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Abstract

This thesis consists of two parts: an exploration of new measof backbench opinion in
the UK House of Commons, and an exploration of variance Iadg) transformations of
count data.

In the first part, we consider the use of Early Day Motions (Ef)Ms a means of
gauging opinions of Members of Parliament (MPs) over a rasfgesues. A much used
measure of opinion is that of cohesion; how similar MPs fraanhepolitical party are to
each other. We define a new cohesion measure using the sigeatbEarly Day Motions
and explore this measure over a moving time period for eatieofain political parties.

We then use Early Day Motions for feature selection. We fulentify issues which
cause individual parties to be more or less cohesive withamather, before setting out
methodology to distinguish which issues cause the majatiqgailparties to differ in opin-
ion.

We then turn our attention to methods of variance stahitisadf count data. Using
data of the number of deaths of coalition forces in Irag, wealestrate the good vari-
ance stabilisation which the data-driven Haar-Fisz tiamsfpossesses. We then modify
this transformation so that data with negative counts cavabience stabilised. We show
its good performance for simulated data and demonstratgraistical use on the central
England temperature data set.

Finally, we set about incorporating a transformation pat@minto the Haar-Fisz meth-
ods, so that through the use of maximum likelihood techrsqtres transformation primarily

attempts to normalise the data, rather than variance iseftil
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Chapter 1

Introduction

This thesis is in two parts: the first, Chapters 2—4 consiteuse of Early Day Motions to
gauge backbench opinion in the UK House of Commons. Chaptésonsider methods

of variance stabilisation of count data.

1.1 Early Day Motions

Early Day Motions (EDMs) have been a much used tool by Briisliticians to convey
an opinion or to support the view of other Members of Parlian{®Ps). Although popu-
lar amongst MPs, the use of EDMs to statistically gauge opitias been somewhat con-
tentious. Their vast subject area aibap-talknature drew concerns over their applicability
and reliability, with critics often overlooking the wealtinformation contained within the
data.

In Chapter 2 we review the means by which an MP can cast a vogepamticular is-
sue. Divisions are introduced and theihippednature discussed. We review the role of
divisions in calculating theohesiornof the major political parties, as well as the usefulness
(if not limited number) ofunwhippeddivisions. We then introduce EDMs, detailing them
historically and reviewing their use in measuring backlipemginion in the House of Com-
mons. We end by reviewing some recent techniques develapetbdel legislators using
roll call data.

The work in Chapters 3 and 4 makes extensive use of the EDNsdatécquiring this



data was key to this research and the detailed processesvofadaling, converting and
coding the EDMs is only briefly described within this theditaving carried out this task,
the data has been made publicly available to allow for furteeearch into the EDM data
set.

We propose the use of EDMs in calculating the cohesion of nyajtitical parties in
Chapter 3. We give a detailed review of the criticism and supwhich EDMs have re-
ceived in the past. We bring this debate up to date and shavalti@ugh one signature
on an EDM may be cheap-talk, hundreds of signatures on thdasaf EDMs constitute a
rich body of information. A new cohesion measure is then @efiand applied to EDMs
over a moving time window. We use this cohesion measure fiufe selection, picking
out issues which cause the parties to be more, or less cehesiv

Chapter 4 details further data mining applications with EDNh contrast to work in
Chapter 3, we suggest looking for issues which cause thegablparties to be less similar
to each other, essentially discovering the issues whickecdivisionbetweerparties. We
also include a brief investigation into how an MPs propgnisitsign EDMs manifests itself

within the data.

1.2 Variance Stabilisation

The remaining chapters of this thesis concentrate on thenge stabilisation of count data.
This data is often ‘Poisson like’, and periods of high sign&nsity are often coupled with
a higher degree of variability. This can cause problems widny smoothing methods,
which assume a certain degree of Gaussianity within the défa turn our attention to

transformations which Gaussianise, and variance stalulbs$a.

In Chapter 5 we review literature used in the remaining avapof this thesis. We
introduce the discrete wavelet transform, as well as sonthaods of smoothing data. We
summarise some models for time series data where the caerdassumed to be drawn from
a Poisson distribution. Some variance stabilising, andsSiaunising transformations are
then reviewed. In particular, the Box & Cox (1964) transfation is given in detail, along

with methods to estimate the transformation parameters.rétently developed Haar-Fisz



transformation by Fryzlewicz & Nason (2004), and the dateeth Haar-Fisz transform by
Fryzlewicz et al. (2007) for variance stabilisation are described in deféliese are used
extensively in the following chapters.

We use the data-driven Haar-Fisz transform (DDHFT) in Céapto stabilise the vari-
ance of counts of the mortality levels of coalition force$ragy and use a range of smoothing
methods to estimate the underlying intensity. We compagdrdmsform to that of Box &
Cox (1964) in terms of variance consistency and Gaussiafitgsidual variance. We find
the DDHFT outperforms the Box-Cox transform, and resultbéiter intensity estimates
than the ‘running-mean’ techniques currently being used.

Chapter 7 considers modifications of the DDHFT for when thia dtzcludes negative
counts. Whereas it is common practice to add a constant tdataefor use with the Box-
Cox transform, this is not always appropriate for the DDHFUtthermore, the choice of
this constant for the Box-Cox transform can be problemaftie.suggest two modifications
of the DDHFT, depending on assumptions about the data, aggkestia bootstrap test for
deciding the most appropriate of these two transforms. Vdsvsbur methods perform
better than the Box-Cox transform over a range of test sigaatl then apply them to the
central England temperature dataset — annual temperateasurements often used in
climatological studies.

The work in Chapter 8 further modifies the Haar-Fisz tramafoso that it’s primary goal
is good Gaussianisation, rather than variance stabdisaf\ general Haar-Fisz transform is
defined in which a transformation parameter is to be estidnateptimise Gaussianisation.
Similar to the Box-Cox transform, we use maximum likelihdedhniques to estimate this
parameter. The work outlined is initial and many possibkersions are left as future work.
Nevertheless, the methods described show the potentitiidee transforms to be effective
Gaussianisers.

Finally, Chapter 9 summarises the work of this thesis andinast future work and

extensions of the methods and applications presentednwithi






Chapter 2

Literature Review |

2.1 Introduction

This chapter reviews literature which involves the quatitie and qualitative analysis of
Members of Parliament (MPs) in the UK House of Commons in seofitheir voting be-
haviour on parliamentary roll calls and other such devi@é®se devices come in the form
of parliamentarydivisionsand the less formdtarly Day Motion(EDM).

Our review of divisions focuses mainly on their use for theasge ofcohesion either
between individual MPs or between political parties in th€ @ther measures of cohesion
which have been applied to non-UK legislators are desciiib€hapter 3.

Although we do not use the division lists as a source of dathigthesis, they play
an important role in terms of work which has been carried @itgithem, and giving the
reader an understanding of the freedom of expression Bptiditicians have.

We then review the use of EDMs as a measure of backbench ogimithe House of
Commons. We give an account of the rise in popularity amolig to use EDMs as well
as a brief history of these relatively unknown parliament@evices. We detail the char-
acteristics of EDMs which make them interesting to use (&p@ous signing, unwhipped
nature), and review work which use EDMs to analyse backbepation.

Finally, we review some recent techniques using spatialaisoghich have been applied

to legislators from many parliaments around the world.



2.2 Divisions

A divisionis the term given when the House of Commons votes on a patidue. These
divisions give MPs the chance to cast their vote on laws anidws pieces of legislation.
Party discipline, however, plays a huge role in how MPs with the party whipshaving
a tight control over MPs. Parliamentary Factsheet P9, (ElamisCommons Information
Office (2003b)) gives full details as to the history and pohee of divisions.

Division lists were analysed by Lowell (1919) to investig#tte decline of independent
voting from 1836 to the end of the 19th century. Cox (1987)veer various tables of
figures from those reported in Lowell’s original work, andaexned party discipline over
the divisions. He showed that by the end of the study perf@ntumber of divisions which
had the party whip had doubled to around 90 per cent. Cox aled Lowell's data to
calculate a cohesion measures for the political partiesduhe period of study. An index
of cohesion was defined to compare the intra-party cohedieaah party on both whipped
and unwhipped divisions. The measure used was expressdatailtplly by McLean (1995)

and the cohesion of MPs from partys given by

ke 2V Vik) = 05

C; : , (2.2.1)
n
wherek is a division in the session, with= 1,2, ..., n. Itis assumed that the parties are
labelled1,...,i,...,m, althoughi in (2.2.1) is arbitrary.v;fzaj/VZ-JC is the ratio of votes

cast by the majority of MPs within partyon divisionk to all votes cast by MPs of party
on divisionk. The ratio can thus range from 0.5 (when half the MPs make eipnjority)
to 1, when all MPs vote the same way; is thus scaled to range from 0 to 1, with 1 being
perfect cohesion.

For whipped votes, Cox (1987) found that cohesion increasadkedly over the study
period whereas unwhipped votes showed no such trend.

Berrington (1968) pointed out the frailties of this cohe@sineasure: not infrequently,
the front benches did not vote in the same way as the majokitlyedr party and instead

relied on support of the ‘opposition’ backbenchers oveirtben. This meant that those



making up the value offl.f‘,;aj in (2.2.1) may not be voting according to the (front bench)
party line, as implied.

In recent years, with vast data sets from the Houses of Retibeing available over
the internet, websites suchwsw. publ i cwhi p. or g. uk have been created to automat-
ically download division lists and present the user witls ihformation in a more transpar-
ent form. Their aim is to make MPs more accountable for thefioas by allowing the
public to identify how a particular MP has voted. A featurdtadir analysis involves identi-
fying ‘rebellious’ MPs, that is, when an MP votes againstplaety whip. The site has also
used multidimensional scaling to obtain an idea of partycstre and see where MPs lie in
relation to each other in terms of dissimilarity of voting.

The work on the site is informative and potentially usefudémneone researching voting
patterns by MPs in general or on particular issues, yet ttiag@atterns revealed are not
that surprising. With the party whips having such strongltmler the voting of MPs, any
rebellion would likely to already be known to them. High pl®fiebels may also promote
their stance by telling journalists and other MPs, makirggrésults published largely known

beforehand.

2.2.1 Unwhipped Divisions

Divisions which are known to be free from the party whip arewn asfree votes Free
votes generally occur when voting on issues such as thenmgrofiparliament, issues of
individual conscience or when the whips are no longer ablenforce a party line. Free
votes allow an MP to vote independently and in line with hoayttruly believe. Although
informative, free votes are nowadays rare. They have, hexvbeen subject to quantitative
analysis.

We look in particular at work which uses free votes to calutahesion of the parties.
Readet al. (1994) used free votes to look at how MPs from the three maitiesavoted on
the issues of homosexuality and capital punishment. Thesuneafor a single free vote is
defined by:

Cl = w, (2.2.2)

m



whereC! is the cohesion for MPs in partyand V,"* and V™ are the number of votes
which make up the majority and minority of the party respaxyi. By excluding non-
voters, we havé/imaj + Vimin = m, allowing for the cohesion, or thedex of Party Unity
(IPU) to range from O to 1.

Compared to (2.2.1), the IPU is the cohesion on a specifisidivj rather than a mean
cohesion over a session. The IPU does not include non-yaenmakes less assumptions
about the behaviour of those MPs, whereas (2.2.1) clastikes separately and allow for
the possibility forVif’;“j to be the comprised of MPs who abstained. Thus, if we were to
consider a session with only one division (i.e n = 1 in (2.2.ahd where all MPs voted
without abstention, we hawg; = C.

Cowley & Stewart (1997) used the IPU to calculate the colmesiothe main parties
when they voted in free votes between 1979 and 1996. Theyede&ircohesive party as
one which has an IPU of 0.80; a divided party to be one with anhdPbelow 0.80 and a
party to be considered seriously split if their IPU fallsd»l0.33. The free votes which are
analysed are considered by the author tactesciencesotes and they conclude that they
followedparty lines (i.e. each party behaves independently) aridttisaare for all parties,
within themselves, to be split on an issue.

Free votes, by their very nature are different to other aivis in the House of Com-
mons. Although they give MPs a chance to vote without theypahip, they are limited in
number and generally restricted in content. Furtherma@graviously stated, Cox (1987)
found that there was no observable trend of cohesion as thbenof unwhipped divisions
rose. Cox also believed that even for unwhipped divisioastyppressures may still have
been present and affecting the cohesion (reasons for ghgiveen by Cox (1987, page 25)).
The unknown element of unwhipped divisions leads the authooncentrate only on those
division which were known to be whipped.

We discuss some further measure of cohesion, which weredpplnon-UK legislators

in Section 3.1.1.



2.3 Early Day Motions

Early Day Motions (EDMs) are spontaneous, unwhipped metiwhich MPs can table
and support free from the party pressures which are assdcieith divisions. Much of
the information about the history of Early Day Motions isalketd in the Parliamentary
Factsheet P3 (House of Commons Information Office (2008ail).details of the procedure
governing how an MP proposes, signs or amends an EDM are, gilamy with details of
types, signature levels and even the cost to the tax payeiring and publishing EDMs.
Finer et al. (1961) briefly details the history of EDMs and discusses irraretail the
reasons for an MP to sign, or not to sign a given motion. Heryaview the history of
EDMs and theirunwhippednature in comparison to Divisions. Details of the procedure
types of EDMs and reasons for MPs to sign them are furtheuslsd in Chapter 3.

The current procedure for tabling an Early Day Motion hasnhbieeplace since 1943,
although the idea of proposing a motion with no fixed date &lrale started to evolve nearly
100 years before. Prior to this, there had been ample timBlénbers to raise matters of
interest to the House in order for debate, usually by the neeraionply announcing that
they were to raise such a question. In the 1850s and 60s, ahthef a session, when it
was impossible to set a date for such a debate, the practinébahing Members that they
wished to raise such matters in the future developed. Thasad fixed date, but would be
intended to be debated in the next session, or at an earlytopjig.

By 1865, the daily Notice (or Order) Paper which Membersik@tewould commonly
have a separate section headed Notices of Motions. Somenteneed for debate, others
just an expression of opinion. At this time, other Membersildsubmit the same motion
as a sign of support to the original. The process evolved @oamew name to a motion
did not warrant resubmitting the entire motion (althougheavmumber was attached to the
name). By the 1940s, EDMs were sometimes seen to attractdusdf signatures and for
ease of reference, the number was attributed to the moti@hpat to the names of each
supporter.

The phrase “For An Early Day” was appended to such motionkernl®40s, with the

notion (or indeed fiction), that the motion was for serioubate at the earliest opportunity



in the future. This was the origin of their modern name, wHigltame the name of the
section where they were printed in the Notice Paper.

The rise of popularity of EDMs stemmed from more time beingtaup in House of
Commons by government. In the 1940s this was never moresajrtplications of war
meant that time for Private Members’ Motions and Bills waslarger available. It was
around this time that the popularity of EDMs, as a means ofasging an opinion started
to soar. Itis reported that in the 1950s there were appraeimd00 EDMs each Session,
rising to about 400 in the 70s and 700 by the early 80s. Thestmmlimark was first broken
in 1983 and by the end of the century there were around 140§egsion. It is now common
to see in excess of 2000 EDMs tabled per session.

Unlike Divisions, EDMs arainwhipped that is, there is no pressure put on an MP by
their party to submit or sign a given motion. EDMs are, initiveiry nature cheap-talk and
Fineret al. (1961) give reasons, (apart from actually agreeing or désigg) for why an
MP would choose to sign, or not to sign a given motion. Thiskeen the cause of much
criticism into the use of EDMs to gauge political opinion dsdliscussed in more detail in

Section 3.1.2

2.3.1 Early Day Motions as a Measure of Backbench Opinion

Backbench Opinion in the House of Commons 19558§%ineret al. (1961) introduced
the idea of using EDMs to gauge the opinion of the backbenchies follow-up study by
Berrington (1973), looks at the earlier period of 1945-58 aliso utilises other information,
such as floor revolts, open letters and free votes. The vgstitgaf data and analysis still
come from EDMs and the other forms of backbench expressimndaBerrington, where
appropriate, to confirm findings drawn from the EDMs.

The authors look at the two main political parties, Laboult @wnservative to investi-
gate where Members stand on certain issues of the day, stmteas affairs, social welfare
and penal reform. Information about MPs' backgrounds weetuo investigate such is-
sues, comparing views of the MPs to information such as #aiicational background,
occupation before entering the Commons and whether thegdradd national duty. Finer

et al. (1961), and Berrington (1973), used cross-tabulations Gatiman scaling to test
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the significance of the variables and to look for a single disn@n running through certain
EDMs (i.e., relationship between advocates of Europearylvith those who agree with
the ‘wider’ concept of world federation).

Fineretal.(1961) also produced a list of the ‘50 most left Labour MP4ijek proved to
be a controversial element of the study. Critics viewedigteak almost absurd, with names
appearing who were clearly known to be be less ‘left’ tharetmot appearing on the list.
We detail the reviews which Berrington’s work received irct8®n 3.1.2, summarising both
the positive and negative feedback which the work provoked.

Following from the work by Berrington (1973), Franklin & Tim (1977) further in-
vestigate the use of EDM as an unobtrusive measure of backlbmpinion. The authors
consider some of the criticism which Finet al. (1961) received and discuss the issues
surrounding the use of EDMs in such a study. The work usesenssinom 72 MPs given
during an interview in 1964. A wide variety of questions weasked, ranging from the
respondent’s backgrounds and attitudes to political &ifewell as questions involving per-
tinent issues of that time. EDMs on the same subject, whiate wigned by the MPs in
question, were used to compare answers to signatures.

Given this information, the authors looked for similaigtiand differences between the
two expressions of opinion (interview and EDM response}l] defined an error rate of
using EDMs to predict a Members opinion. This, they commésatsurely a great deal
lower than would have been expected by those commentatarfisure criticized the use of
EDMs as indicators of opinion”.

The authors then consider how EDMs could be used to gaugthien of non-signers.
In doing so, they define two models which account for the wawlch an EDM gains
support. The first model categorises EDMs which are reaitjlyesl by those MPs in favour
of the motion. An example given of such types of EDMs are thuseering the topic of
nuclear disarmament. The second type of EDM defined in thaystve those in which
the signatures appear to be gained more randomly. EDMs ondmenon market and
government control of the economy are given by the autholikelg topics to attract such
random support. For such random signing topics, the auttmrslude that a larger number

of EDMs would be needed to judge the opinion of non-signers.
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Leece & Berrington (1977) used EDMs to study the Labour pdurng the 1968—-69
parliamentary session. Similar to earlier work by BerrimgtGuttman scales are used to
scale attitudes within the Labour Party. The authors arefebin choosing which EDMs to
analyse, and set out criteria for an EDM to be included in thdys

EDMs are considered in pairs. They either represented appegws, or more com-
monly a more ‘extreme’ view along a scale (i.e. to see if thigdts who thought family
allowance should be 40 pence a week also agreed that 25 gended be given). For each
pair of EDMs, an association table is produced to look at tiralvers of MPs signing each

motion. The table is as follows:

EDM 1 signed EDM 1 not signed

EDM 2 signed a b
EDM 2 not signed c d

Wherea is the number of MPs who signed both EDMs 1 and &5 the number who
didn’t sign EDM 2 but did sign EDM 1 and so on. A similar tabidat is later used in
Section 3.1.3 to compare pairs of MPs based on the EDMs tjegdi

Given this representation of two EDMS, they were both judgeitihble for inclusion
into the study based upon two measurements: the Yule Q sgate; bc)/(ad + bc) and
the similarity ratio,a/(a+ b+ c). The former, which ranges from1 to 1, is an association
measure between EDMs and measures how likely a supporter ‘ekeeme’ EDM will
sign the less extreme EDM (or indeed, if they sign neither)high value is obtained if
MPs consistently voted for or against a given viewpointgssindd would be large. This
indicates that the MPs are concordant. For a given EDM, ilville’s Q score of those who
signed it was greater than 0.8, it was considered for theystud

The similarity ratio between EDMs based on their signatexels is based upon the
Jaccard measure of dissimilarity, as later defined in Se@tib.3. It is measure of similarity
of EDMs, ranging from 0 to 1 which does not include MPs who siyneither EDM. The
higher the value, the more similar the EDMs are. If this isatge than 0.25 for a pair of

EDMs, then they were considered for the study.
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Out of those EDMs considered for the study based on the YQi@sd similarity scores,
those on a similar topic and which had similar numbers ofaigres as others considered
were then actually included. This careful selection of EDdMswed the authors to validate
scales with the voting pattern of MPs in the division lobbigghey found that the MPs
investigated had rebelled against the party via their gatiehaviour on various occasions.

Similar to previous studies, biographic attributes wes® ahvestigated in relation to
the scales produced. Results included showed how tradersgonsored members had
become more ‘left wing’ since 1959 (this was explained by Hbe party was selecting
candidates, rather than the candidates themselves clgaihgiin views).

The increased use of computer power differentiates the wbikeece & Berrington
(1977) to earlier studies. They indicate using multidimenal scaling and cluster analysis
to group EDMs and that they perform their statistical caltiohs on computer. Scaling
solutions are used in Chapter 3 to show party structure, rm@hapter 4 as part of feature
selection of divisive issues between parties.

The only further publication using this original data setsverrington (1982), who
looks in particular at how the ‘left’ of the Labour party hdsanged over the years, using
methodology introduced in previous work.

Nason (2001) examined EDMs from a modern standpoint, imijiadvances in compu-
tational power to mine the data. The work is exploratory dwedstuthor admits that the focus
iS on answering interesting questions, rather than orsstati significance of the results.
That said, the work is an insightful reintroduction to the w§ EDMs along with mod-
ern statistical applications. Data visualisation sofevarused to display multidimensional
scaling plots over a moving time period, focusing on theradgon between the three main
parties. These plots are used, for example, to focus on thigqroof the Liberal Democrat
leaders, Charles Kennedy and his predecessor Paddy Astadwhimeir relationship with
the Labour Party. Also shown are how classification treesbeansed to classify MPs (or
would-be voters) into a political party, given their siggifor non signing) of given EDMs.

The most recent published work using EDMs is that by Childs &y (2004) which
studies the differences in signing patterns between thessaxd whether women are more

likely to sign ‘women’s’ EDMs. The authors use chi-squarests$ on the response of MPs
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to either ‘sign’ or ‘not sign’ and conclude that female MPd dhideed act for women, by

signing for women.

2.4 The OC and NOMINATE Procedures

We end this chapter with a review of some of the most recehbigaes of modelling parlia-
mentary voting, in terms of spatial positions of legislataralled the OC and NOMINATE
procedures.

Poole (2005) describes both the non-parametric optimaisiflaation (OC) method
for spatial modelling of legislators in parliament and ampraach to parametric classi-
fication which is dubbed the NOMINATE procedur@MINA Three-StepEstimation).
Other models based on the same approach are also descrémeedlyrthe D-, W- and DW-
NOMINATE procedures). This work brings together a multéwaf research papers, as well
as building on the framework set out by Poole & Rosenthal 7199

Both the OC and NOMINATE algorithms analyse parliamentaagadfrom which it is
inferred that such data is the outcome of a set of legislatotiag either Yea or Nay on
a given number of roll calls. An error is introduced into ai$égtors choice by using a
random utility modelwhich assumes that their utility for a Yea or Nay vote is thmof a
deterministic utility function and a random error. Legtslai’s utility for the Yea outcome

(denoted byy) on roll call j is given as:

Uijy = Ujjy + Eijy, (2.4.3)

whereu,;, is the deterministic portion of the utility function aag, is the random portion.
If there were no error, the legislator votes Yedif,, > Uj;n, i.e. if the difference

Uijy — Uijn is positive. With random error, this difference is given by,

Uijy — Uijn = Uijy — Uijn + €ijy — Eijn,
gy — Vij Jy — Wij Jy ~ Eij
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so the legislator votes Yea if,

Ujjy — Uijn > Eijy — Eijn-

The OC method only assumes that legislators Isgwemetric single-peakedility func-
tions. Thatis, if a legislator ideally votes on the ‘cengedund, they are equally likely (with
probability defined by the utility function) to vote in favoaf roll calls which are the same
distanceeitherleft or right of their ideal spatial (central) position.

With no error present, a spatial map of the legislators caolbained simply by using
multidimensional scaling.

When error is introduced into the decision making of thediegors, this scaling solution
is only one of many possible representations. Thereforedhkng solution may not be the
best set of coordinates to represent the data, and the O®@dhistdeveloped to tackle this
problem.

Given an initial set of spatial coordinates {deal point3 of the legislators (given their
votes on the roll calls), the OC method first findsudting pointor planefor each roll call.
The cutting points or planes split the ideal points of thadkedors with Yea votes on one
side and Nay on the other. Given the known voting patternkeofdgislators and their fixed
ideal points, the cutting plane is such that the number ohnewusly classified legislators is
a minimum.

The second step is to estimate new ideal points of the legislgiven the cutting point
(or plane). That is, given that the cutting plane remaingifixew spatial coordinates of the
legislators are found to further reduce error of classificat This process is repeated until
convergence of cutting planes and ideal points. The OC rdetierefore assumes there is
error present, but does not attempt to model it.

The NOMINATE procedures considers the distribution of tkity function in (2.4.3)
and attempts to estimate the functional form of both therdetestic portion,u;;, and the
random (or stochastic) portian;,.

The deterministic part of the utility function is assumeddtiows a Gaussian distri-

bution, although Poole (2005) also derives models for thgpkdr case of it following a
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guadratic distribution. The random part of the utility ftioo is also assumed to follow a
Gaussian distribution, although two other models, theaunifand the logit have also been
used (and are fully referenced by Poole (2005)).

Given the distributional assumptions, the distributionhaf difference between the util-
ity for Yea and the utility for Nay for theth legislator on thejth roll call is derived and

shown to be Gaussian with constant variance, given by,

2
Uijy = Uijn ~ N(tijy = tijn, 0”).

The NOMINATE procedure works as follows. Firstly, a readuraset of ideal points are
generated with which an initial set of roll call parametemhich determine the position
of cutting plane) are foundjiventhe ideal points. Nextgivenestimates of the roll call
parameters, better estimates of the ideal points are folimelthird set of parameters to be
found are the utility function parameters, which are estandgivenboth the legislator ideal
points and the roll call outcome points. Estimation of the¢hsets of parameters are cycled
through until convergence.

These two methods can be thought of doing the following. Seyhave coordinates to
represent MPs (i.e. the scaling solution) over a range akessnd for a given issue, we
wish to draw a line to separate those who were for or agaimsisfue. We can then see
which MPs have been erroneously classified on either sideedfrie (and possibly subject
those MPs to further scrutiny). There is a question, howeavet if given another vote
on the same set of issues, would the MPs vote the same way\asystg? If not, their
position in the scaling solution and the cutting plane calildnge. The error term accounts
for this by allowing small ‘movements’ of the MP positions tie scaling solution. This
may be such that they change sides of the cutting line. Theepsois repeated to minimise
the number erroneously classified.

We consider the use of these procedures in relation to EDKIglerail why they are not
directly suitable, or usefully adaptable to use in the Bhitpolitical system in Section 3.3.

Techniques involving the notion of categorising MPs intdtiga, and using the number

of erroneously classified within an optimising criteria evdloped in Chapter 4.
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Chapter 3

Cohesion of Major Political Parties

3.1 Introduction

Cohesion of political parties or groups of legislators iskey interest to political analysts
and commentators. These measures have been largely usecestigate legislators in
the US Congress and Senate, and more recently have beeomldbr use within the
European Parliament (EP). The application of such measoneslitical parties in the UK
is limited due to the strong political pressures which are guMembers of Parliament
(MPs) to vote according to their party line. Evirae voteqwhere MPs vote according to
their true beliefs) are not without their critics. In thisaghter, which is based on the paper
by Bailey & Nason (2008), we revisit the idea of using EarlyyDdotions as a measure of
backbench opinion and review the criticism to which theyehlagen subjected to in the past.
We argue that although there is a degree of ‘uncertaintyh@reason for an individual's
signature of an EDM, the effect of this in the analysis of EDditsinishes as the number
of motions studied increases.

We develop a cohesion measure based onafyenmetricsigning of EDMs and use
this to investigate the cohesion of major political partrethe UK. Finally, we use modern
statistical techniques and utilise computational poweintestigate the issues which are
associated with cohesion and separation within politieaties, via an exploratory method

which highlights the modern statistical method of ‘dataimg)’.
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3.1.1 Measures of Cohesion

The vast literature on party cohesion and discipline maastiglves analysis of roll calls in
the US House of Congress. The work is extensive, and we dinecteader to the com-
prehensive overview of the literature by Owens (2003) arditlore recent book by Hazan
(2005) (in which the Owens article forms a chapter). We gibeief review of some cohe-
sion measures in the literature (in particular those notEy by Owens (2003), or detailed
in Chapter 2), and focus on attempts to calculate the cohesipolitical parties in the UK.
A much used cohesion measure is introduced by Rice (1928)s ifitlex of voting

likenesswithin a political party is defined as

n

100 Z
j=1

NYeasj — NNays;
NYeas; + NNays; |’

(3.1.1)

whereNYeas is the number of voters in a given party who voteaon votej andNNays
the number of those votinijay. An index of voting likeness of 1 indicates that all votes
within a party voted the same way acrossrallotes. A value of O indicates that the party
was split, over all votes, with half votingeaand the other half votinglay.

Many measures are similar to, or based upon Rice’s meaaugk,as theAgreement
Index(Al) by Hix et al. (2005) which further makes allowance for the legislatorhstain
from a vote. This is a rescaling of tHadex of agreemenby Attina (1990), such that
cohesion values range from 0 to 1. As with the work by Attitiis cohesion measure is
used to investigate the European Parliament.

Rahat (2007) defines a cohesion measure also based on Rit&ibh treats an ab-
stention as a ‘halfway’ vote between Yes or No. Furthermtre,measure only includes
the number of abstentions in the numerator of the cohesi@sune if this was the majority
vote. The measure is thus defined by two formulas; the firshvithe majority of a party
votes for or against a bill, the second when the majorityabst These two measures are

defined respectively as:

INYeas; — NNays,| N Abs;
and ———
N N 7
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where the notation is the same as Rice’s measure in (3.1dlyvaareN Abs; is the num-
ber of voters abstaining and is the total number of votes (including abstentions). This
measure is used to analyse the cohesion of the Israeli Raria

There have been many attempts to calculate cohesion socom@eimbers of parliament
(MPs) in the UK House of Commons. The difference with MPs carad to their Amer-
ican counterparts is the party discipline exerted byphgy whipsto force them to vote
according to the party line. This was not always the case eadescribed in Section 2.2

Unwhipped divisionsalso known agree voteshave been of some interest to political
researchers. They allow an MP to vote independently (uswaallissues concerning the
running of parliament or issues of individual consciend®){ although informative, are
nowadays rare. Section 2.2.1 gives more details on thessiatig, as well as cohesion
measures used to analyse them.

Is it possible to gauge cohesion levels in the House of Consthdfree votes do not
have the problems associated with thefippedcounterparts, but their number and subject
matters are both limited. Furthermore Cox (1987, page 2K)tHat although unwhipped,
party pressures were still evident in these divisions. Rbemdivisions, cohesion levels
merely inform us as to how well the party whips are doing tfadir Low cohesion may sig-
nify unrest within the party, but this would already be kndwyrthe party whips. We instead
reopen the case for using Early Day Motions (EDMs) as a saofrggformation on back-
bench opinion: a much used device by MPs that allow them spenus and unwhipped
opinions on a variety of subject matters.

Section 2.3 introduced EDMs and their historical contexe Neéxt give further infor-
mation about EDMs and consider the criticism which has beeglled at them in the past,

in reference to the works by Finet al. (1961) and Berrington (1973).

