5 Structured Argumentation

2002-05-22 Experiment
Structured Argumentation Use Case
2002-05-08 brb

CIM
(from Veridian)

<<Genoa>>

Structured Argumentation

(from Analysis and Assessment)

INSCOM Analyst

(from Mistral)

<<uses>>

 Page 103 of 150 – Version 1.1

4.1.4.6 Reporting

2002-05-22 Experiment
Reporting Use Cases
2002-05-08 brb

Reporting

(from Presentation and Visualization)

Verona
(from GlobalInfoTek)

<<Genoa>>

EUCOM Analyst

(from Mistral)

Persuading

(from Reporting and Alerting)<<uses>>

<<uses>>

INSCOM Analyst

(from Mistral)

<<uses>>

4.1.4.7 Storing and Sharing Information

2002-05-22 Experiment
Storing and Sharing Information Use Cases
2002-05-08 brb

Storing and Sharing Information

(from Enterprise Support)

Groove
(from Groove Networks)

EUCOM Analyst

(from Mistral)

INSCOM Analyst

(from Mistral)

Collaboration

(from Storing and Sharing Information)

<<uses>>

<<uses>>

<<uses>>

NGIC Subject Specialist

(from Mistral)

<<uses>>

 Page 104 of 150 – Version 1.1

4.1.4.8 Activity Diagrams
The Activity Diagrams depict the specific interactions occurring in the Mistral
experiment within each Use Case exercised.

4.1.4.8.1 Sharing Activities

 Page 105 of 150 – Version 1.1

Have information to be shared.

Shared information

Sharing
Information

CIM Model :
CIM

INSCOM Groove :
Groove

INSCOM Verona :
Verona

2002-05-22 Experiment
Storing and Sharing Information Activities
2002-05-20 brb

Sharing Weapons
Expertise

NGIC Groove :
Groove

Sharing XYZ
Situation Status

EUCOM Groove :
Groove

EUCOM Verona :
Verona

 : EUCOM Analyst : NGIC Subj ect Specialist : INSCOM Analyst

4.1.4.8.2 Reporting Activities

 Page 106 of 150 – Version 1.1

2002-05-22 Experiment
Reporting Activities
2002-05-20 brb

XYZ Group Model Complete

Creating
Presentation

INSCOM Verona : Verona
[XYZ Group Presentation Completed]

Groove : Groove
[XYZ Group Status Shared]

CIM : CIM
[XYZ Group Model Complete]

Delivering Group
XYZ Status

XYZ Group Status Presented to
EUCOM

Receiving Group
XYZ Status

EUCOM Verona : Verona
[XYZ Group Status Presented to EUCOM]

 : EUCOM Analyst : INSCOM Analyst

4.1.4.8.3 Structured Argumentation

 Page 107 of 150 – Version 1.1

Alert received on XYZ Group.

Reasoning About
XYZ Group Status

INSCOM
CIM : CIM

Populating
Model

 : MiTap
[Found XYZ Info.]

Themelink : Themelink
[Found XYZ Info on FBIS]

Reasoning on XYZ Completed.

Model
populated?

No

Yes

2002-05-22 Experiment
Structured Argumentation Activities
2002-05-09 brb

 : INSCOM Analyst

4.1.4.8.4 Matching Models

 Page 108 of 150 – Version 1.1

Discovered Links and Received
Alert.

Selecting Model

INSCOM Situation Display :
Situation Display

[XYZ Alert]

INSCOM
XMB : XMB

Building Model INSCOM MiTap :
MiTap

[Found XYZ Info]

INSCOM
CIM : CIM

Updating Model

INSCOM Themelink :
Themelink

[Found XYZ Info]

Matched Model

2002-05-22 Experiment
Matching Models Activities
2002-05-20 brb

Need more
evidence?

Suitable model?

No.

Yes.

Groove : Groove
[NGIC Weapons Expertise Added]

No

Yes

 : INSCOM Analyst

4.1.4.8.5 Detecting Facts and Events Activities

 Page 109 of 150 – Version 1.1

Monitoring Facts and Events on
XYZ

Summarizing
Text

Searching and
Filtering

Indexing

Categorizing

INSCOM MiTap :
MiTap

Detecting Facts
and Events

Detected Facts and Events on
XYZ

2002-05-22 Experiment
Detecting Facts and Events Activities
2002-05-20 brb

INSCOM Themelink :
Themelink

[Found XYZ Info]

 : INSCOM Analyst

4.1.4.8.6 Gathering Data Activities

 Page 110 of 150 – Version 1.1

Needs Data on XYZ

INSCOM : MiTap
[Found Data on XYZ]

Searching for
Information on XYZ

FBIS Data : FBIS
Database

Gathered Data on XYZ

Gathering Data

Needs more
information?

Yes.

No.

2002-05-22 Experiment
Gathering Data Activities
2002-05-20 brb

INSCOM Themelink :
Themelink

[Found Data on XYZ]

 : INSCOM Analyst

4.1.4.9 Workflow Sequences
The Workflow Sequences depict the actions occurring in the Mistral experiment across
Use Cases. They are related to the collaboration diagrams showing actions and
information flows in the Business Information View.

4.1.4.9.1 Matching Models and Structured Argumentation Sequence

INSCOM Themelink :
Themelink

INSCOM Situation Display :
Situation Display INSCOM Analyst :

INSCOM Analyst

XMB Model Library :
(XMB Model Library)

CIM : CIM MiTap : MiTap Groove :
Groove NGIC Subject

Specialist : NG...

2002-05-22 Experiment
Information Flow Sequence
Matching Models
Structured Argumentation
2002-05-21 brb

XYZ Alert Displayed.

Watches display.

Selects a CIM Model

Opens CIM Model

Identifies gaps in CIM Model

Searches for open-source confirmation of the transfer of WMD material

Links document to the model.

Adds document to the model

Opens XYZ Groove Space.

Asks for details on reweaponizing a 152mm artillery round.
Provides artillery expertise.

 Receives weapons information and thinks of other concept.

Queries for concept related to NGIC Weapons expertise.

Relates Results to CIM Model.

Adds document to the model.

 Shares CIM Model.

 Page 111 of 150 – Version 1.1

4.1.4.9.2 Reporting Sequence

INSCOM Analyst :
INSCOM Analyst

EUCOM Analyst :
EUCOM Analyst

Groove :
Groove

Verona
(INSCOM)...

Verona
(EUCOM)...

Identifies key points of CIM model.

Creates a Briefing Book.

Places Briefing Book into Groove.

Receives Briefing Book in Groove.

Views Briefing Book.

Understands XYZ Capabilities.2002-05-22 Experiment
Information Flow Sequences
Reporting
2002-05-20 brb Briefs CINC on XYZ Status

 Page 112 of 150 – Version 1.1

4.2. Sirocco Experiment (August 2002 - Planned)
4.2.1. Actor Roles View
Five Actors Roles are used in the Sirocco Experiments.

• INSCOM Analyst
• NGIC Subject Specialist
• EUCOM Analyst
• JCAG Analyst
• CENTCOM Analyst
• 902nd MI Analyst

EUCOM Analyst

(from Mistral)

INSCOM Analyst

(from Mistral)

NGIC Subject Special is t

(from Mistral)

CENTCOM Analys t

902nd MI Analyst

Analyst

(from Actor Roles View)

Sirocco Experiment
Actors
2002-06-26 brb

JCAG Analyst

 Page 113 of 150 – Version 1.1

4.2.1.1 INSCOM Analyst
4.2.1.2 EUCOM Analyst
4.2.1.3 NGIC Subject Specialist
4.2.1.4 CENTCOM Analyst
4.2.1.5 902nd MI Analyst
4.2.1.6 JCAG Analyst
4.2.2. Objectives and Results
4.2.2.1 Objectives (Metrics for Success)

4.2.2.1.1 Create a collaborative operational network including INSCOM nodes
(INSCOM, NGIC, 66th 513th 902nd MI Brigades) and at least one
non-INSCOM node (JCAG).

4.2.2.1.2 Explore the value of changing policies for information sharing (how to
bridge CT & CI operationally, politically and technically)

4.2.2.1.3 Show automated alert visualization (concept from GIS -to- Cities of
Information -to- Details).

4.2.2.1.4 Create a standard briefing-book format and at least two structured
argument templates pertaining to the Sirocco problem set.

4.2.2.1.5 Include operational users early by focusing on a real-world problem
leveraging existing real-world data (law-enforcement and IC).

4.2.2.1.6 Establish an infrastructure of software, hardware and people that will
serve as the basis for future experiments and future IAC deployments.

4.2.2.1.7 Integrate Genoa, EELD, TIDES, and INSCOM tools and data to
create end-to-end functionality.

 Page 114 of 150 – Version 1.1

4.2.2.2 Sources of Potentially New Insights
4.2.2.3 The operational nature and data being used in the experiment

have the potential to create unique insights and contribute to
solving a real-world problem.

