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Notes Rec. R. Soc. Lond. 45, 11-61 (1991) 

THE PREHISTORY OF THE PRINCIPIA FROM 1664 TO 1686* 

by 

D.T. WHITESIDE 

Department of Pure Mathematics and Mathematical Statistics, 
University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB 

Since S.P. Rigaud's pioneering Historical essay appeared in 18381 there have 
been many, from Rouse Ball, Cajori and Beth down to I.B. Cohen, A.R. Hall, 
J.W. Herivel and R.S. Westfall in our own day, who have explored how 
Newton's Principia came to be.2 Surely there can be nothing profoundly new 
to be said about its progress from first conception as an inchoate idea in its 
author's mind to the maturity of its first publication in 1687? No and yes. There 
is now a broad balance of agreement over the main stages in its evolution: one 
no longer set greatly awry by the nuggets of Principia gold still (if with 
decreasing frequency and size) to be sieved from Newton's papers by those 
willing laboriously to do the panning. Anyone not of the fraternity, however, 
would surely be surprised to see how much Newton scholars can still at times 
find to disagree upon in assessing what is now in itself known in such abun- 
dance, sometimes even at the most basic level of dating a manuscript.3 As for 
the changes that must now be made in the accepted account, these only slowly 
filter through. How often am I still asked: 'Did Newton use calculus to obtain 
the theorems in his Principia?' How, without seeming to patronize, do you lay 
the groundwork on which you can reply that the question is ill-formed and 
therefore meaningless? I will not here go into the reasons why.4 But I would 
like briefly to tell anew the tale of how Newton wrote his Principia, embellishing 
it with some of the freshnesses of insight that have come out of recent research. 

Not too many years ago I could have begun my story in August 1684 when 

* This combines the texts of two talks given in 1987 to commemorate the tercentenary 
of the publication of the first edition of the Principia: one a Public Lecture given on 5 May 
in the University of Cambridge, and the other a contribution to the Discussion Meeting 
held at the Royal Society on 30 June more broadly honouring the tercentenary. (The 
other papers from this meeting were published in Notes and Records, vol. 42, part 1, 
January 1988.) 
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Edmond Halley visited Newton in Cambridge to ask if he had any thoughts on 
how to demonstrate the accuracy of the Kepler's hypothesis that the planets 
orbit in ellipses about the Sun at a common focus. Newton in his old age claimed 
that the Principia rested on foundations that he had begun to lay in the middle 
1660s,5 but there would have been no obvious way to confirm or refute this. 
But no longer! We may choose or not to take his word that he had already, in 
the winter of 1679/80, obtained a proof of what Halley sought (even though he 
could not reproduce it for him).6 But the truth of his wider assertion may 
plentifully be documented from his private papers. 

Let me go back, therefore, some 15 years more to that biennium mirabilissi- 
mum of his youth which began in autumn 1664 when, not quite 22, Newton was 
still an undergraduate at Cambridge, and continued through to October 1666: 
a time when, so he himself put it* in a now universally cited recollection in old 

age, he was 'in the prime' of his life for 'invention', and 'minded philosophy 
[lege science] more then at any time since'. The reminiscence whose last 
sentence I have half-quoted is of course merely the well-honed punch-line to 
a long list of discoveries that he claimed to have then made8: one that does not, 
unfortunately, entirely agree with theprima facie witness of his original writings 
(many dated by him) as they would seem fairly completely to have survived. 
These provide unshakeable evidence that a major part of his studies in the 
mid-1660s centred on the mechanics of a moving body. By pursuing the notion 
of the 'fluxion' of a 'fluent' quantity - its rate of change in 'time', that is - he 
quickly penetrated far, as I can here no more than mention, into the subtleties 
of what to modern eyes is geometricized calculus. But what of his parallel 
researches into the motion of bodies, and especially his explorations of the 
enforced dynamic** 'motus corporum' which is the main concern of the 
Principia itself? How widely and how deeply did they range? 

Herivel has published these in their entirety,9 so I need stress only what I see 
as the important. Newton's earliest thoughts on mechanics are recorded on a 
dozen folios in his 'Waste Book' dated between September 1664 and early the 
next year.10 No one would expect these to be vastly original. In fact, they mostly 
organize and refine the notions and axioms of motion which Descartes had set 

* In an early draft of a letter to Desmaizeaux in August 1718.7 Newton was, however, 
clearly dissatisfied with what he wrote, because he has crossed the passage out in the 
manuscript. Only a watered-down version of its content survived into the letter later sent 
(if indeed one was). 
* * I slip already into using a terminus technicus which Leibniz was not to coin till the 
1680s. Anachronistic though it may be, it is hard to evade employing what is now the mot 
juste, and I freely do so passim in sequel. 
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out in 1644 in Book 2 of his Principia philosphie. From it in particular he took 
what we still know as 'Newton's' First Law, decreeing that unforced motion is 
uniform and in a straight line.11 Of his own first discoveries he was later 
proudest, rightly so, of his derivation (independently of its first 'inventor', 
Christiaan Huygens, who announced it to the world only in 1673 in appendix 
to his Horologium oscillatorium)12 of a way of measuring the 'centrifugal' force 
induced outwards by uniform motion in a circle. The 'Demonstration' of the 
press of this 'endeavour from the center' (to use his Englishing of Descartes's 
Latin technical term conatus a centro), which Newton entered in January 1665 
on the first page of his Waste Book,13 well manifests his growing dynamical 
insight, while illustrating the difficulties that he faced and somewhat crudely 
mastered in elaborating his variety of ad hoc reasonings. 

Newton here supposes (I clear away the thorns and contractions befogging 
his text) that a body moves uniformly in an 'equilaterall polygon abcd ... [of] 6, 
8, 12, 100, 1000 sides &c' - in the first instance he chooses a square, but his 
argument needs only slight correction in the general case14 - at whose corners 
it is instantly 'reflected' (bounced) from one side into the next by its collision 
with the circumscribing circle. Then he asserts that 

If [a] ball revolves about 
the center n, the force by 
which it endeavours from 
[it] would beget soe much ! 
motion ... as there is in [the 
body] in the time that [it] C 
moves the length of the \ 
semidiamiter an. 

And in 'Demonstration' he / 
argues: I , 

If the globe [by its reflec- 
tion at a] move from a to b, 
then 
2f[b]15: ab:: ab: [bn] 

:: the force or 
pression of [the globe] 
upon [the circle] at its 
reflecting 

: the force of its motion. 

[And] soe if the body [revolve in] the sides of an equilaterall ... polygon of an infinite 
number of sides (i: e: ... the circle it selfe). 

The subtleties here are not evident at first inspection. On taking r to be the 
circumradius an = bn = cn = dn ... of the polygon abcd ... let the 'globe' 
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travelling along it cover each equal side ab = be = cd = ... = s in time t at 
uniform speed v = sit. Newton supposes that when it reaches each corner a, b, 
c, d, ... in turn an inwards 'pression', f say, to the centre n instantly 'reflects' it 
from one side to the next, altering the direction but not the magnitude of its 
'force of motion' v. It is the impulseft of the 'pression' which Newton compares 
to this 'force', namely via the proportion (ft : v : :)ft2: s :: s : r, whence at once 
f = v2/r. Equally, therefore, in the limit where the polygon's sides become 
infinite in number (and so infinitely small) the outward 'endeavour from the 
center' which acts upon a body constrained to move in a circle of radius r at 
speed v is v2/r. Newton's assertion is merely the corollary that the 'motion' - 
the total impetus we would say - 'begotten' by the 'endeavour from the center' 
acting over an arc of length r in time t = r/v is ft = v.16 

In a sentence squeezed in by him immediately afterwards he adjoins what 
might well seem to us obvious, observing that 

If the body b moved in an Ellipsis, then its force in each point (if its motion in that 
point bee given) may bee found by a tangent circle of equall crookednesse with that 
point of the Ellipsis.1 

Not only, however, was this remark original, but Newton's path to dynamical 
discovery might have been very different had he pursued it. In a Waste Book 
entry dated December 1664 he had already roughed out a method for con- 
structing the centre of curvature, and so the 'quantity of crookednesse' inverse 
to it, in an ellipse.18 Six years later, to jump ahead, he would in Problem 5 of 
his 1671 fluxions treatise derive the elegant result that the radius p of curvature 
at any point on a conic is proportional to the cube of the normal at the point, 
down to the axis. 19 Because this (as is easily shown) varies inversely as the sine 
of the angle, a say, between the conic and one or other focal radius vector 
there, the force f = v2/p. sin a acting through the focus to sustain motion in a 
conic orbit varies as (v. sin a)2. At once by Kepler's area law for their motion, 
positing in equivalent the constancy of rv. sin a, the planets can orbit under a 
force to a focus varying as the inverse-square of the distance r. But I talk of a 
deduction that Newton never made till the 1690s. Quickly back to January 1665. 

Newton on his Waste Book folio20 went on to cite 'Galileus' as his authority 
for asserting of the verti- 
cal pendulum that 

If a body undulate 
in the circle bd, all 
its undulations of 
any altitude are 
performed in the 
same time with the 
same radius. N _ 

__~fta _ _mw_0 40 amm mow emw 
r 
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He then (again treading in the steps of Huygens had he known it)21 compares 
its period with that of a horizontally beating circular pendulum of equal height, 
claiming that 

If c undulate in the circle cgef, to whose diamiter ce, ad = ab being perpendicular, 
then will the body b undulate in the same time that c circulates. 

For if the bob c of the conical pendulum of given length ac continues to beat 
at the same constant height ad, maintaining the radius cd of its horizontal 
'circulation', the outwards thrust of the force, f say, of that circulation must 
counterbalance the downwards pull, g, of gravity upon it. 

Whence, in Newton's words in corollary, there must be cd : ad : the force 
[f] from d: the force [g] from a. Or cd/f = ad/g. And therefore, because the 
period of one circulation of c about the centre d at speed v is 27.cd/v = 
27vcdf'= 2vtiad/g; this is indeed equal (for small vibrations) to that of the 

pendulum bob b beating to and fro under gravity in the circular arc bd of radius 
ad. 

No less importantly, Newton observes in the same corollary, 
hence may the force of gravity & the motion of things falling were they not hindered 
by the aire [bee] very exactly found. 

Yet again like Huygens before him,22 he made several such calculations on this 
basis on the back of a vellum sheet originally used as a land lease,23 having 
timed the 'ticks' (complete revolutions) of 45° conical pendulums of differing 
lengths. Where such a pendulum of horizontal radius r inches swings round n 
times an hour, its bob will cover the distance 2jr inches in 1/n hours at the 
uniform speed v = 2tnr in/h, its swing maintained by the balance of the (here 
equal) forces g = f = v2/r in/h2. Again, because the time t in which a body falls 
from rest through I r = gt2 inches is v = r/v = 1/2jn h = 3600/2n s, its fall 
in the first second is I r.(27/3600) inches. And so Newton computes, putting 
X = 22/7 as near enough. In the first instance, taking the string-length to be 81 
in and so the base radius [r = 81/V/2 =] 57.28 in, he finds from trial that it makes 
[n =] 1512 'ticks in an hour'; whence - after correcting a shaky bit of arithmetic 
- he computes that a body falls from rest under gravity some '200inches... = 
5yds, in the first second. In sequel, finding that one with a base radius 561 inches 
makes 1500 'ticks' in 'an hower + 1/30' (62 minutes) he computes a smaller fall 
of not quite 197 inches. For one, lastly, of radius 57 inches 'circulating' at 1500 
'ticks an hower' - suspect such integral numbers! - he calculates a lesser fall 
still of about 195 1 inches, but then rounds this upwards to assert that in the 
first second of its fall from rest 'a weighty body' covers 196 inches, or (just 
under) 5 1 yards.24 At the outset he had cited Galileo as his authority for stating 
that it would fall only about '4cubit. id est 3yds. 
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The pattern of Newton's early dynamical studies will now be clear. I will 
merely mention a paper of his25 where half a dozen years later, having perhaps 
heard some report of this still unpublished discovery by Huygens,26 he deftly 
showed even as its 'second inventor' that a cycloid is the curve in which a 
pendulum beats to and fro in a time independent of its arc of swing.27 (He knew 
already that its bob is made to move in a such an arc by curving its thread along 
the 'cheeks' of a congruent cycloid.)28 

Before leaving Newton's 1665 vellum sheet, let me notice one more thing 
about it. At its top he writes out the calculation whereby - after removing a 
deep-set error - he deduces that 'the force of the Earth from its center is to 
the force of gravity as ... 1 : 300,29 or thereabouts'. In its corrected form the 
computation merely applies his new-found measure of the 'endeavour from the 
center' in a straightforward way.30 I would, however, stress that, ignoring 
arithmetical error, the accuracy of his value for this ratio of terrestrial gravity 
to the centrifugal force engendered by the Earth in its daily rotation depended 
crucially upon the closeness to truth of the astronomical data that he assumed 
in it. This leads me to the second strand that was, or so I have claimed, an 
essential prerequisite to Newton's writing the Principia. 