3.1.2 Early Day Motions

An Early Day Motion (EDM) is traditionally a motion put dowryla Member of Parliament
(MP) calling for a debate on a particular subject. The nundfdEDMs has increased in
recent years, however, they are rarely debated (see Appéntlil for an example of a

debated EDM and Appendix A.1.2 for a recent EDM). The modiay-purpose of EDMs
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is to allow MPs to express their opinion on a subject and teassisupport for their views
by inviting other members to add their signatures in suppbttte motion.

An EDM takes the form of a single sentence, no more that 25@svtong and be-
ginning “That this house...” as it must be of the form of a te8on (House of Commons
Information Office, 2003a). EDMs are submitted to the Hougeulbh MP on a specially
printed form with space for six main sponsors and 50 furtl@nes. Any MP can initiate
an EDM, although Ministers, whips, the speaker and depgtesrally do not. Recall that
unlike most votes in the House of Commons, EDMs are unwhipfieat is, there is no
pressure put on an MBY their partyto sign it. EDMs could therefore be viewed as useful
by political researchers as they give an objective indicatif what that MP truly believes.

EDMs fall into several groups. Opposition EDMs are put downtle opposition
against a government policy, Rebellion EDMs may be put dowmiembers of a party
which express a view different from that of the party coneéeknand “all-party” EDMs
express views across party divides (often on social issugshvhave been promoted by
one party but attract signatures from MPs of different prditallegiance). Factsheet P3,
House of Commons Information Office (2003a), gives moreidetethese types of EDMs
and gives examples of EDMs which may not fall into such grofipsexample, an EDM
criticising another Member of the House, or the House of kprd

An EDM will remain current throughout the entire parliamemyt session. An amend-
ment EDM can be made by a different MP other than the initiafdhe original. Amend-
ments can be made at any time during the session, and can@ithese or strengthen the
view offered by the original EDM. If an MP wishes to table aneamdment for an EDM
which they have already signed, they must first withdrawrtheme from the main motion.

The first major works involving the statistical exploratiohEDMs was by Finegt al.
(1961) and Berrington (1973). The original work attracteatmattention due to its provoca-
tive aims of using EDMs to gauge backbench opinion in the lda@afsCommons. Initial
reviews of the work, as gauged by both Bromhead (1962) angdL(©977), were written
by journalists and journalistically inclined politiciang hree such reviews were those by
Crossman (1961), Fellows (1962) and Howard (1962), whostl@ageactions left a stain

on the work. In reply to these critics, Berrington (1973) ated the entire first chapter of
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the second book on this subject to a defence of the work.

The majority of reviews published in peer reviewed journvaégse more positive. None
completely dismiss the issues which arise with the colectf signatures of EDMs and
thus their cheap-talk nature, but as both Bromhead (1962 Rachards (1962) comment,
the authors “fully recognise the issues which arise” ang ttencur that the cheap-talk na-
ture does not rule out EDMs as an important source of infdomatThis view is neatly
summarised by Turner (1963), who believes that “some of #ieems that emerge stand
out too clearly to be ignored”. These patterns, includirgdtiong party structure shown by
Nason (2001), indicate the irrefutable wealth of inforratthis data contains. Although
a single EDM may be cheap-talk, it is certainly the case the¢mal thousand EDMs col-
lectively contain important and discoverable informatiolm the most recent review of
Berrington’s work, McLean (1995) discusses the contrinutimade to political analysis
over Berrington’s career. Work of a similar nature is expthras well as how the work and
ideas inBackbench Opinionvere derived. The article discusses the hostility of thgaihi
reviews toward the work and Berrington’s reaction to thertsoAvicLean (1995) noted that
the battles that Berrington had fought over the use of $itzlsnethodology had now been
won and that opportunities now exist to do far more with himdhan was easily possible
in the 1960s and 1970s.

As mentioned in Section 2.3.1, Finet al. (1961) comments on possible reasons for
MPs not to sign EDMs. These reasons include how the origp@isor collects signatures,
as an EDM with an active ‘business-like’ sponsor who asks KéiPgheir signatures is
more likely to receive a large number of signatures. That,¢he sponsor may be after the
signature of certain, influential MPs, rather than a largelper. Furthermore, some MPs
will be of the type who sign few, or no EDMs. With the currerdrtd in numbers of EDMs
per session and the time an MP has to read them all, this tatieon is still pertinent.

The cheap-talk nature of EDMs was the main cause of concersv@wers who ques-
tioned their validity to reveal information about the Bsitipolitical system. It is true that
there are many factors which influence whether an MP will seapport for a particular
motion and, as McLean (1995) comments, these factors magihide frivolous. They may

not, however, be clear. As an example, consider a motionhwtoagratulates a particular
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football team’s success. This seeminghpss-partyEDM could be called to question be-
cause an MP whose constituency forms the fan base of a raal teay not sign it to avoid

increasing sporting tensions and, in some cases, sectaokemce. This, however, is not
always the case; MPs may sign or propose such congratulatotipns as a statement to
show that the rivalry should remain only on the football pi{this can be seen in EDMs
signed by the Everton MP, Louise Ellman, following Liverpé@otball Club’s success in
the 2005 Champions League finals). We use this example torrate the complexity of

EDMs and to highlight that perceived reasons for signing tmawrong and indeed oppo-
site to the perceived truth. There are many reasons for MBigihoa particular motion, but
it is not valid to dismiss their content entirely.

The non-signing of EDMs may be as frivolous as the signinghefit. As discussed
in Section 2.3, there are many reasons for an MP to sign (osign) an EDM. If an MP
has signed a particular EDM, it is reasonable to assume lilegtdare committed to that
point of view. The absence of a signature on an EDM does natewer, imply that a
given MP disagrees with that EDM. As Finer al. (1961) point out, reasons for this may
be that the MP was not canvassed for their signature (if tieeyad usually sign EDMs at
will), or indeed that the MP may not sign any EDMs regardlesspnion. Fineret al.
(1961) test whether certain type-classes of MPs (for exeaympith particular educational
or occupational backgrounds) are more likely to sign paldictypes of EDMs, rather than
the process being at random. Assuming this random signitigrpathe authors calculate
the distribution of signatures (and non-signatures) of MPdifferent type-classes across
the EDMs. These expected frequencies were then comparée tobserved frequencies
and the chi-squared test was used to establish statisgicéficance of the signing patterns.
The authors report a significant, and in some cases highhyfisignt association between
the substance of the Motion and the type-class of MP sigtiiagd conclude that a lack of
signature is not (statistically) due to the canvassing af plarticular EDM.

We do not delve into type-classes for this study. As our wedswdissimilarity measures
between MPs, we instead ensure that MPs who do not sign anysED&Inot included in
the study. For other patterns of signing, we ensure that M@ @t compared on EDMs

which neithersign.
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We further consider the cheap-talk nature of the signing BME by viewing it as
addingnoiseto the data. If this ‘noise’ has a large effect, we would nqient there to be
strong party structure within the data. To briefly illusérdihe party structure, we perform
classical multidimensional scaling on a dissimilarity mabvf MPs for EDMs tabled during
the 2005/06 parliamentary session (details of methodsanedfin Chatfield & Collins
(1996) and in Section 3.1.3 of this chapter). Figure 3.1 shihwe first two dimensions of
the scaling solution, wherein we see the strong groupinghvekists within the data. The
first dimension appears to somewhat split the Conservatioes the other parties whilst
Labour and the Liberal Democrats are similar yet still disti Other minority parties have
more in common with the Liberal Democrats than either of ttleeotwo main parties.
Investigating higher dimensions of the scaling solutiorthfer supports our findings that
political parties are split. The plot in Figure 3.1 showsst structure within the data;
MPs are not forced to sign motions along party lines but ribe@ss often do so (note that
we discuss the ‘horseshoe’ effect within this plot in Setto2). Within the vast amount
of data on EDMs there is definitely useful information to barfd; modern statistics and
computational power can assist the process of discoverthodgh one signature on an
EDM may be cheap-talk, hundreds of signatures on thousanB®Ms constitute a rich

body of information.

3.1.3 Obtaining and Analysing EDM Data

All EDMs signed since the start of the 1989/90 parliament&gysion, including amend-
ments can be found on the EDM websitew. edm ai s. co. uk. The site contains in-
formation on all EDMs proposed including their content,edi@bled and their supporters.
Unfortunately, the list of names of signers for EDMS betw&889-1992 are incomplete
and thus not used for analysis within this thesis.

Having downloaded the relevant web pages, the data is dexavieito matrix form, with
columns and rows representing each EDM (by number) and MResaespectively (see
Appendix A.2 for details of downloading and conversion ofajla Data on MPs signing

EDMs from each parliamentary session are stored inp matrices, with binary entries:
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Figure 3.1: Classical multidimensional scaling soluti®®5/06 EDM data. L = Labour, C
= Conservative, D = Liberal Democrat, M = other Minority past

1, if MP i signed EDMj fori=1,...,n;7=1,...,p.
0, otherwise,
Table 3.1 shows the top left of such a matrix. We have prodsegdral such matrices, one

for each session from 1992 to 2005 which can be found on thsiteeb
www. mat hs. bri s. ac. uk/ ~db0797/ Research. ht ni .

Nason (2001) investigated the relationship between MP<ahaeen political parties
by defining a dissimilarity coefficient between pairs of MPhe Jaccard coefficient of dis-
similarity was used (see Chatfield & Collins (1996, page 185)it reflects the important
feature of EDMs of having to ‘opt-in’ to agree with the motioRailure to sign does not
necessarily indicate disagreement with that motion (Fétat. (1961, pages 9-10), discuss
many reasons for the varying levels of signatures that an E€ddives). We modify this
measure to create a separate dissimilarity coefficientdfon &DM type. Our dissimilarity

coefficient between MPs (i,j), denoted by; will then be a weighted average of the respec-
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EDM number
MP names 1 2 3 4 5 6 7 8
Abbott/Diane 1 0 0 0 0 0 0 0
Afriyie/Adam 0O O 1 0 O O o0 1
Ainsworth/Bob | 0 0 0 0 0 0 0 0
Ainsworth/Peter| 0 0 0 0 0 0 0 1
Alexander/Dannyy 1 0 O 1 1 1 0 1

Table 3.1: Top left of data matrix for 2005/6 session

tive EDM type distances (see Friedman & Meulman (2004)). @easure, which we call a
weighted average Jaccard coefficient is defined as follows.

Let each MPi be categorised bW EDMSs, (X; = x;1,Ti2, ..., Tik, ..., T;N). The
EDMs are classified intd@” different types with the weight of each EDM type being de-
noted byw = {w;}T. We define the Jaccard coefficient between any pair of MPs dvi€D
of type k as follows: given two MPs lei; be the number of EDMs of typkethatbothMPs

sign and definéy, ¢, andey, according to the following table:

MP1 signs MP1 doesn't sign

MP2 signs ay, by

MP2 doesn't sign Cr ek

The Jaccard coefficient;j, = (br + ci)/(ar + br + i) is then used to measure the
dissimilarity between MPsand; for EDMs of typek.

The dissimilarity coefficient between MR&nd; over allT types of EDMs is denoted
by D;; and defined as the sum of the product of the Jaccard dissiyitarefficients for

each EDM type, and its weighted average:

T
k=1
with
T
{wy, > 0} and Zwk =1,

k=1
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for EDMs of typek : 1...T.

Hence a dissimilarity matrix derived from the EDM data isabéd, with entryD;;
representing the dissimilarity between NMBnd MP7, based upon their averaged weighted
dissimilarity over each EDM type.

We next consider a party of MPs of size The overall level of similarity, or cohesion
for those MPs can be calculated by first defining the meanndilssity that MPi has with

all other MPs in the party:

M; = e > | Djj. (3.1.4)
Je{1,..n}\{:}

The mean dissimilarity of all MPs with each other, within {teaty, can then be calcu-
lated by further taking the mean of tiid;’s over alln MPs:
1 . _
M==>"M;, andlet C=1-0M. (3.1.5)

n <
=1

The quantityM in equation (3.1.5) is a measure of overall separation. \&ethre de-
fine C as the cohesion measure, which takes values betvaad1, the larger the number,
the stronger the coherence between MPs within that party.

Note that MPs who did not sign any EDMs over each period ofr@stewere not in-
cluded in these calculations as, by definition, they woulkkhzerfect dissimilarity with all
other MPs who signed at least one EDM (and have an undefinsindlarity coefficient
with other non-signing MPs). We also do not remove any EDM&kwimay be considered
by some as irrelevant, for example sporting EDMs. There amymeasons for this which
we touched upon toward the end of Section 3.1.3. It is thetvedlsubject matter, and vast
number of EDMs, which reduces the impact of the cheap-talidraaof individual EDMs.
We direct the reader ahead to table 3.4, which shows the muwhB®Ms of different types
for each session of the previous Parliament. This showsastember of different types of
EDMs which make up the dataset and how they are split intediffttypes For a so-called
‘irrelevant’ type of EDM to be tabled numerous times withia@ EDM time window and

for it to have a large effect on cohesion, it is very unlikedyhave be irrelevant in the first
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place.

3.2 Cohesion of Political Parties

The overall cohesion measure for each of the three mainigabliparties and all parties
combined (from the 1992 parliamentary session to date)as/shin Figure 3.2. Note that
a parliamentary session (the time between state openindissalution) commonly covers
an entire year, starting around November, with many shadsses during the year and a
longer summer recess around late July. A short sessioneddnysan early dissolution for
a general election is common (as with the May 2005 election)is often followed by a
longer than usual session (such as the 2005/06 sessiorer @xtheral elections during the
time period of our data are April 1992, May 1997 and June 2001.

We use the dissimilarity measure from equation (3.1.3) aitlEDMs but withk = 1
(i.e. all EDMs are the same type). This is the standard Jdazefficient of dissimilarity
of the coefficient). From the plot, we can see that the LibBrinocrats are more cohe-
sive overall than the other two parties. This might be exgutctvith far fewer MPs it is
much easier for them to agree with each other (we discussnthisore detail later). The
Conservative and Labour parties have more comparable ioohegasures and which of
the two is more cohesive alternates throughout the studggeFrom the closely fought
general election of 1992, both party’s cohesion levels Huauated. Generally Labour
have decreased in annual cohesiveness whilst the Corigesvhave increased. Both show
variation in cohesion levels during Labour’s first term éeling the 1997 election victory.

The cohesiveness measure gives a static feel of the siufitioeach parliamentary
year in its entirety. To see how this measure changes thouigh session, we look at
the cohesion averaged over a moving ‘time window’ of EDM’sr Example we calculate
cohesion for EDM4 — 100, 2 — 101 and so on over the entire session. This idea was used
by Cromwell (1982) to analyse MP behaviour on division lster a period of time.

As EDMs remain open over the whole of the parliamentary easgie use of a moving
time window may seem inappropriate. A time window of EDMsidgrthe beginning of

the session may contain signatures which were only beergldwering the last day of the
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Figure 3.2: Annual coherence of main political parties: Labbur; C = Conservative; D =
Liberal Democrate = All parties (*up to 25/7/06).

session. This occurrence, however, is seldom seen and Dd4s Eeceive the majority of

their signature over the first few weeks of them being tablgding a large enough time
window (of 100 EDMSs) ensures the effect of any ‘slow’ EDM isahand considering time

periods in months, rather than weeks or days will insure angtmisrepresentation of the
data is at a minimum. Some information will inevitably be lgsad as ‘belonging’ to a

different time period but this will have minimal effect onrdindings.

As well as the size of the time window, or bandwidth, we cao adjust the overlap
between consecutive windows. This step size is the numbEDds we ‘step over’ each
time to get to our next time window. We focus on the 2005/08ises The moving cohesion
plots with a time window of 100 EDMs can be seen in Figure 3.8 are discussed in
Section 3.2.3.

We present each party on separate axes for clarity. Thisafits@s the reader to com-
pare thetrend of the cohesion rather than the actual value. This is desivedo the possi-
bility of the coherence value being affected by party size iWestigated the relationship

between the cohesion of a party and the number of EDMs thegdifpr each time window
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Labour (264) | Conservative (195) Liberal Democrat (63
Mean| S.E. | Mean S.E. Mean S.E.
Nwp/5 | 0.094| 0.010| 0.115 0.015 0.200 0.020
2Nmp/5 | 0.093| 0.007| 0.118 0.010 0.197 0.011
3Nwmp/5 | 0.095| 0.004 | 0.117 0.007 0.199 0.016
4Nyp/5 | 0.094| 0.003| 0.117 0.004 0.199 0.004

Table 3.2: Mean and standard error (S.E.) of cohesion of a88am samples from main
political parties(Nwup in brackets). The mean propensity to sign remains constar (
decimal places) over all sample sizes for each of the pditesour = 0.10, Conservatives
= 0.06 and Liberal Democrat = 0.16).

(the number signed is a proxy for both the party size and mrsipeto sign). The Labour
party had a weak correlation of 0.1 but there appeared toiderae of slight positive cor-
relation for the Conservatives (0.25) and a stronger wmaiatiip for the Liberal Democrats
(0.4). For this parliamentary session, the number of (alstigigning) members in a party
appears to increase the chance of correlation between thegize and cohesion levels.
We must therefore ensure that any analysis of cohesionsldativeen parties takes into
account this possible underlying structure. We achievelifidevelopingalibration levels

in order to gauge if a party’s cohesion is higher or lower theay otherwise be expected.

3.2.1 Simple Random Sampling of MPs

We briefly investigate how the cohesion of each of the palitparties is related to the num-
ber of MPs within that part which the measure is based upone&ch of the three political

parties, of sizeNyp we randomly samplén| MPs, wheren =

%7 2]\gMP7 3]\gMP7 4]\gMP
(where|n| is the largest integer less than or equahjo We then calculate the cohesion
(3.1.5) of thesen MPs, given their support of EDMs. For each valuewfve take 100 dif-
ferent random samples from the data and calculate the méeasion and standard errors
as given in table 3.2. For each party, the cohesion remamestliconstant (to 2 decimal
places) over all sample sizes. We also note that the mearemsip to sign (Number of
Signatures / (Number of MPs Number of EDMs) also remains constant for each party, ho
matter the sample size.

We next turn our attention to the effect that party size amgh@nsity to sign EDMs has

on the cohesion measure. We test these by simulating a timaéowiof 100 EDMs. Let
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Figure 3.3: Cohesion of main political parties with a moviilge window of bandwidth
100 andstep sizel, during the 2005/06 session (up to summer recess 25/M0@)th on
top axis taken from ‘middle’ EDM in time window. Horizontahdhed lines represent the
signature based simulated cohesion level, as describegtiios 3.2.2, vertical dashed line
is the 2005 summer recess.
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Figure 3.4: Contour plot of mean cohesion measure of sirdlizicidence matrices.

m;;, represent whether MPsigns EDM; as defined in (3.1.2). We modei,; by:

mi; ~ Bernoulli(p), (3.2.6)

wherep is the propensity for MPs to sign EDMs. Settipgequal to0.5 implies that each
EDM has an equal chance of being signed or not by a given MP anttMhus be expected
to gain support from roughly half of the MPs.

For this study we set = 1,...,100 and: = 1,..., Nyp Where Nyp ranges from 20
to 400 to represent different party sizes. For each of thagy pizes, we allow a different
propensity to signp, ranging from 0.01 to 0.1 (these cover the range of progessithich
we later report for the main political parties). For each bomation of propensity to sign
and number of MPs, we create 100 simulated incidence mataicd take the mean of the
cohesion measure from (3.1.5). A contour plot of the meamsion measures is given in
figure 3.4. We clearly observe that the (mean) cohesion dispem the propensity to sign,
and not the number of MPs within the party.

We further note that as the propensity to sign increasegahesion quickly decreases
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Figure 3.5: Cohesion measure of simulated incidence mirid00MPs with changing
propensity to sign.

before slowly increasing. An example of this for the simedbstudy with 100 MPs is shown
in figure 3.5. We leave further investigations of the relagioip between propensity to sign
and cohesion measure as future work.

This small study indicates that the propensity to sign,aathan the number of MPs
within a party which effects the cohesion measure. Our stiari did not, however, take
into account the way EDMs attract signatures: most rec@&wesignatures and only some
attract large support. We thus create a simulated cohest@aisume to be able to compare the
observed cohesion with a ‘random’ cohesion, which takes astount propensity to sign,
but also the popularity of certain EDMs. We start with a sienpernoulli model, similar to

that in the above simulation study to motivate the need fah&r complexity.

3.2.2 Simulated Cohesion Levels

Cohesion levels are derived from the opinions of MPs and atesigned at random. To
attempt to calibrate our measures we wish to simulate th@mgjgof EDMs to replicate

our data set but with the addition of the MPs signing EDMs atoen. We simulate these
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incidence matrices (as in table 3.1) by developing simpelsistic models of the rate at
which EDMs are signed by MPs. We can then calculate coherencinese simulated
matrices using our cohesion measure.

Our simulated models must take into account that each of dligcpl parties have a
different propensity to sign EDMs. To more accurately mdbdelway in which each EDM
attract signatures, we also wish to factor in that diffefebiMs receive differing levels of
support. We next define our model, starting with the most ErBgrnoulli model and then
factoring in the above properties which we wish to account fo

Let m,;, represent whether MPsigns EDM; as defined in (3.1.2) and recalled above
in (3.2.6). We estimate the value pfrom our data, for each political party.

Definep, the propensity to sign, as Number of Signatures / (Numb#&tRd x Number
of EDMs) — the ‘mean’ of the incidence matrix. We calculatébom the 2005/06 data set
as 0.05 for both Labour and Liberal Democrat, and 0.03 forsorative (similar to the
proportions calculated for the 1997—2000 data set by NaZ@oil)).

Table 3.3 shows the simulated cohesion levels for each paityg this model with a
time window of 100 EDMs. When compared with true cohesiorlgvit is clear that this
model produces cohesion levels lower than observed. Merefram experimentation, the
resulting cohesion level from the simulated model does epedd that greatly on the size
of the time window or the number of MPs within the party beingdelled. The model also
assumes that each EDM is identical in the level of suppottraets from MPs. This can be
shown to be untrue, simply from observing the range andiligion of the total number of
signatures per EDM over the session.

Signature-based modalVe fit a new model which uses bootstrap resampling (Davison
& Hinkley, 1997) which will more accurately model how mangsatures each EDM re-
ceives but is tailored around each political party. The ndoesed on a time window of
100 EDMs, works as follows:

LetY; be the number of signatures EDiMreceives from MPs in a particular party, for
g=1,..., Ngpy andNgpys the number of EDMs in the data set. Take a random sample,
with replacement, of size 100 from th§ to represent our time window of EDMs. Denote

the elements of this sample By;, with j = 1,...,100.

33



We want theX; to influence the level of signatures our simulated EDMs kecelFor

each.X;, define a corresponding probability by:

X.
pj = —2

= , forj=1,...,100 EDMS,
Nup J

whereN), p is the number of MPs in our data set. Thyse [0, 1], with the extreme values
being met when none or all of the party sign EDM

Definem,; as in equation (3.1.2), and model; by:
my; ~ Bernoulli(p;),

to obtain a simulated data matrix.
Calculate the (unweighted) cohesion of the simulated dataixrusing equation (3.1.5)
and denote by’'s, for B = 1,2,...,n. Repeating the entire process, we then define the

simulated cohesion level by:
1 n
C =— Cp.
SIM n le B

For results shown here, we used= 10, 000.
Table 3.3 shows the cohesion levels calculated using tigigdture based’ model. The
cohesion values are much more realistic compared to theleimmdel, accounting for

features within the data more accurately and thereforalslgitas a ‘calibration’ level.

Party
Method Labour | Conservative| Liberal Democratg
Simple Bernoulli model| 0.05 0.05 0.03
‘Signature’ based model 0.10 0.11 0.17

Table 3.3: Simulated cohesion levels for time window of 1MIMS

A wide variety of other models could be used in the calibratid cohesion levels. A
simplistic model would be to use the mean of the cohesiornutatked over the session. This
however would give a calibration level closely related te #ttual cohesion and without
the element of ‘random signing’ of EDMs by MPs.

The ‘signature’ based model used repeated simulationsttargeverall cohesion level

for the entire session. Itis feasible that during diffeqgertiods, for example before and after
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a parliamentary recess, the cohesion level is affected. defrmuld be used which sampled
EDM signature levels by recent trends or by analysis of puevisessions. Development of

these time-varying cohesion calibrations are left as &utwork.

3.2.3 05/06 Session Interpretation

Figure 3.3 shows the cohesion plots for the three main gefdiethe 2005/06 session, which
started after the general election on May 5. The plots usendviidth of 100 EDMs and
a step size of one. The three parties are shown along witkdmdél lines representing the
‘signhature’ based cohesion calibration levels. We useddlibration level as an indication
of whether the party has more or less cohesion than if theg wigning EDMs at random
(but taking into account number of signatures varying oVeMs).

The plots show changing cohesion within the parties oveg ti@wverall, the cohesion of
the Liberal Democrat party is far more variable than Labau€anservative, intuitively due
to the far fewer MPs in the party making the cohesion levelersansitive to differences
in opinion. As we do not know the exact relationship betweartypsize and cohesion
for all the parties, we only compare cohesion between gaiti¢erms oftrend rather than
actual cohesion level and also take care to ensure that artydtions in cohesion due to
EDMs receiving very few signatures is reported. Finally, s@enpare cohesion to that of
the simulated level.

All three parties at the start of the session show a levelroilaiity in trend, increasing
and decreasing cohesion at similar times. This trend stopdlg after the summer break
(vertical line), and by the end of October all three partiggear to behave independently

Conservatives Comparing cohesion levels to that of the calibration Ietleé Con-
servatives, unlike the other parties, are mostly above wiwaid be expected if signing
randomly (or rather with our ‘signature’ based model). Thedte plot of Figure 3.3 shows
that in late November the cohesion of the Conservative pgwpears to slump and then
suddenly rises. Following the general election in May thesiry Michael Howard resigned
as party leader but did not step down immediately. The ledhilercampaign lasted all
of November and continued into December, with David Camevoming the leadership

election on the 6th of December (see White (2005)).
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A further low in the cohesion of the Conservatives can be seeimg late March. This
was an eventful period in politics. The new leader was stgrtd show the direction the
party was heading in and a controversial education bill vaasowly passed with Conser-
vative support.

A further significant period of the cohesion plot where thhegion of the Conservatives
is less than our ‘signature’ based model is during July 20@barresponds to a period in
which there is a local minimum in the number of EDMs the Covastires were signing. We
believe this to be the reason although we have not found dmer aefpparent link between
cohesion and number of signatures at other periods durimgdlsion. We discuss this
variation in the number of signatures briefly in the nextisect

Liberal Democrats: The lower cohesion plot in Figure 3.3 also reflects intémgst
variability within the Liberal Democrat party during thisssion. From February onwards it
remains at a low level compared to earlier in the sessioroWwirlg what many considered
to be a disappointing General Election result, and despitd@ng seats, the leadership came
under a lot of pressure. Activists felt the party had not takdvantage of a weakening
government and opposition and criticised the leader, @sdtennedy, for his policies and
election campaign. It was also known within the party thatvas battling with alcoholism
(see Hurst (2006, Chapters 1 and 10)). After a period of sggaressure by high profile
party members, Charles Kennedy admitted having a probleimaléohol and resigned as
party leader on 9th of January (see Hurst (2006, page 23)1paong to simulated cohe-
sion levels, the Liberal Democrats fluctuated above andabalal more recently remained
less cohesive than if EDMs were signed at random. Followmegléadership election, Sir
Menzies Cambell’s Liberal Democrats did not achieve thess@mn levels seen during 2005.

Labour: The Labour party generally has a lower cohesion than ther gitain parties.
Following the summer break (indicated by a vertical linbgre appears to be no dramatic
change in Labour’s cohesion level, which is at a level sugiggghat they regularly disagree
with other members of the party. One period of interest is dhdlarch 2006. As with the
Conservatives at this time, the cohesion of the party drdppehe education bill which
was passed during this time split the Labour party, with mabgllion from the Labour

backbenches, see Wintour (2006). Further problems for lbalour and the Conservatives

36



at this time was the news of secret loans that both majorgsantd received in the run up to
the general election, see Hencke (2006). These contineirgjations about party funding
were a blow to both major parties.

The 2005/06 session is unigue in that the cohesion of alethmain parties are at a
comparable level. Previous sessions have exhibited iéstatices in the level of cohesion.
Possible explanations of this are the number of MPs signibigl&or changes in propensity
to sign EDMs. Previous session plots from the 1997/98 sedsidate can be found online

atww, mat hs. bri s. ac. uk/ ~db0797/ Research. htm .

3.2.4 \Volatility of Cohesion

When considering the cohesion plots with bandwidths of 1IDME or less, cohesion levels
tend to be much greater for the more recently tabled EDMs. hdsBDMs in the time
windows become older, the coherence generally reducese &@Ms will receive all of
their signatures quickly, whereas others may take longebtain support. Some possible
reasons for this are discussed by Franklin & Tappin (1977) wdnsider EDMs to either
obtain many signatures quickly, due to ‘business-like'veasing of MPs by the proposer
of the motion, or to gain support in a more random fashion.

If we were considering a dynamic cohesion measure, whichupdated on, say, a daily
basis, the addition of signatures to EDMs causes the cote@fa given time window to
change. Further, itis of interest to see how the mea&fjralefined in (3.1.4), varies within
a given time window (recall that/; is the mean dissimilarity that MPhas with all other
MPs, and is used to define the cohesion measure). The vard@tibe M; during each time
window is a measure of the range of similarities that the M@&howards each other. To
measure this volatility we define the variation meadtire: var(M;) for MPsi =1,...,n.

Similar to the cohesion plots, we look at the meadyrever a moving time window of
100 EDMs with fixed step size of one. Figure 3.6 shows the plpotie 2005/06 session.
We observe that the variance of thg for all three parties remain low and fairly stable up to
mid November (indeed, the Liberal Democrats and Labour hdee and stable variation
of M; throughout). This is expected. With no major changes in thrirsg patterns by

MPs, the spread of th&f; would reasonably be expected to remain fairly constantngive
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Figure 3.6: Variation of mean dissimilarity of MPs with a niy time window during
2005/06 session: Solid = Labour; Dotted = ConservativehPds Liberal Democrat.

that the EDMs have obtained all, or most of their signatuFes.very recent time windows
the variation of the Labour party, and more so the Conseratire a lot higher, indicating
the large range of similarities each MP has with members if ttwn party. This is due
to the more recent EDMs having yet to receive all of their atgres. As EDMs receive
signatures, they have a changing influence in the calcagtid the); and cause a larger
range in the values aff;. This range in values af/; becomes more constant (and smaller)
in the long run when the EDMs no longer attract additionalpsupfrom more MPs.

Two large changes in this pattern occur during this sesgiothe Conservative party,
the first during December and January, following David Camisrelection to leader of the
party. This plot shows the variability of similarity amon@4Ps during this time, indicating
the differences within the party. Considering that the sare at this point is also rising,
there is ‘unrest’ within the party with some MPs within thetgan agreement with each
other and others who are not. To a certain but lesser extdrturalso show unrest during
this period, which highlights the impact a new leader carelmvthe other parties.

The second major disruption comes more recently, duringugeyp and March 2006.
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This coincides with a period of low signing of EDMs by the Cenatives and this may
be the explanation rather than any political events. Fuitheeases in the variance are
towards the beginning of April and are at the same time as p or@ohesion (and the
party loan scandal), see Hencke (2006). More recently tkexe&hange in variation in July
2006. This variation may settle over time, with the relasioip being temporary, as not all

signatures will have been received for those recent EDMs.

3.3 Feature Selection using Cohesion Levels

We next propose to use our cohesion measure in a techniqué wiilises computational
power and a combination of statistical techniques. We fiosisier the work by Poole
& Rosenthal (1997) and Poole (2005) who developed the nosapetric optimal classifi-
cation (OC) method for the spatial modelling of legislatorgarliament and parametric
methods based on the NOMINATE proceduMOMINA Three-StepEstimation) which
were described in Section 2.4.