4.2.2.4 Models of real-world problems
4.2.2.5 Metrics and milestones associated with CI and CT collaboration

on an established peer-to-peer network
4.2.3. Results
4.2.4. Experiment Deployment View
The Experiment Deployment view describes the mapping(s) of the software, identified in
the Business Application Service View and used in Experiments, onto the hardware and
reflects its distributed aspect. It is analogous to the Physical View of the Rational 4 + 1
View of System Architecture.

4.2.5. Business Information View
The Business Information View for the experiment describes:

• The products (formats) used in the experiment.

• The flow of roles, technology components, and information within the
experiment.

• Files used by the technology components in the experiment.

• The work flows of the experiment from an information perspective.

 Page 115 of 150 – Version 1.1

4.2.5.1 Information Flow
4.2.5.2 Information Products

TIA System Tools Files
2002-05-02 brb

Product Metadata
(from Metadata Structure)

CIP Metadata
(from Metadata Structure)

XMB
(from H&AI)

<<Genoa>> <<read and write>>

<<read and write>>

Situation Display
(from SAIC)

<<INSCOM>>

CIM Model
(from Veridian)

OnTopic
(from BBN)

<<EELD>>

Subdue
(from UTA)

<<EELD>>

TMODS
(from 21st Century Technology)

<<EELD>>

CIM
(from Veridian)

<<Genoa>>
<<read and write>>

Briefing Book
(from GlobalInfoTek)

HTML

<<read>>

<<read>>

<<read>>

<<read and write>>

Text

<<read>>

<<read>>

<<read>>

<<read>>

Verona
(from GlobalInfoTek)

<<Genoa>>
<<read and write>>

<<read>>

<<read>>

4.2.5.2.1 CIM Model

4.2.5.2.2 CIP Metadata

4.2.5.2.3 Product Metadata

4.2.5.2.4 HTML Files

4.2.5.2.5 Text Files

4.2.5.2.6 Briefing Book

 Page 116 of 150 – Version 1.1

4.2.6. Business Process View
The Sirocco Experiment includes capabilities in seven use cases of the TIA Business Model. Use Cases colored in green
indicate their inclusion in the Sirocco Experiment.

 Page 117 of 150 – Version 1.1

Sirocco Experiment
Reference Use Cases
2002-06-26 brb

Generating Hypotheses

(from Analysis and Assessment)

Learning Patterns

(from Analysis and Assessment)

St ruc tured Argumentation

(from Analysis and Assessment)

Understanding Intent

(from Analysis and Assessment)

Gathering Data

(from Information Management)

Generating Options

(from In fo rmati on Managem ent)

Detec ting Facts and Events

(from Information Management)

<<precedes>>

Matching Models

(from Analysis and Assessment)

Discovering Links

(from Information Management)

Alerting

(from Presentation and Visualization)

Storing and Sharing Information

(from Enterprise Support)

<<uses>>

Reporting

(from Presentation and Visualization)

The colored use
cases represent those
in which the Sirocco
experiment is
prototyping
technology.

4.2.6.1 Reference Use Cases

Sirocco Actor
Reference Use Cases
2002-06-26 brb

Structured Argumentation

(f rom An alysi s and Asse ssme nt)

Detecting Facts and Events

(from Information Management)

INSCOM Analyst

(f rom M ist ra l)

Storing and Sharing Information

(from Enterprise Support)

Matching Models

(from Analysis and Assessment)

EUCOM Analyst

(from Mistral)

JCAG Analyst

(f ro m Si rocco Experime nt)

CENTCOM Analyst

(from Sirocco Experiment)

Report ing

(from Presentation and Visualization)

902nd MI Analyst

(from Sirocco Experiment)

NGIC Subject
Specialist
(from Mistral)

Gathering Data

(f rom Informa ti on Mana gement)

The descriptions of the Use Cases as they are used in the Sirocco scenario will be
completed as the planning for the experiment continues.

 Page 118 of 150 – Version 1.1

4.2.6.1.1 Gathering Data

4.2.6.1.2 Detecting Facts and Events

4.2.6.1.3 Matching Models

4.2.6.1.4 Structured Argumentation

4.2.6.1.5 Reporting

4.2.6.1.6 Storing and Sharing Information

4.2.6.2 Activity Diagrams
TBD. The Activity Diagrams depict the specific interactions occurring in the Sirocco
Experiment within each Use Case exercised.

4.2.6.3 Workflow Sequences
TBD. The Workflow Sequences depict the sequence of actions occurring in the Sirocco
Experiment across Use Cases. The are related to the collaboration diagrams showing
actions and information flows in the Business Information View.

 Page 119 of 150 – Version 1.1

5. Appendix A: Document Revision History
Version 1.1 – July 19, 2002 • Added Appendix B as UML for System

Engineering (UML Tutorial)
• Added Multi-Level Security Approach

Section to the System Implementation
View

• Updated Business Information View to
include a syntactic and semantic
characterization of current products

• Changed revised history to reverse-
chronological and added link to revision
history on title page

Version 1.0 – July 8, 2002 • Updated Information View to include
Semantic Architecture

• Completed Component Catalog View
• Added Executive Summary
• Complete initial draft of Business

Application Services View
Draft Version 9 - June 27, 2002 • Integrated BAH System Model into single

version
• Added Initial Sirocco Experiment Model
• Created Adobe PDF bookmarks for quick

reference
Draft Version 8 - May 29, 2002 • Changed to multimap to accommodate

separate business and system models
• Inserted slides from Overview

presentation
Draft Version 7 - May 23, 2002

• Modified the Actors within the system to

incorporate Tom Armour's suggestions
• Added icons indicating current priority

areas and new content
• Added the Visualizing GIS Data to the

Presentation and Visualization Use Cases
(Linked to Earthviewer)

• Inserted bookmark hyperlinks within the
model

 Page 120 of 150 – Version 1.1

DRAFT Version 6 – May 14,
2002

• Reduced size of IAO Logo
• Incorporated feedback from Greg
• Added GMF Model including CIP and

Product Models
• Added high-level business rules model

DRAFT Version 5 – May 9,
2002

• Updated the Actor Roles View
• Created Experiment Deployment View
• Changed package structure to use

stereotypes to identify responsibility areas
• Added experiment network topology

deployment diagram
DRAFT Version 4 – May 9,
2002

• Updated diagrams for revised package
architecture

• Updated documentation for all
• Updated canonical use case coverage map

table to format properly
• Modified the HTML Template
• Shifted TIA Architecture Fractal Core

Model below TIA Sys. Arch.
DRAFT Version 3 – May 7,
2002

• Reduced the complexity of the mindmap
by controlling level of detail and hiding
some branches.

DRAFT Version 2- May 7, 2002

• Added hyperlinks to diagrams to facilitate

automatic PowerPoint generation.
• Revised overall UML package

architecture and package descriptions
• Created layered System Model to be more

consistent with BAH PowerPoint
sketches.

• Included figures from Core Services
PowerPoint presentation

DRAFT Version 1 – May 1,
2001

• B. Bebee (bebeeb@saic.com), G. Mack
HA&I.

 Page 121 of 150 – Version 1.1

6. Appendix B: UML for System Engineering
6.1. The Unified Modeling Language as a System Engineering

Aid
• Commonly Understood Notation

– Notation most closely related to Rumbaugh’s OMT.

– OMG Standard

• Unambiguous Way of Capturing:

– System Architecture

– System Operations

– Deployed Embodiment

• Containers for Indexing Attributes, Operations, & MOMs across:

– Categories of System Entities

– Actors

– Deployed System Entities

6.2. UML as a Modeling Tool, System Operations
– Use Cases = Visual Index of Documented Uses

– Sequence Diagrams = Time-Sequenced Interactions Between System Entities

– Collaboration Diagrams = Inventory of Interactions Between System Entities

– Activity Diagrams / State Diagrams (not shown) = Internal Process Flows

6.2.1. Use Case Diagram Example
Understanding Intent
Canonical Use Cases
2002-04-30 brb

Performing Risk Analysis

Analyst

(from Actor Roles V...)

Decision Maker

(from Actor Roles V...)

Understanding Intent

(from Analysis and Assessment)

<<uses>>

 Page 122 of 150 – Version 1.1

6.2.2. Sequence Diagram Example

INSCOM Analyst :
INSCOM Analyst

EUCOM Analyst :
EUCOM Analyst

Groove :
Groove

Verona
(INSCOM)...

Verona
(EUCOM)...

Identifies key points of CIM model.

Creates a Briefing Book.

Places Briefing Book into Groove.

Receives Briefing Book in Groove.

Views Briefing Book.