That both the manuscript pages from which I have quoted cite Galileo - 
indirectly via Thomas Salusbury's 1665 English translation of his Two new 
sciences, in fact - is misleading. Was Newton's chief reason for putting his 
present trust in Galileo's value of 3500 miles for the Earth's radius really any 
more than that it coupled with the Archimedean approximation 22/7 for ;r to 
yield a round figure of 22 000 miles for its circumference? Further to accept, 
as Newton here did (elsewhere he knew better), Galileo's far too low estimate 
of 17 million miles31 for our mean distance from the Sun - implying in turn 
a value of more than 40" for the Earth's solar parallax - could only have been 
for him a textbook convenience. But, if not from Galileo, from whom did he 
gain his working knowledge of technical astronomy? Not from studying any of 
the works of Kepler or the other great astronomers of the first two-thirds of 
the 17th century, or guided by any teacher. His surviving early writings on the 
topic uniformly reveal that he took his first uneasy steps in the subject by 
reading for himself standard textbooks of the period, long forgotten though 
these and their authors now are, with one exception, other than by professional 
historians. 

But what sparked his interest in things astronomical? The appearance of a 
comet in late 1664, seemingly, which when he first saw it on 9 December in (we 
now know) its inward path to perihelion already had a 'tayle' 20° in length.32 
This he again observed several times some weeks afterwards as it egressed,33 
but without realizing it was the same one. Other comets had, he knew, often 
appeared in the past. Where could he find out about these? He first, we know, 
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consulted Willebrord Snell's tract on the comet of late 1618,34 to discover that 
many of the technical terms there used were unknown to him. A crash course 
in basic astronomy was clearly called for. 

Of the several textbooks on the topic then in use in England two were 
pre-eminent: Vincent Wing's bulky Harmonicon cceleste and Thomas Streete's 
more modestAstronomia Carolina (in English despite their Latin titles).35 The 
first Newton bought and lavishly annotated,36 and he closely studied the latter 
in a copy not his own. Together they gave him a sound grounding in the working 
astronomy of the day. From Streete in particular he learnt of Kepler's first and 
third planetary 'hypotheses' (he would afterwards not a little sniffily declare 
that Kepler himself had only 'guessed' them);37 but neither Wing nor Streete 
mentioned the area law on whose generalization he was to found his proof that 
they are exact. In lieu Newton took careful note38 of a standard equant model 
outlined by Streete which approximately constructed the mean motion of the 
planets in Keplerian elliptical orbit. 

But his deep interest in workaday astronomy was to endure little longer than 
the comet which provoked it.39 Afterwards he would prefer always to go to 
better observers of the night sky than he could ever be, to furnish him with his 
astronomical data. What underlay the visible appearance of the heavens came 
instead to fill his mind. Would it be possible to embrace the motions of the 
planets and the Moon (and maybe comets too?) within one single dynamically 
structured scheme? It was natural that, just as he had founded his previous 
researches into circular motion on the second book of Descartes's Principia 
philosophice, he should here look to the notions set out in its third one for like 
guidance. And to be sure, as I have written,40 he soon 'quickly ... familiarised 
himself with a universe in which vortices (deferent whirlpools) of matter fill 

space and all moving bodies are borne along in the swirl, the planets ... trapped 
in the solar whirlpool'. It is perhaps still not fully appreciated how much such 
images coloured and structured his thoughts upon astronomy during the next 
15 years. 

Two still not widely known examples may be cited. The lunar theory that 
Newton sketched out on a folio sheet once loose in his copy of Vincent Wing's 
Astronomia Britannica of 166941 (which must therefore be the terminus ante 
quem non of its composition) is wholly expounded in terms of vortices. In 
particular he would there explain the inequalities of reflection and evection by 
having the solar vortex compress the terrestrial one.42 Again, more than a 
decade later, in a paper of the early 1680s largely devoted to discussing comets, 
he could still assert that 'the material of the heavens is fluid, and revolves round 
the centre of the cosmic system'.43 However, not the least eccentric thing about 
comets is that many - including the one Newton first glimpsed early in 
December 1664 - are in retrograde motion around the Sun. This is contrary to 
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the 'natural vortex' of the planets, and ever remained a major worry for the 
Cartesian Newton. 

But how was this 'natural state' of vortical motion in the heavens to be 
reconciled with Descartes's parallel dictate that at the surface of the Earth, as 
Newton had made it axiomatic,44 'unlesse it bee interrupted by some externall 
cause ... A body once moved will always keep the same celerity, quantity and 
determination [rectilinear direction] of its motion': a notion which, as I have 
outlined, was basic to his deriving a measure of Descartes's outwards 'endeav- 
our from a center', effectively in terms of the deviation from inertial straight 
motion that it induces. If celestial and terrestrial motions could not directly be 
compared, there is an end to it. But can they? The Moon, orbiting nearly 
uniformly around the Earth all but in a circle, constrained therein against an 
outwards 'endeavour from the centre', which Newton now knew how to 
compute, afforded an obvious test. For the force of the 'endeavour' will be to 
that of gravity at the Earth's surface as the Moon's deviation from straight in 
a given time is to the fall of a body under gravity from rest in an equal time, 
which he likewise now knew. Or was it quite so simple? ... 

We should not take for gospel the tales that Newton was wont to tell in his 
old age of how a falling fruit (be it an apple or no)45 had led him as a young 
man to ponder whether all motion, in the heavens no less than on Earth, is 
governed by some principle of universal gravitation. Maybe so, but nothing in 
his own papers supports it. The notion, certainly, would have been an alien 
intruder in the Cartesian whorl of ideas that otherwise filled his mind. All such 
stories, even when told by Newton about himself, must be submitted to the 
usual canons of historical evidence, and when they do not pass, then they must 
be demoted to being mere unsupported anecdote. 

One of these, most fully recounted by Whiston,46 has it that soon after Jean 
Picard published his near-exact value of slightly more than 69 miles for a degree 
of longitude at the Earth's equator,47 yielding some 3960 miles for its radius, 
Newton used this to correct an 'old imperfect Calculation' where he had 
thought to compare the Moon's motion with the Earth's gravity. No such 
revised computation by him has survived. Whiston adds, however, of Newton's 
abortive earlier computation that, having there failed to show that the Moon's 
outwards 'endeavour' in its circular orbit about the Earth was even roughly in 
proportion to the pull of terrestrial gravity as the inverse-square of the lunar 
distance to the Earth's radius, he then began to 'suspect that the Power ... that 
restrained to Moon in her Orbit ... was partly that of Gravity, and partly that 
of Cartesius's vortices', and so 'threw aside' his calculation.48 However, when 
Newton later did make such test of the Moon in his 1687 Principia (there taking 
Huygens's value of 15 Paris feet for free fall from rest in the first second at the 
Earth's surface), to confirm the 'precise' truth of the inverse-square law of 
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decrease in terrestrial gravity with distance, he had no scruple in slightly 
stretching the radius of the Moon's orbit to be 'virtually' 61 Earth radii. 

Almost certainly, the 'imperfect Calculation' to which Whiston refers is a 
quarto sheet now with other early papers of his in Cambridge University 
Library.49 First brought to attention by A.R. Hall in 1957, its text has been 

published more than once in recent years. A 
The measure v2/r of the conatus recedendi 
a centro pressing outwards on a body ro- 

tating in a circle of radius CA = CD = r 
at a constant speed v is here, however, 
derived by a variant argument (that used 
by Huygens in 1659 in fact,50 though New- 
ton could not have known this), which 
posits the arclet AD to be vanishingly 
small, and so too, therefore, its tangent 
AB; whence the deviation 

BD = AB2/BE - AB2/2r.51 
There was a subtlety in this argument that Newton was not to appreciate till 

15 years later. In the numerical computations that follow there are several 

roundings-off made en route, one so drastic that it draws attention to itself. The 
data that he employs, moreover, vary a deal in their accuracy. His value of 
27d7h43m 'or 27.3216 days, whose square is 7461 ', for the Moon's period is all 
but exact, as nearly so is his estimate that the (mean) distance of the Moon 
from the Earth is about 60 of its 'semi-diameters'. What thoroughly faults his 
calculation is his implicit adoption yet again of Galileo's value of a mere 3500 
miles (each of 5000 feet) for the Earth's radius. Though he gives only a bare 
outline of it, his ensuing argument is straightforward. Because a body continu- 

ously accelerated from rest by the force of the outwards 'endeavour' generated 
by the Earth's daily rotation would cover (2X2 =) 19.7392 radii52 'or 69087 
miles' in a day, that is, some 120 miles in the first hour, or 5/9 inches in the first 
second; and this conatus recedendi is (746 1 /60, or about) 12 1 times greater 
than that pressing outward upon the Moon in her all but circular orbit about 
the Earth; then, because the Earth's outwards 'endeavour' is, taking free fall 
from rest to be about 16 feet in the first second, virtually 35053 times less than 
the pull of terrestrial gravity, it follows that the Moon's 'endeavour' to recede 
from the Earth is some (12 1 x 350 =) 4375 times less than it: a figure which 
Newton himself with economy of truth rounded to be a broad '4000 times and 
more'. 

Though Newton added no comment regarding this ratio,54 he must have 
been disappointed that it did not more closely approach the (602 =) 3600 that 
an inverse-square law of decrease in the 'power' of the Earth's 'endeavour of 
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receding from the centre' would entail. What he does spell out in an ensuing 
paragraph in the manuscript is a corollary to Kepler's Third Law of planetary 
motion (Newton does not name it so after its author, but merely enunciates it), 
namely, that the cubes of the mean distances of the 'primary' planets orbiting 
the Sun are proportional to the squares of their periods of revolution.55 It 
follows at once that the squares of their mean speeds are in inverse proportion 
to their mean distances, and hence on dividing through by the distances, their 
'endeavours' from the Sun are (or nearly so) inversely as the squares of those 
distances.56 

But this is to see only the trees and not the forest. In a Cartesian vortex theory 
such as Newton espoused right through the 1670s all 'natural' uniform motion 
is implicitly explained through the supposition that the outwards 'endeavour 
from the center' and the contrary inwards 'force of gravity' are at every instant 
in balance. Where, however, this is not so, then, to anticipate a phrase Newton 
used to Hooke in December 1679, 'the body will circulate with an alternate 
ascent & descent made by its vis centrifuga & gravity alternatively overballanc- 
ing one another'.57 (Notice that for Newton, Huygens's now familiar equivalent 
name had already ousted Descartes's conatus recedendi a centro just six years 
after its inventor introduced it to the public in his 1673 Horologium.) But how 
to flesh out this intuitively acceptable notion that the radial acceleration in an 
orbit is compounded of an outwards pull of 'centrifugal force' directly opposed 
in continuous imbalance to an inwards 'centripetal' (centre-seeking) one of 
gravity, as Newton would himself rename it in 1684 in his tract 'De motu 
Corporum'? Is the 'centre-fleeing force' he here posits precisely Huygens's 
circular vis centrifuga ? Or is it just a convenient tag for some other yet ill-defined 
outwards 'push', the only demand upon which is that it shall continuously 
counteract an equally unspecified inwards 'gravitation' to produce the desired 
elliptical orbits of the planets? If either, was the idea original with him? And, 
most important of all, what at any time up to the early 1680s could he have 
done to pluck mathematical fruit from it? 

With these questions we are mostly in the realm of the unknowable past, if 
not in the reaches of one that never was. The notion here favoured by Newton 
had in fact been proposed by Giovanni Alfonso Borelli in the very year of his 
own annus mirabilis as a 'theory deduced from physical causes' of the motion 
of the 'Medicean' satellites about their parent planet Jupiter.58 Though he 
propounded it only in words, Borelli's hypothesis* was that the non-circular 

* I neglect an additional impetus posited by him to act instantaneously at right angles to 
the radius vector, so as to maintain uniform circular motion (of zero radial acceleration) 
about the centre of force. 
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orbits of the Jovian satellites ensue from compounding 'two motions directly 
contrary each to the other: one, perpetual and uniform, whereby the planet 
impelled by its own magnetic virtue moves towards the Sun's body; and a 
second, ... continually decreasing [outwards], whereby the planet is driven out 
from the Sun by the force of its circular motion'. When 20 years later, early in 
summer 1686, Edmond Halley reported to Newton that Robert Hooke was 
making 'great stir' in London by claiming to be the first to have solved the 
problem of planetary motion by postulating an inverse-square solar gravity, 
everyone knows the bitter sneer that he hurled back, angrily complaining that 
'he has done nothing & yet written ... as if he knew & had sufficiently hinted 
all but what remained to be determined by ye drudgery of calculations & 
observations, excusing himself from that labour by reason of his other business: 
whereas he should rather have excused himself by reason of his inability ... to 

go about it'.59 But he also recalled for Halley that in contrast, long before 
Hooke, 'Borell ... did something in it & wrote modestly'. 

This is something more than a distant memory of casually reading the copy 
of Borelli's book which he had in his library. But did Newton ever think seriously 
of mathematicizing what he calls 'Borell's Hypothesis'? 