We refer the reader back to the scaling solution of EDMs inufg¢B.1. Recall that the
OC and NOMINATE techniques use an initial set of spatial dowtes of legislators (such
as the scaling solution) and finds cutting planes which asdrate the legislators between
those who vote Yea or Nay on a given roll call. The method tesréetween finding cutting
planes, spatial coordinates, and in the case of NOMINATEampaters for a legislators
utility function. The results are used to see where the legislawasla given roll call and
to investigate cohesion and discipline within the legist

The OC (and NOMINATE) procedures are not easily adaptabieg@nalysis of EDMs.
The methods rely on either a Yea or Nay vote in ordesutthe legislators into two groups
and, as previously discussed it would be wrong to construscla of signing EDM as a
‘Nay’ vote. A possible method could be to investigate EDM#wdpposite opinions, or to
use amendments with conflicting views of the original EDM Iibadn a data set where MPs
vote for either sides of an opinion. This would create a mushler subset of MPs where
a firm Yes/No could be worked out for the given subject mattiet only would the data set

be very small, there would still be difficulty regarding théogective nature of EDMs.

39



Spirling & McLean (2006) attempted to use the OC procedurdigisions in the House
of Commons and concluded that the method was unsuitabladatdta due to the divisions
being whipped and strategic voting by MPs. Even if the methmdlined here were adapted
for use with EDMs, their cheap-talk nature would again besané when ‘cutting’ MPs on
a single motion.

We instead look to other methods to further investigate EDW#&urning our attention
to using feature selection to pick out important informatiom the data.

Feature selection is a valuable tool used in many applicaticeducing dimensional-
ity and allowing for easier subsequent analysis and iné¢sion of results. Our cohesion
measure is dependent on which EDMs MPs sign. Some of thesesEDdikely to influ-
ence the cohesion measure more than others. They may hagkeax hbopularity amongst
MPs or they may be on issues which regularly divide MP opinioncontrast to narrowly
searching individual topics for a reaction amongst theslatprs, we wish to investigate
whether, over the vast data set, there are types of EDM thatadRee on, or EDMs which
cause disagreement within a political party. This has @é&rradvantage over the OC and
NOMINATE procedures in that we use all EDMs on a given topit, just one of many to
use as a cutting plane.

We first classify EDMs from the 2001-2005 parliament intdedént issues or types.
By using average weighted dissimilarity measures betwes,Me can allow certain types
of EDM to have a greater or lesser effect on the cohesion oMRs. Minimising and
maximising the cohesion measure by adjusting these weigbtdiscover the cause of most

agreement and disagreement within the main political @aduring the last parliament.

3.3.1 Optimisation using Weighted Cohesion

EDMs are used by MPs to give an opinion on any subject matt@rerare a huge range of
topics which EDMs can cover and we categorise EDMs into a raurabdifferent types or
issues. EDM topics can range from education to the envirotntieey can give an opinion
against a political party or their policy, such as critinggipublic spending, or be such that
all members may wish to sign.

For each session in the 2001—05 parliament, each EDM hasda¢egorised into one

40



Session

Type 01/02 | 02/03| 03/04 | 04/05| All
Health 212 | 246 | 233 | 101 | 792
Trade/Business 87 84 163 81 | 415
Social Issues 143 | 133 83 37 | 396
Abuse/Humanitarian 87 136 55 38 | 316
Congratulatory 54 90 87 44 | 275
Foreign Issues 50 98 93 33 | 274
Policy/Legislation 70 81 82 31 | 264
Transport Issues 63 88 66 43 | 260
Environmental 20 82 82 51 | 235
Sport 75 55 65 29 | 224
Education 51 61 62 46 | 220
Media 75 55 57 29 | 216
Arts/Culture/History 50 23 81 18 | 172
Employment 64 49 49 32 | 194
Defence/Armed Forces| 65 34 a7 45 | 191
Congratulations in Sport| 70 29 65 20 | 184
Iraq 31 93 42 15 | 181
Food/Agriculture/Farming 48 61 51 50 | 210

Table 3.4: Number of EDMs on different issues. EDMs are distedescending order of
total number over all sessions. Plain type means that nufobénat issue in a particular
session is in top 10, bold means that it is in top 10 for anatkesion.

of 50 different types. Table 3.4 shows the most popular 181ypr each session (along with
other types referring to top 10 from other sessions). Cagetaken to classify an EDM into
its primary subject matter. When more than one category wasilple all were recorded;
but only one has been used per EDM for this analysis (see Alppén2 for details of our
classification process).

We are interested in which EDMs influence cohesion. We cengite EDMs which
form the 30 most popular types of EDM and give each type a weiglas to regulate their
influence or importance. For a set of weights, the weightégsion can be calculated using
equations (3.1.4)-(3.1.5). We wish to adjust the weightasdo maximise the cohesion
measure. The corresponding weights will identify featmedypes of EDM) which bring
members of the partiedosertogether. Minimising the weighted cohesion will pick out
features which cause most disagreement within the parties.

Many classical numerical optimisation routines assumeathmess of the optimisation

function and depend heavily on starting values. Due to there@f our optimisation criteria
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and size of the problem, genetic algorithms have been seléat this optimisation task.

A good introduction to genetic algorithms can be found indéll (1998). Briefly, ge-
netic optimisation uses the principle of natural selectmobtain (locally) optimal values.
For a starting population of weights, each set of weighteisitered in binary form along
with their corresponding weighted cohesion level. Sets eifgits which are found to be
more optimal progress to the second generation, and conbipeoduce new sets of off-
spring (or weights) also in this generation. Analogous twisal of the fittest, this process
aims to produce a more optimal second generation of weidPitsking a suitable initial
population size allows for a desired level of ‘genetic dsigf and the number of iterations
(or generations) will control the level of convergence @& tdptimal value (with an obvious
trade-off between the two).

Genetic optimisation was used for feature selection by mesing and minimising co-
herence levels as described below. Initial populationssizie1000 were used over 500
generations to allow values to converge suitably. Othaaklstes used within the procedure
is the mutation chance, which is the probability that a gieetry in the binary number
will change. This was set at 0.001. Finally, for each itemati200 of the population were
allowed to proceed to the next generation.

We note that the ordering of the weights within the procedunas affect convergence,
with weights ordered close together being more likely toehaither combined, or not com-
bined with another set of weights. So, for example, with Jedként weights, weights 1
and 2 are more likely to have the same outcome (combine witthan set of weights, or
not) compared to weights 1 and 30. Repeated optimisatiainesuwith different ordering
would give more information as to the severity and effecthd,tbut is left as future work.

Finally, we do not rule out other methods of optimisationgedures to solve these
problems. Methods based on estimating the gradient of ttubtunction were tried (for
example, those by Nelder & Mead (1965) and Fletcher & Powl€l6g8), but results were

slow and often did not converge.
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3.3.2 2001-2005 Parliament Results

Table 3.5 shows the results of feature selection for indi@icdgessions during the 2001-05
parliament. Cohesion values were maximised to selectiestwhich make parties more
cohesive and minimised to find issues which separate th&epartWhen the optimising
criteria is maximised, we find that the results mostly contaily a single feature (EDM
type) of the data. This is somewhat expected, with the swiytiutting maximal weight on
the attribute which causes maximal cohesion and minimagtein all others. Any other
combination of weights would generally produce less optirasults. This is treated more
formally, and more generally (considering subsets oflattés) in Friedman & Meulman
(2004) (we leave any adaptation of our methods to subsetsiridfutes as future work).
When minimising cohesion, results would not be expectedishng single attribute.

Given that we would reasonably expect single issues to benginaximal weight in
our procedures, we can compare the resulting (weightedsioi level with the cohesion
calculated from considering each of the different 30 typeEDMs individually. When
more than one issue is found to give maximal importance Wilisact as a check that the
results are, indeed, more optimal.

For all sessions and parties except for the Conservativaagd@003/04, maximum
cohesion is a result of a single issue. Comparing this to tfesion calculated when all
other issues individually are given maximal weighting, fomns that the issue found using
our optimisation techniques is the most pertinent. In mases, other issues would cause
near optimal results and this is discussed in the next sectéaximal disagreement was
caused by combinations of different issues. In all casesleiel of cohesion caused by a
combination of the issues was less than that from any sisgleei

Cohesion During the 2001/02 session, foreign issues bring all timegor parties to-
gether. This was a very eventful parliamentary year, cagdtie attacks on the World Trade
Centers in New York (The Poynter Institute, 2001) and subseginvasion of Afganistan
(Wintour et al,, 2001). These occurrences are a possible reason for tieustyliwithin the
parties.

Energy issues maximise the Liberal Democrat cohesion feeasions except for 2001/02
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01/02 Session

Labour Conservative Lib Dems
Coh.(0.72) Sep.(0.95) Coh.(0.75) Sep.(0.96) Coh.(0.63) Sep.(0.91)
Foreign Europe Foreign Disability Issues Foreign Congrats. in sport
Environmental Middle East Europe
Statutory Instruments Environment
Congrats. in Sport (6.1 Employment
Congratulatory(2.3)
02/03 Session
Labour Conservative Lib Dems
Coh. (0.84) Sep. (0.95) Coh.(0.79) Sep.(0.96) Coh.(0.67) Sep.(0.92)
Energy Issues Northern Ireland Social Issues Northern Ireland Energy Issues Northern Ireland
Defence/Armed Forces Congrats. in Sport Sport
Immigration Transport Safety Congrats. in Spor
Statutory Instruments Employment Arts/culture
Foreign Immigration
03/04 Session
Labour Conservative Lib Dems
Coh. (0.83) Sep. (0.96) Coh. (0.78) Sep. (0.94) Coh.(0.66) Sep.(0.91)
Arts/Culture/History Northern Ireland Tax Middle East Energy Issues Northern Ireland
Congrats in Sport | Policy/Legislation| Abuse/Humanitarian Sport
Religious Issues (0.5) Disability Issues (1.1) Europe
04/05 Session
Labour Conservative Lib Dems
Coh.(0.82) Sep.(0.97) Coh.(0.76) Sep.(0.94) Coh.(0.65) Sep.(0.93)
Abuse/Humanitariarj Northern Ireland Foreign Middle East Energy Issues Northern Ireland
Arts/Culture/History Transport Safety Iraq
Prisons Disability Issues Local Govt.
Congratulatory (1.3)
Northern Ireland
Employment (0.1)
All Session
Labour Conservative Lib Dems
Coh.(0.84) Sep.(0.94) Coh.(0.79) Sep.(0.93) Coh.(0.67) Sep.(0.91)
Energy Issues Disability Issues Policy/Legislation Disability Issues Energy Issues Northern Ireland
Pensions Congrats. in Sport Defence/Armed Forces Sport
Sport Policy/Legislation (5.2) Congrats. in Spor
Education (3.0) Regional Issues

Table 3.5: Optimal issues for cohesion and separation aiega2001/05 parliament, with cohesion value. (Issues haaeimal weighting (10)
unless stated and each line corresponds to a different)ssue



(where, in fact, the cohesion is just 0.01 less than for fpréssues alone). This topic, cov-
ering all aspects of renewable and non-renewable energgesyuvas deemed important
by political parties during this period. Labour publisheldeTEnergy Review (Performance
and Innovation Unit, 2002) and the Liberal Democrats hadrcpolicies on such issues,
with targets of reducing climate change emissions depgnalilgely on renewable energy
expansion, see Liberal Democrats (2001). They have beapakén over the issues of
energy, in particular regarding renewable sources. In@mirew on the subject the Liberal
Democrat shadow Environment Secretary Norman Baker sthggdproper investment in

renewables together with energy conservation and effigisr@asures would eliminate the
need to rely on nuclear power to meet Britain’s greenhousecgenmitments”, see Baker
(2004).

Separation Interpreting the results from the minimisation of cohesio find separa-
tion is more complicated than the maximisation. There ctelén underlying structure in
the way certain MPs sign EDMs which are in favour or opposer@rgsubject. There could
also be a pattern in how MPs consistently sign no EDMs of aitetype. We leave the
details of this to further work and here present an overviéresults ancpossibleinterpre-
tations.

Congratulatory and sporting EDMs are often selected amdsgses which cause max-
imal separation within the parties. They are generally ictened to be ‘all-party’ EDMs
and obtain signatures from MPs regardless of politicaliafiiin. Many MPs may choose
not to sign these EDMs at all, whereas others will consiktesigin them, causing them to
be a source of separation within the parties.

Northern Ireland issues (by which we mean those relatinhegeace process and its
implications for devolution) are fairly common in sepangtiall the parties during different
sessions. The period of interest was an eventful time in tréhern Ireland Assembly, with
the first minister, David Trimble, resigning and later reing to power only to resign for a
second time. Following Britain resuming direct rule in 2p0@bank raid and ‘brutal murder’
blamed on the IRA delayed any progress on restoring the Aslsesee The Economist
(2006). These events appear to have continually dividedphréon of MPs in Westminister.

Our results also show that disability issues as well as thddMiEast separate the Con-
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servative Party in all but one of the sessions. The latteotisrgially caused by MPs criticis-
ing government policy regarding the Middle East (Watt, 200l&ing a time of hostility and
uncertainty following the invasion of both Afganistan amad (Conte, 2005) and the death
of the Palastinian leader Yassar Arafat in November 2004it@akbr, 2004). It is plausible
that the separation is caused by a small number of MPs agreeicertain EDMs, whilst
all others show little or no opinion.

The Conservatives were the only main political party to haweanifesto during the
2001 General Election which had pledges aimed at the neele disabled, see Conserva-
tive Party (2001). Our results indicate that over the follmywears the party was divided on
the issue. In 2004 the Conservatives started a nationwidsuttation process in disability
legislation, see Conservative Research Department (2p04%¥ibly as a result of divided
opinion within the party.

Other interesting (and possibly expected) results inciaaigration issues dividing
Labour and Conservative in 2002/03 when asylum procedure ainder heavy scrutiny,
see Robinson (2003).

Entire Parliament: Table 3.5 also shows results from when the entire 2001—@5 pa
liament was considered as one data set. Only MPs who wererpreger the entire period
were considered for the analysis. The results show whialegssare consistently causing
cohesion and separation over the entire parliament. Asceaggiven results from individ-
ual sessions, Energy Issues and Northern Ireland causelibBeLDemocrats to be more
and less cohesive respectively. Sport is the only issuefdeafo cause opposite reactions,
being a minor cause of separation for Labour during 2001&2vyerall causing separation
over the entire parliament. Issues regarding policy andlegipn separate the Labour party
overall, whereas they make the Conservatives more cohd¥dssible causes of this would
be EDMs which are against government policy being highlyeijby Conservatives and

also highlighting rifts within the Labour camp.
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3.4 Conclusions and Future Work

In this chapter we have proposed a new cohesion measurelysatize behaviour of Mem-
bers of Parliament in the UK. Our measure uses the signatfitesly Day Motions, a large
and rich data source.

We apply our measure to a moving time window of EDMs over theeme 2005-06
parliamentary session. Due to the complexity and uncéyt@inthe signing of EDMs, we
constructed a simulated cohesion measure for each of the podtical parties. We use
these measures to assess whether a party’s cohesion isthdg) and highlight changes in
cohesion which can then be linked to political events. Thesaparisons showed evidence
to suggest that the level of our cohesion measure is broadigdtive of perceived party
unity.

We further use our cohesion measure to investigate whishéis cause the parties to
unite and separate in opinion. This was achieved by clasgifgach EDM by primary
topic and using a range of statistical techniques to ‘weigtdups of EDMs on similar
issues. Data from the entire 2001-05 parliament were usédartinent issues, which
caused maximal and minimal cohesion for each party durioh sassion, were discovered.
Comparing these results once again to political events theisessions there is further
evidence to suggest that the tabling and signing of EDMsatsfleurrent political climates
on both national and international issues.

We emphasise that our analysis of results and comparis@uditical events are to some
extent conjectural, and our analysis is not exhaustive. ®ve ndicated possible reasons
for some of the behaviour shown within EDMs where we belidwé is an interpretation
which gives a new insight or interest into EDMs and MPs.

We also highlight the subjective nature of classificatiore®Ms and the difficulty of
assigning each to just one category. Careful steps wera takensure a ‘good’ classifica-
tion (described in Appendix A.2), and for the vast majorifye®Ms, a primary category
for each was agreed upon by all coders.

This article shows how EDMs can be used to measure politichésion in the UK.

Without the influence of the party whips, there are many esitars to their use. A natural

47



extension to the moving cohesion measure would be one ofdetiag behaviour of the
cohesion of the political parties. Identification of thos@#Mwho are the main cause of
the lack of unity within a party could also give an indicatiohthe structure in the party.
Consideration of the hierarchy of MPs from a centroid poird party is a possible way of
carrying out such a task.

As discussed, single issues were the main cause of thegahisving maximal cohe-
sion. The second most important issue could also be of sttared could be obtained by
introducing an entropy measure to our optimisation caterurthermore, by classifying
EDMs into more than one issue, a more detailed and accurettaiof the content of each

EDM could be used for feature selection.
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Chapter 4

Divisive Issues Between Political

Parties

4.1 Introduction

In Chapter 3 we defined a cohesion measure for political gmiti the UK. EDMs were
classified byissueand an optimisation procedure was defined which wseidhtsassigned
to each issue to maximise and minimise the cohesion meashea. s, we identified the
issues on which MPs within a party agreed on, and issues vwhigbed disagreement.

In this chapter we extend the idea of using weighted disahnityl matrices along with
feature selection to pick out attributes of the EDM data dattvare of interest. Previously,
each of the main political parties was considered sepgratéh no interaction between
them. Here we develop an optimisation criterion to invegtighe interactiofetweerpo-
litical parties and to identify issues which differentisibe main political parties, by causing
them to be less similar to each other.

Briefly, we wish to pick out issues which cause political tto differ in opinion.
Our measure for this is the number of MPs who are erroneouaggified as being in a
particular political party. The smaller this number, therendisjoint the parties are. By
altering the influence that EDMs of a particulgpe have on the classification procedure,
we can identify the issues which cause the most separation.

The OC and NOMINATE techniques, by Poole (2005), were dbedrin Section 2.4
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and use a scaling solution of legislators based on parlitanenoting. These techniques
classify legislators by finding ‘cutting lines’ or planes iath best separate different parties.
Both the OC and NOMINATE methods induce changes in the sgalitution by assuming
errors in the voting pattern. We considered the use of thessegures for EDM data in
Section 3.3 and pointed out why they are not suitable for smeltysis (asymmetric signing
and strategic voting were amongst the reasons).

We next consider the scaling solution of MPs given EDM signas well as a method of
classification given this scaling solution. We use data ftben2001/02 parliamentary ses-
sion to give an example of these procedures before incdipgrénem into an optimisation

routine to identify key issues.

4.2 Scaling Solution of EDM Data

The dissimilarity matrix of MPs can be represented spatiadling classical multidimen-
sional scaling (MDS) to reduce dimensionality of the of tlead(see Chatfield & Collins
(1996) for details). We use classical scaling, rather thierotypes of scaling for con-
sistency, simplicity and ease of computation, as we will patea many multidimensional
scalings. Further, good results using classical scaling he&en previously shown using
the EDM data set (see Nason (2001)). We do not investigateidbeof the many other
scaling methods here. References to scaling solution®iretinainder of this chapter refer
to classical multidimensional scaling. The scaling solutplays an important role in our
methodology as we use it to categorise MPs into politicaligsr
We use the EDM data for the 2001/02 session to aid the exjbanat our methodol-

ogy. We use the unweighted Jaccard coefficient to calcutatelissimilarity between MPs
(defined in Chatfield & Collins (1996) and given in generahidn Section 3.1.3). Figure
4.1 shows the first two dimensions (or principal componenitsie scaling solution for the
three main parties during the 2001/02 parliamentary ses¥ie see the strong party struc-
ture which exists within the signing of EDMs. The Consemedi although fairly spread out
are clearly separated from the other parties. The Liberahd@eats are strongly grouped

but appear attached to the edge of the Labour party. Funiestigations show that for
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Figure 4.1: Scaling solution for 2001/02 da&= Labour,e = Conservativep = Liberal
Democrat.
higher dimensions, the Liberal Democrats are more disfoamh Labour. This raises the
guestion of how many dimensions one should use to reprelserddta in the scaling so-
lution. Common practice is to look at tisereeplot of the eigenvalues of each principal
component of the scaling solution, and to use the numberménsions indicated by the
elbowpoint on the plot. Figure 4.2(a) shows the scree plot of thet i@ eigenvalues (out
of a possible 529) from the scaling solution of the 2001/0&.d&he elbow point seems to
be at the fourth eigenvalue, so we use up to and includingrthige subsequent analysis.
We note at this point the ‘horseshoe’ effect (see Kendalf (3pwhich is apparent in
the scaling solution in figure 4.1. This phenomenon occurddasical multidimensional
scaling (as well as other linear scaling methods and nomicraultidimensional scaling)
and is observed for large datasets where there are mangndésitly coefficients between
pairs of observations which are close to maximum. At a aegiaint, it is no longer possible
to plot the observations any further from each other anddhises extreme points to be
positioned in a curve. It implies that the second (or subsetfjuaxes may be dependent
upon the first axis (although they are linearly uncorrelated

Podani & Milklos (2002) observe the horseshoe effect usingraety of dissimilarity
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Figure 4.2: Scree plot of first 10 eigenvalues. (a) 2001/G&i8a, (b) First 200 EDMs from
2001/02 Session.

coefficients and classical scaling. The Jaccard coeffiggenbt one which is considered
within this study, but it has been observed in other studiepdrticular, see Hoilandt al.
(2004)). We refer the reader to the list of references pexvidy Podani & Milklos (2002)
and to the work by Hill & Gauch (1980) for many methods of aatimg for horseshoe
effects.

We will not incorporate such techniques within this studgr the data presented in this
chapter we note that although the horseshoe effect is adbéov the second dimension, it
is not apparent in higher dimensions. Further, although seedata from the entire session
for motivation, our actual analysis will be performed on acmsmaller data set. We direct
the reader ahead to figure 4.3(a) for the first two dimensibtisecscaling solution for just
200 EDM; an example of the data which will be used in withis tthapter. We note that the
horseshoe effect is not as apparent over these dimensions it for higher dimensions.
We thus make no effort to adjust for any possible ‘horsestgeit this point, but note that

it should be considered for any future analysis using data fthe entire session.
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4.2.1 Classifying MPs

We wish to use the scaling solution to predict party affiiatof each MP. To group the
data, we use the simple method of linear discriminant aisa®A), proposed by Fisher
(1936). This seeks to find a linear combinatiahx of the n variables (or dimensions),
X = (z1,...,2,), that would best separate the data into groups (see Krz&néwdar-
riott (1995) for a detailed overview). Note that this scgriechnique has been chosen for
its speed and simplicity and alternative methods, suchwstering procedures, could be
used instead within this procedure. This method has beeah (atbough with non-metric
scaling) by Cox & Ferry (1993). Work by Chang (1983) and Gukesikanet al. (2007) are
examples of studies which are are similar, but using prad@pmponent analysis with the
aim of clustering, rather than classification.

We apply LDA to the first 4 dimensions of the scaling solution the three main po-
litical parties. The LDA calculates discriminant valuestiwiwhich to best predict party
affiliation of all MPs (given that there are three party clesic Given th&knownparty af-
filiation of the MPs, we can then identify the number of erraungy classified MPs in each
group. The number of misclassified MPs can be thought of assaune of overlap between
parties.

We return to the data from the 2001/02 parliamentary sesswhperform LDA on
the first 4 dimensions of the scaling solution. We prediched®’s party given the LDA
results. The number predicted for each party, along wittkti@vn party affiliation of the
MPs is shown in Table 4.1. We see that the most erroneous$gifitd MPs are Liberal

Democrat as Labour (50 times) and Conservatives classii¢alour (21 times).

Classification

Actual Party| Con Lab Lib
Con 139 21 1
Lab 1 315 0
Lib 1 50 2

Table 4.1: LDA Classification for 2001/02 session.

With equal EDM weights, the total number of erroneously sifesd MPs is 74. This

number will be used later as our optimisation criteria. Ntbgg for the remaining analysis
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we concentrate on the total number of erroneously clasdified and not on the behaviour
of individual MPs or parties. Our justification of this is giar to the cheap-talk nature of
EDMs, discussed in Section 3.1.2. We do not pick out (and hauiiRs due to the ‘noise’
which may be present. We treat misclassification of an MP agretisat they are far from
their own party, rather than having beliefs and opinionsiging to another.

The example we have used so far is for an entire session. ttiggralooking at an
entire session is not computationally feasible and insteatbok at a moving time window
of 200 EDMs. This is the same idea as the moving cohesion measChapter 3, but here
the EDM time window is shifted by 100 EDMs each time.

The scree plot of the first time window for the 2001/02 ses&@iven in Figure 4.2(b).
For this example, the scree plot does not exhibit such defifdatures as the full session
and is more of a curve than a definitigereeshape. We continue to use 4 dimensions in
the subsequent analysis of the data, based on the full datawsehermore, as will become
clear from the methodology, it is not a priority to have a sglsolution which is near
perfect as the measure of overlap between parties (migadskPs) will be used as our

optimisation criteria.

4.3 Feature Selection using Linear Discriminant Analysis

We next describe our methodology for identifying key issudsch cause separation be-
tween political parties. We introduce variables into thehtéques previously described in
the form of EDM weights. These enable us to alter the impodasf each EDM type to
minimise the number of erroneously classified MPs.

As with the cohesion measure of Section 3.1.3, we classifMElto differenttypes
to which we assign a weighi;. We use this to calculate an average weighted dissimilarity

D;; between MP4i, j) defined in equation (3.1.3) as

T
Dij = Zwkdijk7 (4.3.1)
k=1
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Figure 4.3: First two dimensions of scaling solution on finste window of 2001/02 ses-
sion. (a) Unweighted. (b) Weighted.= Labour,e = Conservatives = Liberal Democrat.

with

T
{wk > 0} and Zwk =1,
k=1

for attributes (EDMs) : 1 — T'. As with (3.1.3),d,;;, is the Jaccard dissimilarity measure
between MP$i, j) on EDM typek, with weightwy.

We use the average weighted dissimilarity matrix to form alisg solution, as de-
scribed by example in Section 4.2. We then classify MPs ugiiegr discriminant analysis
(Section 4.2.1) and find the number of MPs who have been esushe classified. We
can then modify the weights assigned to each ERpkto attempt to reduce the number
of misclassified MPs: the smaller the number, the larger tfierence between the par-
ties. The corresponding weight values of the optimal sotutwill identify the importance
of given issues in separating the main political partiesl answer questions as to which
issues distinguish the parties from each other.

We once again use genetic algorithms, described in SectBh, 30 minimise the num-
ber of erroneous MPs and find optimal EDM issue weights. Wethierprocedure with a
population size of 500 over a total of 750 generations.

Returning to our example, Figure 4.3(a) shows the first twoedisions of the un-
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weighted scaling solution for the first time window of 200 EBKbr the 2001/02 session.
Note that with fewer EDMSs, the structure does not appearrasgicompared with the full
data set in Figure 4.1. Figure 4.3(b) shows the first two dsimers of the scaling solution
for the same time window but with the average weighted digaiity matrix using the op-
timal weights from our procedure. We see that on these dilmesnshe weighting has, to a
certain extent, brought MPs of a similar party together. Tloaservatives and Labour are
more compact on these dimensions. Further, for higher diiroes, the Liberal Democrats
are more disjoint from the other parties. Overall, 45 MPsmisclassified.

Preliminary tests using this method indicate that despiéege starting population, the
results found appear only locally optimal — the geneticrofgtation for repeat trials on the
same data converged withifferent optimal weights. Instead of increasing the population
size, we choose to repeat the process 10 times with newnstgrtipulations to get repeat
results (this allows each ‘run’ to be computed in parall&e then include these 10 op-
timal solutions in the starting population of a final procedio get the results which we
present in this chapter. For the example presented abasan#thod reduced the number

of misclassified MPs to 36.

4.3.1 Application to 2001-05 Parliament

Figures 4.4-4.6 shows the results of the genetic optinisatioving over time for each ses-
sion between 2001-04. We do not plot the results from theeh@4/05 session, which only
comprised of seven ‘time’ windows. The horizontal axis esgnts each time window of
200 EDMs with an overlap of 100 EDMs. It is labeled with the riipoorresponding to the
middle EDM of that time window for reference (although the 8§ and thus the months
are not spread evenly over the session). The top axis gieesuimber of erroneously clas-
sified MPs for that window. The left vertical axis represetiits 30 most popular issues.
They are ordered by the sum of the weights of each issue, éoertire session. This sum
of weights is given on the right axis. Each issue, for eacle tmindow, is plotted by a

shaded box, which indicates the weight given to the issue.claaty, we have multiplied

each weight by 10 and have 4 levels of shading to represemnmants of 2.5 along the new

weight scale of 0 to 10 — the darker the shading, the highewttight. This adds an extra
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No. Erroneously Classified MPs
36 40 28 19 34 81 72 25 21 25 38 34 33 37 23 46 24 23

Conduct of Members —
Education —|

si.
Employment —|
Tax —

Disability —|
Transport —
Congrats. —
Local Govt. —
Trade/Business —|
Arts/History —|
Pensions —
Europe —|

Health —

Crime —f
Welfare —

Sport —
Army/Defence —|
Media —

EDM Type

Foreign —
Social —
Congrat. Sport —|
NI o

Middle East —|
Policy —f
Humanitarian

Animal Welfare —|

July  July Ot Nov Nov Dec Jan  Feb Feb  Mar  Apr  Apr  May May June Juy Juy  Oct

Period

Figure 4.4: Issues separating main political parties 2W$ession. Weight shading: white
0-2.5, light grey 2.5-5, dark grey 5-7.5, black 7.5-10.

dimension to the plot, with changing weights easily reaglditdm the plot.

Although we present the results from each of the sessiondelieve they should be
treated asnitial results. They are limited due to uncertainty over the nunolbécally op-
timal solutions which exist and the likelihood of them befognd using the current meth-
ods. The largest limiting factor was computational power. the solutions reported in this
chapter, it took up to 3 days to complete the genetic optitoisdor a single time window
(using computers with 2.2 GHz processors and 2Gb of RAM) rOuve 10 repetitions of the
procedure for each time window, the optimal solutions fodiftered considerably. This
indicates the size and complexity of the problem and why tbkywresented here is treated
as preliminary. We thus only summarise some of the findingsdiscuss future work in
Section 4.4.

Results from the 2001/02 session in Figure 4.4 show somectegbeesults. Conduct of
Members, and Statutory Instruments (SI) aithin-party EDMs and generally expected to
get support from just one party. We see that they are amoangshost divisive of between-

party issues. The highly divisive areas of education, eympént and tax are also found

57



No. Erroneously Classified MPs

19 10 11 31 45 65 15 21 26 72 25 20 51 30 35 42 41 79
1 | | | | | | | | | | | | | | | | |
Local Govt. — — 119
Financial Services —| - 112
Europe —| — 112
Education — — 108
Employment —{ — 99
Trade/Business —| ~ 97
Pensions — — 96
S - 94
Sport — = 93
Tax —| ~ 90
crime —{ L 86 :cu?
Congrats. —{ — 84 ‘ﬂ'
Social —| 79 %
8 Environment —| 70 =
2 congrat. sport | F 6o o
s Army/Defence —| 69 5
2 raq | L o8 g
AtsfHistory — 683
Transport —| = 67 £
Media — ~ 65 3
Disability —{ — 64
Immigration — 63
Humanitarian —| ~ 63
Policy —| — 62
Food/Agriculture —| ~ 60
Foreign —| - 58
Animal Welfare —| ~ 52
NI — — 47
Transport Safety —| = 43
Health — 39

Nov Nov Dec Dec Jan  Jan  Feb  Feb  Mar  Mar  Apr  Apr  May June June  July  Juy  Sep

Period

Figure 4.5: Issues separating main political parties 2L®2ssion. Weight shading: white
0-2.5, light grey 2.5-5, dark grey 5-7.5, black 7.5-10.