Understands XYZ Capabilities.2002-05-22 Experiment
Information Flow Sequences
Reporting
2002-05-20 brb Briefs CINC on XYZ Status

6.2.3. Collaboration Diagram Example

 Page 123 of 150 – Version 1.1

2002-05-22 Experiment
Information Flow
Reporting
2002-05-20 brb

INSCOM Analyst

EUCOM Analyst

Groove

Verona
(INSCOM)

Verona
(EUCOM)

1: Identifies key points of CIM model.

6: Understands XYZ Capabilities.

Associates key HTML and Text Data with capabilities.

2: Creates a Briefing Book.

Key points on XYZ
Briefing Book with key points

3: Places Briefing Book into Groo...

Briefing Book with key points and XYZ Capabiliti...

4: Receives Briefing Book in Groo...
Briefing Book with key points and XYZ Capabiliti...

5: Views Briefing Book.

Key points and XYZ Capabilities.
7: Briefs CINC on XYZ Status

6.2.4. Activity Diagram Example

Alert received on XYZ Group.

Reasoning About
XYZ Group Status

INSCOM
CIM : CIM

Populating
Model

 : MiTap
[Found XYZ Info.]

Themelink : Themelink
[Found XYZ Info on FBIS]

Reasoning on XYZ Completed.

Model
populated?

No

Yes

2002-05-22 Experiment
Structured Argumentation Activities
2002-05-09 brb

 : INSCOM Analyst

 Page 124 of 150 – Version 1.1

6.3. UML as a Modeling Tool, Multiple Views
• Packages (not shown) = “A general purpose mechanism for organizing

elements into groups.”

• Interfaces = “a type to describe the externally visible behavior of a class,
object, or other entity.”

• Roles = “named specific behavior of an entity participating in a particular
context.”

• Stereotypes = “extends the semantics of the meta-model, but not the
structure ” -- for both classes and associations.

Business Application Services View
Presentation and Visualization
2002-07-02 brb

Status Service

view()
query()
selectTopic()
selectRegion()

<<Interface>>

Decision Maker

makeDecision()
suggestHypothesis()

suggestOpt ion()
monitor()
actOn()

(from Actor Roles View)

Presenter

presentBriefing()
designBriefing()

(f rom Acto r Roles View)

Briefing Service

des ign()
save()
print()
present()

<<Interface>>

Analyst

monitor()

(from Actor Roles View)

Verona

createBook()
presentBook()
linkInformationIntoBook()

(from GlobalInfoTek)

<<Genoa>>

Partial

GIS Service

find()
navigate()

<<Interface>>

Viewer Service

display()
navigate()
print()

<<Interface>>

Partial

EarthViewer

navigate3D()

(from Keyhole)

<<COTS>>Partial

Partial

Presentation and Visualization
(from Business Application Services View)

Interface

Stereotype

Role

Package

 Page 125 of 150 – Version 1.1

6.4. UML As Modeling Tool, System Implementation
• Deployment Diagrams

– Shows the configuration of run-time processing elements and the
software components, processes, and objects that live on them.

• Component Diagrams (Not Shown)

– shows the dependencies among software components

6.4.1. Deployment Diagram Example

Dell Poweredge
6300

Renoir
Directory
Starl ight
3D Apps

Dell Poweredge
6300

Renoir
Directory
Starl ight
3D Apps

Dell Poweredge
4300

Themel ink Server

Dell Precision 420

Groove
CIM
XMB
Verona
Situation Display
Themel ink

Express 510T
Switch Firewall

/ VPN

Network and Data Support
Dual Processes / 512 MB RAM

Dell Precision 620
(Workstation)

Groove
CIM
XMB
Verona
Situation Display
Themel ink

Analyst Workstations
Experiment 2002-05-22
Deployment View
2002-05-20 brb

 Page 126 of 150 – Version 1.1

7. Appendix C Services WSDL Specifications
7.1. C.1 Security Services WSDL Service Description

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace=" urn:Security"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:impl=" urn:Security-
impl" xmlns:intf=" urn:Security"
xmlns:tns2="http://domain.security.core.tia.darpa.mil"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema targetNamespace="http://domain.security.core.tia.darpa.mil"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="User">
 <sequence>
 <element name="firstName" nillable="true" type="xsd:string"/>
 <element name="lastName" nillable="true" type="xsd:string"/>
 <element name="phone" nillable="true" type="xsd:string"/>
 <element name="email" nillable="true" type="xsd:string"/>
 <element name="role" nillable="true" type="tns2:Role"/>
 <element name="List" nillable="true" type="SOAP-ENC:Array"/>
 </sequence>
 </complexType>
 <complexType name="Role">
 <sequence>
 <element name="name" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="User" nillable="true" type="tns2:User"/>
 <element name="Role" nillable="true" type="tns2:Role"/>
 </schema>
 <schema targetNamespace="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Array" nillable="true" type="SOAP-ENC:Array"/>
 </schema>
 </types>
 <wsdl:message name="getUserRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="EditUserRequest">
 <wsdl:part name="in0" type="tns2:User"/>
 </wsdl:message>
 <wsdl:message name="authorizeResponse"/>
 <wsdl:message name="EditUserResponse"/>
 <wsdl:message name="addUserRequest">
 <wsdl:part name="in0" type="tns2:User"/>
 </wsdl:message>
 <wsdl:message name="removeUserFromRoleRequest">
 <wsdl:part name="in0" type="tns2:User"/>
 <wsdl:part name="in1" type="tns2:Role"/>
 </wsdl:message>
 <wsdl:message name="authenticateRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 <wsdl:part name="in1" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="assignUserToRoleRequest">
 <wsdl:part name="in0" type="tns2:User"/>
 <wsdl:part name="in1" type="tns2:Role"/>
 </wsdl:message>
 <wsdl:message name="getUsersRequest"/>
 <wsdl:message name="RemoveUserResponse"/>
 <wsdl:message name="getUsersResponse">
 <wsdl:part name="return" type="SOAP-ENC:Array"/>
 </wsdl:message>
 <wsdl:message name="addUserResponse"/>
 <wsdl:message name="assignUserToRoleResponse"/>
 <wsdl:message name="authorizeRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 <wsdl:part name="in1" type="SOAP-ENC:string"/>

 Page 127 of 150 – Version 1.1

 </wsdl:message>
 <wsdl:message name="getUserResponse">

 <wsdl:part name="return" type="tns2:User"/>
 </wsdl:message>
 <wsdl:message name="SecurityManagerException"/>
 <wsdl:message name="RemoveUserRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="removeUserFromRoleResponse"/>
 <wsdl:message name="authenticateResponse"/>
 <wsdl:portType name="SecurityManager">
 <wsdl:operation name="EditUser" parameterOrder="in0">
 <wsdl:input message="intf:EditUserRequest"/>
 <wsdl:output message="intf:EditUserResponse"/>
 <wsdl:fault message="intf:SecurityManagerException"
name="SecurityManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="RemoveUser" parameterOrder="in0">
 <wsdl:input message="intf:RemoveUserRequest"/>
 <wsdl:output message="intf:RemoveUserResponse"/>
 <wsdl:fault message="intf:SecurityManagerException"
name="SecurityManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="addUser" parameterOrder="in0">
 <wsdl:input message="intf:addUserRequest"/>
 <wsdl:output message="intf:addUserResponse"/>
 <wsdl:fault message="intf:SecurityManagerException"
name="SecurityManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="assignUserToRole" parameterOrder="in0 in1">
 <wsdl:input message="intf:assignUserToRoleRequest"/>
 <wsdl:output message="intf:assignUserToRoleResponse"/>
 <wsdl:fault message="intf:SecurityManagerException"
name="SecurityManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="authenticate" parameterOrder="in0 in1">
 <wsdl:input message="intf:authenticateRequest"/>
 <wsdl:output message="intf:authenticateResponse"/>
 <wsdl:fault message="intf:SecurityManagerException"
name="SecurityManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="authorize" parameterOrder="in0 in1">
 <wsdl:input message="intf:authorizeRequest"/>
 <wsdl:output message="intf:authorizeResponse"/>
 <wsdl:fault message="intf:SecurityManagerException"
name="SecurityManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="getUser" parameterOrder="in0">
 <wsdl:input message="intf:getUserRequest"/>
 <wsdl:output message="intf:getUserResponse"/>
 <wsdl:fault message="intf:SecurityManagerException"
name="SecurityManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="getUsers">
 <wsdl:input message="intf:getUsersRequest"/>
 <wsdl:output message="intf:getUsersResponse"/>
 <wsdl:fault message="intf:SecurityManagerException"
name="SecurityManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="removeUserFromRole" parameterOrder="in0 in1">
 <wsdl:input message="intf:removeUserFromRoleRequest"/>
 <wsdl:output message="intf:removeUserFromRoleResponse"/>
 <wsdl:fault message="intf:SecurityManagerException"
name="SecurityManagerException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="securitySoapBinding" type="intf:SecurityManager">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="EditUser">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="EditUser" use="encoded"/>
 </wsdl:input>