No surviving evidence indicates so. Which could just mean simply that the 

papers in which Newton did try to develop a coherent Borellian explanation 
of the motion of the planets and their satellites about their parent bodies have 
not survived. Had he done so, he would surely have posited that the 'vis 
centrifuga' (even if he failed to see that this is merely the radial acceleration 
induced by the body's instantaneous inertial motion) shall ever vary inversely 
as the cube of the radial distance.60 But would he have grasped the crucial 

necessity further to premise (no need to prove it) that Kepler's law of areas 
shall hold true, whatever the central force? The kiss of death to any such 

speculation must be his repeated insistence in his later years61 that it was not 
until the winter of 1679/80 that he first appreciated the fundamental role that 
the generalized 'Keplerian' law must play in dynamical theory. Had he done so 
earlier, he might already by 1670 have been wending the path that Leibniz 
would tread in late 1688 when he proved in his own fashion that a planet can 
be sustained in an elliptical orbit around the Sun at a focus under the radial 
action of an inverse-cube outwards 'endeavour' teetering in instant imbalance 
with the counter thrust of an inverse-square 'solicitation' (as he named it) of 

gravity.62 
During the 1670s in fact, with other matters scientific (and theological) 

occupying his mind, Newton's interest in the motion of bodies, terrestrial and 
celestial, died down to a smoulder. Only at the very end of the decade were its 
embers stirred into a new fire, one then quickly banked down for four and a 
half years more before at length breaking into the fierce blaze out of which the 
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Principia was, phoenix-like, born. 
The man who poked the fire awake was, need I say it, Hooke. He in a flurry 

of letters to Cambridge over several weeks from late November 167963 speci- 
fied to Newton the basis on which he thought it should be demonstrated that 
planetary motion in Keplerian ellipses implies an inverse-square force of 
'attraction' to the Sun. Granted that he failed dismally to appreciate that this 
in no way provided its solution, I no less excuse Newton for his later refusal to 
give due credit to Hooke not merely for reawakening his interest, but for urging 
him to consider the enforced deviations from tangential straight which indeed 
paved the way to his solving the problem. 

Let me cite only the salient points of the correspondence, because I have 
analysed it elsewhere.64 Hooke's reason for opening it was part of his aim, as 
its recently appointed Secretary,65 to stir new life into a Royal Society mori- 
bund since the death of Henry Oldenburg two years before. So it was that he 
began on 24 November 1679 by requesting Newton 'please to continue your 
former favours to the Society by communicating what shall occur to you that 
is Philosophicall', though he made it clear that 'For my own part I shall take it 
as a great favour ... particularly it you will let me know your thoughts of [my 
hypothesis] of compounding the celestiall motions of the planetts of a direct' 
- straight - 'motion by the tangent & an attractive motion towards the centrall 

body'.66 Had he added that Kepler's area law was to be understood, he would 
have handed to Newton a complete skeleton solution of the problem, leaving 
him no more than the job of geometrically fleshing it out with pertinent 
theorems on the ellipse. Six years later Hooke clearly thought he had done just 
that. 

When Newton wrote back four days later, however, he stated that 'I did not 
before ... so much as heare (that I remember) of your Hypothesis of compound- 
ing the celestial motions of the Planets, of a direct motion by the tangent to the 
curve', and sought to change the topic to the different one, so he thought, of 
tracking the path of a body dropped from rest at the top of a tower, to fall freely 
under (constant) gravity 'towards the center of the Earth', which 'will not 
descend in the perpendicular ... but outrunning the parts of the Earth will shoot 
forward to the east ...'.67 In his rough accompanying sketch - the original is so 
often badly reproduced - the path taken by the falling body is shown as starting 
tangent to the vertical before reversing its curvature to continue thereafter (so 
Hooke puts it) as 'a kind of spirall which after sume few revolutions [ends] in 
the Center of the Earth'. What Newton had not made clear is that his curve is 
the path of fall relative to the tower viewed as it rotates about the Earth's centre. 
An external observer at rest, however, would see the body drop in a smoothly 
inwards spiralling 'Elleptueid',68 of the kind 'my theory', Hooke wrote back in 
would-be confutation on 9 December,69 'makes me suppose it'. But when it is 
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still rare for modern commentators to notice this nicety, we should perhaps not 
take Hooke too much to task for his blindness to it. 

Newton was of course never one to be rebuked. In what is to me the most 
interesting letter of the brief correspondence, he responded on 13 December 
(I have already partially quoted the passage) that 

I agree with you that the body ... if its gravity be supposed uniform will not descend 
in a spiral to the very center but circulate with an alternate ascent & descent made 
by it's vis centrifuga & gravity alternately overballancing one another. Yet I imagine 
the body will not describe an Ellipsoeid but rather such a figure as [this] ....70 

And he drew a nearly trefoil path - how often since Koyre first published the 
letter has it confidently been depicted as one, often with praise for Hooke's 
superior insight here! - that, despite all the care Newton put into 'considering 
[its] species', much over-estimates the angles between its successive apogees. 
It is not so much that the mathematical techniques for summing (in Newton's 
words) 'according to the method of indivisibles' the 'innumerable & infinitly 
little' deviations of a body from tangential straight 'continually generated by ... 
the impresses of gravity [upon] it's passage' were not yet to his hand. Rather, 
as he must quickly have found, no exact solution71 of this 'simplest' case of 
tracing the path of free-fall under constant gravity to a finite centre is possible 
within (as we would say) the elementary functions at his disposal. 

The imprecisions in Newton's solution apart, the subtleties that lay beneath 
it were certainly beyond Hooke's capacity to grasp. In his reply on 6 January 
1679/80 he compliantly accepted that indeed: 'Your Calculation of the Curve 
[traversed] by a body attracted by an aequall power at all Distances ... is right 
and the two auges will not unite by about a third of a Revolution.' But then he 
swept the problem aside, insisting instead that 

my supposition is that the Attraction always is in a duplicate proportion from the 
Center Reciprocall, and Consequently ... as Kepler supposes ... with such an 
attraction the auges will unite ... and the nearest point of accesse to the center will 
be opposite to the furthest Distant. Which I conceive doth very Intelligibly and truly 
make out all the Appearances of the Heavens ... In the Celestiall Motions the Sun 
Earth or Centrall body are the cause of the Attraction, and though they cannot be 
supposed mathematicall points yet they may be Conceived as physicall [ones] and 
the attraction at a Considerable Distance may be computed according to the former 
proportion as from the very Center.72 

Newton replied neither to this nor to a last letter of Hooke's 11 days later 
where he urged once more that it 'now remaines to know the proprietys of a 
Curve line made by a centrall attractive power which makes the Velocitys of 
Descent from the tangent Line or equall straight motion at all Distances in a 

Duplicate proportion to the Distances Reciprocally taken'.73 But the challenge 
had been squarely put to him to frame a general theory of the motion of a body 
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'attracted' from moment to moment out of uniformly traversed tangential 
straight towards some given central point: one which shall, on positing that the 
force of attraction varies as the inverse-square of the distance, yield confirma- 
tion of Kepler's hypothesis that the planets orbit in exact ellipses about the Sun 
at a focus. The breakthrough came soon after when, to cite a memorandum by 
de Moivre,74 'he laid down this proposition that the areas described in equal 
times were equal, which tho[ugh] assumed by Kepler was not by him demon- 
strated'. With this sole addition to the guide-lines that Hooke had set, Newton 
passed to verify that elliptical orbits may be traversed in an inverse-square force 
field centred on the Sun at one or other focus;75 and then laid his discovery 
aside, telling no one of it (so far as we know) for almost five years. 

Although the calculation he then made has not survived - or at least he could 
not locate it in August 1684 when Halley asked to see it76 - its form surely did 
not basically differ from the demonstration that he was to set out for Halley in 
November 1684 in his tract 'De motu corporum in gyrum', and ultimately 
publish as Propositions 1 and 11 of Book 1 of his Principia in 1687. Only once 
in the interim did he have any contact with the outside world on anything to 
do with motion, terrestrial or celestial: this for a few months from December 
1680, when he corresponded with John Flamsteed about the great comet - or 
rather two distinct ingoing and outgoing ones (on either side of its perihelion 
on 8 December) as he was first inclined to believe - whose giant tail was for 
many weeks visible even in daytime until the early spring of 1681.77 Interesting 
though Newton's letters are, however, it would take me too far out of my way 
to discuss them here. 

To fill in the background to what follows, let me jump ahead a moment to 
22 May 1686 when Halley, who had replaced Hooke as Secretary, wrote 
officially to Newton on the Royal Society's behalf to announce that '[the first 
book of] your incomparable treatise intituled Philosophice Naturalis Principia 
Mathematica was by Dr Vincent presented ... on the 28th [April] past' and that 
a 'Councell' was to be 'summon'd to consider about the printing thereof'. He 
took the cream off his news, however, by adjoining: 

There is one thing more that I ought to informe you of, viz, that Mr Hook has some 
pretensions upon the invention of the rule of the decrease of Gravity being 
reciprocally as the squares of the distances from the Center. He sais you had the 
notion from him, though he owns the Demonstration of the Curves generated 
therby to be wholly your own, [and he] seems to expect you should make some 
mention of him, in the preface, which, it is possible, you may see reason to praefix.78 

Newton replied in (for him) a mild tone five days later that he wished that a 

'good understanding' be kept between himself and Hooke, and went on to give 
Halley a reasonably accurate 'summe of what past between Mr Hooke & me 

(to the best of my remembrance)' in their exchange of letters some six years 
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before. He said that in his letter of 28 November 1679 he had 'carelessly' 
described the path of fall of a body to be 'in a spirall to the center of the earth: 
which is true in a resisting medium such as our air is'; and on 13 December 
'took the simplest case for computation, ... of Gravity uniform in a medium not 
Resisting' and 'stated the Limit as nearly as I could ...'. But upon Hooke's claim 
to have been the first to suppose that the Earth's gravity 'increased in descent 
to the center in a reciprocall duplicate proportion, and ... that according to this 
duplicate proportion the motions of the planets might be explained, and their 
orbs defined', he would not be drawn.79 However, he went on, 

I remember about 9 years since [the date would be around Easter of 1677] Sr 
Christopher Wren upon a visit Dr Done and I gave him at his lodgings, discoursed 
of this Problem of determining the heavenly motions upon philosophicall princi- 
ples. This was about a year or two before I received Mr Hooks letters. You are 
acquainted with Sr Christopher. Pray know when & whence he first learnt the 
decrease of the force in a duplicate ratio of the distance from the Center.80 

Just three weeks later, in a letter to Halley of 20 June 1686 whose most 
celebrated passage I have already cited, he was prepared to thunder. 

In order to let you know the case between Mr Hooke & me ... I am almost confident 
by circumstances that Sr Chr. Wren knew the duplicate proportion when I gave him 
a visit, & then Mr Hook will prove the last of us three that knew it. I never extended 
the duplicate proportion lower then to the superficies of the earth & before a 
certain demonstration I found the last year have suspected it did not reach accur- 
ately enough down so low.1 ... 

I hope I shall not be urged to declare in print that I understood not the obvious 
mathematical conditions of my own Hypothesis 10 & 11 years ago ... wherein I 
hinted a cause of gravity in which the proportion of the decrease of gravity from 
the superficies of the Planet ... can be no other then reciprocally duplicate of the 
distance from the center. But grant I received it afterwards from Mr Hook, yet have 
I as great a right to it as to the Ellipsis. For as Kepler knew the [planetary] Orb to 
be not circular & guest it to be Elliptical, so Mr Hook without knowing what I have 
found out since his letters to me [in the early winter of 1679/80] can know no more 
but that the proportion was duplicate quam proxime at great distances from the 
center, & only guest it to be so accurately, & guest amiss in extending that 
proportion down to the very center.8 

Halley's reply on 29 June served not merely to smooth Newton's by now 

considerably ruffled feathers, but also sheds light on the cul-de-sac at which 
discussion of planetary motion at London in the early 1680s had arrived. 

'According to your desire', he reported, he had indeed 

waited upon Sr Christopher Wren, to inquire of him, if he had the first notion of 
the reciprocall proportion from Mr Hook. His answer was, that he himself very 
many years since had had his thoughts upon making out the Planets motions by a 
composition of a Descent towards the sun, & an imprest motion; but that at length 
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he gave over, not finding the means of doing it. Since which time Mr Hook had 
frequently told him that he had done it, and attempted to make it out to him, but 
that he never satisfied him, that his demonstrations were cogent.83 

But 'this I know to be true', he continued: 

... in January 83/4, I, having from the consideration of the sesquialter proportion of 
Kepler concluded that the centripetall force [to the Sun] decreased in the propor- 
tion of the squares of the distances reciprocally, came one Wednesday to town, 
where I met with Sr Christ. Wren and Mr Hook, and falling in discourse about it, 
Mr Hook affirmed that upon that principle all the Laws of the celestiall motions 
were to be demonstrated, and that he himself had done it. I declared the ill success 
of my attempts; and Sr Christopher to encourage the Inquiry said that he would 
give Mr Hook or me 2 months time to bring him a convincing demonstration 
thereof, and besides the honour, he of us that did it, should have from him a present 
of a book of 40 shillings. Mr Hook then said that he would conceale [his] for some 
time that other triing and failing, might know how to value it, when he should make 
it publick. ... I remember Sr Christopher was little satisfied that he could do it, and 
though Mr Hook then promised to show it him, I do not yet find that in that 
particular he has been as good as his word.4 

With so much commotion in London, one might have expected that someone 
there would have written to Cambridge's Lucasian Professor of Mathematics 
to ask his opinion of the matter. Had anyone done so, of course, he would have 
been vastly surprised to find just how far Newton himself had gone on the way 
to giving the requisite 'convincing' proof: namely, that the three hypotheses 
governing the motions of the planets in their elliptical orbits round the Sun at 
a focus can be accounted for by positing a pull of gravity to it, drawing them 
from their uniformly traversed onward tangential paths, which varies inversely 
as the square of the distance. But no one seems to have thought to do so. And 
if Newton himself heard any report of what was current scientific gossip in the 

capital, he kept his thoughts to himself. It was, Halley proceeded to remind, 
only in 'August following' - seven months later - 'when I did myself the honour 
to visit you', that 

I then learnt the good news that you had brought this demonstration to perfection, 
and you were pleased to promise me a copy thereof, which the November following 
I received with a great deal of satisfaction from Mr Paget;85 and [I] thereupon took 
another Journey down to Cambridge on purpose to conferr with you about it, since 
which time it has been entered upon the Register Books of the Society. 