No. Erroneously Classified MPs

45 81 49 39 4 35 20 2 29 51 54 59 66 7% 61 64 46
1 | | | | | | | | | | | | | | | |
Environment — — 115
Employment —| ~ 111
Food/Agriculture —| ~ 100
Local Govt. —| ~ 100
Congrat. Sport —{ ~ 99
Policy —] o1
Financial Services — ~ 90
Sport — I~ 87
Energy —| — 85
Social —| ~ 85
Transport —| e g
Foreign —| - 83 ‘ﬂ'
Army/Defence —{ — 80 %
g Tax — =79 =
e Education —| g
= NI o -7 5
2 Religious —| L eo g
Congrats. —{ — 67 5
Europe —| - 66 g
Crime — ~ 66 3
Humanitarian —| ~ 65
Trade/Business — ~ 63
Iraq —| — 60
Media — — 58
ArtsfHistory — ~ 55
Pensions — — 51
Animal Welfare —| ~ 49
Disability —| 39
Middle East —| 39
Health — 26
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Period

Figure 4.6: Issues separating main political parties 2DO3£ssion. Weight shading: white
0-2.5, light grey 2.5-5, dark grey 5-7.5, black 7.5-10.
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to split the parties. Humanitarian issues, which are showtrtandivide parties, could be
consideredcross-partyEDMs, and are predictably given low weights. Animal welfégge
also given a low weight and to a certain degree could be cereidto unite the parties.
This comes following a time of mass animal culling due to tbetfand mouth outbreak
(in early 2002 the UK was no longer considered ‘infected’eroa year since the initial
outbreak).

For the 2002/03 session, plotted in Figure 4.5, similarassto the previous session
are towards the top and bottom of the scales. It is intergs$timote that issues involving
financial services came second and both Iraqgi issues andarthgefense issues were mid-
table at a time when they were high on the political agendathEy health issues do not
appear to be cause of much separation between the parties.

Dividing issues, which may be expected, are at the top of ésalts for the 2003/04
session in Figure 4.6. Congratulations in sport is perhagspectedly high on the list of
weights, with Environmental, along with Food and Agricudlissues also featuring highly.
During a time which included the invasion of Iraq, issueshiite Army and Defense were
highly divisive although more specific issues concerniiag| hvere not. Health is yet again
low on the list.

The 2004/05 session (which we do not plot) was much smallettathe general elec-
tion in May 2005. Health is yet again low in the list of issuelioh separate the parties,
whereas transport and army and defense issues featurg. highl

As explained, these results should be treated as prelignindfe highlighted certain
features but do not speculate on any reasons behind theiis atafje. Nonetheless, results
highlighted here show the wealth of information which is teamed and is a motivation for
future work.

We next digress somewhat to consider the extent to whichemsity to sign EDMs

affects the scaling solution and thus the results plottetigichapter.

4.3.2 Scaling Solutions and Propensity to sign EDMs

We next briefly investigate the relationship between the memof EDMs an MP signs and

the principal components (PC) of the scaling solution. Haistion aims to give a feel of
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the behaviour of the data by considing a single time windoEDMSs. It is thus not an
exhaustive investigation but highlights issues withindhaéa.

As discussed in Section 3.2, due to the asymmetric naturbeofaccard coefficient
of dissimilarity, the number of EDMs which an MP signs willieaan impact on their
dissimilarity. For the cohesion measure we accounted ferti simulating the signing of
EDMs by MPs and using the cohesion of this data as a calilorégieel. We next show how
the lower dimensions of the scaling solutions represeniRe propensity to sign EDMs.

Figure 4.7(a) shows that the relationship between the firstipal component and the
total number of EDMs signed by each MP for the first time windufvthe 01/02 session.
The number signed appears to be exponentially decreasthgivei value of the principal
component. This relationship is also observed, but to atesstent for the second PC.
Higher dimensions, however, show no such trend.

The notion that propensity to sign is manifested within tteliag solution raises some
interesting questions over the validity of the feature ctada. Are the issues with higher
weights also those which attract the most or least signs@urre the MPs who are mis-
classified those who sign the most or least number of EDMshaditconsidering these
guestions we do not know if the plots in Figures 4.4 — 4.6 aosvéfig us anymore than just
what issues are signed the most. We attempt to answer thesgaqs by investigating the
scaling solution and an MPs propensity to sign for a singhe tvindow.

Figure 4.7(b) again shows first dimension of the scalingtemiuagainst total number
of EDMs signed (for each MP) using the optimal weighted scplolution. The relation-
ship is not as strong as the unweighted solution, althougletis still a distinct decreasing
pattern. Indicated on the far right of the plot are markepsagenting the number of EDMs
each erroneously classified MP signed. We see from the platsaithough there is a rela-
tionship between the two measures, it is not enough to betalpieedict position of an MP,
based on number of EDMs signed. Furthermore, there is rgpthbirsuggest that MPs are
misclassified based on the number of EDMs signed (this wasohiserved for the second
dimension of the scaling solution).

Other investigations show very little evidence to sugdest &n EDM type will be given

a higher or lower weighting depending on how many signatitneseives.
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Figure 4.7: First principal component against total EDMgsid for first time window of
2001/02 session. (a) Unweighted, (b) Weightee: Labour,e = Conservativep = Liberal
Democrat. X indicates number of EDMs signed by erroneouslysified MPs.

4.4 Conclusions and Further Work

Much can be gained from the analysis of the feature selectMmsee results which support
known behaviour amongst the MPs and also issues which wadldave been expected to
divide the parties to such an extent. However, it is clear ¢banputation constraints limit
the results of this procedure. Although we take care to tepeaoptimisation routine, there
is still significant deviation between each set of resultsttiermore, the ‘eleventh’ repeti-
tion of the genetic optimisation, which has a starting papah inclusive of the ten previous
optimal solutions, rarely improves beyond those initiduions. This either means that lo-
cal optima are few and have been found by our procedure, bttt is much work to be
done in this area. With 30 variables, the latter would be theaus conclusion. Increasing
the population size of the GA would increase the search ardaeuld be coupled with a
reduction in the number of generations to reduce computafibis would still be far from
ideal and a reduction in the number of variables may be futbeaeficial, to reduce the
current computational time.

In this chapter we used linear discriminant analysis as ekcand effective method for
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classification and therefore did not investigate how wetkeslit was to the scaling solution
of the MPs. LDA has the assumption of normally distributemssks (or political parties in
this case) and equal variance matrices in the groups. It raahdi this method is not as
suitable as others for the data, but as explained withintiapter, our aim was not to get the
best(initial) classification of MPs, but to obtaenclassification, on which we set to improve
by assigning weights to the EDM types. LDA suited our needs$His initial investigation,
being both simple and well understood. The developmentharatiassification techniques
are left as future work.

Although the results presented here are of a moving time avintoth the size of the
window and thestep sizare large. Any significant improvement in computationaletjioe
it from reducing the complexity of the problem or an increaseomputational resources
could allow smaller step sizes and windows and give the aisaéymore continuous feel.

We further investigated how the lower dimensions of theisgadolution are related to
an MP’s propensity to sign EDMs. We considered one time winddb EDMs and found
that such a relationship exists for the first two dimensiointhe scaling solution. Higher
dimensions did not show such a pattern. Furthermore, MPstappear to be misclassified
based on the number of EDMs which they sign, and there wiées dittidence to suggest
that EDMs with the most (or least) number of signatures wieose picked by the feature
selection

We believe that the results here are far from conclusive tHrimethodology appears
sound and worthy of further exploration. If efficiencies ¢tanfound in the methodology to
increase accuracy (statistical, computational or othe@vihen many intriguing questions

about the UK political parties may be answered.
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Chapter 5

Literature Review I

5.1 Introduction

This chapter reviews literature which is related to thediwlhg chapters of this thesis.
In contrast to previous chapters, the focus now turns to rdmesformation and variance
stabilisation of data.

We first provide some theory of the discrete wavelet tramsfand some types of
smoothing operators, suitable for both raw data and the letat@nsform of data. We
then describe some models for time series count data befplerig some variance stabil-
ising and Gaussianising transformations, which form thesbaf our work in the remaining

chapters.

5.2 Discrete Wavelet Transform

This section describes the discrete wavelet transformg@yWT) on a series of data =
x1,...,Tn, Wheren = 27 andJ € Z. For a more detailed introduction to wavelets, we
refer the reader to Daubechies (1992) or Vidakovic (1998).aHmore gentle introduction
to wavelets, see Burriet al. (1998). Details of the continuous wavelet transform can als
be found within these references.

A wavelet family is generated by dilations and translatioha function), called the

mother wavelet. Wavelets have oscillating, wave-like abtaristics, such thzjtzp(x)d:c =
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0, but have their ‘energy’ concentrated around a certain piat. Away from this point,
wavelets have a fast decay.

A wavelet representation of a functiof{x) is generated from acaling function or
father waveletlenoted byp(x). This function belongs to a closed subspace of a multireso-
lution analysis inL?(R) (see Vidakovic (1999, page 51)). The setf) translated over.

form an orthonormal basis for the closed subspace witRiiR) and it can be shown that

d(x) = heV20(2x — k),

keZ

which is known as the scaling equation. The coefficidits} 7 are the low-pass filter

associated withp. It can be further shown that

(Dj—1k> Djin) = hn—ak,

and that

S k(@) = D (Dj1ksBjin) Bin(@),

ne’l

= Y hnokbyn(2), (5.2.1)

nez

indicating that the scaling function at a certain scale aexXpressed in terms of a translated
scaling function from the next scale.

The mother wavelet can be represented in terms of the fatireglet as

Y(@) =Y geV20(2x — k).

kEZ

The coefficientd gx. } ez are known as high pass filters associated witsimilar to (5.2.1),

it can be shown that

Vi1 k(x) = Zgank(bj,n(x)-

nezl
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Figure 5.1: Left: Haar Wavelet; Right: Daubechies ExtreRilahse wavelet with 2 vanish-
ing moments.

The wavelet basis function;; (), is derived from the mother wavelet and defined by
Yip(z) = 259(Fx — k),  forjk € Z.

Due to the construction af(x), the wavelet family{+; (=) } inherits the same orthonormal
basis property ag(z), but over the whole of.?(R).
The Haar wavelet is the simplest example of a wavelet. The td#iger wavelet can be

defined by
1, x € [0,1],

0 otherwise.

From this, the Haar mother wavel¢tx) can be derived, and shown to be:

Y(z) = o(2z) — 922 — 1)
-1 0<z<1/2,
(5.2.2)
= 1 1/2<z<1,
0 otherwise

Figure 5.1 shows two examples of wavelets; the Haar waveli€} &énd the Daubechies
extremal phase wavelet with two vanishing moments (righdy. more details of these, and

other wavelets, see Daubechies (1992).
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It can be shown that a functiof{z) in L?(R) can be represented as

F@) =" sjonbion(@) + D3 djstbin(x), (5.2.3)

kEZ Jj>jo k€Z

where jy is known as thgrimary resolution levelnd s, ;, andd; ; are the father and
mother wavelet coefficients (also known as theooth and detail coefficients). These

coefficients are the inner products

Sjok = (f(2),Pjok(2)),
dix = (f(x),¥jx()).

(5.2.4)

The representations of(x) in (5.2.3) and (5.2.4) highlight the recursive nature of the
wavelet transform when computing the wavelet coefficiemis:initial set of smooth and
detail coefficients are formed, from which all other coeffits are then generated. These
coefficients give information about the functigiiz) at a scale2’ at the location, or time
point2~7k.

At the finest scale of the transform, the smooth coefficiesis,, can be thought of
as a smoothed representation of the original data whereatetail coefficientd; ;, can be
thought of as the information lost by this smoothing operdor an efficient representation,
we want sparse sets of wavelet coefficients, that is, mariyealétail coefficients to be close
to, or equal to zero. This is useful for compression and alsaénoising, which we shall
discuss later.

In the following chapters, we are primarily concerned wiih application, rather than
the theory, of the discrete wavelet transform. We thus woeithere the methodology of
obtaining the wavelet coefficients in an applied, rathentteoretical sense.

The DWT first forms smooth and detail vectors of the sequehobservationsc. These
coefficients are known as the finest level of the transformar€ar levels are found by
recursively performing the decomposition on the smoottfidents, until we are left with
just a single smooth and detail coefficient. Computatignéile detail coefficients are stored
at each level of the transformation, whereas the smoothiciesfts are used to form the next

set of coefficients.
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As an example of this decomposition, we next define the wawedasform (and its
inverse) for the Haar mother wavelet from (5.2.2), whichgediextensively in the following
chapters. We follow the exposition (and notation) from kewicz et al. (2007).

Given an input vector = (x)"_, wheren = 27, the Discrete Haar Transform (DHT)

is performed as follows:

1. Letsgl =g, fori=1,....n.
2. Foreachj = J —1,J —2,...,0, recursively define vectos andd’:
) Sj+1 —|—3j+1 _ Sj+1 _Sj+1
s = 2119—12 2. dl = 2119—12 2 (5.2.5)

fork=1,...,27.
3. The operatofl, whereHx = (s°,d’, ... ,d’~!), defines the DHT.

The inverse DHT is performed as follows:

1. Foreachj =0,1,...,J — 1, recursively forms/+!
s;:il = si + dj; sgzl =g — di (5.2.6)

fork=1,...,27.
2. Setr; = s/, fori=1,...,n.

The elements of/ (andd’) are the smooth (and detail) of the original vectat scale
27,

Each recursive step of the wavelet transform produces halhtimber of smooth and
detail coefficients as the previous level. This is knowrdasimationor downsampling
Most wavelet methods (and methods used within this thesis)such ‘filters’ with a base
equal to 2 so that the number of coefficients are halved. Seéak@vic (1999) for more
details.

The exposition above can be easily adapted for wavelets tithe Haar. The formula-

tion of the smooth and detail coefficients involve using mawefficients from the previous
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level of the wavelet transform. Haar only uses 2 points, yfa@other wavelet used 3 points
and we still moved over the data in pairs, two adjacent caeffis would depend on the
same element from the previous level, although these williben a different weight for
the different coefficient locations. This overlap of coeffits adds to the smoothness of the
wavelet.

Both the downsampling, and the number of elements used walielet transform can
cause boundary problems, where the number of elementsdéetie formulation of the
smooth and detail coefficients are greater than the numbiehweltist. We direct the reader
to (Nason, 2008, chap 2) for a discussion on boundary camgditior the discrete wavelet
transform.

We make extensive use of the Haar wavelet transform withinvatiance stabilising
procedures, which are described in Section 5.5.4.

As previously mentioned, the sparse nature of the wavelebrdposition makes the
wavelet transform useful for denoising. Suppose we havebarrged signal which is be-
lieved to be composed of ‘signal + noise’. If there were nsagiresent, we would expect
the detail coefficients of the wavelet decomposition to sg as the detail lost from the
smoothing coefficients will be small (as the signal itseBrnisooth).

Noise within the signal would cause the detail coefficieatbdé non-zero as they detect
the sudden jumps in the signal. Thresholding can be usea¢otas which of the non-zero
coefficients are purely noise, and which represent sigtfiairimation. Athresholdinglevel
can be set, below which the detail coefficients are believedhtain ‘noise’. These wavelet
coefficients are then set to zero, and the inverse wavetetfoiam will result in a noise free
signal.

There are many methods to calculate a thresholding levdlJansen (2001) gives an
overview of many popular schemes. A common thresholdindhatetised in the remaining
chapters is empirical Bayes thresholding, by Johnstoneh&®nhan (2004, 2005b), which

we describe in Section 5.3.1.
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5.3 Some Smoothing Methods

In this section we outline some smoothing methods which anenconly used in the fol-
lowing chapters. We begin with empirical Bayes threshajdiAlthough it can be applied
generally to any sequence of data, we focus on its use in thshblding of wavelet co-
efficients to remove noise. We then outline smoothing filterd kernel estimators, which
can be applied to most datasets and are used in the followapters. These methods are
either currently used with certain data sets, or have beanrsto perform well over a wide
range of data and are used within the following chaptersthEamore, all methods have
been coded for use in the statistical program R on computighsav2.2GHz AMD Opteron

processors and 2Gb RAM.

5.3.1 Empirical Bayes Thresholding of Wavelets

We next describe empirical Bayes thresholding as desctilyedohnstone & Silverman
(2004, 2005b). Its implementation in R is via tBbayesThr esh package, detailed by
Johnstone & Silverman (2005a). This technique is shown tfopa well over a range of
simulated and real data, and as such we use it often in theltbe/ing chapters.

Although the ideas can be applied to many data sequencespoue bn its use for
thresholdingthe coefficients of wavelet decomposition. As mentionedeagti®n 5.2, an
efficient wavelet representation of many classes of fundtias sparse wavelet coefficients
and these can be thresholded to obtain an estimate of thelyindesignal of the original
data. The idea therefore assumes sparsity of the waveléfictm@s of the true signal
and the empirical Bayes thresholding approach from JohastoSilverman (2004, 2005hb)

places a prior on the true wavelet coefficient of the form
s ~ (1 —wj)do + wjy, (5.3.7)

for each levelj. Here,w; is the (prior) probability of the wavelet coefficient beingmzero,
~ is the density of the wavelet coefficient, conditional oneirlg non-zero, and is the

density conditional on it being zero. The method uses a h&algd distribution fory, such
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as the Laplace distribution, or the ‘quasi-Cauchy’ denaitych is defined by Johnstone &
Silverman (2005b).

If dj.,k has the prior distribution (5.3.7) and the observed wavebetfficient is such
thatd;x ~ N(d};,o*), we can find the posterior distribution df , conditional on the
observationi; ;.. The median of this posterior distribution can be used asamate for the
‘true’ wavelet coefficient:l; - This acts as a thresholding method, since for a fixgthere
will be a functiont(w) such that the median will equal zero if and onlydf , | < ¢(w) (see
Johnstone & Silverman (2005b) for more detail). Other thoéding methods involving
the (post) mean, and soft or hard thresholding of the funatia) are also considered by
Johnstone & Silverman (2004, 2005b).

In statistics, wavelet coefficients are assumed to be tijpisparse at finer resolution
levels with the coarser levels having larger detail coeffits representing a lot of signal.
Johnstone & Silverman (2004, 2005b) suggest applying écapBayes separately to each

level of the wavelet transform. Further, they suggest figdime parameters of the prior

distribution at each scale using marginal maximum likedith@stimators.

Isotonic Regression

At this points it is worth mentioning isotonic regressionhiah is used within empirical
Bayes thresholding (and can be performed using #@t one function in theEbayesThesh
package) as it is also used within the data-driven Haar{féswform (see Section 5.5.4)
to estimate a non-decreasing monotonic function for dath aiparticular mean-variance
relationship.

Given our sequence of valuas and a set of weights;, the least squares isotone

regression finds the monotonic increasing sequetider which

sz‘(%‘ —z})?, (5.3.8)

is minimised. This is achieved using the pool-adjacentat@k algorithm (see Friedman &
Tibshirani (1984) for an overview), modified to allow for theightsw;.

Briefly, the method identifies local maxima and minima in tleguence in order to
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locate decreasing subsequences. These subsequenceslatattaae replaced by a single
value equaling the weighted values of the subsequence. dinesponding weights are
replaced by the sum of the weights over the subsequence.piiddsdure is iterated until
(5.3.8) is minimised.

Isotonic regression is used extensively in the remaindénisfthesis, indirectly as part
of empirical Bayes thresholding and directly in modificasdo the data-driven Haar-Fisz

transform.

5.3.2 Smoothing Filters

Filter smoothing of data smooths in a given window aroundchedatta point. The filter

smoothing functionf at timet, taken over datas; is given by

b
Fe=b"1Y i by (5.3.9)
i=1

whereb is the number of observations used to form each local mearb@hdwidth),| z |
is the largest integer less than or equaktand{c;}’ is the set of filter coefficients. When
¢ = 1fori =1,...,b, (5.3.9) is therunning meansestimator ofz,. Simply put, it is
the mean of a window dof observations surrounding the data paipnt We use the running
means filter in Chapter 6.

A filter much used with meteorological data (and used in Gérapy is the binomial
filter. For a filter size ob, andm = 0, ..., b, the coefficients; of the filter (5.3.9) take the
following form

b
b!
Cp = km/ynz::okm where km = m

with a slight change in notation from (5.3.9) in that 0, ..., b. Panofsky & Brier (1968)
give a numerical example of a binomial filter, whereas Aub&ryuk (1995) give a more
thorough account of the theoretical properties.

For independent, identically distributed data from thesBom distribution, where; ~

Poi()), it is clear from (5.3.9) thatar(f;) will comprise of (up to a constant) the sum of
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the variances of the Poisson variables, i.e.

var(fy) = var(b"t Y| i (by2))s
= 07 Zg=1 var(CiTpi—|b/2))
= 230 &2 var(Ty i (p/2])s sincec; does not depend an
= 0230 @)

= (A/b?) Z?:l sz-
(5.3.10)

As var(z;) = E(xy) = A, the variance is proportional to the mean, and the estinvaitbr

exhibit more variance when the signal itself has more vagdne. larger mean).

5.3.3 Kernel Smoothing

Kernel estimators smooth data by considering weighted slataunding the point of esti-

mation. The kernel regression estimator for data . . , x,, is given by
Yi =r(z) + e,

for a regression function wheree are independent and identically distributed witfx) =
0 andvar(e) = o2 fori = 1,...,n. An estimator’ for the regression curve can be derived
from the kernel density estimator. One popular estimattiradladaraya-Watson estimator

(Nadaraya (1964), Watson (1964)), defined as

_ Z?:l K(kb% )Yi

LR

for a kernel functionk, bandwidthb and the estimated density is at point For a full
introduction to kernel smoothing, see Wand & Jones (1999imonoff (1996)

The kernel regression estimator much used in the remairfdéisothesis is the local
plugin bandwidth estimator, known dskern by Brockmannet al. (1993). Lokern is a
non-parametric regression estimation technique usingekerstimators. The procedure
automatically chooses a local plugin bandwidth, which piscial weight on the stability

aspects of the bandwidth size so that the estimator is noha@®y (or too smooth). The
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optimal bandwidths are estimated by considering the asytiopiptimal mean square error
of the bandwidths.

A common feature of local bandwidth estimators is that a gaithe mean integrated
square error (MISE) is coupled with a larger variability e testimator, particularly if the
sample size is small. This is considered in case of the logstimator, by Brockmanet al.
(1993) and the resulting estimator can adapt for differeatures within the data.

An equivalent method using a global bandwidth estimatoiss described by Brock-
mannet al. (1993). Lokern is shown to improve on this, even with smathpke sizes.

Lokern can be implemented in R using theker n add-on package.

5.4 Time Series Count Data Models

In this section we review some models of count data. We réfeneader to Jungt al.
(2006) for a nice review and comparison of a whole seriesdfrtigjues. A wide variety of
models are shown in the books by MacDonald & Zucchini (19®%ipkelmann (2003) and
Cameron & Trivedi (1998). This section is not exhaustive aedaim only to give a flavour
of some of the models which are currently used. We discudseatnd of the section why
we do not consider such models in the remainder of this thesis

Count data models are broadly classified as being obsenvatieen or parameter-
driven. Inthe former, the conditional distribution of a 8reeriegy; is specified as a function
of past observationg;_1, . .., y; whereas in the parameter-driven model, autocorrelation is
introduced through a latent process.

Junget al. (2006) compare two such models in terms of their ability tocamt for
dynamic and distributional properties of count data (thekwadso proposes a new method
of estimation of the likelihood for the model). The well knoywarameter-driven Poisson
model with stochastic autoregressive mean (SAM) by Zege8g)Lis used in the paper.
This models a time series of observatigpgor timet = 1,...,T, on a sequence of covari-
atesz; by

ye| (24, us) ~ Poi(exp{z;p}uy),
whereu; is a latent non-negative stochastic process@igla vector of regression param-
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eters. The conditional distribution @f|(x, u;) is therefore assumed to be Poisson with
meanu; = exp(z;¢)u;. The latent process; is introduced to account for possible over-
dispersion and serial correlation within the data and ifteroassumed that; = In(u;) is

a Gaussian first order autoregressive process, satisfying
)\t = 5)\1571 + veg, € ~iid N(O, 1).

The parameters), § andv are to be estimated.
A recent observation-driven model is the autoregressivalitional Poisson (ARCP)
model by Heinen (2003). For a time series of datavith all prior observations denoted by

Y;_1, y; is modelled by

Ye|Yi1 ~ Poi(p),

with an autoregressive conditional mean

p q
E(yilYi) = m=w+ Y oy i+ > Bimj,
j=1 j=1
with o, 3; andw being positive, to ensurg; is non-negative.

A further observation-driven model worth noting is the fosder Poisson autoregressive
(AR(1)) process by McKenzie (1988). This is considered byO5h & Alzaid (1988) as a
special case of their integer valued autoregressive mtdAR), first described in Al-Osh
& Alzaid (1987).

A random variable is said to follow a first order INAR procesghwPoisson marginals
(writteny ~ INAR(1)) if

Yt = QoY1+ &

Amongst many conditions on the variables (as summarised inkeéihann (2003))y;—1
ande; are independent Poisson variables.

The symbob represents a mixture operation amdy, denotes the number of elements
out of £ — 1 that survive to period. The probability of survival is given by. For the AR(1)

process by McKenzie (1988),is binomial thinning
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Winkelmann (2003) and MacDonald & Zucchini (1997) detadl aliscuss these models,
as well as describing the Poisson moving average procesdafane by McKenzie (1988),
the similar integer-valued moving average (INMA) procassf Al-Osh & Alzaid (1988)
and the INAR(1) model for negative binomial marginals.

The models described above are just some of a range of cotantabalels. All essen-
tially involve the estimation of parameters, a task in ftaddich is often not straightforward.
The models also concern data in which the counts are Poigsoand are correlated. In the
remainder of this thesis we use and develop techniques vduaiot require Poisson data
(although there are assumptions on the mean-variancé@relhip) and are therefore more
widely applicable. Furthermore, for the Irag and centraglBnd temperature data sets,
introduced in Chapters 6 and 7 respectively, we show that afean correction and trans-
formation, the time series are not correlated, raisindierrjuestions of the appropriateness

of such count data models for our data.

5.5 Variance Stabilising Transforms

We now describe some variance-stabilising (and Gaussighisansformations which are

used in the remainder of this thesis.

5.5.1 Anscombe Square Root Transform

For Poisson data, where~ Poi(\), Anscombe (1948) derived the transformation
=r+ec, (5.5.11)

for stabilising the variance of the variableThe mean and variance of the transform can be
calculated via a Taylor series expansion and it can be shoatifidr large), the transformed
variabley has a ‘most nearly constant variance’ioﬁvhen the constant, = % See Nason
(2008, chap. 6) for further details and a derivation of theasq root transform.

Zhanget al. (2006) use a similar transformation within their procedtoe variance

stabilisation of Poisson counts. First, the observed sigrfdtered, and the resulting sig-
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nal is variance stabilised using the Anscombe transformpiaimultiplied by a constant.
Although different ‘filters’ can be used, the method focuseghe use of wavelets to first
transform the observed data. Methods are outlined to etstitha constants of the transfor-

mation set as well as a wavelet based denoising step.

5.5.2 Box-Cox

The primary objective of the Box-Cox transformation is Gaussianisatiorf the observed
signal (that is, to make the observed signal more Gaussdasgcondary effect of this is that
the variance of the data is often stabilised (as discussdéthyglallet al. (1983, page 103)).

Due to its good Gaussianising performance, the transfiomat used heavily in the
following chapters as a comparison to our new methods. Weale the ideas of finding
optimal transformation parameters via likelihood funotian Chapter 8, and as such, we
give the transformation and derivation of parameter esioman detail.

Box & Cox (1964) consider the parametric family of power sfammations

y(A) = A S (5.5.12)

log v, if A=0.
For some unknown, the transformed observations are assumed to be indepggnGauis-

sian, with constant variane€ and expectation

E{y(\)} = u,

wherey()\) is the vector of transformed observatiang\), . . ., yn(\).
The likelihood of the transformed variables in relation le riginal observations is
obtained by multiplying the Gaussian density by the Jacobifathe transformation. The

likelihood L(), 11, ?), dependent on the transform parametemeany, and variancer? is

n

L(\ p,0%) = [J(@m0®) "2 exp {—(wi(N) — p)?/20° }J, (5.5.13)
=1
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where the Jacobian, is

1=11

i=1

(5.5.14)

Ayi(N) ' .
y;

The maximum likelihood estimates are found in two stepsstFior a fixed), (5.5.13)
is, except for a constant factor, the likelihood of the lestgiares problem with response
y(\) (as the Jacobian does not involver o). Hence the maximum-likelihood estimate of

u, denoted for a fixed by (1)), is

pA) =y (),

the mean of the transformed observations. The estimaté fufr a given), 52()\), is
2\ = > (wi\) —y(\)/n = S(\)/n,

i=1

whereS()\) is the residual sum of squares of th¢\).

Thus, for a fixed\, the partially maximised log-likelihood is, up to proportality,
Imax(\) = —(n/2)log 6%(\) + log J, (5.5.15)

and is therefore a function of which depends both on the residual sum of squéfes
and on the Jacobias (whereJ = J(\)).

A simpler form oflnax(A) can be obtained by working with the normalised transforma-
tion

z(\) = y(N)JV™ (5.5.16)

For the transformation in equation (5.5.12), we have

Ayi(\)/dy; =y Y,

which gives

logJ =(A—1) Zlogyi.
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The normalised power transform can then be written as,

y -1
- if A 0,

(N ={ At (5.5.17)
ylogy, if A=0,

wherey is the geometric mean of the observations.
The partially maximised log-likelihood of the observasocan then be written, apart

from constant, as

Imax(A) = —(n/2)log(R(A)/n), (5.5.18)

where

R(\) = a2(M)n, (5.5.19)

is the residual sum of squares=gf\) andgg is the variance of the transformed observations.
The maximum likelihood estimatg is the value of the transformation parameter for
which Imax(\) is @ maximum. Equivalently, it is the value for which the desil sum of
squares,R()\) is minimised. A common way to find is to plot Imax(A) (or R())) for
various values oA.
An extended form of the transformation in (5.5.12) whichemkwo parameter values

was also proposed by Box & Cox (1964) and is defined as:

A1 1
+r)n -1 if Ay  0:
y(\) = A (5.5.20)
log(y + A2), if A =0.

The additional parameter allows for a constant to be addesufmracted) from the data
before transformation as with the one parameter model. Amgle of its use is in survival
time experiments, where the origin of the response is nou& lower limit and thus a
constant is subtracted from the data. It can also be useditoats an optimal constant to
add to negative data to ensure positivity.