 Page 128 of 150 – Version 1.1

 <wsdl:output>

 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Security" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="RemoveUser">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="RemoveUser" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Security" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="addUser">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="addUser" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Security" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="assignUserToRole">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="assignUserToRole" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Security" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="authenticate">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="authenticate" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Security" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="authorize">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="authorize" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Security" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getUser">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>

 Page 129 of 150 – Version 1.1

 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="getUser" use="encoded"/>

 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Security" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getUsers">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="getUsers" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Security" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="removeUserFromRole">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="removeUserFromRole" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Security" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="SecurityManagerService">
 <wsdl:port binding="intf:securitySoapBinding" name="security">
 <wsdlsoap:address
location="http://localhost:8080/services/security"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

7.2. C.2 Registry Services WSDL Service Description
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace=" urn:Registry"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:impl=" urn:Registry-
impl" xmlns:intf=" urn:Registry"
xmlns:tns2="http://domain.registry.core.tia.darpa.mil"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema targetNamespace="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Array" nillable="true" type="SOAP-ENC:Array"/>
 </schema>
 <schema targetNamespace="http://domain.registry.core.tia.darpa.mil"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="RegistryEntry">
 <sequence/>
 </complexType>
 <element name="RegistryEntry" nillable="true"
type="tns2:RegistryEntry"/>
 </schema>
 </types>
 <wsdl:message name="getServicesResponse">
 <wsdl:part name="return" type="SOAP-ENC:Array"/>
 </wsdl:message>
 <wsdl:message name="removeServiceRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>

 Page 130 of 150 – Version 1.1

 <wsdl:message name="getByNameRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>

 <wsdl:message name="editServiceRequest">
 <wsdl:part name="in0" type="tns2:RegistryEntry"/>
 </wsdl:message>
 <wsdl:message name="RegistryManagerException"/>
 <wsdl:message name="getByDepartmentRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="editServiceResponse"/>
 <wsdl:message name="registerServiceResponse"/>
 <wsdl:message name="getByDepartmentResponse">
 <wsdl:part name="return" type="SOAP-ENC:Array"/>
 </wsdl:message>
 <wsdl:message name="getByNameResponse">
 <wsdl:part name="return" type="SOAP-ENC:Array"/>
 </wsdl:message>
 <wsdl:message name="removeServiceResponse"/>
 <wsdl:message name="getServicesRequest"/>
 <wsdl:message name="registerServiceRequest">
 <wsdl:part name="in0" type="tns2:RegistryEntry"/>
 </wsdl:message>
 <wsdl:portType name="RegistryManager">
 <wsdl:operation name="getByName" parameterOrder="in0">
 <wsdl:input message="intf:getByNameRequest"/>
 <wsdl:output message="intf:getByNameResponse"/>
 <wsdl:fault message="intf:RegistryManagerException"
name="RegistryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="editService" parameterOrder="in0">
 <wsdl:input message="intf:editServiceRequest"/>
 <wsdl:output message="intf:editServiceResponse"/>
 <wsdl:fault message="intf:RegistryManagerException"
name="RegistryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="getByDepartment" parameterOrder="in0">
 <wsdl:input message="intf:getByDepartmentRequest"/>
 <wsdl:output message="intf:getByDepartmentResponse"/>
 <wsdl:fault message="intf:RegistryManagerException"
name="RegistryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="getServices">
 <wsdl:input message="intf:getServicesRequest"/>
 <wsdl:output message="intf:getServicesResponse"/>
 <wsdl:fault message="intf:RegistryManagerException"
name="RegistryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="registerService" parameterOrder="in0">
 <wsdl:input message="intf:registerServiceRequest"/>
 <wsdl:output message="intf:registerServiceResponse"/>
 <wsdl:fault message="intf:RegistryManagerException"
name="RegistryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="removeService" parameterOrder="in0">
 <wsdl:input message="intf:removeServiceRequest"/>
 <wsdl:output message="intf:removeServiceResponse"/>
 <wsdl:fault message="intf:RegistryManagerException"
name="RegistryManagerException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="registrySoapBinding" type="intf:RegistryManager">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getByName">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="getByName" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Registry" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>

 Page 131 of 150 – Version 1.1

 <wsdl:operation name="editService">
 <wsdlsoap:operation soapAction=""/>

 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="editService" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Registry" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getByDepartment">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="getByDepartment" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Registry" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getServices">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="getServices" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Registry" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="registerService">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="registerService" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Registry" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="removeService">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="removeService" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Registry" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="RegistryManagerService">
 <wsdl:port binding="intf:registrySoapBinding" name="registry">
 <wsdlsoap:address
location="http://localhost:8080/services/registry"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

7.3. C.3 Data Services WSDL Service Description

 Page 132 of 150 – Version 1.1

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace=" urn:Repository"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:impl=" urn:Repository-
impl" xmlns:intf=" urn:Repository"
xmlns:tns2="http://domain.repository.core.tia.darpa.mil"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema targetNamespace="http://domain.repository.core.tia.darpa.mil"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="Content">
 <sequence/>
 </complexType>
 <element name="Content" nillable="true" type="tns2:Content"/>
 <complexType name="Schema">
 <sequence/>
 </complexType>
 <element name="Schema" nillable="true" type="tns2:Schema"/>
 </schema>
 <schema targetNamespace="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Array" nillable="true" type="SOAP-ENC:Array"/>
 </schema>
 </types>
 <wsdl:message name="addContentResponse">
 <wsdl:part name="return" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="removeContentRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 <wsdl:part name="in1" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="unregisterSchemaResponse"/>
 <wsdl:message name="addContentRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 <wsdl:part name="in1" type="tns2:Content"/>
 </wsdl:message>
 <wsdl:message name="registerSchemaResponse">
 <wsdl:part name="return" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="searchContentResponse">
 <wsdl:part name="return" type="SOAP-ENC:Array"/>
 </wsdl:message>
 <wsdl:message name="searchContentRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 <wsdl:part name="in1" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="getContentRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 <wsdl:part name="in1" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="updateContentRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 <wsdl:part name="in1" type="tns2:Content"/>
 </wsdl:message>
 <wsdl:message name="updateContentResponse"/>
 <wsdl:message name="removeContentResponse"/>
 <wsdl:message name="unregisterSchemaRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="getContentResponse"/>
 <wsdl:message name="registerSchemaRequest">
 <wsdl:part name="in0" type="tns2:Schema"/>
 </wsdl:message>
 <wsdl:message name="RepositoryManagerException"/>
 <wsdl:portType name="RepositoryManager">
 <wsdl:operation name="getContent" parameterOrder="in0 in1">
 <wsdl:input message="intf:getContentRequest"/>
 <wsdl:output message="intf:getContentResponse"/>
 <wsdl:fault message="intf:RepositoryManagerException"
name="RepositoryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="addContent" parameterOrder="in0 in1">
 <wsdl:input message="intf:addContentRequest"/>

 Page 133 of 150 – Version 1.1

 <wsdl:output message="intf:addContentResponse"/>

 <wsdl:fault message="intf:RepositoryManagerException"
name="RepositoryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="registerSchema" parameterOrder="in0">
 <wsdl:input message="intf:registerSchemaRequest"/>
 <wsdl:output message="intf:registerSchemaResponse"/>
 <wsdl:fault message="intf:RepositoryManagerException"
name="RepositoryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="removeContent" parameterOrder="in0 in1">
 <wsdl:input message="intf:removeContentRequest"/>
 <wsdl:output message="intf:removeContentResponse"/>
 <wsdl:fault message="intf:RepositoryManagerException"
name="RepositoryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="searchContent" parameterOrder="in0 in1">
 <wsdl:input message="intf:searchContentRequest"/>
 <wsdl:output message="intf:searchContentResponse"/>
 <wsdl:fault message="intf:RepositoryManagerException"
name="RepositoryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="unregisterSchema" parameterOrder="in0">
 <wsdl:input message="intf:unregisterSchemaRequest"/>
 <wsdl:output message="intf:unregisterSchemaResponse"/>
 <wsdl:fault message="intf:RepositoryManagerException"
name="RepositoryManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="updateContent" parameterOrder="in0 in1">
 <wsdl:input message="intf:updateContentRequest"/>
 <wsdl:output message="intf:updateContentResponse"/>
 <wsdl:fault message="intf:RepositoryManagerException"
name="RepositoryManagerException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="repositorySoapBinding" type="intf:RepositoryManager">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getContent">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="getContent" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Repository" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="addContent">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="addContent" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Repository" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="registerSchema">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="registerSchema" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Repository" use="encoded"/>

 Page 134 of 150 – Version 1.1

 </wsdl:output>
 </wsdl:operation>

 <wsdl:operation name="removeContent">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="removeContent" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Repository" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="searchContent">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="searchContent" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Repository" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="unregisterSchema">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="unregisterSchema" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Repository" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="updateContent">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="updateContent" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Repository" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="RepositoryManagerService">
 <wsdl:port binding="intf:repositorySoapBinding" name="repository">
 <wsdlsoap:address
location="http://localhost:8080/services/repository"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