To which he adjoined that 'all this [time] past Mr Hook was acquainted with 
it; and according to the philosophically ambitious temper he is of, he would, 
had he been master of a like demonstration, no longer have conceald it, the 
reason he told Sr Christopher & I now ceasing...' 

As a return for this reassurance Newton outlined to Halley in what way (as 
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he saw it) Hooke had helped him to achieve his breakthrough in the winter of 
1679/80. 'This is true', he wrote back on 14 July, that 

his Letters occasioned my finding the method of determining Figures, which when 
I had tried in the Ellipsis, I threw the calculation by being upon other studies. & so 
it rested for about 5 years till upon your request I sought for that paper, & not 
finding it did it again & reduced it into the Propositions shewed you by Mr Paget; 
but... the duplicate proportion ... I gathered ... from Keplers [third] Theorem about 
20 yeares ago ...8 

The 'calculation' that Newton made in late 1679, offhandedly to lay it aside 
because he had things more important on his mind, has long intrigued scholars. 
Although Herivel has claimed to have located the original, he is supported only 
(and then somewhat waveringly) by Westfall.87 I myself see no need to go 
against the common assumption that it no longer exists. But whatever his 
'calculation' was, Newton here testifies that he deduced by it only that a planet 
can be maintained in its elliptical orbit under the pull of inverse-square 
gravitation to the Sun. And everyone, even Herivel, agrees that it could only 
reasonably have been substantially the same as the one that he set out in revised 
form in the 'Propositions' which Paget bore to London for him in November 
1684. 

But why was Newton unable at once to reproduce this 'calculation' for Halley 
when he visited him in Cambridge the previous August? Although we should 
never rely too heavily upon unconfirmed anecdote, there is a passage in de 
Moivre's 1727 memorandum relating to this88 which is so full of detail that its 
ultimate source can only have been Newton himself. Here it is reported that, 
when 'Dr Halley came to visit him at Cambridge' (only the year '1684' is stated), 

... after they had been some time together, the Dr asked him what he thought the 
Curve would be that would be described by the Planets supposing the force of 
attraction towards the Sun to be reciprocal to the square of their distance from it. 
Sr Isaac replied immediately that it would be an Ellipsis. The Doctor struck with 
joy and amazement asked him how he knew it. Why saith he I have calculated it, 
whereupon Dr Halley asked him for his calculation without any farther delay. 

When, however, Newton 'looked among his papers' he 'could not find it', but 
in lieu 'he promised him to renew it, & then to send it him'. 

Who will blame Halley if, as he made the (then) long journey back to London, 
his thought was that he had met another Hooke claiming to have achieved what 
he had not, and now promising to supply what he could not? If so, in just three 
months he would find out how wrong any such hasty judgement was. For, to 
cite de Moivre once more, back in Cambridge 

in order to make good his promise [Newton] fell to work again, [to find that he] 
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could not come to that conclusion which he thought he had before examined with 
care. However he attempted a new way which thou[gh] longer than the first, 
brought him again to his former conclusion, [and] then he examined carefully what 
might be the reason why the calculation he had undertaken before did not prove 
right. [H]e found that having drawn an Ellipsis coursely [lege coarsely] with his own 
hand, he had drawn two Axes of the Curve, instead of... two Diameters somewhat 
inclined to one another, whereby he might have fixed his imagination to any two 
conjugate diameters, which was requisite he should do. That being perceived, he 
made both his calculations agree together. 

The innate plausibility of this story is in itself reason good enough to recount 
it anew. But if it is true, what might the variant 'new way ... longer than the first' 
have been that Newton first contrived when he was unable either to locate his 
original 'calculation' or to recover its argument on the spot for Halley? It could 
be that its essence survives in a simplified 'Demonstration that the Planets by 
their gravity towards the Sun may move in Ellipses' which Newton let John 
Locke copy in March 1690.89 Without my further pressing the suggestion, 
anyone who looks at this text, and especially the lightly augmented copy of it 
in Newton's own hand (here, as ever, in Cambridge University Library), should 
see why I make it. 

The original of the 'copy' of Newton's 'perfect' demonstration (in the hand 
of his newly engaged secretary Humphrey Newton, I take it) which Paget took 
up to London in November 1684 has disappeared since he passed it on to 
Flamsteed early in January 1685.90 But before then, as Halley was to inform 
Newton, some unknown clerk 'enterd' a copy it, making many errors in his 
transcription, 'upon the Register books of the [Royal] Society', where it is still 
to be seen.91 If we compare this with Newton's much reworked autograph 
original, titled by him 'De motu Corporum in gyrum' (On the motion of bodies 
in orbit), now in Cambridge University Library, it will be seen that the Royal 
Society copy, except for spelling out a 'Hyp. 4' which in the draft is marooned 
in the margin on its first page,92 is effectively the same text. Using the first to 
emend the draft, I have elsewhere93 edited what is probably the nearest we 
shall now come to having the tract 'De motu Corporum' that Newton sent to 
London in 1684. 

It is impossible here fully to recount its content. But it would make a damp 
finale to what has gone before if I did not give some impression of the 'De 
motu'. In its opening Definition 1 - the parallel with Huygens's notion of an 
outwards vis centrifuga surely cannot be accidental - Newton introduces his 
preferred technical appellation 'centre-seeking force' (vis centripeta) for that 
'whereby a body is driven or attracted towards some point regarded as its 
centre'. Definition 2, where he posits a 'force innate to a body (vis corpori insita)' 
as one 'whereby it endeavours to persevere in its motion along a straight line', 
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together with Hypothesis 2, where he postulates that 'Every body proceeds 
uniformly along a straight line indefinitely unless prevented by something 
without', are a first version of the principle of inertial motion which he later set 
out much more clearly in the First Law of Motion in the Principia to come, 
though we might find some initial difficulty in recognizing it. Hypothesis 3 states 
the then entirely novel application of the parallelogram rule to compounding 
force vectors. But the Second Law as we know it is no more than adumbrated 
in Hypothesis 4 (a last-minute addition not in the draft), which propounds that 
'The space which a body under the press of any centripetal force at the very 
beginning of its motion describes is in the doubled ratio of the time';94 that is, 
under the impact of a force,fsay, at the start, a body is over a short 'moment' 
of time, Newton would call it o, thereafter diverted (from inertial straight) 
through the distance f.o2. Let me sketch how he goes on to demonstrate that 
the central force maintaining orbit in an ellipse round a focus is as the 

inverse-square of the distance from it. 
Theorem 1 sets forth the cru- 

cial generalization of Kepler's e 
area law for the planets that 'All >^ 
orbiting bodies'-under any 'cen-/ ; 
tripetal' force instantly diverting .; / '^ 
them from uniformly traversed/ .' \ : 
straight paths inward to the .' - 
centre of force, that is - 'describe , - 

by the radii drawn [from them] to ,' . f:' , 
the centre areas proportional to . :::, : 
the times'. And so (I use New- ,f ^ / 
ton's own figure) if a body that - ---'' 
initially sets out along AB to B, -' 
instead of then carrying straight S 
on to c, is at B forced towards S by an impulse which compels thereafter it to 
travel along BC to C, where a second impulse forces it out of its onward inertial 

path Cd to move along CD to D, and so on; then, because the deviation cC 
from BC is parallel to the direction BS of the impulse of force at B towards S, 
and likewise dD to CS, eE to DS,... the triangles BSc and BSC, CSd and CSD, 
DSe and DSE, ... it follows, where tAB is the time of passage along AB, tBC that 
along BC, and so on, that 

tAB: tBC:: AB: Bc:: A ASB: (A BSc = ) A BSC, 
tBC: tCD:: BC: Cd:: A BSC: (A CSd = )ACSD, 
tCD: tDE:: CD: De :: A CSD: (A DSe= ) A DSE, 

and so forth. (For convenience of future argument Newton himself puts the 
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times to be equal, but this is here unnecessary. At once, the times of passage 
of a body over successive sides AB, BC, CD, DE, ... of the chain ABCDE... are, 
independently of the size of the impulses of force at the corners B, C, D,... in 
turn which beget it, proportional to the respective triangular areas ASB, BSC, 
CSD, DSE, ... which the body sweeps out about the centre S of force. In the 

limit, then, as each of the sides of the chain comes to be vanishingly small and 
the chain is, under successive impulses of force, each infinitesimal in magnitude, 
acting at the infinity of its 'corner' points, smoothed out to be the curving arc 
(A)BF, the sum of the areas of the 'infinitely many', 'infinitely small' triangles 
BSC, CSD, ... traversed in equal times as the body orbits about the vertex S will 
be the sector (BSF): which therefore measures the time of orbit over the arc 
BF, into which a body will from instant to instant be diverted from tangential 
straight by a force acting towards S 'without intermission'. In the phrase now 
familiar, in any central-force field the time of orbit over an arc is proportional 
to the area swept out by the radius vector that joins the moving body to the 
force-centre. 

But it is here too blithely said that the aggregate of the infinity of discrete 
infinitesimal impulses of force acting 'instantly' towards S at 'every' point of 
the arc BF becomes a force acting 'without break' over the arc BF 'ever' 
towards the centre S. How does one compare such impulses at one end-point 
B of the orbital arc with those at the other one F? Why was this generalized 
Keplerian law of areas so fundamental a breakthrough in the dynamics of 
central forces which Newton was so elegantly to expound in his Principia? And 
how does it fruitfully connect with Hooke's insistence in late 1679 that he 
should consider the deviations made from inertial tangential straight under the 
action of a force that Hooke had directed Newton to attend to in late 1679? 
The matter is much clarified if you go to the manuscript of the 'De motu 
Corporum' and look carefully not just at its text, but at the figures that Newton 
drew to illustrate it. 

In this Theorem 1 Newton omits mention of the total deviation from initial 
tangential straight as a body orbits under a force acting 'without intermission' 
by infinitesimal impulses, one each at the 
'infinity' of its 'successive' points. His argu- 
ment in Theorem 2 ensuing, treating uniform 
motion in a circle, merely hones the argu- f 

ment by which he had around 1669 derived 
the measure v2/r of the central force main- 
taining constant orbital speed v at radial 
distance r with one significant difference. 
Where a body B rotates uniformly in a circle 
of centre S, Newton argues: 
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Let the body B 'instantly' (simul) describe the arc BD. It would by its 'innate force' 
(inertially) describe the tangent equal to it. The central force perpetually draws the 
body back from the tangent to the circumference, and hence is as the distance CD 
travelled; that is, where CD is produced to [meet the circle again in] F, as BC2/CF 
and so [its double] BD2/ I CF. 

'But', he adds, 'I speak of the minutest arcs infinitely to be diminished, and so 
in place of 2 CF it is allowed to write the radius SB of the circle'.95 And therein 
is the crux. In Theorem 1 even the smooth arc BF engendered when the force 
acts 'continuously', via infinitesimal impulses 'instantly' applied at successive 

points, must itself be put to be infinitely small. 
But what of the deviations from inertial straight when the motion is other 

than uniform in a circle about its centre? Newton in his Theorem 3 discusses 
the general case. Here (the figure is once more his, though the orbit need not 
of course, as he supposes in the 'De 
motu', be closed in gyrum) a body is 
put to move in 'any curved line' AP, 
from any point P of which it travels 

along the arc PQ to Q, being ever / ' 

further driven out of the tangent 
line PR of initial uniform motion by j/ 
a force continuously acting towards 
the centre S. Look closely at the 
deviation RQ: it is rightly depicted 
as curving from R, where it is paral- 
lel to PS, to Q, where it is in line with QS; such that indeed, by Theorem 1, the 
triangle PSR (if RS be drawn) is equal in area to the sector PSQ. It will be 
evident that the slope of RQ at any point r is parallel to pS, where pr is tangent 
to the orbit PQ at p. 

Newton could now give general solution of the direct problem of central 
forces. By what 'centripetal' force, varying solely as the distance from the centre 
to which it is continually directed, can a body be made to travel in any given 
orbit? As in Theorem 2 it is sufficient to consider the force acting over the 
infinitesimal time t = tPR in which it would otherwise uniformly cover the 
tangent linelet PR, continuously diverting it therefrom towards S in the arclet 
PQ during the same time t = tpQ, which by Theorem 1 is proportional to the 
area of the sector (PSQ) contained between PS, QS and the arc PQ. Because 
as Q comes to coincide with P, and so SQ with SP, the magnitude of the force 

acting at any point of PQ to S will be equal to that, fSP say, of the force at P; 
and therefore the length of the deviation RQ, as it 'flattens out' into a linelet 

ultimately parallel to PS, will be ifSP.t2. Replace the vanishingly narrow sector 

(PSQ) by the triangle PSQ, that is, by 1 SP.QT where QT is let fall perpendicu- 
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lar from Q to SP, and we have Newton's result that the forcefsp which acts at 
P to draw a body out of instantaneous straight is inversely proportional 
to SP2 x lim (QT2/RQ). 