Estimation of the second parameter can be incorporatedhietbkelihood equation of
(5.5.13) and continued as with the one parameter transtmmarhe Gaussianised form,

equivalent to (5.5.17), is given by
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)\1_1 )\1_1

20 he) =4 MG+t Aght (5.5.21)
log(y + A2)G(y + A2) = dlogg, if A\ =0,

where¢ = G(y + \2) is the geometric mean of the observations after additiorhef t
parametenfs.
Analogously to (5.5.19), the partially minimised sum of ags for the two parameter

model,R(\1, A\2) is defined as
RO, X)) = 02(A1, Ao)n. (5.5.22)

whereg()\l,)\z) is the variance of the transformed observations. For thepanameter
model, plots ofR(\) against\ are close to a parabola. As described by Atkinson (1987),
contour plots of (5.5.22) fall into two broad classes. In s@ramples there is a local min-
imum of the sums of squares surface, in the region of whiclcdidours are approximately
elliptical. For the estimates producing these local minia@proximate Gaussianity holds.
In other examples, the residual sums of squares declinadilstéo zero as\; approaches
—Ymin. There may or may not be a local minima, but there will alwagsabregion of
parameter space in whicR(\;, \2) can be made arbitrarily small. This can be shown as
follows. If 0 < A\ < 1, bothA; and1 — Ay are greater than zero. Then from (5.5.21),

z(A1, A2) can be written as
Z()\l, )\2) = q'l_)\1 (qu — 1)/)\1

As A2 — —ymin, at least one value af becomes very small and thgswill also become
small. It follows thatj!~*' becomes small and the residual sum of squares decreases to
zero. It will therefore always be possible to maké\;, \,) arbitrarily small, but the result-

ing parameters may not result in Gaussianity of the transédrobservations. We direct the
reader ahead to Figure 7.4 for a plot of the residual sumsuareg, which displays some

of the problems outlined here.
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5.5.3 Some Data-Driven Variance Stabilising Transformatns

When the underlying noise distribution of a signal is unknpit is often desirable to es-
timate the variance stabilising transform from the dataocBdures using a data-driven
method include the ACE (alternating conditional expeotgtiprocedure by Breiman &
Friedman (1985) and AVAS (additivity and variance stahtiian), by Tibshirani (1988).

Given random variableX andY’, the ACE procedure looks to find the transformations
0(Y) and¢(X) that maximise the correlation between the transformedlbes, cof(Y),
(X)), subject tovar(¢(X)) = 1. The transformations have the added property that they
minimiseE(9(Y) — ¢(X))?, subject tovar(¢(Y)) = 1.

The procedure is iterative and alternates between the twdittanal expectations

0(X)=E(p(Y)X) and ¢Y)= (5.5.23)

using the previous expectation of one function to get an tgpoiathe other untiE(6(Y") —
#(X))? no longer decreases.

When the distribution of the data is unknown, scatterplobatiners are used to replace
the conditional expectation in (5.5.23).

Tibshirani (1988) points out several drawbacks of the AG®athm and suggests that it
is better suited for correlation analysis rather than regjom. The AVAS algorithm, which is
a modification of the ACE procedure has several advantagesaesigned specifically for
regression (advantages stated by Tibshirani (1988) iechaing able to reproduce model
transformations and sensitivity to the marginal distitmutof the predictorsX).

A further transform is by Lintoret al. (1997) who detail an algorithm for transform-
ing additive nonparametric regression models and derisgmptotic distributions of the

estimators.

5.5.4 Haar-Fisz Transform

The Haar-Fisz (HF) transform, proposed by Fryzlewicz & Na§p004), uses the Haar
wavelet transform to decompose the input vector into smaath detail coefficients and

then stabilises their variance at all levels. The HF usesrtban-variance relationship of
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the data to smooth the Haar coefficients.

We first define the discrete Haar transform (DHT), before uleisiyy modifications to it
resulting in the Haar-Fisz transform (HFT) for Poisson datd the data-driven Haar Fisz
transform (DDHFT), from Fryzlewiczt al. (2007), for data where the exact distribution
is unknown. We follow the exposition from Fryzlewiet al. (2007) (and also use the
same notation for wavelet coefficients with subscript degotevel, superscript denoting
location, in the rest of this thesis).

Let X = (X;);, denote an input vector to the HF transform. The following diseci-

fies the generic distributional properties tlatmust possess.
1. The lengthpn, of X must be a power of two. We denofe= log,(n).

2. (X)_, must be a sequence of independent, nonnegative randorbleariaith finite

positive meang; = E(X;) > 0 and finite variances? = var(X;) > 0).

3. The variance of? must be a non-decreasing function of the mean
o7 = (i), (5.5.24)

where the functiorh is independent of.

For Poisson dataX; ~ Poi()\;), we haveu; = A\; ande? = \;, which givesh (i) = p.

The Haar-Fisz transform (HFT) decomposes déata: (X;)",, wheren = 27 using
the Discrete Haar Transform (DHT) described in Section btz detalil coefficientsji are
then modified with the aim of stabilising their variance (andking them closer to Gaus-
sian). The inverse DHT is then applied to these modified aeffis to bring the sequence
back to the original data domain, where the transformed luilzsea stabilised variance and
is also closer to Gaussian. We now describe the variancéisitalpand Gaussianising of
thed].

Consider firsdy ' = (X; — X3)/2. Assume that the Poisson distributionsXf and
X5 are identical (which is likely if the underlying mean is pgedse constant). This implies
that the distribution ofl] ~* is symmetric around zero. We want to stabilise the variarfice o

d{ ! around2/~1=7 = 1/2. So, we divide?; ~* by 2!/2 times its own standard deviation.
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We have

var(d] 1) = 1/4(var(X;) + var(Xs)) = 01 /2,

which gives2'/2(var(d{~'))'/? = o1 = hY?(u1). In practicey; is unknown and we
estimate it locally byu; = (X; + X2)/2 = s{~!. The approximate variance-stabilised
coefficientf; ~! is given by:
dJ—l
= p J—1y"
hl/z(sli )
Fryzlewicz et al. (2007) continue this example to find a value ftf 2 (and subse-
quent levels), which are of a similar form % ~!. The coefficientsf are called théFisz

coefficientof X (as Fisz (1955) studied properties of variables of a sinfidan to fg).

We now give the general algorithm for the HFT when the funrctias known.

1. Lets! = X;,fori=1,...,n.

2. Foreachj =J —1,J —2,...,0, recursively form the vectorsf andf’:
+1 j+1 +1 +1
i Seat Sy i Sk — S
R e (e S L (5.5.25)
2 2h1/%(s])

fork=1,...,2.
3. Foreachy =0,1,...,J — 1, recursively modifys/+1:

Jj+1 g Y i o S | J
Sop—1 = S+ Jii s =5, — Jis

fork=1,...,27.
4, SetY =¢s’.
The relationY = F, X defines a nonlinear, invertible operaty, which is called the
Haar-Fisz transform (oX) with variance functiorh.
5.5.5 Data-Driven Haar-Fisz Transform

When+ is unknown it must be estimated from the data. Sim¢e= h(y;), we estimate

the mean and variance &f;, X, ... and use these values to estimatd_et the empirical
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estimates of the mean and varianceXgfbe

! 2
and
o Xi+Xin
:U‘Z - 2 )
respectively.

The regression model

67 = h(w) + &

is used, where; = 67 — 07 = (X; — X;41)?/2 — 7 and “in most casesE(e;) ~ 0, to
estimateh.
Foreachk = 1,...,27~1, we havejia, 1 = s; ' andé3, | = 2(d]~*)?, which leads

us to our final regression model
2(di ) = h(s] ) + e (5.5.26)

In other words, we estimate from the finest-scale Haar smooth and detail coefficients of
(X5)?_,, where the smooth coefficients serve as pre-estimatgg ahd the squared detail
coefficients serve as pre-estimatesrpf

The unknownh is restricted to be a non-decreasing functionuofind is estimated
from the regression problem (5.5.26) via least-squardsngoregression, using the ‘pool-
adjacent violators’ algorithm described in detail in Jdbne & Silverman (2005a). The
resulting estimate, denoted here hyis a non-decreasing, piecewise constant function of
.

The DDHFT is performed as with the HFT above, except thagplacesh.

Applications using the DDHFT can be seen in Motakisl. (2006) where the DDHFT
is used on microarray data and in Chapter 6 where the numleatifion casualties in Iraq
is estimated. Modifications to allow negative data for boffiTHand DDHFT are shown
in Chapter 7, whereas in Chapter 8, we investigate a maxinketihlood approach to the

Haar-Fisz transforms.
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A further application of the HFT is described by Fryzlewigizal. (2006), where the
variance of a time series is estimated and used within a tatiisary model. Forecasting
using the model is also discussed and empirical results sfiged performance, compared

to other well known models.

5.5.6 Recent Work Generalising Fisz Variance Stabilising lansforms

Recently, Jansen (2006) has extended the ideas of the litzardhsformation for smooth-
ing Poisson data. The transform can firstly be seen as anséxteto the Haar-Fisz trans-
form, modified so that in the variance stabilising step, ayify of wavelet transforms
can be used (with the notion that the coefficients are b&agssianisednstead of vari-
ance stabilised). Incorporated into the transform is astiokling step: a level-dependent
threshold is applied to the coefficients before being miigtipby the Gaussianising coeffi-
cient to return noise-free wavelet coefficients. The inzdransformed coefficients are then
considered an estimate of the Poisson intensities. A neve®ary thresholding scheme,
specifically for Poisson data is incorporated into the @iéstep of the procedure.

In simulations, the transform was shown to have good pedonma, in terms of the mean
square error compared to the Haar-Fisz and Anscombe trametions. The transformation,
however, requires the data to be Poisson and hence can bedvéesia generalisation of the
Haar-Fisz transformation. In the Haar sense it is similgpeddorming the HFT but after
the wavelet coefficient are variance stabilised, they amestiolded to remove noise. The
inverse stage of the transform thus produces denoisedsittastimates. The thresholding
step could be replaced with a different method.

Fryzlewicz (2007) defines a ‘wavelet-Fisz’ transformatfon Poisson data and a data-
driven wavelet-Fisz transform for when the distributiorthaf data is unknown. These trans-
forms either use the known mean-variance relationshipnaesiimation via a Nadaraya-
Watson estimator. A thresholding step is also suggesteldinnihe methodology which
uses the estimated variance and local means of the data ttoresgtiolding levels (for the
decomposed wavelet coefficients).

Similar to Jansen (2006) the transform can be adapted fofaamiyy of wavelet, and

when the distribution is known (and Poisson) and the Haareleavs used, the transfor-
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mation reduces to the HFT. In contrast to Jansen (2006),ith@fthis transformation is
variance stabilisation, and the data-driven version otitauesform allows a greater degree
of flexibility in assumption for real data.

The transformation is shown to perform well at estimating timderlying intensity of
signals drawn from the Blocks and Bumps signaithout knowingthe original noise dis-

tribution.
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Chapter 6

Estimating the Intensity of Conflict

In Iraq

6.1 Introduction

6.1.1 Background

This chapter addresses the question of estimating theritersity of coalition conflict, in
terms of coalition deaths, in Iraq since the current conflegan on 20th March 2003. The
chapter is based on the paper by Nason & Bailey (2008).

Generally, a large proportion of statistical work is comeat with both accurately quan-
tifying mortality and also the reasons and causes for suatatity, for example, epidemi-
ological studies. The work in this chapter focuses delitedyaon estimation of the true
intensity but doesot consider the rights and wrongs, or causes, of the conflif.its

Our primary data set consists of the number of deaths oftmalpersonnel. The ex-
istence of such data raises extremely important questmme Yariety of concerned parties
including the military, the respective governments, thegbe of Iraq and people from coali-
tion countries. For example: is the ‘true’ intensity ins®®, decreasing or did it stay flat?
Or, did the true intensity increase or decrease during icedifferent periods of political
instability? As the Irag Body Count websitevpw. i r agbodycount . net) points out:

“Knowledge of war deaths must be available to all”.
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Why consider this problem? Since the conflict started in 288&ral websites have
appeared with the laudable aim of tracking the number oftddatthe conflict (for example,
www. i casual ti es. org,ww. i ragbodycount . net). Some of these sites provide
graphs showing the raw data but also estimates of the ‘uidgrmean’. Unfortunately,
most of these estimates are not very good, primarily bectinesedo not take into account
the distributional properties of the data. In particulagde estimates do not take account
of the fact that the variance of the data depends stronglhemtean. We later show that
the number of deaths exhibits a clear non-decreasiagn-variance relationship/Ve have
obtained our data fromww. i casual ti es. org.

Our primary concern is to get good estimates of the undeylgigath intensity. We con-
centrate on the recorded number of deaths of coalition sepersonnel which are accu-
rately recorded by the military and, hence, not subject tasaeement error (although the
record does not include those ‘missing in action’ but theselmers are extremely small:
four unaccounted for up to 2nd July 2007, CNN Website (200A)s0, althoughevery
death is one too many, the actual number of recorded caaliteaths per day is small in
statisticalterms. Hence, as with any low intensity count data, it is fistieal challenge to
estimate the underlying intensity.

A related problem, which is of great concern and importaieehe number of non-
coalition deaths stemming directly or indirectly from thanflict. We do not analyze these

here because:

1. Controversially, non-coalition deaths are not offigiakcorded by coalition forces,
see Robertet al. (2004). So, at best, the number of such deaths are themselves
estimated by external agencies, typically through medgiants. These are subject to

measurement error which requires a whole set of new techsiqu

2. As also highlighted by Robertg al. (2004) the number of non-coalition deaths is
much higher than the number of coalition deaths. With highrigity count data a
‘central limit theorem’ behaviour sets in and these cased te be ‘more Gaussian’
and more standard mean estimates, as currently used by thie amel websites, work

reasonably well.
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6.1.2 Methodology

The problem that prevents us from using simple methods tmat the mean intensity of
conflict is that these kinds of small count time series dat@noéxhibit a non-trivial mean-
variance relationship as described next.

Suppose the number of deaths during weisidenoted byX; > 0. Lety; ando? denote
the (marginal) mean (or intensity) and varianceXgf We claim here that the variance is
some (non-decreasing) function of the mean. Mathematjcak write 07 = h(u,) for
someh.

The classical example of such a setup also arose in a mititariext. von Bortkiewicz
(1898) described data which counted the number of cavahlmykiled by horse or mule
kicks in 13 corps of the Prussian army. This data is presentewdern form in Andrews &
Herzberg (1985) and can be obtained online ilntbd package for the R statistical system.
For the Prussian data the classical analysis assumes thaletths,X;, are distributed
as Poisson random variables. In this case it is known thaintb@n equals the variance,
o? = u, and hence the non-decreasing functioturns out to be the identity function
h(n) = p. This distributional form appears not to be the case for thg tata as later
sections will demonstrate.

An effective approach for this kind of data is that of varalansformation. Let us
denote the number of deaths per day of coalition forces (fatroauses) by4,. The idea
is to find a transformation function of; which creates a new variable which has a rela-
tively constant variance (that does not depend on the nelablais mean) and also with a
marginal distribution closer to Gaussian. A popular andkjghoice in this instance could
be thelog transformation, or maybe the square root transformatiamé suspected Pois-
son data. A better choice might be the famous Box-Cox tram&ftion due to Box & Cox
(1964). This is described in detail in Section 5.5.2. Rettet the Box-Cox transform of
variable X is given by

{(X + )M =1}/ (6.1.1)

for A\ # 0 andlog(X + \2) if Ay = 0. The parameters;, A, can sometimes be selected by

maximum likelihood methods. However, as we shall see ini@eét2.3, the two-parameter
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Box-Cox method does not always work well (in terms of biagjarece stabilisation and
Gaussianisation), and sometimes it cannot even be caduddtall.

The main transformation method considered here ith@-Driven Haar-Fiszrans-
form (DDHFT) recently introduced by Fryzlewicat al. (2007) and described in Sec-
tion 5.5.4. This adopts a multiscale approach that has prtwde extremely effective.
Recall that the method works by estimating the mean-vagiaalationship and then stabi-
lizing the relevant time series at all scales and locatieamsilsaneously. The operation of
the DDHF transform is denoted I, where the subscript denotes that the mean-variance
function has been estimated by

There is a large literature for the analysis of time seri@stdata, for example, Winkel-
mann (2003) or see Jurgg al. (2006) for a nice review and comparison of a whole series of
techniques. We review several of these models in SectianNBos$t of these methods ad-
dress the separate issue of parameter estimation in motiah wften involve exogenous
variates and/or other time-constant parameters (e.goguesd of the constant parameter
autoregressive processes). Our goal here is differentainviie estimate the mean inten-
sity which is inherently time-varying. The other point tacad from Section 5.4 is that
much of the literature is concerned with Poisson-like respodata (maybe with over- or
under-dispersion) which exhibits serial correlation vé@sr our modelling demands fewer
distributional assumptions and hence could be applied mvately. Additionally, as shall
be demonstrated in Section 6.2.5, after appropriate meaeation the residual time series
are not autocorrelated. Hence there is a real question bgeagpropriateness of many of

the models for count data time series in the literatureHmrdata set.

6.2 Analysis of Deaths from All Causes

6.2.1 The Data

The number of deaths per day (from all causek),t = 1,...1024 from 12th June 2003
until 31st March 2006 is depicted in Figure 6.1 and a numbéatfires are apparent. Over-
all, the number of deaths per day is usually less than or @qual In fact, approximately

91% of days have 5 deaths or less. However, it can also bevalos#rat there are periods
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Figure 6.1: Number of deaths per day from all causes from Jiztie 2003 until 31st March
2006 (solid line). A marker indicating the width of 30 dayglstted on the far left of the

plot at level 15. Value of ‘off-scale’ observation is 37. Ttheshed line is a 7-day running
mean (translated upwards by 10 so that it is is not obscurdbebgiata).

where the number of deaths per day are higher, although thigig not be a large number
on each and every day during such periods. For example, tindeng of deaths on days

570 to 590 (1st Jan 2005 to 21st Jan 2005) were:
1,6,1,1,4,12,14,9,8,11,10,4,12,6,1,2,5,4,0,2,1

During this period the number of deaths per day was much hitjae usual. However, the
variationis also larger than during “quieter” periods. In other wattsvariation of the data
is related to the mean level: the higher the mean the higleerahance or a non-decreasing
mean-variance relationship. This phenomena can also leevaosdirectly in Figure 6.1.
We assume that the mean intensity (and hence the varianaeyes over the period of
the conflict. However, we also implicitly assume that theng®in mean intensity is not
too fast. Although we admit sudden changes we do not assumtiegal rapid change (that
is the mean could change suddenly, bat change rapidly day after day for a prolonged
period). We believe these assumptions are realistic butave hot tested them in any

formal statistical sense.
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Figure 6.2: All causes. Small circles: plot of estimatechilo@riances? versus local mean
i1z. Solid line : estimated mean-variance relationship fuomcti estimated using isotonic
regression on the small circles. Dashed/dotted showsiires/x andy = x respectively.

6.2.2 Estimating the Mean-Variance Relationship with DDHHA

The first step of the DDHF transform estimates the mean-vegiaelationship/.. Fig-
ure 6.2 shows the local standard deviationhsplotted against estimated local meafs(as
estimated by DDHFT) and also the best non-decreasing ftb(igoregression) is plotted
as a solid line.

It appears that the best non-decreasing fit lies mostly leatvileey = /= (Poisson-
like) andy = = (x?-like) lines (i.e.us < h(u:) < p?). Although the best-fit line does not
coincide withy = z, it is much closer to it than the = \/z line.

The prime objective of our method is to stabilise the vamaotthe transformed series
(confirming that this is performed successfully is desatilmethe next sections, particularly
model-checking in Section 6.2.5). The exact naturg isfnot of great importance here but
it is an interesting by-product which gives a general idethefmean-variance relationship.

It would be interesting to study further the propertiesipfve discuss this in Section 6.6.
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6.2.3 Estimating the True Intensity

Using DDHFT.The DDHFT takesA; into a new series by applying the operatsy to

obtaina; = F; A; anda, is assumed to be well-modelled by

ar = fi + €, (6.2.2)

wheref; is the transformed signal ang is distributed as iidV (0, #2). It turns out, as we
shall verify later, this model fot; is a very good one for our data.

Our primary aim is to obtain good intensity estimates. Sheaathan apply a single
smoothing method to the DDHF-transformed data we appligdrak three of which are
listed in the Appendix B.1 (two wavelet shrinkage ones ltoe51 and S3, and one local
kernel regression one labelled S2). After smoothing weyaihya inverse DDHF transform
to obtain an estimate in the original data domain. Figuresbdvs our 3 smoothing methods
as applied tad;. Roughly, all estimators show more or less the same, althtlugre are
some differences. From July 2003 until about January 208 thas been a slow rise from
about 1.8 deaths per day to 2.8 deaths per day and since thesiiredand plateau at 2.5
deaths per day. The estimators are flexible enough to datest sharp rises in deaths
during January 2004 (large protests for direct electidiasd, June 2004 (power transferred
from coalition to Iraqis) and smaller peaks centred aroate Jan 2005 (Iraqi election 30th
January 2005, also this period has single deadliest dayofaition since the war began),
late Mar 2005 (Iragi assembly meets for the first time), eArhg 2005 (Iragi constitution
drafted), early Oct 2005 (Iragi voting on constitution) date Dec 2005 (Parliamentary
elections held).

The reader can make what they will of the intensity estimatéswever, ouropinion
is that, although the mean intensity for all causes of dea#s scillate, there is a trend
upwards from the beginning of the series until about Jan@86b and then the intensity
levels off and then a slight decrease to another plateauoat dione 2005.

Using Box-Cox.The one-parameter Box-Cox transformation, (6.1.1) with= 0 can-
not be used as, obviously, the number of deaths on a givenatelgeczero antbg(0) is not

defined. A popular recommendation in this case is to apply-8ox to, e.gl + A; but then
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Figure 6.3: Several estimators of the meamef Method S1 (solid line), S2 (dotted), and
S3 (dashed). Original; sequence is shown in grey. The mean of the whlsequence is
shown as a horizontal solid line.
one must ask the question why 1? This then leads onto use tfithparameter Box-Cox
transform (6.1.1). Unfortunately, for our data, and alssitnations of this kind it is well-
known that the likelihood is/can be unbounded and sensiolapeter estimates are difficult
to obtain, see (Atkinson, 1987, 9.3). So generally, we daisetBox-Cox here. The popular
choice ofl + A; wastried but resulted in poorer variance stabilisation andsSeunisation
properties than the DDHFT as judged by Breusch-Pagan tadt&amogorov-Smirnov
tests respectively. Additionally, one often pays a biasatigrwhen using transformation
methods. Both Box-Cox and DDHFT methods incur a penalty lreibias associated with
the DDHFT is, overall, dramatically less than with Box-C&ee Appendix B.2 for some
empirical bias calculations that demonstrate this gootbpmance. Theorem 3 from Fry-
Zlewicz (2007) shows that the DDHFT procedure, using a Na@dakVatson estimate @f
is asymptotically unbiased.

Running MeansSeveral websites use running means to generate estimatas often-

sity. We described running means in Section 5.3.2. RecatIrttathematically, the running
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mean at time is given by:

b
re=>b"" Z Attio b2 (6.2.3)
i=1

whereb is the number of observations used to form each local meamahdwidth, andz |
is the largest integer less than or equaktoThe [b/2] term in (6.2.3) causes the running
meanr; to be computed on a ‘window’ of observations centred4grof lengthb.

The dashed line in Figure 6.1 shows a 7-day running mean é#dthime series. Itis
extremely variable compared to the estimates in Figure 6.3.

One problem with running means is deciding on how to chooseniindow widthb.
Most websites choosietoo small which results in an extremely variable estimaie car-
tainly of little use in estimating the underlying intensitAnother problem is that thé
parameter is global and does not adapt to local signal ctesistecs. If we chose the win-
dow width well for one part of the series it would almost ceiabe wrong for another part.
In this respect the wavelet shrinkage and local kernel shivogthat we use are superior. A
third, and serious problem for this kind of data which extsilnion-constant variance, is that
the estimate itself is more variable in areas of high valitghi— this can be clearly seen in

the dashed line in Figure 6.1 (and is also demonstrated itdBee 3.2).

6.2.4 A Bootstrap Test for Variance Stabilisation

Before we proceed with model checking, we suggest a new toapttest for variance sta-
bilisation. However, as will be shown, this test does notqrer well compared to the
Breusch & Pagan (1979) test for heteroskedascity.

Briefly, our test operates in the following way.

1. Select a sample of consecutive points from the sighalcentred on some random

point ¢, with random lengthl, > 20, L even.

2. Split the sample from 1. about its centre into two equallgd parts. Perform Mood'’s
two-sample test for a difference in scale parametep®(. t est in R, see Conover

(1971)), and record thg-value for this test.

3. Repeat 1. and Zisearch= 250 times and take the median of thevalues. This is the
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test statistic.

4. Repeat 3. Bsims- 99 times but each time on a different random permutation of the

initial series,A;.

5. Compare the test statistic in 3. with the bootstrap sitiaria in 4. to obtain an overall

p-value for the test.

Essentially this test works as follows. If the variance4ef denoted bys? is constant. then
permuting the values will have no effect on the distributafrthe test statistic calculated
in 3. If the variances? changes over time then thevalues from Mood's test in 2. will
be small. Likewise, the mediamvalue as computed in 3. will also be small. Thus, if
the test statistic is large compared to the bootstrap stinanlawe conclude thatl; has a
non-constant variance.

Note that we assumed earlier that the mean intensity wouldexsubject to prolonged
periods of rapid change. If we did not assume this then longg® of rapid intensity

change could not be detected by our test.

Comparison with Breusch-Pagan Test

We generate data to test both our bootstrap test and thedBr&agan test for heterogeneity.
We first generate data from the Gaussian distribution oftfreB2 with zero mean and unit
standard deviation. We then replace the fagtoints of the data with new values, again
drawn from the Gaussian distribution, but with standardiat®n 2. We varyk to take
values 16, 32, 64, 128 and 256 amndanges from 1 to 3 in increments of 0.1. For each of
these sequences, which are known to have a non-constaahe@riwe measure the power
of the tests, that is, the number of times they correctlytifiethe variance as non-constant.
For each value of ando we generate 100 sequences and take the mean of the size.

For each valué, we plot the power against the valuecond compare the effectiveness
of the two tests. Figure 6.4 shows the power for the testsdbresk = 32 andk = 64
respectively. For smallek, the bootstrap test has a poorer performance and for larger
k (i.e. > 64) the bootstrap compares more favourably. Further, ingrgabe variables

within the test, such as the sample sizethe number of iteration®gearchor replications
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Bsims, are likely to improve the performance for smaklleHowever, this will increase the
computational time for the test. We therefore choose noséotie bootstrap test to analyse
the effectiveness of the DDHF transform for the Iraq data iasttad use the Breusch &

Pagan (1979) test.

6.2.5 Model Checking

We now consider the statistical propertiesfyfand the DDHF-transformed versiagn Our
hypothesis is thatl; is some uncorrelated sequence with a marginal distribytomsessing
the mean-variance relationship as estimated in the pregeation.

Autocorrelation. Figure 6.5 shows several autocorrelation (acf) plots. Tis, fplot
(a.) shows the acf of the original sequenteand plot (b.) shows the same for the DDHF-
transformed sequence. There is some indication that theesegs might be autocorrelated
but one must remember that we believe that the mean of ea@s semot constant (as
it is this that we are trying to estimate). Autocorrelatiogufie 6.5.c shows the acf after
subtracting the mean estimate S3 fram It can be seen that after the varying mean has
been taken into account the acf more or less disappears.eHardave some justification
for assuming thafe, }, in the model for the transformed data (6.2.2), is uncoreelaFigure
d. shows the acfs of the equivalent of c. but in the originghdimain. The acf has almost
entirely disappeared. Hence, once the local mean has beeesstully estimated we have
evidence that the sequendg is uncorrelated.

Constant variance We tested the constant variance assumption using the Bréusc
Pagan (1979) test. For S1, S2, and S3ithvalues are 0.9, 0.76 and 0.63. Hence there is no
evidence for non-constant variance.

Gaussianity. We applied the Kolmogorov-Smirnov test to the residualsnfreach of
the fits shown in Figure 6.3. Thevalues of the residuals from S1, S2 and S3 are 0.009,
0.066 and 0.044 (herél, is the usual hypothesis that the samples are Gaussian with a
given mean and variance, estimated here by their samplesjal8o for method S2 there is
(formally) no evidence against Gaussianity. For S3 whidigsificant at the 5% level, but
not the 1% level there may be weak evidence against Gaugsikor S1 there is evidence

of non-Gaussianity. All of these tests are sensitive to tleamremoval. It must also be
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Figure 6.4: Power of the Breusch-Pagan (solid line) and dtmdirap tests (dashed line) for
Gaussian data, mean 0 and standard deviation 1, with mogifiets of standard deviation
o. Top: 32 modified points. Bottom: 64 modified points
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Figure 6.5: Clockwise from top left: autocorrelation fuoets of (a.) the number of deaths
due to all causes4;; (b.) a;, the DDHF transform of4;; (c.) a; minus signal estimate S3
(below); (d.) A; minus signal estimate inverse DDHF-transformed S3.
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Figure 6.6: Density estimate of residuals from S1 fit. Solidsiduals using DDHFT.
Dashed: residuals using Box-Cox.

remembered that the prime objective of variance staliisas to make variance constant
and Gaussianisation is only a secondary effect (that is Wwayonstant variancevalues
above are so much better).

Having said that, the DDHF-transformed variates are mucter@aussian than those
produced by the Box-Cox transforms that we tried. For examgbe Figure 6.6, which
shows the density estimates of residuals from the S1 fitgusith DDHFT and Box-Cox
transformation methods. The Box-Cox residuals are cldanypdal. The DDHFT residuals
have a ‘shoulder’ at about -1.5 but the density’s symmetiyeiser (so, roughly speaking,

more Gaussian looking). Similar pictures were observeah fitee residuals of S2 and S3.

6.3 Analysis of Deaths from Hostile Actions

Figure 6.7 shows the number of deaths from hostile actioh&ghwe denote by, for the

same date range as for the deaths due to all causes.
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Figure 6.7: Number of deaths per day resulting from hostkoa from 12th June 2003
until 31st March 2006. A marker indicating the width of 30 day plotted on the far left of
the plot at level 15.

6.3.1 Estimating the Mean-Variance Relationship

As in Section 6.2.2 the first stage of the DDHFT algorithm isg¢timate the mean-variance
relationship. Figure 6.8 again shows the estimated lo@aldsird deviationsg; plotted
against estimated local mearis,and also the best non-decreasing fit (isotonic regression)

is plotted as a solid line. Once more the best non-decredisisgloser to they; = z line.

6.3.2 Estimating the True Intensity

We again use the DDHFT and transfori to a sequencg,. After smoothing using meth-
ods S1, S2 and S3 we obtain estimates as shown in Figure 6@differences between
Figures 6.3 and 6.9 show that the deaths in Feb/Mar 05 wegelyadue to non-hostile ac-
tions as the second peak around that time is missing fronr&§@. Referring back to the
original records confirms that many non-hostile action leaiccurred around that time.
Further analysis of the differences between non-hostitk laostile deaths is presented in
Section 6.4.

The estimate of hostile death intensity shows a decline frain 2005 to July 2005
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Figure 6.8: Hostile causes. Small circles: plot of estimdébeal standard deviatiody, ver-
sus local meany,. Solid line: estimated mean-variance relationship fuorcti estimated
using isotonic regression on small circles. Dashed/dattenivs linegy = /z andy = =

respectively.
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Figure 6.9: Several estimators of the mearHpf Methods S1 (solid line), S2 (dotted), and
S3 (dashed). Originali; sequence is shown in grey. The mean of the whélesequence
is shown as a horizontal solid line.
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before another increase begins (apart from the extra peakall deaths” series also shows
a decline). During this period there was a increase in thebaurof terrorist attacks upon
Iraqi citizens (Jan 2005: Iraqi elections held; Feb 28th528&w the largest number of Iraqi
deaths in a single incident; Apr 2005 saw selection of IragsRlent and Prime Minister

“amid escalating violence”, BBC Website (2007)).

6.3.3 Model Checking

Similar model checking activities were performed for thattis from hostile causes time
series. The acf plots were not noticeably different from glhatterns seen for “all deaths”
shown in Figure 6.5.