7.4. C.4 Messaging Services WSDL Service Description
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace=" urn:Messaging"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:impl=" urn:Messaging-
impl" xmlns:intf=" urn:Messaging"
xmlns:tns2="http://domain.messaging.core.tia.darpa.mil"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>

 Page 135 of 150 – Version 1.1

 <schema targetNamespace="http://domain.messaging.core.tia.darpa.mil"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="Topic">

 <sequence>
 <element name="name" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="Topic" nillable="true" type="tns2:Topic"/>
 <complexType name="Message">
 <sequence>
 <element name="message" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="Message" nillable="true" type="tns2:Message"/>
 </schema>
 <schema targetNamespace="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Array" nillable="true" type="SOAP-ENC:Array"/>
 </schema>
 </types>
 <wsdl:message name="getMessagesRequest">
 <wsdl:part name="in0" type="tns2:Topic"/>
 </wsdl:message>
 <wsdl:message name="changeTopicPropertiesRequest">
 <wsdl:part name="in0" type="tns2:Topic"/>
 </wsdl:message>
 <wsdl:message name="subscribeToTopicResponse"/>
 <wsdl:message name="getMessagesResponse">
 <wsdl:part name="return" type="SOAP-ENC:Array"/>
 </wsdl:message>
 <wsdl:message name="MessagingManagerException"/>
 <wsdl:message name="subscribeToTopicRequest">
 <wsdl:part name="in0" type="tns2:Topic"/>
 </wsdl:message>
 <wsdl:message name="removeTopicResponse"/>
 <wsdl:message name="removeTopicRequest">
 <wsdl:part name="in0" type="tns2:Topic"/>
 </wsdl:message>
 <wsdl:message name="publishToTopicResponse"/>
 <wsdl:message name="findTopicRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="createTopicResponse"/>
 <wsdl:message name="createTopicRequest">
 <wsdl:part name="in0" type="tns2:Topic"/>
 </wsdl:message>
 <wsdl:message name="changeTopicPropertiesResponse"/>
 <wsdl:message name="findTopicResponse">
 <wsdl:part name="return" type="tns2:Topic"/>
 </wsdl:message>
 <wsdl:message name="publishToTopicRequest">
 <wsdl:part name="in0" type="tns2:Topic"/>
 <wsdl:part name="in1" type="tns2:Message"/>
 </wsdl:message>
 <wsdl:portType name="MessagingManager">
 <wsdl:operation name="changeTopicProperties" parameterOrder="in0">
 <wsdl:input message="intf:changeTopicPropertiesRequest"/>
 <wsdl:output message="intf:changeTopicPropertiesResponse"/>
 <wsdl:fault message="intf:MessagingManagerException"
name="MessagingManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="createTopic" parameterOrder="in0">
 <wsdl:input message="intf:createTopicRequest"/>
 <wsdl:output message="intf:createTopicResponse"/>
 <wsdl:fault message="intf:MessagingManagerException"
name="MessagingManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="findTopic" parameterOrder="in0">
 <wsdl:input message="intf:findTopicRequest"/>
 <wsdl:output message="intf:findTopicResponse"/>
 <wsdl:fault message="intf:MessagingManagerException"
name="MessagingManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="getMessages" parameterOrder="in0">
 <wsdl:input message="intf:getMessagesRequest"/>
 <wsdl:output message="intf:getMessagesResponse"/>

 Page 136 of 150 – Version 1.1

 <wsdl:fault message="intf:MessagingManagerException"
name="MessagingManagerException"/>
 </wsdl:operation>

 <wsdl:operation name="publishToTopic" parameterOrder="in0 in1">
 <wsdl:input message="intf:publishToTopicRequest"/>
 <wsdl:output message="intf:publishToTopicResponse"/>
 <wsdl:fault message="intf:MessagingManagerException"
name="MessagingManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="removeTopic" parameterOrder="in0">
 <wsdl:input message="intf:removeTopicRequest"/>
 <wsdl:output message="intf:removeTopicResponse"/>
 <wsdl:fault message="intf:MessagingManagerException"
name="MessagingManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="subscribeToTopic" parameterOrder="in0">
 <wsdl:input message="intf:subscribeToTopicRequest"/>
 <wsdl:output message="intf:subscribeToTopicResponse"/>
 <wsdl:fault message="intf:MessagingManagerException"
name="MessagingManagerException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="messagingSoapBinding" type="intf:MessagingManager">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="changeTopicProperties">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="changeTopicProperties" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Messaging" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="createTopic">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="createTopic" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Messaging" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="findTopic">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="findTopic" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Messaging" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getMessages">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="getMessages" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Messaging" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>

 Page 137 of 150 – Version 1.1

 <wsdl:operation name="publishToTopic">
 <wsdlsoap:operation soapAction=""/>

 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="publishToTopic" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Messaging" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="removeTopic">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="removeTopic" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Messaging" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="subscribeToTopic">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="subscribeToTopic" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Messaging" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="MessagingManagerService">
 <wsdl:port binding="intf:messagingSoapBinding" name="messaging">
 <wsdlsoap:address
location="http://localhost:8080/services/messaging"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

7.5. C.5 Transformation Services WSDL Service Description
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace=" urn:Transformation"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:impl="
urn:Transformation-impl" xmlns:intf=" urn:Transformation"
xmlns:tns2="http://domain.transformation.core.tia.darpa.mil"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema targetNamespace="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Array" nillable="true" type="SOAP-ENC:Array"/>
 </schema>
 <schema
targetNamespace="http://domain.transformation.core.tia.darpa.mil"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="Rule">
 <sequence/>
 </complexType>
 <element name="Rule" nillable="true" type="tns2:Rule"/>
 </schema>
 </types>
 <wsdl:message name="editRuleRequest">
 <wsdl:part name="in0" type="tns2:Rule"/>

 Page 138 of 150 – Version 1.1

 </wsdl:message>
 <wsdl:message name="transformResponse">
 <wsdl:part name="return" type="SOAP-ENC:string"/>

 </wsdl:message>
 <wsdl:message name="removeRuleResponse"/>
 <wsdl:message name="TransformationManagerException"/>
 <wsdl:message name="getRulesRequest"/>
 <wsdl:message name="getRuleResponse">
 <wsdl:part name="return" type="tns2:Rule"/>
 </wsdl:message>
 <wsdl:message name="removeRuleRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="addRuleRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 <wsdl:part name="in1" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="editRuleResponse"/>
 <wsdl:message name="getRuleRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="addRuleResponse">
 <wsdl:part name="return" type="tns2:Rule"/>
 </wsdl:message>
 <wsdl:message name="transformRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 <wsdl:part name="in1" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="getRulesResponse">
 <wsdl:part name="return" type="SOAP-ENC:Array"/>
 </wsdl:message>
 <wsdl:portType name="TransformationManager">
 <wsdl:operation name="getRules">
 <wsdl:input message="intf:getRulesRequest"/>
 <wsdl:output message="intf:getRulesResponse"/>
 <wsdl:fault message="intf:TransformationManagerException"
name="TransformationManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="addRule" parameterOrder="in0 in1">
 <wsdl:input message="intf:addRuleRequest"/>
 <wsdl:output message="intf:addRuleResponse"/>
 <wsdl:fault message="intf:TransformationManagerException"
name="TransformationManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="editRule" parameterOrder="in0">
 <wsdl:input message="intf:editRuleRequest"/>
 <wsdl:output message="intf:editRuleResponse"/>
 <wsdl:fault message="intf:TransformationManagerException"
name="TransformationManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="getRule" parameterOrder="in0">
 <wsdl:input message="intf:getRuleRequest"/>
 <wsdl:output message="intf:getRuleResponse"/>
 <wsdl:fault message="intf:TransformationManagerException"
name="TransformationManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="removeRule" parameterOrder="in0">
 <wsdl:input message="intf:removeRuleRequest"/>
 <wsdl:output message="intf:removeRuleResponse"/>
 <wsdl:fault message="intf:TransformationManagerException"
name="TransformationManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="transform" parameterOrder="in0 in1">
 <wsdl:input message="intf:transformRequest"/>
 <wsdl:output message="intf:transformResponse"/>
 <wsdl:fault message="intf:TransformationManagerException"
name="TransformationManagerException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="transformationSoapBinding"
type="intf:TransformationManager">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getRules">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>

 Page 139 of 150 – Version 1.1

 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="getRules" use="encoded"/>

 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Transformation" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="addRule">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="addRule" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Transformation" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="editRule">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="editRule" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Transformation" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getRule">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="getRule" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Transformation" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="removeRule">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="removeRule" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Transformation" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="transform">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="transform" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:Transformation" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="TransformationManagerService">