Q,R-P t \ . 
To demonstrate, there- 

fore, that motion may be 
maintained in an ellipse 
APQ under an inverse- / \ / 
square forcefsp c 1/SP2 to 
a focus S, Newton needed \ 

only to show, in Problem 3- / 
of the 'De motu', that in the / 
limit, as Q (and so R and T) 
coincides with P, the ratio 
QT2/RQ tends to some 
constant, the ellipse's latus 
rectum 2BC2/AC in fact, t 
where AC and BC are the major and minor semi-axes. 

I now outline what by November 1684 clearly no longer posed any difficulty 
for him. (The figure as ever is his, but it also serves Problem 2, where the force 
that maintains motion in an ellipse about its centre C is determined to vary 
directly as the distance; notice the silent ingenuity, not copied in the Principia 
itself, whereby the deviation RQ is drawn as a wedge, its upper side parallel to 
PC and its lower to PS.) Given the point P on an ellipse of focus S, draw the 
tangent ZPR to it and the diameter PCG along with, parallel to ZPR, its 
conjugate DCK, intersecting PS in E. Also parallel to ZPR, from Q extend 
QXV to meet PS in X and PC in V, and from the second focus H, 
distant CH = SC from the primary one H, draw HI to meet PS in I. Because 
the focal radii PS and PH are equally inclined to the perpendicular PF let fall 
from P to DCK,96 the segment PE is the mean sum of PS and PH, and so equal 
in length to the major semi-axis AC. Whence the ratio of L.RQ (or PX) to QT2, 
where L is the latus rectum, is compounded (the '+' couplings are Newton's, 
and not my anachronistic logical sums) of 

(BC2/AC.PC) + (PX/PV) + (2PC/VG) + (PV.VG/QV2) + (QV/QX)2 + (QX/QT)2. 

Here PX/PV = (PE or) AC/PC, and 2PC = PG: also, because QXV is parallel 
to the diameter DCK conjugate to that, PCG, upon which it stands, 

PV.VG /QV2 = PC2/DC2 (or CK2)97; 

and, because the triangles QTX, PFE are similar, QX/QT = (PE or) AC/PF. 
Hence the ratio L.RQ/QT2 is compounded of 
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(BC2/AC.PC) + (AC/PC) + (PG/VG) + (PC/CK)2 + (QV/QX)2 + (AC/PF)2, 

which, because at any point P of an ellipse there is PF.CK = AC.BC,98 reduces 
to be the 'sum' of the ratios (PG/VG) and (QV/QX)2: each of which is unity 
in the limit as Q, and therefore V and X, come to coincide with P. 

It follows that the central force to a focus S which maintains motion in the 
arc PQ immediately from P, and so at every point P, varies inversely as the latus 
rectum L and the square of the distance SP. On this basis Newton went on not 
only to demonstrate that Kepler's Third Law holds precisely true for motion in 
a closed conic orbit, but in his Problem 4 to show how, given the speed and 
direction of motion of the orbiting body at any point P, together with the 

magnitude of the gravity there which ever deviates it from tangential straight 
to S, the elliptical path PBD that it travels thereafter may be constructed. 

This sampling of the riches of the 'De motu Corporum in gyrum' must here 
be enough. Let me close with a rapid survey of what else came to be before the 
magic day in April 1687 when Halley wrote to Newton acknowledging that he 
had received the script of Books 2 and 3 of the Principia, and could at last hasten 
the whole into print.99 

For some weeks after the 'De motu Corporum' reached London in Novem- 
ber 1684 only a few people, it would seem, were allowed to see it. Halley made 
a copy for himself (I will return to it in a moment) to attempt to master what 
was in it; but only after paying a second visit to Cambridge that month did he, 
at the meeting of the Royal Society on 10 December (or so the rather confused 
minute in its Journal Book records), give 

... an account that he had lately seen Mr Newton ... who had shewed him a curious 
treatise, De Motu, which upon Mr Halley's desire, was, he said, promised to be sent 
to the Society to be entered upon their register. 

And so of course it was done. But we must not think that even thereafter more 
than two or three - Wren, I presume, was one, but Hooke certainly was not,100 
and Flamsteed tried hard not to be in their circle10l - studied the 'De motu', 
either in its original secretary 'copy' or in the transcript of this then entered 
into the Society's Register Book. Of the handful who did see it, however, how 
many understood its niceties? Not even he, I have to say, who had pestered it 
out of Newton. 

Except for slightly paraphrasing it in places, the text of Halley's copy102 
mostly follows Newton's original word for word. (The five Corollaries to 
Theorem 2 are omitted, but probably through an oversight because they are 
included in the table of contents that he adjoined to it.) His redrawings of 
Newton's figures are something else. Halley's failure to comprehend the deeper 
subtleties of what was before him appears nowhere more plainly than in his 
'improvement' of the diagram that Newton set to illustrate Theorem 1. In 
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Halley's revamping of it the chain-polygon is already smoothed to be an ellipse 
ACD... about the S[un] at a focus, but with the corner-point B 'strayed' out of 
orbit. All the care that he took precisely to describe this 'planetary' orbit was 
to no purpose when he did not appreciate that in Newton's argument the 
chain-polygon ABCD... ceases to be angular only in the limit as its component 
linelets come each to be 'infinitely' small. 

It is, indeed, a notion difficult enough even today to grasp. Three centuries 
on, when elementary classical dynamics has become one more topic in our 
textbooks, we should never forget how surpassingly original Newton's tract was 
in its day. Even Hooke, who five years before had started him on his way to 
writing it, would have found little of his own wide knowledge of the motion of 
bodies helpful in coming to grips with the sophisticated reasonings and techni- 
calities of the 'De motu Corporum'.103 

Already by the beginning of 1685 Newton's rush of research into the motion 
of bodies had outgrown any possibility that it might be contained within the 
pages of a small tract. During that year, he began to write a treatise 'De motu 
Corporum Liber primus' treating, in more than 70 propositions (because only 
32 of its probable 72 folios survive we cannot be exactly sure how many),104 
the dynamics of free, constrained and resisted motion under the action of a 
central force in greater breadth than before. A companion 'De motu Corporum 
Liber secundus' treats, for the most part in a discursive and popular style, how 
the technical propositions developed in the 'Liber Primus' can be applied to 
explain the system of the world as conceived by Newton.105 Here is not the 
place even broadly to appraise their content, though I itch to say much about 
the first in particular. Within a few short months the 'Liber primus' was yet 
further augmented by Newton and split into two to be Books 1 and 2 'De Motu 
Corporum', and the 'Liber secundus' soon after was all but wholly rewritten to 
be a highly technical 'De Mundi Systemate Liber Tertius', in a text106 which 
needed only to be copied, checked, and sent up to Halley in London as it 
became ready for the printer. It is a matter of small importance that the 
transmission was made in two batches, that of the new 'De Motu Corporum 
Liber Primus' in April 1686, succeeded not quite a year later by the 'Liber 
Secundus' and the 'Liber Tertius'. The book's title of Philosophie naturalis 
principia mathematica was a catchpenny one contrived to 'help ye sale of ye 
book'107 (rather than a hint at Newton's immense debt to Descartes's own 
Principia philosophiue in forming many of his basic ideas on motion), as is well 
known. 

When there have been numerous attempts, some in many volumes each, to 
assess Newton's master-work, I should not try to emulate them by giving my 
own sketchiest of summaries of what is in it. But there is no one who cannot 
be impressed by Newton's sustained attempt to achieve the utmost generality 
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possible. Some of the techniques that he developed remain basic in any 
exposition of classical 'Newtonian' dynamics. I think above all of Proposition 
XLI of its Book 1: one too often nowadays called after its second discoverer 
Johann (I) Bernoulli.108 There Newton gave a complete solution of the general 
two-body problem, when the mass of one body is so much greater than that of 
the other that it may be taken to be the centre of force. I can only guess at the 
long hours of hard and lonely struggle that it must have taken to make all come 
right. 

I could give you fulsome instance of my stint of the scholar's work in tracking 
down, or at least conjecturing the dates when Newton wrote this or that part 
of his Principia. I could say something of the role that Halley played - very much 
under Newton's thumb, though he made a handsome profit, by my calcula- 
tion109 - in seeing it through press in London. It has not been unknown for me 
to superimpose photo images of its two slightly variant title-pages to show 
precisely how they differ.110 But I spare you this. 

On the tercentenary of the first publication in 1687 of his master work on 
'The mathematical principles of science' my final words are simple: 

I give you its onlie begetter: Isaac Newton ! 

NOTES 

1 Stephen Peter Rigaud,A historical essay on the firstpublication of Sir Isaac Newton's 
'Principia' (Oxford University Press, 1838). This rare book was reissued in 1972 in 
facsimile by Johnson Reprint Corporation as no. 121 in their Sources of science 
series. 

2 Even a decade ago it was a commonplace to call the thriving research then still 
massively pursued into Newton's scientific papers an 'industry'. Now that what once 
thrived has shrivelled to be little more than a cottage one, I ought perhaps to fill in 
the background. 

In 1888 the fifth Lord Portsmouth made over to Cambridge University the 
mathematical and scientific part, including many letters, of Newton's papers (from 
the all but complete corpus of his writings that had been in the family's ownership 
since the mid-18th century). In response the University published A catalogue of 
the Portsmouth Collection of books and papers written by or belonging to Sir Isaac 
Newton, the scientific portion of which has been presented ... to the University of 
Cambridge, before returning its non-scientific part. (The cataloguing was per- 
formed enthusiastically by John Couch Adams unaided except, in the respective 
areas of their expertise, by the Professor of Chemistry G.D. Liveing and the 
University Archivist H.R. Luard. The resulting Catalogue heavily reflects the 
interests and predilections of those who compiled it.) On being presented, the 
15 000 or so sheets of these papers were deposited in the University Library, not 
as a separate 'Portsmouth Collection' which it was their right to be (and as everyone 
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now affectionately calls them), but unadornedly as Add[itional] MSS 3958-4006. 
The papers documenting Newton's first steps in his study of dynamics and 

astronomy are mostly to be found in the early papers loosely packeted in Add. 3958, 
the pages of the notebook Add. 3996 in which he jotted a variety of entries on 
scientific matters in his late student and first graduate year, and above all Add. 4004, 
the 'Waste Book / Feb 1664[/5]' whose folios (all but blank when he inherited it 
from his step-father) he used as scrap paper, detaching those on which he wrote 
out many of his early mathematical investigations of tangency and curvature of 
curves. (With what papers he put them we can only conjecture because of Adams's 
mistaken diligence in returning these to their 'parent' volume.) 

Since 1888 it has increasingly been accepted that any serious student of Newton's 
scientific achievement needs to be familiar with the corpus of his papers in 
Cambridge. Newton himself deposited in the University Library in 1674 and in the 
mid-1680s four sets of what he claimed were his Lucasian professorial lectures 
during 1670-1672 and 1673-1686 respectively. Many of the papers returned to Lord 
Portsmouth, only to be auctioned at Sotheby's in 1936, were bought by J.M. Keynes 
and are now in King's College. Newton's former College, Trinity, owns inter alia 
several of the letters exchanged between him and Hooke in 1679 and the greater 
part of his correspondence with Cotes in the early 1710s. Of the names mentioned, 
W.W. Rouse Ball was author ofAn essay on Newton's 'Principia' (London, Macmil- 
lan, 1893 -> facs. repr. 1972 by Johnson Reprint). F. Cajori's name endures for his 
(occasionally quixotic) amended reissue of Andrew Motte's 1729 English transla- 
tion of the Principia. H.J.E. Beth's Dutch commentary on Newton's 'Principia' (2 
vols. Groningen, Noordhof, 1932) remains, quite unjustly, all but unknown outside 
Holland. Cohen, Hall, Herivel and Westfall are the names that will spring soonest 
to mind when anyone is asked to name those who have contributed most to 
deepening our understanding of the Principia since the renascence in its study 
beginning in the mid-1950s. 

3 For example, the differing opinions that Herivel, Westfall, Cohen and myself hold 

regarding the date of composition of the autograph, ULC Add. 3965.1 (now 
published in facsimile as Part 3 of The preliminary manuscripts for Isaac Newton's 
1687 'Principia': 1684-1685 (Cambridge University Press, 1989). 