For constancy of variance the Breusch-Pagan test indicitedg non-constancy of
variance. On further examination we believe that this is @uthe almost zero count at
the very beginning of the series (around July 2003 in Figui®.61f we omit the first
30 observations in the Breusch-Pagan test thempthaues indicate no evidence for non-
constancy of variance. (Thevalues for S1, S2 and S3 are 0.08, 0.14 and 0.1 respectively)

For checking the Gaussian nature of residuals the Kolmag8roirnov p-values for
the residuals for S1, S2 and S3 were 0.004, 0.04 and 0.01n,addctly non-Gaussian at

the “5% level” but, for S2 and S3 at least nob non-Gaussian!

6.4 Differences due to Hostile and Non-Hostile Events

In this section we make use of the S2 kernel estimates fontkasity of deaths due to “all
causes” and hostile causes (the results were similar wharseegthe S1 and S3 methods).
Let us denote the mean intensity that we estimated in Seétdror all causes by
and the mean intensity that we estimated in Section 6.3 fetilaodeaths by (these
were plotted as lines S2 in both Figures 6.3 and 6.9 respdgtiviFigure 6.10 shows both
estimates plotted on the same plot. Overall, on most oagasilarge “all causes” intensity
is associated with a large “hostile” intensity. Howevegrthare occasions when the “all
causes” exceeds the “hostile” intensity. In particulagréhis a big hump during March

2005 which appears to be due to entirely non-hostile causes.
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Figure 6.10: Time series plot @f (solid line) andi:!” (dashed).

Figure 6.10 raises the following question: is the intensityon-hostile deaths related
to the intensity of hostile deaths? For example, one mighktbf several potential hy-
potheses: more ‘accidental’ deaths occur during periodatiased hostile stress? Or more
‘accidental’ deaths occur when there is less concern abeuidstile threat. Or some other
relationship might hold.

A plot of the numbers of deaths (tklata), A; — H; versusH; does not reveal much due
to the noise in these processes. Figure 6.11 shows a gigt-efi/’ versusi!? for each time
point. There is evidence of a slight negative correlatiorfgct, numerically the correlation
is -0.24). The dots in the bottom right hand of the plot are uaree separate periods in
time and the spikes to the top and extreme top-left are bdiikidual and separate periods.
Hence, the tentative conclusion is that fewer accidentafhdeoccur when the hostile threat
is greater. Further, it must be the case that the smaller aupflaccidental deaths is not just
because largarumbersof coalition forces are involved in battle as the numberslived in
these skirmishes are relatively small. We propose that saiher less direct mechanism is
at work. For example, it could be that in times of known highestile threat that people

are more vigilant and less subject to non-hostile actiorthdea
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Figure 6.11: Plot ofia — 7 versuspifl. (Note that six values whergf — il
are slightly negative are omitted. The negative values to tlecimal places are
—0.12, —0.06, —0.06, —0.05, —0.05, —0.03.)

6.5 Recent Work

Recently, Spirling (2007) suggested using reversible jMagov chain Monte Carol (RIM-
CMC) techniques to investigate possible ‘jumps’ in the nemtivilian casualties, where
the overall rates of attack appear to change. This techhigs¢he advantage that estimation
of the actual number of deaths is not required so they areagetfwith the problems asso-
ciated with such a measure. The paper thus considers theefiey of attacks, rather than
their actual size and uses data frewwv. i r agbodycount . or g to obtain aminimum
possible death toll (and avoid any possibility of over-ding).

The work attempts to answer the following questions: How ynamange points oc-
curred? If this number was knowwhendid they occur? And finally, if change points and
dates were known, what were the effects? The number of pigiaissumed to be four and
this is used to discover when the jumps occurred. A compassth events in Iraq, as well
the deaths per day before and after each ‘jump’ are used gestigossible effects of these
changes.

The author gives a 90% highest posterior density (HPD) ofdnge of dates at which
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the jumps occur. This range for the first two jumps cover agaedf over 9 months each.
Also presented is a plot of the change in rates of casualigence over time. The large
range in dates when the jumps occured, plus a fairly flat fatbange in casualty incidents
suggests the notion of four jumps is perhaps unwise. Thigdingp is stated as occuring on
26 January 2004. During this time, our data shows a large giesmkime of protest for direct
election. Itis feasible that the two data sets are linkedvemduggest that their ‘jump’ point
during this time is caused bypeakin the intensity, rather than an overall increase.
Regardless of the interpretations of their results, thekypoesents an interesting alter-
native to estimating the actual number of deaths. Similardik in this chapter, trends and
real life events are used to analyse results. We briefly sigggensions of their methods,

in relation to coalition deaths, in the next section.

6.6 Some Interpretations and Next Steps

In this chapter we have proposed an analysis of the numbezaths of coalition personnel
due to both “all causes” and hostile action during the curheg conflict. Our main aim
was to supply good estimates of the mean intensity for botthede time series and to
improve on the highly variable estimates presented on warieebsites computed using
simple running means. As described in the text above, ajinascillatory, the mean level
of the conflict intensity increased until about January 2@0&n leveled off until about June
2005 and then underwent a slight decrease and a furtheigwaf until the end of the
series.

We also showed that, for both these data sets, the marginahga of the series is
approximately equal to the square of the mean of the seriddgs i in contrast to the
classical ‘Poisson’ military example due to von Bortkiew{d898) and exhibits a greater
degree of variability at higher intensity levels.

Another, more tentative, conclusion is that the intensitynan-hostile deaths is in-
versely related to the intensity of hostile deaths. Howetes conclusion should be sub-
jected to further scrutiny.

Further technical observations are that the DDHFT metlatullites (and Gaussianises)
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the data well and better than the Box-Cox method with a ‘papydarameter o\, = 1
for data that contain zeroes. It was not possible to find g@odrpeter values for the two-
parameter Box-Cox transformation as the likelihood wasounlded. We also tried AVAS
due to Tibshirani (1988) but did not get good results and sawaot report them here
(using theavas() function from the packagacepack() in R).

There are many avenues for further investigation in thia.altevould be interesting to
identify and study the theoretical propertiesioboth to enable the construction of confi-
dence intervals and also to understand the robustness pfdbedure and implications for
the subsequent intensity estimation problem. This artitdées use of isotonic regression
which itself confers a degree of robustness and localisatiben compared to, e.g. para-
metric regressions. It is also important to note that focite data the number of repeated
points at a given, location is usually relatively high so outlier identificatiis often easier
when compared to the common situation of one observatioadcts.

Another possibility would be to obtain forecasts of the fatlbehaviour of the time
series, both of the future mean intensity and also its findvalive (to discover whether the
conflict was improving or deteriorating).

One might also wonder whether it would be more worthwhilettiolg death rates rather
than the absolute numbers. In particular, areas with femeps, more insurgents, or dif-
ferent operational policies might influence death ratesigantly. One problem is that
acquiring such data is extremely difficult.

The RIMCMC method of Spirling (2007) could be applied to thelition death toll to
pick out points at which the intensity increases. Althougtineation of the numbers is not
an issue with our analysis, the results would be of intenegtsamilar areas of jumps within

both datasets could provide links between coalition anifianivdeaths.
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Chapter 7

Haar-Fisz Transforms for Negative

Data

7.1 Introduction

Chapter 6 showed how the data-driven Haar-Fisz transfomieaised to stabilise variance
and Gaussianise count data, where the mean-varianceonslkaith is estimated from the
data. The Box-Cox transform was also considered for the tagkot used due to problems
of choosing the transformation parameters and often (asheasase for the Iraq data), the
maximum likelihood can be unbounded.

In this chapter we introduce the central England tempegadnomaly (CET) data set;
an annual temperature record of various locations in thelt$kecords date back as far as
1772 and is considered to be an accurate measurement ofl aemyerature. As such, it
is used to analyse the trend in temperature change by estiraat underlying intensity for
the data. We demonstrate how existing methods to estimetd wising a running means
estimator is not suitable as it does not take into accountumuerlying mean-variance
relationship within the data.

We investigate this mean-variance relationship and pepssg a variance stabilising
transform before intensity estimation. We highlight théownded nature of the likelihood
equations when using the Box-Cox transform to stabiliseltiia, as well as the limitations

of the data-driven Haar-Fisz transform (DDHFT).
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We then outline modifications to the DDHFT so that it can balusestabilise the vari-
ance of the CET data. We create different transforms for ithemmean-variance relation-
ship is known and unknown, and apply the latter to the CET edtabilise its variance. We
can then use estimation techniques more suitable for thanear stabilised data to obtain

new estimates of the underlying trend in temperature change

7.2 Central England Temperature Data 1772—-2006

The central England temperature (CET) data set is the longstsumental record in the
world and consists of temperature measurements taken framughly triangular area of
England extending from the Lancashire plains in the nodt,andon in the southeast and
Herefordshire in the southwest. It is described in detaiPlaykeret al. (1992) (which is
based on work by Manley (1953)). The CET data is taken fromcaession of observing
sites and has been adjusted to remove heterogeneitiesdretiata sets, caused by changes
in exact location and methods over time. The final data seitiwis commonly scaled to
be relative to 1961-1990, is referred to as ‘anomalies’.

The CET data has been used in many climatological studiegul&#y updated plots of
the data are published online as part of the Met Office Hadkmyti@ observation datasets
athtt p: // hadobs. nmet of fi ce. conf hadset /. The raw data, which includes daily,
monthly and seasonal observation values can also be dadaddeom the website. Figure
7.1 shows the annual mean ‘anomalies’ from the CET data et £772—2006, plotted in
grey.

A much used smoothing technique for meteorological daténisrbial filtering, as de-
scribed in Aubury & Luk (1995) (and detailed in Section 5)3.Z7he 21-point binomial
filter has been used to smooth the CET data and is publishedtartte online plots and
in various other publications. This binomial filter, applito the CET data can be seen as
the black line in Figure 7.1. The filter takes a weighted mefaa ‘window’ of data which
surrounds each point. Questions arise over the values ofi¢ights and the size of the
window to use, and certain choices of the global parametaysresult in poor performance

over some areas of the data. A further problem, as with tleededa of Chapter 6, is that
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Figure 7.1: Central England Temperature 1772-2006 (greigh, 21-point binomial filter
(black).

the estimate itself is more variable in areas where the deghigh variability, as mentioned
in Section 5.3.3.

Many smoothing techniques assume a level of Gaussianityimihe data and thus
make assumptions about the independence of a mean-var&atienship of the data. We

next investigate a putative mean-variance relationshiphi® CET data more detail.

7.2.1 Analysis of Mean-Variance Relationship

We applied the technique of Section 5.5.5 to estimate theawk mean-variance relation-
ship () of the CET data (using finest level Haar wavelet coefficigatproduce ‘pilot’
estimates of the mean and variance). The estimates areckastsmall circles in Figure
7.2. For negative means, the correlation between mean aiathe@ is—0.062. For positive
means this value is 0.40 and when the largest 5 mean valuesnited, this rises t0.54.

We further investigate the complexity of the mean-variarelationship found using
Haar coefficients as estimates of the mean and variance. &\ simoothing spline (using
the functionsnmoot h. spl i ne in R) as a basis of this further investigation. For the mean,

we smooth our data using a cubic spline and take the smoo#ied to be a local estimate
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Figure 7.2: Central England Temperature data. Plot of pdaance 5?2, versus pilot mean,
11;. Dashed line: estimation of mean-variance function usibiHBT. Dotted line: mean =
0

of the mean. An estimate of the local variance is achievedrbytfiking the logarithm of
the squares of the data. These are then smoothed usingssalidethe logarithm inverted
to give the local variance approximation.

The plot of estimated mean and variance is shown in FigureTh8 spline estimation
clearly shows a decreasing mean-variance relationshipggative means (with a0.67
correlation). For positive means, (in particular thoseatge then 0.5), there is a much
smaller amount of data and there appears to be a positive-vag@mce relationship (with
a0.86 correlation for means greater then zero). This, howevey,eaaused by a boundary
effect of the spline estimate. The plot also suggests thathange from a negative to a
non-negative mean-variance relationship might indeedraaica point greater than zero. As
the data is limited, we can not ascertain from either estmdisplayed in figures 7.2 and
7.3 the nature of the mean-variance relationship for pesitieans. We leave and additional
investigation of this as future work and assume the tramsiiccurs at mean zero.

Before smoothing the data, we wish to first transform the datader to stabilise the
variance which we have shown seems to be dependent on the Measttempt this with

both the Box-Cox transform, and the data-driven Haar-Fezsform to highlight problems
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Figure 7.3: Spline estimate of local mean and local variance

which arise in their application and to motivate modificaiof the DDHFT.

7.3 Existing Variance Stabilising Transformations of the (ET

Data

Box-Cox Transform. To highlight problems with the issue of choosing suitableapzeters
for the Box-Cox transform, we show results from applying imauxm likelihood estimation
Box-Cox techniques to the CET data set. As we have negatiee Wa have to use the two
parameter Box-Cox transform. As detailed in Section 5¥wesimplify the calculations by
Gaussianising the transformation. Maximising the liketii function becomes equivalent
to minimising the the residual sum of squaf@g\, \2) as defined by (5.5.22).

Atkinson (1987) describes how plots B{ \1, \2) are not sensitive to the behaviour as

A2 — -Ymin» SO We instead work in the scale defined by

Whene = 0, 10° = 1 and)y = 0. Fore > 0, Ay > 0 ande < 0, Ay < 0. Furthermore, as
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Figure 7.4: Residual sums of squar&\,, ) for the CET datas range is equivalent to
values of)\y between -2047.95 and 2.05.

€ — —00, A2 = Ymin-

Note thate can take any real value and that fogreater than zero, positive values)af
are obtained. Also, .

Optimal parameters are thus found by minimising the repaterised (Gaussianised)
residual sum of squard®(\;, ¢) of the transformed CET data. The contour ploftif\;, )
is shown in Figure 7.4. For the results plotteds (—12,2) which corresponds to values of
A2 between—2047.95 and2.05 (—ymin)-

The contour plot shows the unbounded behaviou ©f;, A2). Itindicates thaf?(A;, A2)
approaches a minimum ag& — —Yni,- We showed at the end of Section 5.5.2 how
R(A1, A2) will get smaller as\s — —y,,;; and thus for the CET data, no clear transfor-
mation parameters can be found.

Data-Driven Haar-Fisz Transform. We next use the data-driven Haar-Fisz transform
(with ~ unknown), as described in Section 5.5.4, to transform tle alad attempt to sta-
bilise the variance. Figure 7.2 showed the pilot mean-uagaestimates of the CET data
from the DDHF transform. The estimate of the mean-variancetfon B, using isotone

regression (see Johnstone & Silverman (2005b)), is shovardashed line and does not fit
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the data well as the basic DDHFT assumes that the mean-garratationship is strictly
non-decreasing.

Negative mean values and an apparent decreasing meaneerielationship cause
problems in our current estimation 6f Scaling the data by-1 could ensure a positive
mean-variance relationship (if indeed the relationshigdsreasing throughout the entire
data) and a constant could be added to the data to ensur&iposithese would both add
further parameters and questions could be raised as to les& Hre appropriately selected.
Regardless of these issues, if the mean-variance relhipissnot monotonic, as is the case
with the CET data, the DDHFT as it stands is not suitable.

To cope with the mean-variance behaviour exhibited by th& G&ta, we next propose

modifications to the DDHFT.

7.4 Modifications to Haar-Fisz Transforms for Real Data

The Haar-Fisz transformi() known) and the data-driven Haar-Fisz transforid) (un-
known) are described in Section 5.5.4. Both require pasitigta and assume the variance
o? to be a non-decreasing function of the mean We next detail modifications to both

transformations so that they are suitable for use with bo#itppe and negative data.

7.4.1 The Negative Haar-Fisz Transform for Poisson Data

Here we outline our methodology which is a modification toltsar-Fisz (HF) algorithm,

for Poisson data, as described in Fryzlewicz & Nason (200¥B.model our datg; to be

such that
Avle=A
s if y € Z\ {0},
P(Y =y) = 2[y|! (7.4.2)
e, ify=0
for A\ € 0,1,.... Therefore the probability af; taking a negative value, sayy, is equal to

the probability of it taking the positive valug
The Haar-Fisz transform for such real-valued (potentiaéigative) data denoted by the

vectorv = (vg, 1 . ..,vn_1) for N = 27 wherev; € R for all 4, is defined as follows.
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1. Lets{ =wv;fori=1,...,n.

2. Foreachj =J —1,J — 2,...,0, recursively form the vectors, d’ andt’:

gt + Sj+1 gt gl ]sj+1 |+ ’S]-f-l
j_2k1 ]_2k1 2]9.]: 2k—1 7.4
53, = 72 dy, SR ty, B E— (7.4.3)
and immediately defin& by:
. 0 if =0,
f,g = _ : (7.4.4)
d{c/\/g otherwise
for k =1,...,27, noting that ifs}, " |, s3;" > 0, thent], = s] in (7.4.3).
3. Foreachy =0,1,...,J — 1, recursively modifys/+1:
sitly = sh+ 1l i = st — £ (7.4.5)
for k =1,...,27, and store the vectdf for use in the inverse of the transformation.

4. Setu=¢’.

This procedure differs from the existing HF methods by defjrihe coefficientd’.

This is the local mean of the magnitudes of our data, which secta stabilise the variance.

For strictly positive datat/ is the same as/ (which is then also equal to theagnitudeof

the mean).

Taking absolute values removes information about the sigheodata — information

which is needed when inverting the transform (specificalhew inverting (5.5.25)). We

next give a numerical example to illustrate these problems.

7.4.2 Numerical Exposition

For clarification of the above procedure, we consider a sfiraglexample with only two

data points. These are general points from a vector of datzaud be from any level of

the recursive transformation.
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Let the values of these two data points be

sézil = -2 and s%;rl = 5.
Then from (7.4.3) we havei = 1.5, d{; = -3.5 and t{; = 3.5. From 7.4.4 we get

5=~V

We then form the Haar-Fisz transformed variables using §it@lget

: 3 7 3 [T
st = 5 \/; ~ 040, s = 5+ \/; ~ 3.37.

In the context of a larger data set, we would expect the dakeve a stabilised variance
and to be more ‘Gaussian’.

Common practice would be to smooth this transformed datatled to invert the
smoothed values to get back to the original data domain. tdusee what happens’, we
intuitively follow a similar method to the inverse Haar-Fisansform to invert the data.

Say, for example, we used a smoothing technique to obtaimagsts of the underlying

intensity of our transformed data as
g =05 and &' =35 (7.4.6)

We then wish to invert the data back to the original data dansai we retrace our steps

backwards using the values in (7.4.6) to first produce

~j41 ~j41 ~j41 41
. Sor_1 1+ S s 85 1 — 8
& — 221 2k _ 92, i P2k—1 2k _ ~15,

k- 2 k- 2

which is undoing the effect of (7.4.5).
We next undo the effect of (7.4.4) (the ‘Fisz’ step), to obttie detail coefficients,
defined by

dl = fgﬁ. (7.4.7)
This, however, raises the interesting question of whiclievadf ti to use. In the above,

we imply that the original value (from the ‘forward’ transfo in (7.4.3)) is used. This is
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intuitive as we wish to get back to the original data domaihiclv this value is associated
with. However, since smoothing the data, this value is ngéorspecific to the values of

NES|

NES|
Sok—1

andi) ™" which we are using. Should we then use the updated vjuisfined by

it 41
|85 _1| 4 18, e

=
k 2

Using either of these values fomwould not guarantee that this step is invertible. We return
to the numerical example to explain this point further.
Using the original value of’, which we now denote using the further subsct{gt we

obtain

d) = —1.5v/3.5,

from (7.4.7). We then undo the operation in 7.4.3 to obtainssnoothed estimate of the

original data:

NES|

5 = d+d = 2-15/35 ~ —0.806,
2kt BOE (7.4.8)
gt = & —d = 2+15V35 =~ 4.806.

If we were to produce a new value bfrom this data, denoted t%, we would find that
t], ~ 2.806. We would like these values f (for I = 1,2,...) to be the same, so that
we can ‘undo’ any steps taken. We thus put our valuééoback into (7.4.7) and calculate
subsequent updates, .t/ . ....

This process can be repeated umggl = t{;lil, for somel, wherel is the number of
update iterations. It can be shown that using this iteratpgate procedureil converges

(asl — o0) and takes the values

1511, if (f7)% <3,

J
k
J
k

=4 "~ X , (7.4.9)
FiavaAr if (f7)% > 151

Proof of this convergence is given in Appendix C. It is ingirgg to note that this result

is a generalisation of the Haar-Fisz transform for posithata, as we always have that

(f)? <15,
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7.4.3 Inverse Transformation

Our inverse of the transformation can thus be summariseodllas/s:

1. Apply the Haar DWT tdl to produce(®’, f/,F' ", ... ).

2. Define:

.’ 1571, it (fi)? <15,
£J
k

J
R I it ()2 > |8
|/ tels it (fi)” = |5

3. Apply the inverse Haar DWT t§/ andfj, undoing the effect of (7.4.4) as each scale

is produced to give:

g =5+ f \/% (7.4.10)
and
gt =4 - f,g’\/%. (7.4.11)
4. Setv =¢.

7.4.4 Negative Data-Driven Haar-Fisz Transformation forh Unknown

Recall that when the mean-variance relationship is unkn@vfunction estimate can be
obtained by fitting isotonic regression to local estimatethe mean and variance to obtain
the functionh, as described by Fryzlewiet al. (2007). Recently, Fryzlewicz (2007) pro-
posed using a Nadaraya-Watson estimator for the mearaearfanction. Here, we extend
methods using isotonic regression.

We wish to fit a curve which takes account of the different beha of the function for
positive and negative means. That is, we wisto be strictly non-increasing for negative
means and strictly non-decreasing for positive means.

Assuming this behaviour is correct, we further classifydagéa into two different situ-
ations. Firstly, we may believe that the mean-varianceiogias different for positive and
negative means and hence we estimate two separate curgkdased solely on either the
positive or negative local estimates of the mean and vagianc

Alternatively, we might assume that the mean-variancetiogighip for positive and
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negative means is equal in value, but opposite in sign. Weedktimate thabsolutemean-
variance relationship and translate it for the negative meeaWe discuss both of these
possibilities next.

DDHFT2. In our first modification to the estimation step, we wish tareate the
mean-variance functioh such that it is non-increasing for negativeand non-decreasing
for positive;. We consider these as two separate functions, calteandht respectively,
which are calculated using isotone regression separateboth positive and negative;.
Our estimate of: is then defined as

h= TL_’ o <0, (7.4.12)
ht, if p; > 0.
This estimate is used as in the original DDHFT. We refer ts tmiodified version as
DDHFT2 in the remainder of this chapter.

DDHFT3. Our second method of modifying the mean-variance estimgiiocedure is
as follows. We assume that the mean-variance function wéryrg to estimate is such
that

o7 = h(|pil)- (7.4.13)

We thus look at the relationship between the absolute vditieeomean and the variance.
This is achieved by ‘flipping’ the negative estimates of treamto the positive domain, and
estimating a non-decreasing curkeas with the original DDHFT. The functioh is then

translated back to the negative domain for the correspgnuiagative means. The function

h is therefore an even function of the meanand is defined by:

h7 if i > 07

>
I

(7.4.14)
—h, if u; <O.

Where h is the mean-variance estimate from (7.4.13). We refer te théthod as

DDHFT3 in the remainder of this chapter.
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Figure 7.5: Donoho and Johnstone intensity functions kaéed to have (min, max) of
(-414)'

7.5 Simulated Comparisons

We compare our modifications to the DDHFT withunknown to the one and two param-
eter Box-Cox transform. We use the test functions as destiiiln Donoho & Johnstone
(1994) as underlying signal intensities which we corrughwioise and test our methods by
comparing how well the true underlying intensity is detdcte

The test functions used are the Bumps, Blocks, Heavisin®apgler signals, of length
n = 1024, which are linearly shifted and scaled to achieve (min, niatensities of (-4, 4).
We also modified the blocks signal to be two consecutivelggdiblocks signal, in which
the second had been scaled-by. Each signal we used can be seen in Figure 7.5.

We use the test signals above to act as different underlyoigs®n intensities\;, i =
1,...,n. Each of the signals is corrupted with noise to produce ogented sequence
vV = (v1,v2,...,v,) With n = 1024. As we wish they; to have both positive and negative

values, we define the sequence of variablesich that:

v; ~ Poissor|\;|)sgn\; ). (7.5.15)
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For each of the 4 test signals above, we carry out the follgwin

1. Create a sequence of variables,as defined by (7.5.15).

2. Transform the data using both the 1 and 2 parameter Boxtt@ogform and our two

versions of the DDHFT.

3. Take the discrete wavelet transform of the data, for eddbanbechies extremal

phase wavelets with 1 to 10 vanishing moments.

4. Use wavelet thresholding to smooth the transformed datag EbayesThresh from

Johnstone & Silverman (2005a) (as described in Sectiod)s.3.
5. Take the inverse wavelet transform of the thresholdedesszp.

6. Take the inverse of the method used in step 2.

For each signal, we then have a sequence of known intensjtedeng with our corre-
sponding estimate, which we denote Xy. The mean squared error,
N

1 2
MSE = — > (n =A% (7.5.16)

n=1

is used to compare our estimated intensities with the knawensities, the smaller the

MSE, the closer the estimate is to the ‘truth’.

7.5.1 Simulation Results

The results reported in Tables (7.1)—(7.4) are the meantandard error (SE) of the MSE
(to three decimal places) for 100 replications of the abaeegdure. For the one parameter
Box-Cox transform, the data are arbitrarily shifted to henveimum value of 1. Optimal
(or near optimal) values for the transformation paramedeesfound using the functions
boxcox. fit andbox. cox from the R packagegeoRandcar respectively. Our mod-
ifications to the DDHFT, as well as our threshold smoothinghmés use code and functions
from EbayesThr esh andDDHFmpackages in R.

Overall, apart from the Haar wavelet, there is no significdifference between the

performance with different wavelets. For all but the Bumpsad the two methods of the
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Bumps
Wavelet Family| 1 Param. B-C| 2 Param. B-C| DDHFT 2 DDHFT 3
Mean| SE Mean SE | Mean| SE Mean SE

0.609| 0.051| 0.599 | 0.053| 0.450| 0.050| |0.439| | 0.056
0.516| 0.052| 0.505 | 0.050| 0.456 | 0.064 | |0.429 | 0.054
0.502| 0.060| 0.490 | 0.058| 0.494| 0.073| |0.466| | 0.058
0.537| 0.062| 0.527 | 0.060| 0.517| 0.069 | |0.502| | 0.063
0.528| 0.058| 0.517 | 0.058| 0.500| 0.068 | |0.490| | 0.065
0.511| 0.055| 0.502 | 0.054| 0.489| 0.055| |0.486| | 0.058
0.505| 0.064 | |0.498| | 0.061| 0.532| 0.064| 0.524 | 0.064
0.553| 0.065| |0.544| | 0.064 | 0.575| 0.064 | 0.576 | 0.062
0.574| 0.068| |0.563| | 0.067 | 0.567 | 0.065 0.064
0.553| 0.060| |0.544| | 0.059| 0.564 | 0.061| 0.558 | 0.062
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Table 7.1: Mean and standard error (SE) MSE values for Bungpgls The best mean
MSE for each family of wavelet is surrounded by a box. The aNeptimal value is found
using the DDHFT3 and the wavelet with 2 vanishing moments.

Blocks

Wavelet Family| 1 Param. B-C | 2 Param. B-C| DDHFT 2 DDHFT 3

Mean SE | Mean| SE Mean SE Mean SE
0.555| | 0.162| 0.562| 0.161| 0.660 | 0.207| 0.701 | 0.202
0.844 | 0.090| 0.842| 0.090| |0.638| | 0.096| 0.642 | 0.108
0.863 | 0.081| 0.860| 0.081| |0.650] | 0.097| 0.651 | 0.093
0.859 | 0.085| 0.856| 0.085| 0.717 | 0.101| |0.716| | 0.100
0.865 | 0.090| 0.862| 0.091| 0.733 | 0.110]| |0.722 | 0.102
0.871 | 0.085| 0.869| 0.085| |0.713| | 0.092| 0.717 | 0.088
0.866 | 0.084| 0.863| 0.084 | |0.692 | 0.093| 0.693 | 0.095
0.854 | 0.090| 0.852| 0.089| |0.673| | 0.093| 0.681 | 0.090
0.848 | 0.087| 0.844| 0.087| |0.663| | 0.102| 0.666 | 0.098
0.846 | 0.085| 0.844| 0.086| 0.675 | 0.104| |0.663| | 0.097
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Table 7.2: Mean and standard error (SE) MSE values for Blaaisal. The best mean
MSE value for each family of wavelet is surrounded by a boxe dherall optimal value is
found using the DDHFT2 and the wavelet with 2 vanishing matsien
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Heavisine

Wavelet Family| 1 Param. B-C| 2 Param. B-C| DDHFT 2 DDHFT 3

Mean| SE | Mean| SE Mean SE Mean SE
0.634| 0.88 | 0.615| 0.088| |0.144| | 0.023| 0.147 | 0.038
0.345| 0.101| 0.345| 0.101| 0.114 | 0.026| |0.109 | 0.024
0.322| 0.099| 0.318| 0.099| 0.121 | 0.030| (0.113| | 0.033
0.342] 0.116| 0.340| 0.116| 0.111 | 0.032|(0.108| | 0.032
0.334| 0.102| 0.334| 0.102| 0.106 | 0.031|(0.103 | 0.032
0.332| 0.108| 0.329| 0.109| 0.107 | 0.034| |0.105| | 0.034
0.329| 0.107| 0.329| 0.105| 0.115 | 0.034| |0.105| | 0.034
0.345| 0.112| 0.343| 0.109| 0.117 | 0.030| (0.112 | 0.033
0.353| 0.112| 0.351| 0.111| 0.114 | 0.030| {0.113/ | 0.034
0.351| 0.116| 0.350| 0.115| 0.109 | 0.031|{0.108 | 0.034
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Table 7.3: Mean and standard error (SE) MSE values for Heavignal. The best mean
MSE value for each family of wavelet is surrounded by a boxe dherall optimal value is
found using the DDHFT3 and the wavelet with 5 vanishing matsien

Doppler

Wavelet Family| 1 Param. B-C| 2 Param. B-C| DDHFT 2 DDHFT 3

Mean| SE | Mean| SE Mean SE Mean SE
0.799| 0.104| 0.785| 0.103| |0.349| | 0.042| 0.355 | 0.052
0.530| 0.117| 0.537| 0.112| 0.372 | 0.050| [0.359| | 0.048
0.482] 0.111| 0.487| 0.110| 0.363 | 0.054 | [0.339| | 0.049
0.469| 0.112| 0.475| 0.109| 0.315 | 0.051|(0.292| | 0.044
0.450| 0.106| 0.456| 0.105| 0.289 | 0.045| (0.278| | 0.043
0.435| 0.113| 0.441| 0.110| 0.311 | 0.048]|0.297| | 0.043
0.453| 0.112| 0.461| 0.108| 0.335 | 0.054 | (0.313| | 0.050
0.447| 0.105| 0.454| 0.103| 0.333 | 0.053| (0.312| | 0.049
0.456| 0.113| 0.466| 0.112| 0.305 | 0.049| (0.289| | 0.040
0.442| 0.108| 0.449| 0.108| 0.294 | 0.054 | |0.276| | 0.045
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Table 7.4: Mean and standard error (SE) MSE values for Dogidmal. The best mean
MSE value for each family of wavelet is surrounded by a boxe dherall optimal value is
found using the DDHFT3 and the wavelet with 10 vanishing matsie
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DDHFT out perform the Box-Cox transform across waveletd2@lthough Bumps is good
for wavelets 1-6). It should be noted that the Box-Cox does better results for Blocks
data, when the Haar wavelet is used in the wavelet transfoihttas is the best overall.
The Bumps data produces very similar results for the diffeneethods, with the minimum
value of the MSE resulting from one of the Haar-Fisz transf®6 times out of 10, and once
with the same minimal value as a Box-Cox transform.