 Page 140 of 150 – Version 1.1

 <wsdl:port binding="intf:transformationSoapBinding"
name="transformation">

 <wsdlsoap:address
location="http://localhost:8080/services/transformation"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

7.6. C.6 Computational Services WSDL Service Description
<!-- job_manager_port_type.wsdl -->

<definitions name="JobManagerDefinition"

targetNamespace="http://jobmanager.base.ogsa.globus.org/job_manager_port_typ
e"

xmlns:tns="http://jobmanager.base.ogsa.globus.org/job_manager_port_type"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
 <xsd:schema
targetNamespace="http://jobmanager.base.ogsa.globus.org/job_manager_port_typ
e"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="submitJob">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="rsl" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitJobResponse">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="getStatus">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="getStatusResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="status" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="cancel">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="cancelResponse">
 <xsd:complexType/>
 </xsd:element>
 </xsd:schema>
</types>

<message name="SubmitJobInputMessage">
 <part name="parameters" element="tns:submitJob"/>
</message>
<message name="SubmitJobOutputMessage">
 <part name="parameters" element="tns:submitJobResponse"/>
</message>
<message name="GetStatusInputMessage">
 <part name="parameters" element="tns:getStatus"/>
</message>
<message name="GetStatusOutputMessage">
 <part name="parameters" element="tns:getStatusResponse"/>
</message>

<portType name="JobManagerPortType">
 <operation name="submitJob">
 <input message="tns:SubmitJobInputMessage"/>
 <output message="tns:SubmitJobOutputMessage"/>
 </operation>
 <operation name="getStatus">
 <input message="tns:GetStatusInputMessage"/>

 Page 141 of 150 – Version 1.1

 <output message="tns:GetStatusOutputMessage"/>
 </operation>
 <operation name="cancel">

 <input message="tns:CancelInputMessage"/>
 <output message="tns:CancelOutputMessage"/>
 </operation>
</portType>

</definitions>

<!-- job_manager_bindings.wsdl -->

<definitions name="JobManagerDefinition"

targetNamespace="http://jobmanager.base.ogsa.globus.org/job_manager_bindings
"
 xmlns:job-manager-port-
type="http://jobmanager.base.ogsa.globus.org/job_manager_port_type"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<import location="job_manager_port_type.wsdl"

namespace="http://jobmanager.base.ogsa.globus.org/job_manager_port_type"/>

<binding name="JobManagerSOAPBinding" type="job-manager-port-
type:JobManagerPortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="submitJob">
 <soap:operation
soapAction="http://jobmanager.base.ogsa.globus.org/job_manager#submitJob"/>
 <input>
 <soap:body use="literal"
namespace="http://jobmanager.base.ogsa.globus.org/job_manager"/>
 </input>
 <output>
 <soap:body use="literal"
namespace="http://jobmanager.base.ogsa.globus.org/job_manager"/>
 </output>
 </operation>
 <operation name="getStatus">
 <soap:operation
soapAction="http://jobmanager.base.ogsa.globus.org/job_manager#getStatus"/>
 <input>
 <soap:body use="literal"
namespace="http://jobmanager.base.ogsa.globus.org/job_manager"/>
 </input>
 <output>
 <soap:body use="literal"
namespace="http://jobmanager.base.ogsa.globus.org/job_manager"/>
 </output>
 </operation>
 <operation name="cancel">
 <soap:operation
soapAction="http://jobmanager.base.ogsa.globus.org/job_manager#cancel"/>
 <input>
 <soap:body use="literal"
namespace="http://jobmanager.base.ogsa.globus.org/job_manager"/>
 </input>
 <output>
 <soap:body use="literal"
namespace="http://jobmanager.base.ogsa.globus.org/job_manager"/>
 </output>
 </operation>
</binding>

</definitions>

<!-- jobmanager_service.wsdl -->

<definitions name="JobManagerDefinition"
 targetNamespace="http://jobmanager.base.ogsa.globus.org/job_manager"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:job-manager-
bindings="http://jobmanager.base.ogsa.globus.org/job_manager_bindings"

 Page 142 of 150 – Version 1.1

 xmlns:grid-service-
bindings="http://ogsa.gridforum.org/service/grid_service_bindings"

 xmlns:notification-source-
bindings="http://ogsa.gridforum.org/notification/notification_source_binding
s"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<import location="job_manager_bindings.wsdl"

namespace="http://jobmanager.base.ogsa.globus.org/job_manager_bindings"/>

<import location="../../core/service/grid_service_bindings.wsdl"

namespace="http://ogsa.gridforum.org/service/grid_service_bindings"/>

<import location="../../core/notification/notification_source_bindings.wsdl"

namespace="http://ogsa.gridforum.org/notification/notification_source_bindin
gs"/>

<service name="JobManagerService">
 <documentation>Globus JobManager service (management of remote job
execution)</documentation>

 <port binding="job-manager-bindings:JobManagerSOAPBinding"
 name="JobManagerPort">
 <soap:address location="httpg://localhost:8443/ogsa/services"/>
 </port>

 <port binding="grid-service-bindings:GridServiceSOAPBinding"
 name="GridServicePort">
 <soap:address location="httpg://localhost:8443/ogsa/services"/>
 </port>

 <port binding="notification-source-bindings:NotificationSourceSOAPBinding"
 name="NotificationSourcePort">
 <soap:address location="httpg://localhost:8080/ogsa/services"/>
 </port>

</service>

</definitions>

<!-- registry_port_type.wsdl -->

<definitions name="RegistryDefinition"

targetNamespace="http://ogsa.gridforum.org/registry/registry_port_type"

xmlns:tns="http://ogsa.gridforum.org/registry/registry_port_type"
 xmlns:ogsa-faults="http://ogsa.gridforum.org/faults"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<import location="../../core/types/types.wsdl"
 namespace="http://ogsa.gridforum.org/types"/>
<import location="../../core/faults/faults.wsdl"
 namespace="http://ogsa.gridforum.org/faults"/>

<types>
 <xsd:schema
targetNamespace="http://ogsa.gridforum.org/registry/registry_port_type"
 xmlns:ogsa-types="http://ogsa.gridforum.org/types"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="registerService" type="ogsa-
types:ServiceRegistrationElementType"/>
 <xsd:element name="registerServiceResponse">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="unregisterService" type="ogsa-
types:HandleElementType"/>
 <xsd:element name="unregisterServiceResponse">
 <xsd:complexType/>
 </xsd:element>
 </xsd:schema>

 Page 143 of 150 – Version 1.1

</types>

<message name="RegisterServiceInputMessage">
 <part name="parameters" element="tns:registerService"/>
</message>
<message name="RegisterServiceOutputMessage">
 <part name="parameters" element="tns:registerServiceResponse"/>
</message>
<message name="UnregisterServiceInputMessage">
 <part name="parameters" element="tns:unregisterService"/>
</message>
<message name="UnregisterServiceOutputMessage">
 <part name="parameters" element="tns:unregisterServiceResponse"/>
</message>

<portType name="RegistryPortType">
 <operation name="registerService">
 <input message="tns:RegisterServiceInputMessage"/>
 <output message="tns:RegisterServiceOutputMessage"/>
 </operation>
 <operation name="unregisterService">
 <input message="tns:UnregisterServiceInputMessage"/>
 <output message="tns:UnregisterServiceOutputMessage"/>
 <fault name="HandleNotFoundFault" message="ogsa-
faults:HandleNotFoundFault"/>
 </operation>
</portType>

</definitions>

<!-- registry_bindings.wsdl -->

<definitions name="RegistryDefinition"

targetNamespace="http://ogsa.gridforum.org/registry/registry_bindings"
 xmlns:registry-port-
type="http://ogsa.gridforum.org/registry/registry_port_type"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<import location="../../core/registry/registry_port_type.wsdl"
 namespace="http://ogsa.gridforum.org/registry/registry_port_type"/>

<binding name="RegistrySOAPBinding" type="registry-port-
type:RegistryPortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="registerService">
 <soap:operation
soapAction="http://ogsa.gridforum.org/registry/registry#registerService"/>
 <input>
 <soap:body use="literal"
namespace="http://ogsa.gridforum.org/registry/registry"/>
 </input>
 <output>
 <soap:body use="literal"
namespace="http://ogsa.gridforum.org/registry/registry"/>
 </output>
 </operation>
 <operation name="unregisterService">
 <soap:operation
soapAction="http://ogsa.gridforum.org/registry/registry#unregisterService"/>
 <input>
 <soap:body use="literal"
namespace="http://ogsa.gridforum.org/registry/registry"/>
 </input>
 <output>
 <soap:body use="literal"
namespace="http://ogsa.gridforum.org/registry/registry"/>
 </output>
 <fault>
 <soap:fault name="HandleNotFoundFault" use="encoded" style="rpc"/>
 </fault>
 </operation>
</binding>