4 I have done so in 'The mathematical principles underlying Newton's Principia 
Mathematica', J. Hist. Astron. 1, 116-38 (1970); and more generally in pertinent 
footnotes in vol. 6 of my edition of The mathematical papers of Isaac Newton 

(Cambridge University Press, 1974). 
5 In particular, Newton gave William Whiston (his successor as Lucasian Professor 

at Cambridge) and Henry Pemberton (the editor of the Principia's third edition in 
1726) somewhat differing versions of this. Pemberton's, published by him a year 
after Newton died, begins: 'Tne first thoughts, which gave rise to his Principia, he 
had, when he retired from Cambridge in 1666 on account of the plague. As he sat 
alone in a garden, he fell into a speculation on the power of gravity: that as this 
power is not found sensibly diminished at the remotest distance from the center of 
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the earth, to which we can rise, ... it appeared to him reasonable to conclude, that 
this power must extend much farther than was usually thought, why not as high as 
the moon? ...' (A view of Sir Isaac Newton's philosophy, (London, 1728), Preface). 
For Whiston's recollection of what Newton had told him 'long ago' about 'discover- 
ing his amazing Theory of Gravity' see his Memoirs of the life and writings of Mr. 
William Whiston ... written by himself... (London, 11749 [-*21753]), pp. 37-9. Both 
these accounts are conveniently reprinted by Rouse Ball on pages 9-11 and 8-9 

respectively of his 1893 Essay (see note 2). 
6 Already, in the 'Memorandum relating to Sr Isaac Newton' which he gave to John 

Conduitt in November 1727, the mathematician Abraham de Moivre records of 
the correspondence that ensued from Hooke's invitation to Newton 'in 1673[!]' to 
discourse about falling bodies, that Hooke 'took occasion to imagine' that he meant 
their trajectory would be 'a Spiral', and instead 'writt to him that the Curve would 
be an Ellipsis & that the body would move according to Kepler's notion'. Which, 
de Moivre went on, gave Newton 'an occasion to examine the thing thoroughly, and 
for the foundation of the Calculus he intended [he] laid down this proposition that 
the areas described in equal times were equal, which th[ough] assumed by Kepler 
was not by him demonstrated ...'. In the privacy of Newton's papers there are many 
rough drafts, particularly of prefaces to an edition of the Principia that he intended 
to bring out in the mid-1710s, where he makes the same forthright claim to 
discovery. Perhaps the fullest of these is ULC Add. 3968.41, 101r in a paragraph 
discussing the exchange of letters between Hooke and himself 'in the end of the 
year 1679' on the paths of falling bodies: he there readily allows that Hooke's 
assertion that bodies 'would not fall down to the center of the earth, but rise up 
again and describe an Oval as the Planets do in their orbs' was his stimulus 
'[t]hereupon' to compute what the planetary orbits are. 'For I had found before by 
the sesquialterate proportion of the tempora periodica of the Planets with respect 
to their distances from the Sun, that the forces which kept them in their Orbs about 
the Sun were as the squares of their mean distances reciprocally; and I found now 
that whatsoever was the law of the forces which kept the Planets in their Orbs, the 
areas described by a Radius drawn from them to the Sun would be proportional to 
the times in which they were described' (ibid.; I have expanded contractions). 

7 The most finished draft of the letter, now ULC Add. 3968.27, 393r-5r, is printed 
in (ed. A.R. Hall) The correspondence ofIsaac Newton vol. 6, pp. 454-7 (1976), with 
extensive citations of widely variant preceding ones in notes 1, 7, 8 and 15 thereto. 
Of these, Add. 3968.27, 389r/390r (whose plain text is given in note 15) ends with 
a flourish, 'And the testimony of these ... knowing & credible witnesses may suffice 
to e[x]cuse me for saying ... that ... in the years 1665 & 1666 I was ... in the prime of 

my age for invention & most intent upon mathematicks & philosophy', which is 
greatly expanded on the stray sheet that is now Add. 3968.41, 85. Ignorant of the 
latter's provenance, but unable to resist making Newton's forthright claims there 

public, Adams published its text on page xvii of his preface to the Catalogue of the 
Portsmouth collection ... (see note 2); whence it was reprinted by Rouse Ball in his 
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1893 Essay (page 7) and is now universally quoted, all but always without any caveat 
about its historical truth. In a short essay on 'Newton's marvellous year: 1666 and 
all that' (Notes Rec. R. Soc. Lond. 21, 32-41 (1966)) I outlined which of Newton's 
claims in his 'Portsmouth Draft Memorandum' (as Herivel has called it) we may 
accept, and which we should treat with a deal of circumspection. For a careful 
transcription of the manuscript text, deletions and all, see pages 291-292 of Cohen's 
Introduction to Newton's 'Principia'. 

8 As I go on to show, Newton's assertion that he had 'the same year' - namely 1665 
as in his preceding sentence, and not 1666 as it is always taken to be - 'found out 
how to estimate the force with which [a] globe revolving within a sphere presses 
the surface of the sphere' is confirmed by his yet surviving manuscript. But he 
advances historical truth by half a decade when he also places in 'the two plague 
years of 1665 & 1666' - when (as he wrote in draft of the phrase cited in my previous 
note) 'I was in the prime of my age for invention & minded Mathematicks & 
Philosophy more then at any time since' - his ensuing deduction 'from Keplers rule 
of the periodical times of the Planets being in a sesquialterate proportion of their 
distances from the centers of their Orbs' that 'the forces which keep the Planets in 
their Orbs must [be] reciprocally as the squares of their distances from the centers 
about which they revolve'. As we shall see, he was unable to do the same some years 
afterwards, so we need take no notice of his final claim that he 'thereby compared 
the force requisite to keep the Moon in her Orb with the force of gravity at the 
surface of the earth, and found them answer pretty nearly'. 

9 J.W. Herivel, The background to Newton's 'Principia'. A study of Newton's dynamical 
researches in the years 1664-84, based on original manuscripts [principally]from the 
Portsmouth Collection in the Library of the University of Cambridge (Oxford Univer- 

sity Press, 1965 [1966]). I have checked his transcriptions against every one of 
Newton's original papers. Such a close comparison inevitably turns up numerous 
misprints, but there are also a few non-trivial misreadings that cannot be the 
printer's fault. But the book's figures, many of them erroneous in ways not found 
in Newton's originals, are its poorest feature. It remains, none the less, the unique 
published source for so much of what we know of Newton's early ventures in both 
kinematics and dynamics. 

10 See ULC Add. 4004, lr, 10r-15r and 39r (+38v), transcribed by Herivel with 
commentary and footnotes on pages 129-82 of his Background ... 

11 Specifically, in Axiom 100 on Add. 4004, 12r (the first of 23 on the direct and 
oblique impact of bodies) he laid down that 'Every thing doth naturally persevere 
in that state in which it is unlesse it bee interrupted by some externall cause, hence 
... A body once moved will always keepe the same celerity, quantity and determi- 
nation [understand instant direction] of its motion.' (Compare, Herivel Background 
..., p. 153.) 

12 To safeguard his priority and 'protect' his proofs Huygens gave the enunciations 
only of the 13 propositions of his treatise De vi centrifuga ex motu circulari, 
theoremata when he appended it (on pages 159-61) to his Horologium oscillatorium, 
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sive de motu pendulorum ad horologia aptato demonstrationes geometricce (Paris, 
1673). He had written the tract long before, however, in the autumn of 1659. Like 
all others who have never looked at Huygens's papers in Leiden University Library, 
I had assumed that the version of the De vi centrifuga published with full proofs in 
Huygens's Opera varia posthuma in 1703, and reprinted with corrections in his 
CEuvres completes (22 vols. The Hague, 1888-1950) vol. 16, pp. 255-311, closely 
followed Huygens's original revised manuscript. But J.G. Yoder has now enlight- 
ened me, in note 2 on page 186 of her Unrolling time. Christiaan Huygens and the 
mathematization of nature (Cambridge University Press, 1988 [1989]), regarding 
just how much editorial 'tailoring' went on behind scenes. 

13 Add. 4004, lr; more precisely its bottom half. Compare Herivel's Background ... 
129-31 and also his 'Newton's discovery of the law of centrifugal force', Isis 51, 
546-53 (1960). 

14 Where a 'body' bounces inside a circle 
along the square abcd, Newton quietly 
assumes that the impulses of 'pression' 
repelling it on impact at the corners a, /I 
b, c, d are parallel to fb, gc, hd, ea tan- / 
gent to the circle at b, c, d, a where it next / 
hits. This is true for no other path, but 9 
the few adjustments that I make to New- 
ton's argument render it general. That 
he himself replaces the circle by the 
circumscribed polygon tangent at a, b, c, 
d is a dubious refinement which I here 
ignore. 

15 That is, the linear deviation Bb (= Cc = Dd =...) from the point B(,C,D,...) which 
the body would have reached in its onward path aB(,bC,cD,...) had it not been 
bounced back by 
the circle at the cor- 
ner a(,b,c,...). S ,- 

The fuller figure B f 
here is mine, but C 
even so let me leave 
it as a verbum sa- / 
pienti (with the hint, 
if need be, to con-A I t 

sider its mirror- / 

image ...) that \ 
Newton was al- // 
ready come close at 
this moment to " / 
being able to prove ' - ... 
the generalization 
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of Kepler's area law which was in the winter of 1679/80 to be his fundamental 
breakthrough in his researches of the motion of a body under the action of an 
arbitrary central force. 

16 It follows at once that the distance I ft2 through which a body falls from rest 
accelerated by the force of 'gravity'f is 1 r. This is Theorema V of Huygens's De vi 
centrifuga, namely, 'Si mobile in circumferentia circuli feratur ea celeritate, quam 
acquirit cadendo ex altitudine, quae sit quartae parti diametri aequalis; habebit vim 
centrifugam suae gravitati aequalem' (Horologium oscillatorium [note 12], p. 160). 
Newton will make implicit use of this corollary in computing the ratio of the 
outwards thrust engendered at the Earth's surface by its daily rotation to the (some 
three hundred times greater) inward pull of its gravity. 

17 In the transcription that he gives of this in his Background ..., p. 130 Herivel misreads 
Newton's ('yn' =) 'then' as (yt' =) 'that'. He comments, unexceptionably, that 
'Newton is already pondering' -'adumbrating' would perhaps be the mot juste for 
what is merely an incidental observation? - 'the more difficult problem of motion 
in an ellipse' (see ibid., p. 132, note 3). 

18 See my edition of The mathematical papers of Isaac Newton (8 vols. Cambridge 
University Press, 1967-81) vol. 1, pp. 252-5. 

19 Ibid. vol. 3, p. 158 (where the case of the ellipse is, unusually for Newton, treated 
as a 'Coroll.' to the hyperbola that is 'Exempl: 1' preceding). 

20. Add. 4004, lr / bottom lines; compare Herivel's Background ..., p. 131. 
21. In his initial draft 'De vi centrifuga' in late October 1659 ((Euvres complete vol. 16, 

309-10); compare Yoder's Unrolling time ..., pp. 26-7. 
22. In course of writing his 'De vi centrifuga' in late October 1659; see his (Euvres 

completes 16, p. 306, and Yoder's Unrolling time ..., pp. 27-32. To be more precise, 
Huygens began by reworking a shaky computation of Marin Mersenne in his 1647 
Reflexiones physico-mathematicce (compare Yoder, pp. 12-14) to determine with 

scarcely greater confidence a free fall of 3ft 5in from rest under gravity in the first 
1 second, and therefore 13ft 8in in the first second. (See his (Euvres vol. 17, p. 278.) 
On approximating Jt, as Newton after him, by its Archimedean upper bound 22/7, 
he then calculated that the base radius of the 45° conical pendulum that 'ticks' 
exactly once a second ought to be (2 x 164 x (7/44)2 or) 8.3in, and so its cord-length 
111 in (See Euvres vol. 16, pp. 306-7; and compare Yoder, p. 27.) Using the same 
value of 13ft 8in for fall in the first second, Huygens went on to calculate what we 
would call bench-tests which a suitably geared mechanism maintaining the pendu- 
lum's bob in motion at constant speed must satisfy. (See Yoder, pp. 27-8 and her 
related footnotes 27 and 28 on page 190.) Specifically, he rightly computes there- 
from that the cord-lengths of the conical pendulums geared by him to 
complete (12 x 15 x 14 x 2 =) 5040 and (12 x 15 x 12 x 2 =) 4320 revolutions 
per hour need to be 6in and 8 in respectively. 

Like Yoder, I see no reason to doubt that Huygens did in fact early in November 
1659 build a working model of the improved clock-driven circular pendulum (of 
which only the sketch she reproduces on her page 30 survives, if it ever was more) 
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by which uniform motion is maintained in a horizontal circle in equilibrium at a 
constant height and hence, for a given length of its cord, determines the period and 
vertex angle in an equivalent conical pendulum. What is certain is that on 15 
November he for the first time (as Newton a few years afterwards here) established 
by physical trial 'ex motu conici penduli' the distance that a body covers in free-fall 
from rest in a given time. Having thereby arrived at the more nearly true value of 
8ft 91 in for fall in the first 3 -second - equal, on multiplying up by (4/3)2, to one 
of some 15.6ft in the first second - and being bucked that the latter agreed with the 
rounded-off one of 15ft given by Giambattista Riccioli in Lib. 9 of hisAlmagestum 
novum (Bologna, 1651), Huygens went through his 'De vi centrifuga' changing the 
'7' to be '9 ' in all occurrences of the inferior figure (amended from Mersenne) of 
8ft 7in which he had there initially entered for it. (See Yoder, p. 32.) 

23 Now in the Portsmouth papers in Cambridge University Library (folios 45/46 of 
Add. 3958.4). Newton has there crowded into what was (except for a nasty blemish) 
the hitherto blank top portion, some 9 inches square, a skein of textual argument 
and related calculations not everywhere either immediately legible or easily sorted 
out. H.W. Turnbull first drew attention to the manuscript in a letter in 1953 to the 
Manchester Guardian, and a few extracts from it were subsequently published in 
1958 by A.R. Hall in editing the related Latin text Add. 3958.5, 87r-88r. Turnbull 
himself, however, was the first who attempted a full analysis of its richnesses: one 
that appeared only after his death, in his edition of The correspondence of Isaac 
Newton vol. 3, pp. 46-54 (1961). The same year J.W. Herivel published his own 
independent 'Interpretation' of Newton's manuscript in Isis 52, 410-16, sub- 
sequently revised in his Background ..., pp. 183-91. R.S. Westfall contributes only 
a few minor honings of their findings in 'Newton and the acceleration of gravity', 
Arch. Hist. exact Sci. 35, 255-72 (1986). 