When comparing the two proposed methods, the Bumps sigiia isnly data where
DDHFT3 has a lower MSE that DDHFT2 over all wavelets, althotlgs difference is quite
small. For both the Heavisine and Doppler signals, only alwes DDHFT2 outperform
DDHFT3. Again, the difference in actual MSE values are madinboth having a 2%
smaller MSE. The MSE for the blocks signal is again very similvith the minimum values
showing more for DDHFT2.

As this is simulated data, it would be expected that both DD21#&nd DDHFT3 would
perform very similarly, as the noise added is symmetricalad zero. Further, given the
models, it would be expected that DDHFT3 would out performHMI2. This indeed is
the case, with the DDHFT2 having a smaller MSE that DDHFT¥ anfjuarter of the time.
An investigation of the mean-variance relationship is kegéciding which would be best

for real-life data.

7.6 Choice of Modification Method

We have produced two modifications of the DDHFT which bothuass certain behaviour

of the mean-variance functiogn When such behaviour is not known, it may be desirable to
testh to assess its ‘goodness of fit'. We devise a bootstrap teshfuice of transformation
which, under the null hypothesis, tests whether the valtiésane the same for positive and
negative values ofi;. If they are, we choose to use DDHFT3, otherwise we assume the

relationship is independent and use DDHFT2.
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7.6.1 Bootstrap Test

The test works as follows: we test the null hypothegf; positive and negative mean-
variance the same (DDHFT3) against the alternatiyg; the mean-variances are different
(DDHFT2), i.e.,Hy: model (7.4.14) is true, versd$: model (7.4.12) is true.

We denote the estimate of the mean-variance functioh fs DDHFT3, when the
negative data has been ‘flipped’ ahdor DDHFT2, when the estimate is created by con-
sidering positive and negative means separately. We fudiifine the positive and negative
components ok ash™ andh~ from (7.4.12).

Given dataX = X1, Xs,..., X, withn =27, J =1,2,..., underH, we carry out

the following:

1. Calculate the test statisti€,S(X) on dataX, as described in Section (7.6.2).

2. Perform a bootstrap simulation of the data conditioned ¢es described in Section
7.6.3) to obtain a simulated local variance estimatg, for each of the local mean

estimatesys;.

3. Repeat step 2Bsim= 1000 times, calculatinﬁ(yi) for the mean and simulated vari-
ance estimates. Calculate the test statistic uE(mg), from (7.6.17) below, denoting

the value byr'S, forb =1, ..., Bsim.

4. Compare the test statistic in step 1. with the bootstraplsitions in step 3., to obtain

an overallp-value for the test.

We next describe our test statistic and bootstrap methods.

7.6.2 Test Statistic

Given dataX = Xi, X, ..., X, (or local mean and variance estimatgs.andc;?), es-
timate (u;), using DDHFT2. In doing so, we form two separate estimatesand h*

for negative and positive; respectively. Under the null hypothesis, we assume that the
function & is an even function. That is, if we were to ‘flip’ its negativarpi~ so it took
values of positive:;, we should find thab~ = 2. Thus, if the null hypothesis is true, the

difference between these values will be small.
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Our test statistic is defined as,

n

50 = 3 (A () () (7.6.17)

i=1
which is the sum of the squares of the difference of the twioneses, at each of the local
mean estimatelg;|. Larger values indicate a significant difference betweerandh* and
the need for separate estimates.

For real life datah~ andh™ may not be of the same length due to a differing number of
positive and negativg; values. In these cases we interpolate the respeEtiacethey have

equal length.

7.6.3 Bootstrap Simulations

We refer the reader to Davison & Hinkley (1997) for furthetadls and examples of boot-
strap tests. Our bootstrap simulations work as follows.afgiven data seXt = X1, Xo, ..., X,,,
perform the first step of either DDHF transform (which is thscdete Haar wavelet trans-
form), to obtain local estimates of the mean,and variancer? Under the null hypoth-
esis, we estimate the mean-variance relationghip;) = o?, for each local estimate

i =1,...,n/2. For eachu;, we now have a known variance? and a fitted variance,

h(u;). We can thus calculate the fitted residuals as

ri = o7 — hiw), (7.6.18)
fori = 1,...,n/2. For each value ofi; we create a simulated variance, denotedrgf%/
and defined by

012 = h(u;) + T, (7.6.19)
with j randomly sampled from, ..., n/2, with replacement. We thus have a new set of

local variance estimates;? for the local meansy;.
It is possible to invert the initial stage of the DDHF tramsfiation to obtain ‘simulated
data’, but in practice we use these mean and variance estdaectly in our calculation

of the test statistic.
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Figure 7.6: Example of simulated Poisson data.

Note that if the fitted variance is close to the original vacethen the; in (7.6.18) will
be small and the re-assignment step in (7.6.19) will catide dhange in the variance (and

thus the test statistic will be small).

7.6.4 Bootstrap Test Assessment: Test Size

We wish to assess the efficiency of our bootstrap test atifgiengt whether or not the
underlying mean-variance relationship is symmetricak ths we use simulated data sets
for which the truth is known.

We first calculate the size of the test, that is, given thatltbibution is known to have
a symmetrical mean-variance relationship, we wish to ¢aleuthe number of times the
tests reject the null hypothesis (i.e. choose DDHFT2 oveHBD3).

Our simulated data is drawn from a Poisson distribution ghethX; ~ Poi();) for
1 =1,...,256. Our\; consist of8 ‘blocks’ of data of lengttB2, each with equal intensity
A, taking the valued0,5,2,1,1,2,5,10. The first half of the data is then scaled by to
create negative data. An example of such data can be seegureKi’.6). We creatg00
such data sets and test the mean-variance relationshig aisirbootstrap test.

The proportion of times the test wrongly rejected the nulfawour of the alternative
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was0.18. This figure is fairly high considering the desired size oést twould be around
0.05. The length of the data and more specifically #iee of the blockscan results in
apparent differences between two (identically distridyteets of generated data. Over a
larger sample, two independent, identically distributedom samples should appear more
similar and our test would expected to have a smaller ‘size’.

To test this, we calculate the size of the test on the sameesequof);, but with
‘block’ size of 64 and 128 (giving sequence lengthl2 and 1024 respectively). The size
corresponding to these sequences are 0.09 and 0.02. Asexpte tests improve with

more data.

7.6.5 Bootstrap Test Assessment: Test Power

We next look at assessing the power of the bootstrap testm@tirodology involves using
estimates of the mean-variance function taken from the d&&athen change this estimate
to produce a set-up close to the original data but with an owknmean-variance relation-
ship. Starting with data with a known symmetrical meanamee relationship, we wish to
alter the data such that this relationship gradually besdnmeasingly different for positive
and negative mean values. We do this for two different metfasdfollows.

We first alter the data by adding a constant to the values fachwthe mean is positive.
This has the effect of shifting the positive part of the mgariance function to the right.
Figure (7.7) shows the mean-variance relationship of tmeilsited data from Figure (7.6).
The solid line is the estimated mean-variance function efgimulated data, whereas the
dashed line shows how this line alters for positive meangnahconstant df is added to
the positive parts of the data.

Our second method of finding the power of the test consistterirag the data in such
a way to cause some of the data to become over-dispersedisTfatthe mean-variance
function corresponding to positive means, we wish to atlierdata in such a way that for
a given value of mean, the corresponding variance is largés. do this by altering the
detail coefficients of the HWT of the data, which act as a |l@stimate of the variance.
Once altered, the transformation is inverted to obtain a seguence which is the same

for negative values, but is now over-dispersed for positi@ieies. The detail coefficients
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Standard Deviation

Estimation of local Mean

Figure 7.7: Mean-variance estimates from simulated datalid $ine: estimates using
DDHFT2. Dashed line: estimate with constant 3 added to tlsitipe mean. Dotted line:
estimate with constant 2 added to the standard deviatiome@monding to positive mean
values).

corresponding to positive means are transformed such that:

*
1 = du +c,

where cis a chosen constant. The dotted line in Figure 7 wWshao alteration with constant
2. Note that we add the constants to the estimates from DDH&T@not DDHFT3) as we
wish for the changes to be independent of the values of thatineg,;.

For both methods, we add a constant to the mean or the vanemch increases from
0 to 1 in step sizes of 0.1. For each, the bootstrap test igedaout on250 generated
data sets to detect this change and the power is calculated psoportion of times the test
successfully identifies a change in the mean-varianceaeéitip at the 5% level. The mean
size of each of these signals is 0.17 which is expected asevectadding any constant to
either mean or variance (so in essence performing the sdmdatin as in Section 7.6.4).

The power of the test for when the mean is altered can be sdegune 7.8 as a solid

line. The dashed line represents the power for the oveedispl data.
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Figure 7.8: Power of bootstrap test. Solid line: changinggmeDashed line: changing
variance (over-dispersion).

7.7 Applications to the Central England Temperature Series

Figure 7.9 displays both estimatesand for the local meanu; and standard deviatios;
estimates of the CET data. The bootstrap test statisticoeilhfluenced more by the large
number of data points close to mean zero, and less for the sparse data with larger mean
magnitude. The-value from the bootstrap test for the CET data was 0.14, stané reject
the null hypothesis and therefore the use of DDHFT3. Fronsonulated investigation into
the power of this bootstrap test on a similar sized data setwvauld expect to accept the
null hypothesis at the 95% level if either the difference ieam of the two estimates were
greater than 0.7 or the difference in variance were grehsar 0.4

In an applied sense, as the temperature deviates from tbe' ‘tae the range of values
it takes will also increase. The symmetry of the mean-vagarelationship suggests that
the rate of this variance is to an equal level, whether thep&gature is getting higher or
lower (than the base rate).

Figure 7.10 shows the CET data set together with smooth@dagss. The solid line
uses DDHFT3 and kernel regression smoothing using a loagirpbandwidth (using the

| oker n package in R. See Brockmamt al. (1993)). The corresponding values using
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Figure 7.9: Central England Temperature data. Small cirgiéot of local standard devia-
tion, 67, verses local meanj;. Solid line: estimated mean-variance relationship figrcti
h using DDHFT2 method of isotonic regression. Dashed lin¢imeged mean-variance
relationship using DDHFT3 (symmetric).
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Figure 7.10: Smoothed CET data, using DDHFT modificationd kernel regression
smoothing. Solid line: using DDHF2. Dashed line: using DE3HF
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Figure 7.11: Smoothed CET data, using DDHFT modificationgh(ernel regression
smoothing) and a 21-point binomial filter. Solid line, Biniafilter. Dotted line: DDHFT2.
Dashed line: using DDHFT3.

DDHFT2 are shown as a dashed line. For comparison, we plsettveo estimates again
in Figure 7.11 as a dotted and dashed line respectively, ittie 21-point binomial filter
estimate as a solid line.

Both estimates are similar, with the DDHFT2 estimate vagyimore around 1820, and
overall being slightly more variable than the DDHFT3. Ouptsitrap test suggested that
the DDHFT3 was more suitable for the data. The lack of vditghineans that peaks can
be more accurately assessed and identified. Based on the D®éHamate, our intensity
estimation appears less variable than that of the binonitid §hown in Figure 7.11. For the
first half of the data, the temperature exhibits peaks in &atpre but continually returns
to a base rate of around -0.5. From the end of the 19th certheyemperature increases
steadily. From 1970 the temperature rises at a much fasteraal continues up to the end

of the data. Similar conclusions are drawn when compariadBHFT2 estimate.

7.7.1 Model Checking

It is worth considering the statistical propertiesAfand the DDHFT3 version,. Figure

7.12 shows several autocorrelation (acf) plots. The fies}, $hows the acf of the original
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Figure 7.12: Clockwise from top left: autocorrelation ftinns of (a.) CET datad;; (b.)
at, the DDHFT3 ofAy; (c.) a; minus kernel regression smoothing estimate; @.)minus
signal estimate inverse DDHFT3.

sequence, which we denote Bly and plot (b.) shows the same for the DDHFT3A4f,
denoted byi;. There is some indication that the sequences might be autbated, but we
also believe that the mean of each sequence is not constatitigas what we are trying
to estimate). Figure 7.12c. shows the acf after subtra¢ctiegnean estimate using kernel
regression smoothing from. After the mean has been taken into account, the acf viytuall
disappears. Plot (d.) shows the acf of (c.) but in the origiata domain. Again, the acf has
almost entirely disappeared. Hence, once the mean has bterated we have evidence
that the sequencé; is uncorrelated.

We test the constant variance assumption of the transforesédlals using the Breusch
& Pagan (1979) test. For the kernel regression smoothieg-tralue is 0.16 and hence no
(formal) evidence for non-constant variance.

We use the Kolmogorov-Smirnov test on the same residualdiadé p-value of 0.23

and hence no evidence against Gaussianity.
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7.8 Conclusions and Future Work

This chapter has proposed modifications to the data-drivear{Hisz transformations for
both known and unknown mean-variance functions. The maedifics allow transforma-
tion of negative data with variance related to the absolataesof the mean. Comparisons
using simulated data shows that our methods outperfornrdadéional Box-Cox transform
over a variety of noise corrupted intensity signals. It $tdne noted though that for the un-
derlying Bumps signal, the performance was less emphatitreenMSE results were similar
over most wavelets. Also, for the Blocks signal, the Box-@axsform out-performed the
DDHF transforms only once, but the MSE for this single instawas lower than over all
other replications.

This point shows that the tests were perhaps misleading.wBlelet used was varied
to test the methods over a range of estimators but in fact whatre doing is testing how
well the wavelets perform, given a certain transformatiearther simulated studies should
only use the best performing wavelet for each signal, andoemenit to different smoothing
methods rather than different wavelets. Using other Ganisng or variance stabilising
transformations (such as Anscombe (1948) or the negatiee-Faz transform proposed
within this chapter) would also benefit the study.

Our modification to the data-driven Haar-Fisz transformetels on whether the mean-
variance relationship for negative means is the same a®o&itiye means, i.e., if the func-
tion A is even. We proposed using bootstrap resampling to asses#thificance of a test
for symmetry. For simulated data, our test appears to panfeell, although is less accurate
for smaller data sets. For the central England temperattigg dur bootstrap test does not
reject the null hypothesis that the mean-variance fundsosymmetric around zero. We
displayed smoothed values of the CET data using both metlandisconcluded that from
the end of the 19th century the temperature increases, anthik increase is much more
rapid after the 1970s.

Although these methods appear sound, it is still questiendtowever, how suitable
these transforms are for the actual data. The transformanasa ‘turning point’ in the

mean-variance relationship where the estimated functianges from being non-increasing
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to non-decreasing. The modifications proposed in this endgatth assume this point to be
at zero, which, from figures 7.2 and 7.3 may not be the caseh®CET data. Further-

more, the behaviour of the mean-variance relationship dsitipe means remains unclear.
This may not be the case for other data sets and generalig@mmadifications to select the

turning point is left as future work.
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Chapter 8

Gaussianisation using Haar-Fisz

Transforms

8.1 Introduction

Gaussianity of a signal, or rather residual noise of a sigralcommon requirement in may
applications. For example, in signal estimation it is ofsssumed that the observed signal

Jt, is such that

gt = fr +eu,

where f; is the ‘true’ underlying signal ane} the noise, is distributed as il (0, o2).

Applications in Chapters 6 and 7 focused primarily on thearare-stabilising proper-
ties of the HFT and the DDHFT. Although we never formally uiesm for Gaussianisation,
we briefly mentioned testing the transformed signals to ssewell they coped with this
task. It was often found that they performed well, consittgtthat this was not their main
task. In this chapter we consider Haar-Fisz based transféomthe primary purpose of
Gaussianisation, so that we may transform non-Gaussianalsidor possible use within
many other procedures with Gaussian constraints.

In order to use the Haar-Fisz transforms for Gaussianisatve will introduce a param-
eter to the ‘Fisz’ step of the procedure (where the detaiffimients are ‘stabilised’). By

using a similar maximum likelihood parameter estimatiorthod as the Box-Cox trans-
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form, we select our parameter to best Gaussianise the data.

This chapter is a computational study and the underlyingrthis left as future work.
We first look at the case where the distribution of the datan@nn (and Poisson) and then
consider possible generalisations to make the process af-vegiance estimation data-

driven.

8.2 General Haar-Fisz Transform

Recall from Section 5.5.4 that the Haar-Fisz transform (H&@composes an input vector
v = (v), whereN = 27, using the discrete Haar transform to form smooth and detail
vectorss’ andd’ of the original vector at scalg. The coefficientsii are then variance
stabilised by division of a function of the variance to proéia vector ofisz coefficients

f7, defined by

di

J_
fl= AT (8.2.1)

fork=1,...,27.

Kendallet al. (1983, page 103) make the comment that variance-staljlisamsforma-
tions commonly Gaussianise as a by-product, although theptitend to produce optimum
Gaussianisation. Thus, the distribution of the transfatmequence in (8.2.1) would, to a
certain degree be expected to be closer to Gaussian tharighebsequence. For Poisson
data, wherey; ~ Poig)\;), we havey; = )\; ando? = \; which givesh(z) = z, the
identity function. Thd-isz coefficientsn (8.2.1) thus become

)

fl=—k_ (8.2.2)
Sél/Q

As detailed by Fryzlewicz & Nason (2004, Proposition 2)stiiansform asymptoti-
cally brings vectors of Poisson counts to Gaussianity wattiance one, as the mean of the
Poisson counts, and length of the data both tend to infinity.nékt consider the HFT for
the purpose of Gaussianisation and apply maximum likedhechniques to a general form

of (8.2.2) to select a transformation parameter which bestsSianises the data.
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We generalise (8.2.2) by replacing the square root fundiioa transformation param-
eter, which we calbe. Furthermore, we define different valuesmfor each scale of the
wavelet transform. Thusx = (o, ay_1,...,a1) allows the transform to be ‘local’ for
each of theJ levels. The generdtisz coefficienof the kth element on thgth ‘level’ can

then be defined as

(8.2.3)

Our aim is to select the parametexsfor each scalesuch that the transformed data is
as Gaussian as possible. We seleatising maximum likelihood techniques. We denote
the general Haar-Fisz transform by the operafgr and its operation on the vecter =
(v1,v9,...,0n), for N = 27 by Fov. We wish to use a linear model with Gaussian
errors to represent the transformation on a set of regmessinablesX. As with Box &
Cox (1964), we do not directly assume that the transformatem be written in the form

Fav = 1+ € but instead assume that for some
E(]‘—O‘V) = K,

whereF,v is the vector of transformed observations of lengttand . is unknown. This
is a similar set-up to the theory of choosing parametersHerBox-Cox transform (see
Atkinson (1987), Chapter 6 and the review in Section 5.220, as such variance stability is
a secondary goal. To compare different valuea dfis necessary to compare the likelihood

to that of the original observationswhich is

N
[[2m0*) 7172 exp{—(Favi — n)*/20°}7, (8.2.4)

i=1

where the Jacobian is given by
N

711

i=1

afa?}i
avi '

(8.2.5)

Note the slight change in notation for the Jacobidnfrom that in Section 5.5.2. This

is to avoid confusion with the number of levels of the wavélahsform,.J. The Jacobian
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allows the transformed variables to be on the same scaletdr elue oi. For fixeda,
(8.2.4) is the likelihood for the least squares problem watsponseF, v (as the Jacobian
does not depend on eithgror o). Once again, using the same notation as Atkinson we
denote the maximum likelihood estimates for a given vectora by 3(c). The least

squares estimates are therefore given by

(8.2.6)

As with the Box-Cox transform, division of this by yields the maximum likelihood esti-
mate ofo? as

6%(a) = S(a)/N. (8.2.7)

For fixed o we maximise the log-likelihood over both and o by substituting the
expressions fo(a) ands?(a) from (8.2.6) and (8.2.7) respectively into the logarithm of

the likelihood given by (8.2.4). This gives

Imax(c) = —(N/2)log 6%(ax) + log J . (8.2.8)

This is the partially maximised log-likelihood and is a ftino of « in terms of both
the residual sum of squares and the Jacobian.

For the Box-Cox transformation, detailed in Section 5.%52ussianising (8.2.8) by
division of 7%/ simplifies the likelihood equations by removing the depewgiaupon the
Jacobian. There is no such obvious simplification for the d&We use the form dfyax(c)
in (8.2.8). Furthermore, an algebraic representation @fiitobian.7, is not simple so we
opt instead to use a numerical approximation of the Jacphidapted from the algorithm

given by Pres®t al. (1992, page 388), which estimates the partial derivativasirmin
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8.2.5.
We now give the algorithm for the general HFT for data= (v1,v9,...,vy), for

N = 27, when the functiorh is known.

1. Lets{ = v, fori=1,...,n.
2. Foreacly = J,J —1,...,1, recursively form the vectorsl andf/:
- - - -
i ST sy L Soply— Sy
sl = T fl= T e e (8.2.9)
2R (s7.)
fork=1,...,27 (whereh(s]) = s] whenv is Poisson).
3. Foreachj = 1,2, ..., .J, recursively modifys/*!:

J+1 g j. g+l _ _J J
Sop—1 = S, + [is S =5 — Jio»

fork=1,...,2.
4. Sety =¢’

We will refer to this transform as the general Haar-Fisz 4farm, and denote it by
HFTa. We find the optimakby; by maximisinglmax(c) in (8.2.8) numerically, in R using
the opt i mfunction over then;. The general HFT can then be inverted in the same way
as the regular HFT, as described in Section (5.5.4), bugubia values otx to reverse the
operatorf; in (8.2.9).

We define another version of this generalised Haar-Fiszfwam by imposing the extra
constraint thaty; = a forall jin J,J —1,...,1. This single parameter (or constrained)
model assumes that the are the same for all levels of the Haar transform and we denote
it by HFTa in the remainder of this chapter. With a single parametes, dptimisation
routines are considerably faster than the multi-parangeeeral transform HRZ, so its
performance is of interest. Furthermore, a single paranaditavs us to graphically explore

the outcome of the optimisation routines f.
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Figure 8.1: Left: Poisson signal of mean 5. Rightax(«) over different values of

8.2.1 Examples

As an example of our transformation, we generate a sequéasson variables of length
1024 and mean 5, as shown in the left plot in Figure 8.1. We useanstrained version,
HFTa and calculatdnax(a) for differenta . The plot ofimax(a) can be seen in the right
plot in Figure 8.1. The maximum occurs @at= 0.44. Note that this is close to, but not
the same as, the (variance stabilising) optimal value otHkR& of 0.5. Therefore, if the
data is known to be Poisson, one would obtain near-Gausai@m (but non-optimal), by
applying the variance stabilising value @f= 0.5 instead of searching over all possible
values.

It should be noted that the estimation of the Jacobiaran cause numerical difficulties
in finding the maximum likelihood: although the logarithm thie Jacobian is finite (as
with the case of the example), the actual Jacobian can belasgyy. This occurs to such
an extent that a computational representation can becofimitdnand induce numerical
instability. This is dependent on factors such as the lengihtensity of the data, and we
have observed these problems mostly for negative values sshaller than -2, and very
large positive values af. In most circumstances we have found that a maximum liketiho
estimate ofx still exists (and has commonly been observed between tlye rain0 and 2).
We discuss this further in Section 8.4.

We test our code by generating a signal of length 512 from aSan distribution with
mean 5 and variance 1. The idea is to invert this sequencekwitivn values ofx, so that

we have a sequence of data for which we know the parametechwlil return the data
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Mean Estimated Alpha
Known o @ Qg Qs a7 oG Qs oy Qs a9 aq
0 0.10(0.17 0.17 0.17 0.16 0.16 0.16 0.10 -0.04 -0j15
0.5 055|055 055 055 054 054 052 047 033 0.f1
1 1.16(1.16 119 121 122 122 119 114 1.04 0.80
0.1-0.9 - 1012 022 032 042 051 059 0.69 0.80 0.r6

Table 8.1: Values ofy; for constant Gaussian signal (mean 5, variance 1), givewkmng

back to Gaussian. We can then compare these to those founggdthisimaximum likelihood
techniques.

We invert our Gaussian data using valuesadfixed over each level so that = a.
We use arbitrary values of 0, 0.5 and 1. We optimigg(«) for both the general and
constrained models to obtain our estimatesvofFor the HF v we also invert our initial
Gaussian sequence withy ranging from 0.1 — 0.9 in increments of 0.1 (aslecreases).
For all of our values ofy;, we repeat over 100 random Gaussian sequences and the mean
values of the estimates of; are given in Table 8.1.

We find o values of 0.10, 0.55 and 1.16 respectively for each valuauoho For the
multi-parameter HFd&, our methodology mostly finds values @f which are close to the
known value, although less so for the initial valuecof= 1. As our initial sequence was
random, some fluctuation from the known true valuexa$ to be expected. When we vary
«; for each level and use the HET our optimal values ofy; are very close to the known
true values. This suggests a certain degree of uniquendisi whe parameters. We do
not, however, rule out the possibility that other sets ofpasters may give equally good
Gaussianisation.

In our initial investigations we find that the value bf..(«) appears less dependent
uponq; for coarser scales (smallg), and a range of values of the produce very little
change inl,,.x(«r) compared to changing; at the smoother scales (larggt The finer
scales of the detail coefficients represent noise withinddita, whereas the coarser scale
coefficients contain mostly signal (as the noise can be thtooftas having been ‘smoothed’
out over the finer scales). Transforming the signal, conthtoéhe noise will have less of
a Gaussianising effect. This is a possible explanation foy the likelihood appears less

dependent on coarsaf;, although we leave any detailed investigation into theigeitg of
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Imax () with j as future work.

We also note here the computational time for our transfdonat Performing our cal-
culations in R on a 2.2 GHz AMD Opteron with 2Gb RAM, we founditfor data of length
1024, one simulation of our constrained model took betweamd23 minutes to run and the
general transformation took between 40 and 60 minutes. |@hiscomputational time was
caused by the estimation of the partial derivatives for geatsformation parameter over

each scale.

8.2.2 Gaussianisation Simulations

We compare the Gaussianisation of both the HFAhd the HF & with that of the one
parameter Box-Cox and the identity transformation on satad data sets.

We generate 4 underlying intensity signals of length 102zbirestant signal of 4, and the
Donoho & Johnstone (1994) Blocks, Doppler and Heavisinaadgy which we transform
linearly to have (minimum, maximum) of (1/8, 8). These arfem®d to as ‘small’ intensity
signals in the remainder of this chapter. We also create af Sarge’ signals, again using
the Donoho & Johnstone (1994) signals, but with (min, maxieétp (1/128, 128). We also
have a ‘large’ constant signal of intensity 64.

We denote our underlying intensity by and generate signals of Poisson variables
v = Poi(A) for each of the signals. We judge the success of Gaussimmsaft our HF
transforms by comparing the residuds,v — FoA and F,v — F, A, with those of the
Box-Cox (BC) transform8v — BA) and the identity (ID) transformv(— A). We compare
the transforms by considering the Q-Q plots of each of theluets and we also test the
residuals using the Kolmogorov-Smirnov (KS) test of Gaarssy.

Figure 8.2 shows the mean of the Q-Q plots for the small itiesgynals, taken over
100 sample signals. We also show a histogram of the valuesraximising the likelihood
for each signal for the constrained H&.T

The Q-Q plots of the transformations indicate that overhalldignals the HFd& (plotted
in green) out performs the other transforms, signified byctimaparative straightness of the
line. The plot for the constant signal is still stepped, lasslso than the other transforms

(and is only a slight improvement on the constrained H}-TFor the Blocks signal, the
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Figure 8.2: Underlying intensity signal from top: ConstaBibcks; Heavisine and Doppler.
Left plots: QQ-Plots. Black: Identity transform; Blue: B&ox transform; Red: HFd;
Green: HF . Solid line has slope 1, indicating unit variance. Consiargnsity = 4, all
others have (min,max) of (1/8, 8). Right: Correspondingdgsam ofa values.
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KS Test Variance
Signal ID BC HFTa HFT« ID BC HFTa HFT«x

Constant| 1.1e-13 5.1e-10 2.7e-4/0.0027 | 401 1.02 0.95 0.95
Blocks | 4.7e-6 9.le-7 0.0013 |0.27| | 402 0.47 045 0.63
Heavisine| 0.0039 0.39 0.5 [0.71] [4.19 060 050 0.58
Doppler | 0.0064 057  0.38 |0.70| | 445 0.77 048 0.63

Table 8.2: Mearp-values of Kolmogorov-Smirnov Gaussianity test for ‘srhaitensity
signals. The best overgltvalue for each signal is boxed (note that other transforrag m
still have statistically significant-values).

Mean Estimated;
Signal a | a0 ag as ag Qg as oy Qs e D) o
Constant| 0.52| 0.52 0.52 052 051 052 052 050 0.40 0.37 Q.01
Blocks | 0.87| 0.67 0.65 0.69 0.83 1.04 165 172 2.17 2.09 143
Heavisine| 0.89| 0.81 0.69 0.64 0.62 0.69 0.82 326 1.43 2.83 (.32
Doppler | 0.83| 0.70 0.61 0.63 0.71 0.92 124 170 249 2.09 0.96

Table 8.3: Values ofy; for the ‘small’ intensity signals for both constrained HE&nd the
general HF .

Q-Q plot of the HF v is also a lot smoother than that of the Box-Cox transform. @h@
plot of the Box-Cox transform is, however, closer to the ddilne for the Heavisine and
Doppler signals, indicating that the transformed residkaaiance closer to 1 than for the
other transforms.

Table 8.2 shows the meanvalues of the KS-test under the null hypothesis that the
residuals are drawn from a Gaussian distribution (and tieereltive that they are not). For
reference, we also show the variance of the transformedualsi. The values coincide
with the interpretations of the Q-Q plots that the generaltHiRsform performs best at
Gaussianisation compared to the other transforms. pFbedue is significant when trans-
forming the constant signal using the general HF transfalthpugh this was apparent in
the stepped nature of the Q-Q plot. For the Heavisine and Bopjgnals, the KS test does
not reject the hypothesis of Gaussianity for both the Box-@ad the constrained general
HF transforms.

The optimal values od for both HF transforms are given in Table 8.3. We note that for
the constant signal, both transforms hayelose to 0.5, indicating that the variance should

also have been stabilised around 1 (which is true, from Taldg We again observe the
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KS Test Variance
Signal ID BC HFTa HFT«a ID BC HFTa HFTa

Constant| 0.073 0.12 0.42 |0.76] | 64.18 1326 0.55 0.76
Blocks | 0.048 1.2e-5 1.7e-4 62.61 1.78 0.0083 0.39
Heavisine| 0.020 0.36 0.077 [0.75| | 66.00 6.80 0.16  1.18
Doppler | 0.0047 0.21 055 [0.79] | 70.19 20.47 0.24  1.06

Table 8.4: Various statistics for ‘large’ intensity sigaalThe best overall p-value from
the KS test for each signal is boxed (note that other tramsfanay still have statistically
significant p-values).

Mean Estimated;
Signal « a0 ag as ag Qg as oy Qs e %) aq
Constant| 0.89| 0.56 0.56 056 056 056 055 054 051 050 043
Blocks | 154|092 100 1.14 126 145 156 157 172 174 1.49
Heavisine| 0.77| 0.46 0.46 0.49 056 081 1.15 138 1.08 154 0.56
Doppler | 0.69| 0.44 050 0.64 0.78 0.93 1.18 1.20 1.37 1.30 0.96

Table 8.5: Values ofy; for the ‘large’ intensity signals for both constrained HEand the
general HF&x.

variation in values ofy; for larger: for the general HFT.

Figure 8.3 shows the Q-Q plots of the four transforms for #ngdr signals. For all but
the Blocks signal (which we will discuss separately), bt HF transforms are closer to
the solid line than the other transforms. Furthermore, itieslappear at least as straight as
the Box-Cox and identity transformations (except for thestmined HF for the Heavisine).
This is further supported by testing the residuals for Gandly, as thep-values of the KS
test indicate in Table 8.4.