 Page 144 of 150 – Version 1.1

</definitions>

<!-- vo_registry_service.wsdl -->

<definitions name="VORegistryDefinition"
 targetNamespace="http://registry.base.ogsa.globus.org/vo_registry"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:registry-inspection-
bindings="http://ogsa.gridforum.org/registry/registry_inspection_bindings"
 xmlns:registry-
bindings="http://ogsa.gridforum.org/registry/registry_bindings"
 xmlns:grid-service-
bindings="http://ogsa.gridforum.org/service/grid_service_bindings"
 xmlns:notification-source-
bindings="http://ogsa.gridforum.org/notification/notification_source_binding
s"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<import location="../../core/registry/registry_inspection_bindings.wsdl"

namespace="http://ogsa.gridforum.org/registry/registry_inspection_bindings"/
>

<import location="../../core/registry/registry_bindings.wsdl"
 namespace="http://ogsa.gridforum.org/registry/registry_bindings"/>

<import location="../../core/service/grid_service_bindings.wsdl"

namespace="http://ogsa.gridforum.org/service/grid_service_bindings"/>

<import location="../../core/notification/notification_source_bindings.wsdl"

namespace="http://ogsa.gridforum.org/notification/notification_source_bindin
gs"/>

<service name="VORegistryService">
 <documentation>persistent service managing a registry of services in a
virtual organization</documentation>

 <port binding="registry-inspection-bindings:RegistryInspectionSOAPBinding"
 name="RegistryInspectionPort">
 <soap:address location="http://localhost:8080/ogsa/services"/>
 </port>

 <port binding="registry-bindings:RegistrySOAPBinding"
 name="RegistryPort">
 <soap:address location="http://localhost:8080/ogsa/services"/>
 </port>

 <port binding="grid-service-bindings:GridServiceSOAPBinding"
 name="GridServicePort">
 <soap:address location="http://localhost:8080/ogsa/services"/>
 </port>

 <port binding="notification-source-bindings:NotificationSourceSOAPBinding"
 name="NotificationSourcePort">
 <soap:address location="http://localhost:8080/ogsa/services"/>
 </port>
</service>

</definitions>

7.7. C.7 Services Management WSDL Service Description
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace=" urn:ServicesManagement"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:impl="
urn:ServicesManagement-impl" xmlns:intf=" urn:ServicesManagement"
xmlns:tns2="http://domain.servicesmanagement.core.tia.darpa.mil"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>

 Page 145 of 150 – Version 1.1

 <schema
targetNamespace="http://domain.servicesmanagement.core.tia.darpa.mil"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="Topic">

 <sequence>
 <element name="name" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="Topic" nillable="true" type="tns2:Topic"/>
 </schema>
 </types>
 <wsdl:message name="createServicesTopicRequest">
 <wsdl:part name="in0" type="tns2:Topic"/>
 </wsdl:message>
 <wsdl:message name="publishToServiceTopicResponse"/>
 <wsdl:message name="ServicesManagementManagerException"/>
 <wsdl:message name="createServicesTopicResponse"/>
 <wsdl:message name="subscribeToServiceTopicRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:message name="subscribeToServiceTopicResponse"/>
 <wsdl:message name="publishToServiceTopicRequest">
 <wsdl:part name="in0" type="SOAP-ENC:string"/>
 </wsdl:message>
 <wsdl:portType name="ServicesManagementManager">
 <wsdl:operation name="createServicesTopic" parameterOrder="in0">
 <wsdl:input message="intf:createServicesTopicRequest"/>
 <wsdl:output message="intf:createServicesTopicResponse"/>
 <wsdl:fault message="intf:ServicesManagementManagerException"
name="ServicesManagementManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="publishToServiceTopic" parameterOrder="in0">
 <wsdl:input message="intf:publishToServiceTopicRequest"/>
 <wsdl:output message="intf:publishToServiceTopicResponse"/>
 <wsdl:fault message="intf:ServicesManagementManagerException"
name="ServicesManagementManagerException"/>
 </wsdl:operation>
 <wsdl:operation name="subscribeToServiceTopic" parameterOrder="in0">
 <wsdl:input message="intf:subscribeToServiceTopicRequest"/>
 <wsdl:output message="intf:subscribeToServiceTopicResponse"/>
 <wsdl:fault message="intf:ServicesManagementManagerException"
name="ServicesManagementManagerException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="servicesmanagementSoapBinding"
type="intf:ServicesManagementManager">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="createServicesTopic">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="createServicesTopic" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:ServicesManagement" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="publishToServiceTopic">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="publishToServiceTopic" use="encoded"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:ServicesManagement" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="subscribeToServiceTopic">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>

 Page 146 of 150 – Version 1.1

 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="subscribeToServiceTopic" use="encoded"/>

 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="
urn:ServicesManagement" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="ServicesManagementManagerService">
 <wsdl:port binding="intf:servicesmanagementSoapBinding"
name="servicesmanagement">
 <wsdlsoap:address
location="http://localhost:8080/services/servicesmanagement"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

 Page 147 of 150 – Version 1.1

8. Appendix D: System Design Viewer
The System Design Viewer will provide a mechanism for effectively navigating the
System Description, which is currently under development. A prototype demonstration is
expected to take place in early July, 2002.

8.1. End User Requirements
8.1.1. Read
8.1.1.1 External Documentation Linked to Model Entities
8.1.2. Display
8.1.2.1 Display UML Diagrams
8.1.2.2 Display the Model Entities
8.1.3. Navigate
8.1.3.1 Navigate through the Architecture Using Diagram Elements
8.1.3.2 Navigate through the Architecture Using Entity Associations
8.1.4. Search and Discovery
8.1.4.1 Model Entity Properties
8.1.4.2 External Documentation
8.1.5. Add
8.1.5.1 External Documentation to Model Entities
8.1.5.2 Annotations to Model Entities
8.1.6. Modify
8.1.6.1 Merge XMI from Business and System Models
8.1.6.2 Update Model Entity Metadata
8.1.7. Delete
8.1.7.1 Mark Model Entities for Deletion in Rational Rose

 Page 148 of 150 – Version 1.1

 Page 149 of 150 – Version 1.1

8.1.8. Print
8.1.8.1 All Model Entities
8.1.8.2 Selected Model Entities
8.1.8.3 Report of Search Results Including Model Entities, Diagrams,

External Documentation
8.1.8.4 Selected Diagrams
8.2. Design
The XMB is a JavaScript/MSXML COM/XSLT application running as a tool in a Groove
environment using the Groove APIs.

Groovy XMB
Environment
rev. 8/29/01 GAM

see also the CIP UML
Model from Essential

Genoa

File Folder

Windows Explorer

copy()
open()
delete()

<<uses>>

Content

CIPs can be located in any
Groove Space to which the

user has access, or in t...

User

(from Use Case View)
<<uses>>

Groove Files Tool

copy()
delete()
open()

CIP

<<uses>>

XSLT

display metadata()

MSXML COM

<<uses>>

Groove Transceiver

<<uses>>

Metadata (XML)
<<uses>>

XMB Groove Tool

search()
discover()
summarize()

<<uses>>

Vcard

Groovy XMB
Environment
rev. 8/29/01 GAM

see also the CIP UML
Model from Essential

Genoa

File Folder

Windows Explorer

copy()
open()
delete()

<<uses>>

Content

CIPs can be located in any
Groove Space to which the

user has access, or in t...

User

(from Use Case View)
<<uses>>

Groove Files Tool

copy()
delete()
open()

CIP

<<uses>>

XSLT

display metadata()

MSXML COM

<<uses>>

Groove Transceiver

<<uses>>

Metadata (XML)
<<uses>>

XMB Groove Tool

search()
discover()
summarize()

<<uses>>

Vcard

	Executive Summary
	Core Conceptual Model
	Business Model
	System Model
	Distinguishing Aspects of the Approach

	Table of Contents
	Rationale and an Overview (Core Conceptual Model)
	Topsight
	The TIA System has been designed from its inception to operate within complex situations on a huge scale.
	A critical design element in these situations is containing complexity. Our approach uses the fractal principal of self-similarity.
	The TIA System Description provides “Topsight” to

	TIA Application
	The Application is where Function meets the System.
	The definition of a TIA Application is derived from the Core Model and links Processes, Use Cases, and Services.
	There are three levels of service coupling.
	Service Application Example

	TIA System Description Overview
	Business Model
	Actor Roles View
	Actor (Role) Functional Responsibilities
	TIA Roles
	Analyst Role
	Data Acquisition Specialist
	Thinker and Understander
	Presenter
	Editor

	Decision Maker Role

	Business Process View
	Reference Use Cases
	Analysis and Assessment
	Matching Models
	Detecting Changes
	Simulation
	Updating Models
	Selecting Models
	Building Models

	Generating Hypotheses
	Generating Threat Scenarios

	Structured Argumentation
	Learning Patterns
	Updating Models
	Predictive Modeling