24 More exactly, 16ft 4in of course, close to the true fall in normal atmospheric 
pressure. I should, however, warn the unwary against assuming that Newton's units 
of linear measurement are precisely our modern ones. An additional complication 
is that he here follows Thomas Salusbury's lead (in his 1661 translation of Galileo's 
Dialogo from which Newton elsewhere here takes several of his data) in slightly 
increasing the length of the English cubit, namely half a yard or 18 inches, by 
identifying it with the Italian bracchia, of which there are 3000 in a mile of 5000 
feet, and which is consequently 2 in longer. Correspondingly, Newton's foot would 
perhaps be a little greater than ours. 

25 Portsmouth papers ULC (Add. 3958.5. 89-91). The piece was first edited by A.R. 
and M.B. Hall in their Unpublished scientific papers of Isaac Newton (Cambridge 
University Press, 1962), pp. 170-180; and again by Herivel in his Background ..., pp. 
199-203. In neither instance was it mentioned that this was but an addendum to 
Newton's 1671 fluxions tract, and so I yet further printed it in The mathematical 
papers of Isaac Newton vol. 3, pp. 420-31 (1969), specifying the narrowness of its 
ties to Example 4 of Problem 5 of the 1671 treatise (compare ibid., 160-66). 

26 When David Gregory saw this 'M.S. [quo] equidiuturnitatem pendulum intra 
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cycloides suspensi [demonstratur]' while visiting Newton at Cambridge in 1694, he 
was told that it had been written 'ante editum [sc. in 1673] Horologii oscillatorii 
Hugenii'. (See The correspondence of Isaac Newton vol. 3, p. 331.) In agreement, 
the writing in the manuscript is all but identical to that in the 1671 tract. Whether 
or not Newton then knew of Huygens's prior discovery that a body beats to and fro 
in a cycloid, under constant downwards gravity, in a period independent of its swing, 
matters less, perhaps, than that his own researches into isochronism were of a 
generality to which Huygens himself began to attain only in late 1674, a year and a 
half after he published his Horologium (See his (Euvres completes vol. 18, p. 489.) 
In the Horologium only kinematical arguments are used. It was Newton who first 
resolved the general problem of isochronous motion dynamically by laying down 
the criterion that the period of beat of a body in a curve whose general arc-length 
s is traversed in time t is independent of its arc of swing if, and only if, the motion 
at every point is 'simple harmonic' as we say, that is, the instantaneous deceleration, 
- d s/dt, shall vary everywhere as s. (Compare my remarks on Mathematicalpapers 
... vol. 3, p. 390.) Using this criterion, the discovery that the cycloid is the isochrone 
under constant gravity, which Huygens laboured so hard to achieve in December 
1659 (see Yoder's Unrolling time ..., pp. 48-61) and equally mightily to give 
water-tight demonstration of in his Horologium, took Newton (compare my next 
note) little more than a dozen lines to duplicate. I cannot but think that his 
generalized result in Proposition 53 of the Principia's first book would have been 
beyond Huygens in 1673. 

27 If a body moves to and fro in any curve under the continuous action of constant 
downwards gravity, its motion is decelerated at any point by the component of 
gravity acting in the instantaneous direction of motion; if the time in which it makes 
a full swing is independent of its length, then the deceleration in its motion must 
also be at every point proportional to the length of the arc from the base point. If 
g is the gravity, s the arc-length, t the time in which it is traversed, and y the vertical 
distance of the point above the base, then g.dy/ds = - d s/dt2 oc s; from which at 
once s2 y. In the cycloid generated by a circle of radius r rolling 'upside down' 
along a horizontal line there is correspondingly s = 2- y with the tangent y.ds/dy 
= vjydrawn from any point of it to the base equal and parallel to the related chord 
in its generating circle. 

28 Because the cycloid's general arc-length s is twice that of the related chord/27in 
its generating circle, it will be equal in length to the sum of that chord and the 
corresponding one of the circle of same radius r which generates a congruent 
cycloid by rolling, upside down, along the tangent at its base. The latter cycloid will 
therefore be its evolute as it 'unwraps' itself from its curving arc along its tangent. 
This was indeed the argument used by Huygens in late 1659, though I need not 
stress that its simplicity was not at once evident to him. (Compare Yoder's remarks 
in her Unrolling time ..., pp. 74-75.) 

29 Newton perhaps meant '350'; see my next note. 
30 Taking the radius of the Earth to be 3500 miles, each of 5000 ft, and rounding down 
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to 16 ft the value of 196 in which he has just computed for fall from rest in the first 
second at its surface under gravity, Newton first calculates (taking Xr = 22/7) that 
at its equator the Earth rotates through a distance that is equal to its radius 
in (24 x 7/44 h =) 229.09 min, in which time a body will fall 16 x (229.09 x 60)2 
ft under gravity; but a body continually impressed by the centrifugal 'force' from 
the centre will (see note 16 above) fall from rest through only half the Earth's radius 
in that time. Accordingly, the ratio of the force of terrestrial gravity to the 'endeav- 
our' from the Earth's centre created by its diurnal rotation is 

16 x 229.092 x 602/ i x 3500 x 5000 =345 . 
Huygens had made an equivalent calculation in late October 1659 (see his 

a(uvres vol. 16, p. 304; and Yoder, Unrolling time ..., pp. 188-189, note 17), assuming 
the distance of fall in the first second under gravity to be 14 (Rhenish) feet and 
taking on trust Willebrord Snell's estimate that there are some 342 000 such feet 
in 1° of longitude at the Earth's equator (equivalent to taking its radius 19 595 160 
ft). From the first, were the centrifugal force engendered by the Earth's daily spin 
equal to the counter pull of its gravity, its radius would need to be approximately 
2 x 14 x (602 x 24 /r)2- 5290 x 106 ft. Dividing this by Snell's value for it (some 
3900 miles, only slightly inferior to the true one) yields a ratio of some 265 only. 
The discrepancy arises, of course, from Huygens taking too low a value for the fall 
in the first second, and from Newton's assuming much too short a one for the 
Earth's radius. 

31 More explicitly 52 500 000 000 braces, of which there are (compare note 24) 3000 
in a mile. Taking '365 l days' - or 525 960 min - in a 'yeare', Newton (mistaking a 
'2' for a '9' in copying a draft of the calculation he made elsewhere?) multiplies by 
7 to find 3 681 790, which he then divides by 44 (= 7 x 2X) to find that 'The Earth 
in about 83 677 [min] moves the length of the solar distance'. Because the 'vis terrae 
a sole' engendered by the Earth's (near-circular) annual orbit about the Sun would 
in those 83 677 min accelerate a body from rest to cover half the radius of the Earth's 
orbit, it would in the first minute travel 26 250 000 000/83 6772 - 3.749... braces, or 
some 6 l ft. The corresponding free-fall from rest under gravity is of course 602 
times that in the first second, or many thousand times greater. Newton's own figure 
of'3749 or thereabouts' (does he just take out the decimal point' here?) is a curious 
'rounding out' of 3600 as 1000. 

32 Of this sighting by his naked eye 'at 4 of the clock in the Morning' he otherwise 
thought to give only its latitude and longitude. This and eight observations that he 
afterwards made of the comet in its egress (see the next note) were recorded by 
him, under the sub-heading 'Of Comets', on pages 55-57 of a 95 page section on 
'Questiones quaedam Philosoph[i]cze' in a small notebook of his now in the Port- 
smouth papers in Cambridge University Library (Add. 3996, ff. 87r-135r, especially 
114v-116r); and in an addendum on page 12 (ibid., f. 93v) he gives, without 
specifying its time, a second observation made by him the next night, locating the 
comet only loosely by its distance 'from the center of the Moone'. The addendum 
also records an observation made by him on 17 December when, he estimated, the 
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comet's tail had grown to be some 34° or 35°. 
These now justly famous 'Queries', drawn by Newton from his wide reading in 

Hobbes, Walter Charleton and above all Descartes, have been edited by J.E. 
McGuire and M. Tamny (with a facing modern 'translation' of Newton's archaic 
English) as Certain philosophical questions (Cambridge University Press, 1983); see 
pages 296-304,350-358 and 412-416. McGuire and Tamny rightly comment (pages 
298-299) that 'it is fairly clear that [in early December 1664] Newton was almost a 
complete novice in astronomy [but] also ... quickly recognized his deficiencies and 
immediately moved to correct them'. (See also their subsequent survey of 'New- 
ton's astronomical apprenticeship: notes of 1664/5' in Isis 76, 349-63 (1985).) 

33 Clouds and Fen fog permitting, of course, Newton's last sight of the comet, as ever 
without telescope to aid his naked eye, was 'On munday Jan 23d at 8h at night' when 
its tail was 'scarse discernable' ('Questiones', 57 = Add. 3996, 116r; see Certain 
philosophical questions, p. 416). Newton was not seriously to consider whether the 
ingoing and outgoing comets might be one and the same, moving towards and later 
departing from perihelion respectively, till after he began to correspond with John 
Flamsteed about the 'great' comet of 1680/81. J.A. Ruffner has examined this 
question in his doctoral thesis (University of Indiana, 1966) on 'The background 
and early development of Newton's theory of comets'. 

34 Descriptio cometce quce apparuit anno 1618 (Leyden, 1619). On page 54 of his 
'Questiones' (Add. 3996, 114v = Certain philosophical questions, pp. 410-12) 
Newton has copied out not only five December sightings of the 1618 comet (see 
Descriptio, pp. 76-78), but also three dozen observations of the comet of autumn 
1585 over the month from 8 October (ibid. pp. 88-89). Snell made no attempt in 
his tract to give any theory of comets. 

35 Vincent Wing, Harmonicon cceleste: or, The celestial harmony of the visible world ... 

(London, 11651). Thomas Streete,Astronomia Carolina: a new theory of the celes- 
tial motions (London, 11661). 

36 I have not myself seen Newton's copy of the Harmonicon celeste (now in the Butler 
Library at Columbia University, New York), but according to H. Zeitlinger in the 
Second Supplement to his Bibliotheca Chemico-Mathematica (London, Sotheran, 
1937) it has notes, some extensive, on 46 of its pages. 

37 It was, to be precise, the first only of which Newton spoke when he asserted in a 
letter to Halley on 20 June 1686 that, when Kepler 'knew the planetary Orb to be 
not circular', he 'guest it to be Elliptical'. I have no doubt that Newton would have 
made the same remark about Kepler's other two laws. Certainly, after he contrived 
his own generalized form of the area law, he gave no credit to Kepler for first 
formulating it in the particular instance of the planets orbiting the Sun. 

38 On an earlier page (f. 30r) of the same pocket-book (now Add. 3996) in which he 
had, slightly earlier if I judge his handwriting correctly, set down his 'Questiones 
quaedam philosophicae'. Transcriptions of the passage are given on pages 123-124 
of my 'Newton's early thoughts on planetary motion' in Br. J. Hist. Sci. 2, 117-37 
(1964), and also by McGuire and Tamny, Isis 76, 364 (1985). Streete does not 
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mention that the equant hypothesis which Newton copied out had been contrived 

by Ismael Boulliau in the mid-1650s (and published by him in his Astronomice 
philolaicce fundamenta claris explicata, & asserta, (Paris, 1657)), pp. 16-17, in 
response to an 'impugnation' made by Seth Ward in Book 1 of his Astronomia 
Geometrica ... (Oxford, 1656) that the simple 'empty focus' equant hypothesis for 
constructing mean motion, which Boulliau had earlier made public in his original 
Astronomia philolaicce (Paris, 1645), was not exact enough to be of practical use. 
Ward had in mind the planets, and not the Earth, whose eccentricity is small enough 
to render the simple equant hypothesis adequate to derive true motion in elliptical 
orbit from mean. Newton knew as much when (not long afterwards by the hand- 

writing) he set it down on the recto of a sheet at the end of his Waste Book 'paper 
pad' (f. 1191), there making it the foundation of an elegant (if scarcely practical) 
method of determining the eccentricity of the Earth's solar orbit from observations 
of the varying apparent diameters of the Sun's disc. 

39 Immediately below his last sighting of the winter 1664/65 comet in late January (see 
note 33) he adjoined, it is true, note of three observations that he made of a second 
one which became visible to the naked eye a little before the following Easter 
('Questiones', 57 = Add. 3996, 115r; see Certain philosophical questions, p. 416). 
In some effort to be systematic, he made each of these at 3.20 a.m. at two-day 
intervals, beginning 'at 20' after 3 in the morning' of 1 April. 

40 See page 10 of my preferred version 20 years ago (I no longer cleave to its every 
fine detail) of what happened 'Before the 'Principia': the maturing of Newton's 

thoughts on dynamical astronomy' J. Hist. Astron. 1, 5-19, (1970). 
41 Newton's lavishly annotated copy of Wing's folio book (published, with a page-long 

title, at London) is now in Trinity College, Cambridge (shelved at NQ. 18.36) along 
with that greater part of his library presented by the Pilgrim Trust in 1944. 

42 Specifically, by about 1/43rd of its width. In Newton's words, 'Luna defertur in 

Ellipsi aequabili motu circa Centrum [medii motus] ... nisi quod per [illam] com- 

pressionem vorticis impellitur versus tangentem Orbis magni: ... debes potius .. ad 
id referre lunares irregularitates quas Reflectionem at Evectionem vocant'. (Com- 
pare my 'Newton's early thoughts on planetary motion ...' [note 38], 127.) 