Excluding the Blocks signal, the Hfed has a less significani-value than the other
transforms. It should be noted, however, that with theggelannderlying intensity signals,
it is only the identity transformation on the Doppler sigmdiich is significant at the 5%
level (as with large mean values for our Poisson signalsCtaral Limit Theorem comes
into effect).

Table 8.5 shows the optimal valuesa@f for both HF transformations. Compared with
the ‘small’ intensity signalsy is larger for the constant signal but smaller for both Heaeis
and Doppler signals. For the Hial the optimala are again close to 0.5 for the constant

intensity. The optimadx for the Heavisine and Doppler signals are smaller than tfurtbe
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Figure 8.3: Underlying intensity signal from top: ConstaBibcks; Heavisine and Doppler.
Left plots: QQ-Plots. Black: Identity transform; Blue: B&ox transform; Red: HFd;
Green: HFTx. Solid line has slope 1, indicating unit variance. Constat@nsity = 64, all
others have (min,max) of (1/128, 128). Right: Correspogdiistogram ofx values.

148



smaller signals and again appear to increase in value faodweser levels (with a somewhat
erratic behaviour fory).

The Blocks signal for larger intensities exhibits unexpddbehaviour while using the
both HF transforms. Furthermore, the histogram of the cgltvalues ofo. show two dis-
tinct clusters of values (Figure 8.3, second row, right soll. The first cluster accounts for
15 out of the 100 repetitions. The histogram of the seconstetus plotted separately next

to the original.

8.2.3 Problems in Methodology

We now briefly discuss problems which have arisen so far s shidy. We comment on
initial investigations which have been carried out but dodescribe them in detail due to
them being preliminary. They provide an initial indicatias to where the problems may be
occurring, but are not conclusive.

The above simulations on the Donoho & Johnstone (1994) lsighid not include a
sequence generated from the Bumps signal. When generafinggson sequence with the
underlying intensity being the Bumps signal, a large prtporof the original data is zero.
We attempted to transform our signals as with the other sities, but found the likelihood
estimate to be unbounded.

Initial investigations suggest that when the number of aerlmes within the signal
increase, the log-likelihood becomes unboundeda(d@screases). In particular, it is the
Jacobian component of the likelihood in (8.2.8) which beesmanbounded. The cause of
this is unknown and simulating data with an increasing nunabeero points would be a
suitable next step. Also, consideration of the estimatidh@Jacobian and the effect which
zero points have on the HF transformed variables will furtiedp to understand the reasons
for this unbounded behaviour.

We also found that often, no values exist for the Jacobiarafige values ot and
for negativea (and in particular when the signal intensity is small). TiBisaused by the
approximation of the Jacobian (8.2.5) becoming too largklsaing replaced by an infinite
value in R. We discuss this further in Section 8.4.

The last problem we observed was with the Blocks intensgyadifor the HF &, where

149



there were two distinct regions where the parameter wamap{iFigure 8.3, second row).
Initial investigations suggest that there are local ‘péaksurring when calculating the
Jacobian, and these are being treated as optima. Agaihefurnvestigation of the causes

of this within the Jacobian is required and is further disedsin Section 8.4.

8.3 Data-Driven Haar-Fisz Transformation for Gaussianisdion

In this section we detail initial investigations into adajiins of the DDHFT for Gaussiani-
sation. It is conceptually and computationally straightfard to apply the same maximum
likelihood techniques dependent upon a parameter to fiteedarlocal estimates of the
mean and variance so that our general HF transforms becotaaldeen. We refer the
reader to the algorithm for the DDHFT in Section 5.5.5 and thathe general HFT given
in Section 8.2.3.

In the conversion from the original HF to DDHF transforms thean-variance function
went from being fixed (and for Poisson data the identity ti@ms) to functional, based on

estimation from the data. Recall that the regression setag is

and the smooth coefficients of the Haar transform act asginexates of.; and the squared

detail coefficients act as pre-estimatesogt The estimate of. was found using non-

decreasing isotonic regression from Johnstone & Silver(@@05a) and then used to form
the Fisz coefficient$’ defined by

d7

fi = h71/2(3j)' (8.3.10)

We wish to generalise the transformation to incorporate asGianising parameter as
with the constrained Haar-Fisz transform (HBTAs with the HF o, we modify the trans-
form so that the denominatar/?(s7) is raised to theg instead of being fixed at/2 (other
possible modifications are discussed in Section 8.3.2). etttk same assumptions of

Gaussianity as with the HFl, we can again use maximum likelihood techniques (as de-
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tailed in Section 8.2.3) to choosg such that the resulting signal transformation is most

Gaussian. Th€isz coefficient§’ thus become

i = : (8.3.11)

whereh() is the estimate of the mean-variance function using isotegeession ang
is chosen by maximising the log-likelihood function given(8.2.8) (but with the obvious
change in parameter lettering). We refer to this transféionas DDHF T3 in the remainder
of this chapter.

We also considered a further transformation where the mregance function was in-
stead estimated with kernel regression smoothing usingtzafblugin bandwidth (using
thel oker n package from R). See Brockmagnal. (1993) for more details. The method
uses a kernel estimator to fit a function to the mean-variaglegionship and is dependent
upon a global bandwidth. Again, we selected this global aditth parameter using maxi-
mum likelihood techniques, as with the general HF transforhe larger the bandwidth, the
smoother the mean-variance function will be. This method livaited as no matter what
values the bandwidth took, the function estimate was siilineating the mean-variance
function of the data. When we generalise to attempt to Ganis& the data, we no longer
wish to have the actual function which fits the data, we onlpt@emean-variance function
which serves best to Gaussianise the data. Thus the tremdfdmot compare well and we

do not report results using this method.

8.3.1 Comparison with Box-Cox and the Constrained HFT

We compare our data-driven Haar-Fisz transforms usingaheessets of intensity signals
from Section 8.2.2 with both the ‘small’ and ‘large’ intetysiange. The idea of our transfor-
mations is to produce data which can be represented asl sigisanoise’ where the noise is
Gaussian. We can then apply a denoiser to estimate the sigdahvert our transformation
to obtain an estimate of the (known) underlying intensity.

For each of the signals which are corrupted with Poissoreneis apply the Box-Cox,

HFT«a, DDHFTS transforms. We do not compare the Hik@lue to the considerable amount
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Small Intensity

Signal HFTo DDHFTS BC
Mean SE | Mean| SE Mean SE
Constant | {0.023| | 0.022| 0.071| 0.061| 0.060 | 0.033
Blocks 0.558| | 0.073| 1.329| 0.557| 0.616 | 0.096
Heavisine| |0.312| | 0.131| 1.120| 0.480| 0.340 | 0.089
Doppler | |0.604| | 0.091| 1.287| 0.517||0.604| | 0.084

Table 8.6: Mean MSE and standard errors (SE) of small intesgjnals for different trans-
formations.

Large Intensity

Signal HFTa DDHFTS BC
Mean SE | Mean | SE | Mean | SE
Constant| |0.023] | 0.019| 0.107 | 0.180| 0.065 | 0.034
Blocks | 15.622 | 2.925| 47.640| 57.72 1.838
Heavisine| [9.636] | 1.071| 13.221| 5.837 | 11.715| 2.169
Doppler | [26.937 | 2.086 | 28.229| 2.229| 29.321| 2.217

Table 8.7: Mean MSE and standard errors (SE) of large irtiesigjnals for different trans-
formations.
of time required for suitable optimisation, compared todtwer transformations. Also, al-
though thep-values of the KS test were nast non-significant for the HF& compared to
the HFTa,, many were still not significant at the 5% level. We estimag= underlying in-
tensity using EbayesThresh wavelet thresholding from skoime & Silverman (2005a) (we
first take the wavelet decomposition of the signals usingthar wavelet for the constant
and Blocks signals, and Daubechies least-asymmetric etawéth 10 vanishing moments
for the Doppler and Heavisine signals). We then invert ousatim signals back to the orig-
inal data domain and compare the estimation of the underliyitensity with the known
intensity using the mean square error (MSE) as defined inl@).5

Table 8.6 and Table 8.7 give the mean MSE over 100 sample fmthise small and
large intensities respectively. Note the further transfation which is included in the tables,
DDHFT¢. We define this in Section 8.3.2.

Over all intensities and signals, the DDHF performs poorly, having a much higher
MSE than both the HF@ and the Box-Cox transform (with the only exception being the
‘large’ Doppler intensity, where it is better than Box-CoXhe standard errors of the MSE

values for the DDHFFB are very large, suggesting the MSE values vary considerdlig
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Peak intensity=8 Peak intensity=128
Signal Q@ I6} Q@ 16}
Constant | 0.49 0.95 | 0.87 0.99
Blocks | 0.86 454 1.57 2.02
Heavisine| 0.88 4.45 0.77 1.68
Doppler | 0.83 4,10 | 0.68 1.52

Table 8.8: Mean optimal parameters from the HFand the DDHFB

mean optimal parameters for both Haar-Fisz transforms i@engn Table 8.8. For the
smaller intensity, we see the high parameter values fouatitfons except the constant sig-
nal. The optimisation algorithms had maximum parametearevébr 5 of 5, which suggests
that the likelihood function for these signals are unbouhdé/e have increased this limit
and have again observed parameter values close to the nraxiamge.

We leave investigations into the unbounded likelihood aisréuwork, but considering
the poor performance of the DDHBTover the other signal (where the likelihood appears

to be bounded), we instead consider alternative modifiegtio

8.3.2 Further Work: Other Models

We first consider the behaviour of the mean-variance estirfratn both the HF& and
the DDHFT3, for when the likelihood appears bounded. We look at the temsignal of
intensity 4 and use both methods to obtain a mean-variammztidm. Figure 8.4 shows the
local estimates of the mean and variance, along with our twotfon estimates.

For this example, the optimal parameter valuescare 0.59 and = 0.93. The values
of the isotone regression estimate not included in the ploeiase up to a variance of 18.
As the mean increases, the estimate from the DDbIg@ts larger at a faster rate than the
HFTa.

Over the range of values plotted, the mean-variance fumdtio the HF o appears
fairly straight. As a further model for our data-driven madhwe propose a different trans-
form where the modification to théisz coefficientss defined by

d7

fi = 6h71/2(3j)' (8.3.12)
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10

Standard Deviation

Estimate of local mean

Figure 8.4: Local estimates of mean and variance of underlgonstant signal. Solid line:
h() estimated using HRE. Dashed line:h() estimated using DDHFF. Maximum value
for variance of DDHFT is 18.

This modification estimates the mean-variance curve usiogpmne regression as with
the original DDHFT, but then then multiplies it by a constantWe refer to this transfor-
mation as DDHF® in the remainder of this chapter. We include this further iication
to compare the transformation to previous techniques aradsagygestion of next steps in
improving the Gaussianisation of the DDHFT.

We calculate the mean square error for the same simulatedlsign Section 8.3.1
with the same smoothing methods. The mean MSE and standamd ean be seen in
Table 8.9. Comparing these results to the the small infeasit Table 8.6, we see that
our modification DDHFD results in a lower MSE than any of the other transformations
for all but the constant signal (where the standard erroargel compared to the mean
MSE). For the larger signal intensities, the DDHFdroduces the smallest MSE for the
Heavisine signal and the MSE is only 6 and 13 per cent highemn that of the HF &
for the Doppler and Constant signals respectively. Funtioee, it should be noted the
poor performance which we have shown the HR® have for the Blocks signal, and the
improvement (in terms of MSE) which the DDHBEEhows (and is only 6% worse than the

Box-Cox transform).
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Peak intensity=8 | Peak intensity=128
Signal | Mean MSE  SE | Mean MSE  SE
Constant 0.026 0.024| 0.026 0.025

Blocks 0.520 0.069 8.900 1.859
Heavisine| [0.250]  0.064 1.060
Doppler 0.599 0.070| 28.685 2.348

Table 8.9: Mean MSE and standard errors (SE) using the DDH&fTboth large and small
intensities. Boxes imply smaller mean MSE than other previmethods.

We note, however, that although the DDH¥Fappears superior to the other transfor-
mations, the likelihood is often unbounded. Nevertheld@ss,results presented here are
promising and further work investigating the likelihoodh@ion is required to shed light on

the behaviour of the transformation.

8.4 Conclusions and Future Work

In this chapter we proposed a Haar-Fisz transform whichamilgnattempts to Gaussianise
data. We defined two types of such a transform, a constrairatéihin which the mean-
variance relationship is assumed to be the same for alld®fe¢he wavelet decomposition,
and a general transform where a different relationship wagtg for each level. We com-
pared these transforms to the identity transformation hadBibx-Cox transformation over
known intensities which had been corrupted with PoissosenoiVe compared Q-Q plots
and p-values for the Kolmogorov-Smirnov test for Gaussianitg &mund that the general
HFTa outperformed all other transforms except for the Blockshwiite ‘large’ intensity
range. Furthermore, our constrained HFT compared wellgé@ther transforms and bene-
fited from a considerably shorter computational time coragavith the general transform.

It must be noted, however that although we conclude that etinaas were ‘most Gaus-
sian’ by the significance of the K-S tests, many of the otheamevalues were also sig-
nificant at the 5% level. Further simulations should be cadet to further compare the
performance of our methods.

Although the general HR& outperformed other transforms, it is highly computatibnal
intensive, with long execution times. The main cause ofitlas the use of approximation to

the Jacobian matrix. An explicit form of this, or further appimations and simplifications
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would be greatly beneficial. A explicit form of the Jacobiaatrix might also remove the
anomalies found in the procedure where the estimation odaleebian is computationally
set to infinity. Further investigation into the sensitividy /,,,.x for different values ofy;
could result in the tolerance of the optimising proceduliadpeeduced (if the required level
of accuracy ofl .« is not affected), resulting in much faster computationales. As an
example, we have observed that by reducing the number omdéglaces to whicli, .
has been deemed to converge by one, has reduced compdttitraby half. This change
appears to mostly effect the parameters of the ‘coarsezldenf the HF Tx.

We further proposed data-driven Haar-Fisz transforms fr<Sianisation, which raised
the mean-variance function to an unknown paramgfeand a further model which multi-
plied the square root of the estimated function by an unknpamameter. Both parameters
were again found using maximum likelihood techniques.

Our transforms were compared to others in terms of mean eqraor of intensity
estimation of a known underlying signal, following Gausssation. Again, our methods
were compared to that of Box-Cox and also to the HRRd for both the ‘small’ and ‘large’
intensity signals used previously in the chapter.

For the small signals, the DDHEThad a smaller MSE than the other transforms over
all signals except the constant (where H¥Fperformed better). For the Doppler signal,
however, the improvement from the DDH&Was less than 1% smaller MSE compared
to the HF T and Box-Cox transforms. The DDHBBhowed a 7% and 24% reduction in
mean MSE for the Blocks and Heavisine signals, respectivelgnpared to the next best
performing method.

There were mixed results when comparing transforms fordhgel intensity signals,
with the HFTa having the smallest mean MSE for two of the signals, and théiBD)
and Box-Cox both having the smallest mean MSE on one occasionthe large signal
intensity, the the improvement the ‘best’ performing tfan® has over the next best method
is never more than a 5% reduction in mean MSE.

Another observation was that for the smaller intensity aigthe likelihood within the
parameter estimation appeared to be unbounded. Furtheratadding of the nature of

the likelihood estimation and how it is linked with the estition of the Jacobian matrix is
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required for this work to progress. Due to these uncertsntive remind the reader that
methods and results presented in this chapter are to bedeoedias preliminary.

Future work could also consider other modifications of bbih iHaar-Fisz and data-
driven Haar-Fisz transformations. Our second modificatibthe data-driven DDHFT
suggests that more general transformations could imprauess§anisation performance
when the mean-variance function is both known and unknowarthErmore, extension
of the data-driven transforms to estimate this relatigndbir each level of the wavelet
decomposition would be an obvious extension and likely &y HFTx) to improve

performance.
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Chapter 9

Conclusions and Further Work

This chapter provides a summary of the work outlined withis thesis. We consider the
main work from the research chapters, discussing the agiyastand disadvantages of the

methodology as well as discussing ideas for future work.

9.1 Backbench Opinion in the House of Commons using EDMs

Work in Chapters 3 and 4 reintroduced the idea of using Eady Motions (EDMSs) as a
measure of backbench opinion. A new cohesion measure wagedefi Chapter 3 which
took into account the asymmetric signing of EDMs and was tisaghart the cohesion of
the three main political parties over the course of the 2@Pparliamentary session. As a
means of calibration, a basic probabilistic model was @ekitp create simulated cohesion
levels to compare with the observed levels. The cohesionteasinterpreted in terms of
these calibration levels and compared against real lifatewgith which a perceived party
unity could be ascertained.

Extensions to this work could be the development of the catiitn level to more accu-
rately model the party cohesion and even forecasting thesioh of the parties.

The cohesion measure was then used for feature selectiovingHelassified EDMs
into different types and assigned each a weight, the cohesgasure was maximised and
minimised by altering the weights. Those EDMs given highaw Iveights were deemed

to cause party cohesion and separation respectively.
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EDMs were used for feature selection again in Chapter 4.dJie multi-dimensional
scaling solution and linear discriminant analysis to assigch MP to a party, issues were
sought which caused the parties to appear more disjoint.pAimaing criteria was formed
by summing the number of erroneously classified MPs. Thisdaas a measure of overlap
between parties. Similar to the moving time window of theazibn levels, this feature
selection looked at windows of 200 EDMs moving across thsiees This allowed for
quicker computation and a less static feel of the data (afthowith an overlap of 100
EDMs it was still somewhat static).

The second use of EDMs for feature selection was not as sfates the first. This was
due to the complexity of the methodology and subsequent atatipnal time required for
results. We presented preliminary results and suggestilphe steps to increase efficiency
of the computation. These included increasing the optitidisgearch area to uncover more
optimal solutions, or decreasing the size of the data setioae the number of variables. A
mixture of the two, as well as an increase in computationalguar efficiency would help,
but then it may also be tempting to increase the number of aviiscbver the session to get
a less static feel to the output.

Both examples of feature selection indicate the wealth foirmation contained in the
EDM data set. The classification of EDMs into different issweas to a certain extent
subjective and considering secondary classification sssumild increase the information
gained from the data.

Chapter 4 also included a brief investigation into the éffeat propensity to sign has
on an MPs position in the scaling solution. Initial inveatigns suggest that this is indeed
prevalent up to and including the second dimension, butrtiae dimensions are needed

to effectively capture the information within the data.

9.2 Coalition Mortality Rates in Iraq

Chapter 6 introduced data on the number of coalition deattisei recent Iragi conflict. We
showed how current methods of intensity estimation are unitélde for the data as they

assume a certain degree of Gaussianity, and we proposegithsirecently developed data-

160



driven Haar-Fisz transform (DDHFT) to variance stabilise tlata. We then applied differ-
ent smoothing methods to obtain intensity estimates. Othads were shown to perform

well using statistical tests for Gaussianity and heterdakeity and they also outperformed
the much used Box-Cox transform. We concluded that the nes@hdf intensity increased

until about January 2005, leveled off until around June 2808 then slightly decreased
before leveling off again until the end of the series. We &dstatively concluded that the
number of non-hostile deaths is inversely related to thensity of hostile deaths.

Further extensions to this analysis could be to look at efgsivithin the data. There
are periods where deaths appear to increase in intensityades days and then return to a
lower level. Time series models could also be constructegdan the number of attacks,
rather than the casualty rate. The ratio of attacks to céssi@bould help build up a clearer
picture of the intensity of conflict. Such information, hoxge would be hard to accurately
obtain.

As mentioned within the chapter, using methods from Sgrlia007) could also be
used to pick out areas of increase intensity of deaths asasefiroviding a method of
comparing coalition and civilian deaths. Similarity betmethese data sets could provide

further measures regarding the conflict.

9.3 DDHFT for Negative Data

We detailed the central England temperature (CET) datangehapter 7 and examined its
mean-variance relationship. We observed separate regigusitive and negative correla-
tion and modified the Haar-Fisz and data-driven Haar-Fésrsfiorms so that this data could
be suitably transformed and variance stabilised. We pegpbso versions of the negative
DDHFT, which depended on different assumptions being mhdatahe distribution of the
positive and negative data points, and suggested a bgotssafor deciding between the
two. We used our methodology to transform the CET data anmdubked smoothing methods
to obtain an underlying intensity estimate. We concluded $ince 1970, the temperature
appears to be increasing at a faster rate than previously.

We compared our transforms to the Box-Cox transform usireg afdest signals which
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were transformed and then smoothed. The mean square ethersrhooth signal compared
to the known underlying intensity was shown to be smallertfier DDHFT methods. A
natural extension of this method would be to automaticadliec the ‘turning point’ of
the mean-variance relationship (the point at which it cleahfyom a negative to positive
relationship). Further modifications could be made whidbvafor a more flexible mean-

variance function.

9.4 Maximum Likelihood Techniques for Haar-Fisz Transforms

In Chapter 8 we looked at Haar-Fisz transforms from the v@ntpof wishing to primarily
Gaussianise the data, as opposed to stabilising the varidiic We introduced a parameter
into the Haar-Fisz transform which replaced the square fionattion (for Poisson data)
and used a similar derivation of the maximum likelihood restior as with the Box-Cox
transform. We proposed two such transforms: one where tta@der is constant over all
wavelet levels and one where it was allowed to vary. CongideD-Q plots angp-values
from Kolmogorov-Smirnov tests for Gaussianity, our tramsfs were shown to perform
well compared to Box-Cox. The transform which allowed fdfetent parameter for each
wavelet decomposition level outperformed the other tiams$, but had a much longer
computational time.

We also showed initial work into adapting the methods forta-@kiven transform. We
suggested some possible transforms and compared thearmerice (in terms of mean
square error of a test signal estimate) to that of the onenpatea Haar-Fisz and Box-Cox
transforms. Our methods did not perform well and we sugdestieirther, simpler model.
Although this appeared to perform well, it had an unboundesdihood.

The methods outlined in this chapters are initial invesiiges and there are many av-
enues left to explore. We highlighted the computationaktiimat the HF transform took
when the parameters are assumed to be different for eadholietlee wavelet decompo-
sition. Considering the sensitivity of the optimisationteria to the likelihood, and the
effect this has on the parameters, may provide some effieierme simplifications to the

methods. Also, our modifications to the DDHFT showed thanaptér translation of the
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mean-variance function may indeed produce better results.

We have shown how the transforms can Gaussianise count aataafiectively than
the Box-Cox transform. Many problems which were found feclisn the estimation of the
Jacobian. Further development of an algebraic form of tisimplifications within the

derivation of the likelihood function may increase the efifeeness of these transformations.
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Appendix A

A.1 Examples of Early Day Motions

A.1.1 Debated EDM

A Motion put down by Rt Hon Margaret Thatcher, the then Leaaféehe Opposition, cen-
suring the Government. When this Motion was debated on 2&Matr was agreed to,
leading to a General Election.

EDM Number: 351

Date: 22.03.1979

NO CONFIDENCE IN HER MAJESTYS GOVERNMENT

That this House has no confidence in Her Majestys Government.

Total Number of Signatures: 6

A.1.2 Early Day Motion 1646

Date: 14.02.2006

SMOKING IN THE HOUSE OF COMMONS

Tabled by: Julia Goldsworthy

That this House notes that right hon. and hon. Members vaidshh smoking in all

public places including private members’ clubs on 14th Babr 2006; further notes that
the will of the House may not apply in the House itself sincis i royal palace; further
notes that this means that staff working in the Smoking Roomldcstill be exposed to
the harmful effects of second-hand smoke; and calls forah@naly to be rectified by the

House authorities as soon as possible.
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Total Number of Signatures (at time of writing): 69

A.2 Obtaining and Classifying Data

Data was downloaded from the internet by using Unix fun&iand converted into a suit-
able form using Perl scripts. Classification of EDM types wagormed by hand by the au-
thors or a team of coders under close supervision by the eutfiwo coders independently
classified each session into primary and secondary (wWhegneamate) issues. Where the
two agreed on a primary issue, or a primary issue from one aed@ndary from the other,
the corresponding classification was used. Where there isagrdement, a third classifier
was used and the process repeated. Where no agreement edaichd from three coders,

the authors took the final decision.
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Appendix B

B.1 Smoothing Methods Used

S1 Haar decimated wavelet shrinkage using the EbayesThresshitid choice of John-

stone & Silverman (2005a).

S2 Kernel regression smoothing using a local plugin bandw{d#ing! oker n package

from R). See Brockmanat al. (1993).

S3 Translation-invariant, basis-averaging over complelea Lina-Mayrand wavelet (with
5 vanishing moments) using multiwavelet style thresholdescribed by Barber &

Nason (2004).

B.2 Empirical Bias Results for the Data-Driven Haar-Fisz Trans-

form for Finite Sample Sizes

In the following sections we individually detail the sigaalhich we use to compare the
bias of the two transformations. We first give a general deanof the procedure.
We define a sequence of intensitigsfor i = 1,..., N, whereN is a power of 2. We

use these to generate our simulated dgtdefined by:

fori=1,...,N.
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Figure B.1: Underlying intensity of test signals

For each signal, we take both the DDHF and Box-Cox transfioms. (For DDHF, we
use functions from the R packa@®HFm For Box-Cox, we add a constant of 1 to the data
to ensure positivity and use the functions from the R packageto estimate the parameter
and to transform the data.)

Kernel regression smoothing using a local plugin bandwiéthm Brockmannet al.
(1993) is then used to smooth the transformed data (usingdker n package from R).
We next invert both of our sequences and compare our essnmtbe known underlying
intensities.

We repeat this process 100 times and take the mean of theitytestimations for each
signal. The bias is the difference between the known signiahsity and the estimated one.
As these values can be negative, we report the sum (overiatspof the square of the bias.

We next describe our intensity signals and resulting bidutations.

B.2.1 Piecewise Constant Intensity

We first use an underlying intensity which is a piecewise tamtf length 512. The con-
stant regions are equal in length and take the values 1/2}48 eespectively. The intensity

can be seen in figure B.1(a).
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Figure B.2: Intensity estimates of piecewise constanttfanc Dashed line: known inten-
sity. Green: DDHF. Red: Box-Cox.

We simulate 100 time series and use the method describee &bolbtain a mean signal
intensity, shown in figure B.2. The sums of squared bias for-Box and DDHF transforms

are 127.08 and 59.61 respectively.

B.2.2 Exponential Intensity

For this simulation, our underlying intensity takes theuesl

k;,
)\Z-:e ‘

wherek; is the square of the sequence from 0.5 to 1.5 of length 51%yrshofigure B.1(b).
We once again create a 100 sequences of Poisson randomlesrdth intensity);,
which we transform, smooth and invert. Figure B.3 shows tleamf intensity estimates

for our two transformations.
The sums of squared bias for Box-Cox and DDHF transforms @@&ahd 0.47 respec-

tively.
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Figure B.3: Intensity estimates of exponential functionasbed line: known intensity.
Green: DDHF. Red: Box-Cox.

B.2.3 Constant Intensity

For our third simulation, we create a Poisson signal of @rigntensity\; = 5, of length
512. Figure B.1(c) shows the mean estimated intensity fur transformations. The sum

of squares of the bias is 18.36 and 0.39 for the Box-Cox and BD&hsforms respectively.

B.2.4 Iraq Data

Finally, we consider the bias of the transformations on daten from Nason & Bailey
(2008). The datais an estimation of the underlying intgrefilaily mortality rates amongst
coalition forces in Iraq for the 1024 days since the begigmfithe invasion in March 2003.
Of the three methods of estimation used in the paper, we asesults from th&2method,
using kernel regression from Brockmaetal. (1993).

The intensity can be see in figure B.1(d.) We once again usesihhal as oun; to
create 100 simulated Poisson signals. Figure B.5 shows ¢a@ estimated intensity of the
signals from both transformations. The sum of squared lmiathe Box-Cox and DDHF

transforms is 117.81 and 30.16 respectively.
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Figure B.5: Intensity estimates of Iraq data. Dashed limawkn intensity. Green: DDHF.
Red: Box-Cox.
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B.2.5 Conclusions

For all four of our test sequences, the empirical transftionaias from the DDHF trans-
form is significantly lower than that of the Box-Cox transfation. Furthermore, Theo-
rem 3 from Fryzlewicz (2007) shows that the DDHF procedusingia Nadaraya-Watson

estimate ofh, is asymptotically unbiased.
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Appendix C

C.1 Convergence of’

In this appendix we prove the convergenceti(l)fasl — oo and derive its limit, as stated in
7.4.9.

From equation (7.4.3), we have

NES| i1
|85, 1| + 155,

t =
k 2

Substituting for the values given in (7.4.10) and (7.4.1tg¢g

%=<%+ﬁ¢@h—%—ﬁ¢%bﬂ. (C.1)

For clarity, we remove annotation from around the varialleshey do not change within

our proof. We add the iteration indéxo each of the's, wherel € N. Thus, equation C.1

becomes:

b= (|s+ v+ |s = 1visl) 72 (C.2)

We next prove that the sequengeconverges to the limif’, asi — oo. Furthermore,

we show that T takes the values

i 2
T{ 5], it ()2 <Jsl, c3
VAL, (2> sl

wheret is the value calculated in the ‘forward’ step in (7.4.3) (@ikn above). We write
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Figure C.1: Possible values of g(t). Solid line: values dj g(thin function constraints.
Dashed line: possible values of g(t) which lie on the comptmef g(t), but outside the
constraints.

equation C.2 in functional form to give

g(t) = <

s+f\/7_f‘ + ‘s—f\/f‘) /2. (C.4)

This is equivalent to

s if s> ,
g<t>{ sl W ez fVE (C.5)

[fVE s < [V

and is plotted as a solid line in figure C4(z) is said to have converged whegrit) —t| <
for some smalk > 0.

The functiong(z) is made up of two components. The first, when f+/tis a constant
valueg(t) = |s|. So providing the constraints holglt) = ¢t = |s| is constant, and has thus
converged.

The second component gft) is for the conditions < f+/t and in which caseg(t)
takes the valuef+/Z|. It can be shown that the square root function has an aticaitied
point (see for example Strogatz (1994)) and thus will cagweso thay(¢) = ¢.

We have therefore shown thatin (C.2) converges as— oo. We next show that the
limit of this convergence, denoted by T, takes the valuesrgin (C.3).

Clearly, if s > f+/t, the only value T can take ig|. If s < f/t, then the attracting
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fixed point which is the limit T, will lie on the curve(t) = |f/t|. Suppose this point is
such thaty(t) =t = a. Then

a = |fVal,
= o? = fa,
= a?— fla = 0,
= o = 0orf2

Sog(t) =t = f2. We also note the situation whes] = f2. In this scenario, we have that
|fV/t| = |s| so the fixed points are identical. Therefore]as oo, ¢; converges and takes
the values given in (C.3).

In the last part of this proof we check that points which lieeitherg(t) = |s| or g(t) =
| /1], but are not within the limits given in (C.5) are not attraetfixed points (sg(t) has
not converged). For an initial point, let us suppose the latter so thyét;) = | f\/t1|. Say,
for example, thay(¢;) is point Fpl in figure C.1, so that = f2. Therefore we also have

t; < (s/f)? so that

R

= f2 < s

But from (C.3), if f2 < |s| theng(t;) must take the valugs|, sot; has not converged.
Lastly, if g(t1) = |s| butt; > (s/f)?, we have|s| > (s/f)%. An example of this
is indicated by point Fp2 on figure C.1. This implies tifdt> |s|. But if this is so, the
attracting fixed point is ag(¢;) = | f+/#;| and thus; has not converged.
Therefore, any point which has valyét) = |s| or g(t) = |f+/t| but for which the

constraints in (C.5) but do not hold, will converge to theues given in (C.3).
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