	Understanding Intent
	Performing Risk Analysis

	Presentation and Visualization
	Reporting and Alerting
	Storytelling
	Persuading
	Creating Explanations
	Subscribing
	Publishing

	Visualizing GIS Data

	Information Management
	Gathering Data
	Understanding Policy
	Processing Sources
	Translating Languages
	Identifying Humans

	Detecting Facts and Events
	Summarizing
	Searching and Filtering
	Categorizing
	Indexing

	Discovering Links
	Analyzing Entities
	Visualizing Links
	Searching and Filtering
	Clustering
	Categorizing
	Resolving Cover Terms

	Generating Options
	Generating Plausible Futures

	Enterprise Support
	Storing and Sharing Information
	Collaboration
	Presenting
	Building Teams
	Building Context
	Searching and Filtering
	Storing

	Canonical Use Case Coverage Map
	Coverage Map Table

	Business Application Services View
	Analysis and Assessment Business Application Services
	Annotation Service
	Viewer Service
	Editor Service
	Modeler Service

	Enterprise Support Business Application Services
	Collaboration Service
	Security Service
	Metadata Service
	Repository Service

	Information Management Business Application Services
	Annotation Service
	Translation Service
	Search Service
	Entity Service
	Link Service
	Categorization Service
	Summarization Service

	Presentation and Visualization Business Application Services
	Status Service
	GIS Service
	Viewer Service
	Briefing Service

	Business Information View
	TIA Product
	CIM Model
	SEAS Model
	Virtual Situation Book
	CIP and Product Metadata
	TIA Product Syntax
	Relationship to the Information View

	TIA Product Semantics
	Experiment Metrics

	Experiment Deployment View
	UML Deployment Diagram
	System Topology Diagram
	Mistral Experiment (22 May 2002)
	Sirocco Experiment (August 2002)

	Systems Model
	Introduction
	Layered Model Overview
	Service Oriented Architecture Overview

	Collaboration View
	Application Services View
	Core Services View
	Security Services
	Security Services System Use Cases
	Security Services Interface

	Registry Services
	Registry Services System Use Cases
	Registry Services Interface

	Data Services
	Data Services System Use Cases
	Data Services Interface

	Messaging Services
	Messaging Services System Use Cases
	Messaging Services Interface

	Transformation Services
	Transformation Services System Use Cases
	Transformation Services Interface

	Computational Services
	Computational Services System Use Cases
	Computational Services Interface
	Computational Services Sequence Diagrams

	Edge Gateway Services

	Information View
	Semantic View
	Semantics Working Definition
	Business Rules

	Syntactic View
	TIA Domain Root Object
	TIA Object XML Schema

	Genoa Metadata Framework
	Critical Information Package
	Product Metadata

	Services Management
	Services Management System Use Cases
	Services Management Interface

	Component Catalog View
	Evidence Extraction and Link Discovery (EELD)
	Analyst Notebook
	CCM
	CrimeLink
	Fraud Investigator
	NetMap Analytics
	Outline/Magic
	OnTopic
	TMODS
	VisualLinks
	Watson Pro

	Genoa (I)
	Critical Intent Modeler (CIM)
	Structured Evidential Argumentation System or SRI Early Alert System (SEAS)
	Situation Influence Assessment Module (SIAM)
	Thematic Argument Group (TAG) Manager
	Verona
	XMB

	Human Identification at a Distance (HID)
	FaceIt
	Human Identification at a Distance-Infrared (HID-IR)

	Translingual Information Detection, Extraction, and Summarization (TIDES)
	MITRE Text and Audio Processing (MiTap)
	CyberTrans

	Commercial Off The Shelf Software (COTS)
	EarthViewer
	Groove
	Open Source

	System Implementation View
	Multi-Level Security Approach

	References

	Experiment Models
	Mistral Experiment (2002-05-22)
	Actor Roles View
	INSCOM Analyst
	EUCOM Analyst
	NGIC Subject Specialist

	Objectives and Results
	Objectives (Metrics for Success)
	Deploy research and development software creating a collaborative (Groove) environment on operational networks.
	Create a baseline experiment CONOPS to support an end-to-end ongoing experiment process.
	Establish an infrastructure for software, hardware, and people that will serve as the basis for future experiments and future IAC deployments.
	Include operational users early using a real-world problem, leveraging existing real-world data.
	Integrate Genoa, EELD, TIDES, and INSCOM tools and data to create end-to-end functionality.

	Sources of Potentially New Insights
	New Models of XYZ Group
	Focused search (with search tools)
	Collaboration between analysts

	Results
	Team among INSCOM, technology providers, analysts, and soldiers.
	Established Groove collaborative environment between INSCOM, NGIC, and 66th MI.
	TACLANE enabled VPN tunneling through JWICS.
	Granted INSCOM-specified IATO.
	NSANet IATO approved.
	Infrastructure leave-behind payoffs.

	Experiment Deployment View
	UML Deployment Diagram
	System Topology Diagram
	Business Information View
	Information Flow
	Matching Models and Structured Argumentation
	Reporting
	Information Products
	CIM Model
	CIP Metadata
	Product Metadata
	HTML Files
	Text Files
	Briefing Book

	Business Process View
	Reference Use Cases
	Gathering Data
	Detecting Facts and Events
	Matching Models
	Structured Argumentation
	Reporting
	Storing and Sharing Information
	Activity Diagrams
	Sharing Activities
	Reporting Activities
	Structured Argumentation
	Matching Models
	Detecting Facts and Events Activities
	Gathering Data Activities

	Workflow Sequences
	Matching Models and Structured Argumentation Sequence
	Reporting Sequence

	Sirocco Experiment (August 2002 - Planned)
	Actor Roles View
	INSCOM Analyst
	EUCOM Analyst
	NGIC Subject Specialist
	CENTCOM Analyst
	902nd MI Analyst
	JCAG Analyst

	Objectives and Results
	Objectives (Metrics for Success)
	Create a collaborative operational network including INSCOM nodes (INSCOM, NGIC, 66th 513th 902nd MI Brigades) and at least one non-INSCOM node (JCAG).
	Explore the value of changing policies for information sharing (how to bridge CT & CI operationally, politically and technically)
	Show automated alert visualization (concept from GIS -to- Cities of Information -to- Details).
	Create a standard briefing-book format and at least two structured argument templates pertaining to the Sirocco problem set.
	Include operational users early by focusing on a real-world problem leveraging existing real-world data (law-enforcement and IC).
	Establish an infrastructure of software, hardware and people that will serve as the basis for future experiments and future IAC deployments.
	Integrate Genoa, EELD, TIDES, and INSCOM tools and data to create end-to-end functionality.

	Sources of Potentially New Insights
	The operational nature and data being used in the experiment have the potential to create unique insights and contribute to solving a real-world problem.
	Models of real-world problems
	Metrics and milestones associated with CI and CT collaboration on an established peer-to-peer network

	Results
	Experiment Deployment View
	Business Information View
	Information Flow
	Information Products
	CIM Model
	CIP Metadata
	Product Metadata
	HTML Files
	Text Files
	Briefing Book

	Business Process View
	Reference Use Cases
	Gathering Data
	Detecting Facts and Events
	Matching Models
	Structured Argumentation
	Reporting
	Storing and Sharing Information

	Activity Diagrams
	Workflow Sequences

	Appendix A: Document Revision History
	Appendix B: UML for System Engineering
	The Unified Modeling Language as a System Engineering Aid
	UML as a Modeling Tool, System Operations
	Use Case Diagram Example
	Sequence Diagram Example
	Collaboration Diagram Example
	Activity Diagram Example

	UML as a Modeling Tool, Multiple Views
	UML As Modeling Tool, System Implementation
	Deployment Diagram Example

	Appendix C Services WSDL Specifications
	C.1 Security Services WSDL Service Description
	C.2 Registry Services WSDL Service Description
	C.3 Data Services WSDL Service Description
	C.4 Messaging Services WSDL Service Description
	C.5 Transformation Services WSDL Service Description
	C.6 Computational Services WSDL Service Description
	C.7 Services Management WSDL Service Description

	Appendix D: System Design Viewer
	End User Requirements
	Read
	External Documentation Linked to Model Entities

	Display
	Display UML Diagrams
	Display the Model Entities

	Navigate
	Navigate through the Architecture Using Diagram Elements
	Navigate through the Architecture Using Entity Associations

	Search and Discovery
	Model Entity Properties
	External Documentation

	Add
	External Documentation to Model Entities
	Annotations to Model Entities

	Modify
	Merge XMI from Business and System Models
	Update Model Entity Metadata

	Delete
	Mark Model Entities for Deletion in Rational Rose

	Print
	All Model Entities
	Selected Model Entities
	Report of Search Results Including Model Entities, Diagrams, External Documentation
	Selected Diagrams

	Design