43 'Materiam caelorum fluidam esse [et] circa centrum systematis cosmici secundum 
cursum Planetarum gyrare', to combine the second and third of 16 lemmas on 

cometary motion (now ULC Add. 3965.14, 613r) which he wrote around early 1681 

shortly after the appearance of the 'Great Comet' of 1680/1 sparked his interest 
anew in the matter. 

44 See note 11 for the source of this excerpt. 
45 For what it is worth, the two 'best' recounters of Newton's story, his nephew-in-law 

John Conduitt and the antiquarian William Stukeley, in fact agree that the fruit was 
an apple and that Newton was 'musing in a garden' when he saw it fall. See the 
memorandum that Conduitt jotted down on pages 10/11 of the little green note- 
book now King's College, Cambridge MS Keynes 130.4, printed by R.S. Westfall 
in his biography Never at rest (Cambridge University Press, 1980), p. 154; and 

45 



D. T. Whiteside 

Stukeley's 1752 Memoirs of Sir Isaac Newton's Life (ed. A. Hastings White) (Lon- 
don, Taylor & Francis, 1936), pp. 19-20. Tradition has it that it was during his 
enforced retreat to Lincolnshire in the mid- 1660s because of the outbreak of plague 
in Cambridge that such a 'contemplative mood ... occasion'd by the fall of an apple' 
prompted him to ponder whether (in Stukeley's words) 'a drawing power ... like 
that we here call gravity ... extends its self thro' the universe'. Whatever truth there 
is in this - in fact Cambridge University shut down for two periods of some nine 
months only each from the early summers of 1665 and 1666 - we should not 
presume that his musing took place on the small, isolated Woolsthorpe farm where 
he had been born, and where his mother still lived. He was now an educated young 
man, all his undergraduate years at Trinity behind him, and we would not expect 
that he would bury himself away in the rural wilds. By his own record (see ULC 
Add. 4000, 14v) he was in summer 1665 with his uncle Humphrey Babington (a 
Fellow of Trinity College with whom he had a close relationship) at his Squire's 
house in Boothby, four miles or so away to the northeast. At the back of the house 
was an extensive orchard ... The next year in June, when the Heralds visited 
Grantham, he was listed as resident there. He must have visited his mother, but 
when and for how long is not known. 

When in 1797 Edmond Turnor inherited the by then badly run-down Wool- 
sthorpe farmhouse and its land, he found decayed but still alive at its west front a 
17th-century Flower of Kent apple tree, and propagated it. Over the past two 
centuries a goodly trade has developed in selling scions from it, even to Newton's 
Cambridge college. It was also Turnor who zealously and with blind faith went on 
to refurbish the two-up, two-down cottage - pulling down an unsightly ramshackle 
barn on its south side and bricking two sun-dials into the uncovered wall, building 
a 'study' into the sunny southeast corner of the bedroom where he decided Newton 
'must' have slept and studied, and (this in total anachronism) setting a stone plaque 
over the outer door in which he incised his hero's knight's arms of crossed shin 
bones - to be the 'Manor House' it never was of what, in Newton's time, was an 
insignificant hamlet without its own church. Such are our icons of scientific worship. 

46 In the autobiographical Memoirs ... which he wrote in his own old age; see note 5. 
47 In his La mesure de la terre (Paris, 1671, reprinted without change in 1676 as the 

second of his Recueil deplusieurs Traitez). Newton, who was a regular reader of the 
Philosophical Transactions, must have at least glanced through the accounts of 
Picard's book which appeared there in 1675 (10, 261) and the year after (11, 591). 
Cajori first pointed this out in his 1928 essay, where he sought to account for 
'Newton's twenty years delay in announcing the law of gravitation' Sir Isaac Newton 
... (Baltimore, 1928), and he cites some dozen other contemporary estimates for 
the length of 1° at the Earth's equator, varying upwards from the 56.8 miles of J.J. 
Leurechon (='H. van Etten'); but none except Picard's (of about 69.1 miles) is 
greater than Snell's of some 66.9 miles. In comparison, the Galileian value of 3500 
miles for the Earth's radius which (see note 24) Newton took over from Salusbury's 
1661 English translation of the Dialogo, silently identifying Italian miles with 
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English ones, yields 1° at the equator to be 61 miles only. The common practice of 
the day made it a round 20 leagues, and so Conduitt assumed Newton took it to be 
in his account of how the latter stumbled in his first test of his 'musing' whether the 
'power of gravity [on] earth' might 'extend' - understand decreasing inversely as 
the square of the distance - 'as high as the moon ... & perhaps retain her in her 

orbit', and 'fell a calculating...'; but 'being absent from books [took] the common 
estimate in use among Geographers & our seamen ... that 60 English miles were 
contained in one degree of latitude on the surface of the Earth, he found that his 
computation did not agree with his theory'. (See King's College, Cambridge. 
Keynes MS 130.4. 11; the passage is quoted in full by Westfall in his Never at rest, 
p. 154.) 

48 'and went to other Studies', Whiston added (Memoirs [note 5], p. 37). Conduitt tells 
all but the same tale in immediate sequel to the sentence cited in the previous note, 
namely, that when Newton could not make his computation exactly justify his 
theory, his disappointment 'inclined him then to entertain a notion that with the 
force of gravity there might be a mixture of that force which the Moon would have 
if it was carried along in a vortex'. Whiston, too, identifies the reason for Newton's 
failure in his taking 'a Degree of a great Circle on the Earth's Surface ... to be 60 
measured Miles only, according to the gross Measures then in Use', so it is very 
clear that they each recount their preferred versions of a virtually identical original 
tale. 

49 MS Add. 3958.5,87r/v. To anticipate my next sentence, A.R. Hall printed this now 
widely known Latin piece of around - maybe perhaps a little before - 1670 in his 
discussion of 'Newton on the calculation of central forces' in Ann. Sci. 13, 62-71 
(1957). Two years later H.W. Turnbull somewhat awkwardly placed his own version 
of it in his edition of The correspondence ofIsaac Newton vol. 1, pp. 297-303 (1961). 
It appears in Herivel's Background to Newton's 'Principia', pp. 193-195. 

50 See his CEuvres completes vol. 16, pp. 297-299, and compare Yoder, Unrolling time 
... [note 12], pp. 19-22, especially 20, where Huygens's original worksheet, dated 
by him '21 Oct. 1659', is reproduced. 

51 Iff be the 'endeavour from the centre' induced by constraining a body to move 
uniformly in the circle that presses outwards upon it, and t be the time of its passage 
over the 'infinitely' small arc AD = AB, then BD = ft2; and AB = vt. Thus the 

equation BD = AB2/2r givesf = v2/r. Newton himself states the equivalent result 
that by taking the third proportional ADEA/DE to the circle's diameter DE and 
its circumference ADEA 'I obtain the line through which the endeavour from the 
centre would, when constantly applied, propel a body in the time of one revolution'. 
The truth of this will perhaps more readily appear on setting T to be the time of 
one revolution; whence the distance covered (from rest) under the constant (linear) 
action of the conatusfwill be 1 fT2 = (vT)2/2r. 

52 Namely (circumference)2/diameter; see the previous note. 
53 Strictly, 16 x 12 x 9/5 = 345.6. By his equivalent 'vellum sheet' calculation Newton 

would (see note 30) have found 345 1. 
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54 He did, however, go on to frame an argument from it whose basis I do not properly 
understand. Because in a sidereal year the Moon makes (on average) 3651/27.3216 

13.369 circles about the Earth (whereas of course the latter makes but one about 
the Sun), it follows that the centrifugal 'endeavour' of the Moon from the Earth is 
(13.369)2 - 178.73 times greater than that of the Earth from the Sun. 'Whence it 
is agreed' (says Newton) that the distance of the Moon from the Earth 'ought to 
be' greater than 1/178.73 = 0.00559 l times that of the Earth from the Sun; and 
therefore the maximum angle subtended by the Earth-Moon distance at the Sun 
should be sin-10.005592 = 19', and so (on taking the Moon's distance to be 60 
Earth radii) the maximum solar parallax is 19". 'But', he continues, 'put the parallax 
to be in fact 24", and the Moon's distance from the Earth will then' - on scaling up 
by 24/19 or 'around 5 to 4' - 'be [0.00]706 3 [of the Earth's distance from the Sun], 
and so the force of gravity [some] 5000 times greater than the Earth's endeavour 
from the Sun'. 

Where Newton found this 'true' value of 24" for solar parallax I do not know. In 
his 'vellum sheet' calculations he had (compare note 31 above) used Galileo's value 
of 17 1 million miles = 5000 Earth radii for the Sun's distance from the Earth, 
which is equivalent to a maximum parallax of sin- 10.0002 or some 41 ". Conver- 
sely, a parallax of 24" implies that the Sun's distance is cosec 24" ~ 8594 Earth 
radii or about 30 million miles. 

55 '... in Planetis primarijs cuim cubi distantiarum a Sole reciproce sunt ut quadrati 
numeri periodorum in dato tempore'. On one of the sheets in his copy of Wing's 
Astronomia Britannica Newton did spell out that 'Est ... regula Kepleriana quod 
cubi diametrorum (maximarum scilicet) sunt ut quadrata temporum revolutionis'. 

56 '[Itaque] conatus a Sole recedendi erunt ut quadrata distantiarum a Sole', to cite 
Newton's words. 

57 Newton invoked the same notion a year and a half later when he put to John 
Flamsteed that by a like perpetual imbalance between an outwards 'force of 
circular motion' and the contrary pull of the Sun's 'magnetism' a comet 'attracted 
all the time of its motion [may] by this continuall attraction [be] made to fetch a 
compass about the Sun ... the vis centrifuga at [perihelion] overpow'ring the 
attraction & forcing the Comet there ... to begin to recede from [it]'. (Newton to 
Crompton for Flamsteed, ca. April 1681; printed in his Correspondence vol. 2, p. 
361 (1960).) 

58 Theoricce mediceorum planetarum ex causis physicis deductce (Florence, 1666); 
Newton's lightly dog-eared copy of it (a gift from John Collins in July 1671; see The 
correspondence of Isaac Newton vol. 1, p. 66 (1959)) is now bound in Trinity College, 
Cambridge. NQ.16.79. The instance of orbit in a circle about its centre (when the 
vis centrifuga and gravity are precisely in balance) had earlier been treated by 
Descartes in Part 3, Proposition 120 of his Principia philosophice: there it is laid 
down that a body can circulate in a vortex only when its gravity to the centre 
counters its 'tendency' to fly off instantaneously in the direction of its motion. But 
Descartes said nothing of those 'unnatural' motions that are not circular, and we 
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should continue to acclaim Borelli's originality, and indeed his daring, in asserting 
that the ellipticity of the orbits of the planets/Moon/Jovian satellites arises from an 
ever teetering imbalance between the two opposed radial forces that from instant 
to instant press upon them: the varying 'endeavour to recede from the centre' 
induced by their vortical 'circulation' about it, and their 'magnetic attraction' to the 
Sun/Earth/Jupiter at that centre. 

59 Newton prefaced this magisterial rebuke in postscript to his letter to Halley on 20 
June 1686 with the words: 'Since my writing this letter, I am told by one' - would 
it be Edward Paget? - 'who had it from another lately present at one of your 
meetings, how that Mr Hooke should there make a great stir, pretending that I had 
all from him, and desiring they would see that he had justice done him' (Corre- 
spondence of Isaac Newton vol. 2, p. 435). Though the form in which he cast it says 
much about Newton himself, I can see no basis in his counter-charge that Hooke 
had merely 'published Borell's hypothesis in his own name; and the asserting of 
this to himself, and completing it as his own, seems to me the ground of all the stir 
he makes' (ibid.). 

60 Assuming - whence my next sentence - some convenient equivalent to the gener- 
alized Keplerian area law. Because it is natural here, no less for Newton when he 
came to write his Principia (see especially Proposition 41 of its Book 1) than for us 
three centuries on, to use polar coordinates (r,b) with the centre of force as origin, 
the law can be formulated as the differential condition that r2.d5/dt = c, constant, 
where t is the time. (Newton in fact put the constant to be Q, but I use standard 
present-day notation.) Because the polar equation of any straight line can be 
written as r = R/cos 0, where R is the perpendicular distance of the origin from the 
line, the radial acceleration generated by motion in any line can be derived in two 
steps: first, 

dr c dr _ cR sin _ c sinq 

dt r2 d5 r2 cos2~ R 
and thence 

d2r _ c d (c sin p c2 cos C2 

dt2i r2 d5 R r2R r3 

That the Borellian equation of motion d2r/dt2 = c2/r3 - f(r) holds true for any 
central force f(r) acting at distance r from the centre of force may perhaps be not 
wholly evident. It is, however, equivalent to the other accepted measures of central 
force: for instance, that defining it (this Newton would do in Proposition 41 of Book 
1 of the Principia) as that whose component in the direction of orbital motion acts 
to generate the instant change in orbital speed. Here, taking s to be any arc of the 
orbit (r,¢) traversed by a body in time t, and v = ds/dt to be the body's speed, there 
comes dv/dt = -f(r). dr/ds, whence f(r) = - v. dv/dr = - I d(v )/dr. Because 
v2 = (ds/dt)2 = (r. dq/dt)2 + (dr/dt)2 = (c/r)2 + (dr/dt)2 on eliminating 9, there 
isf(r) = - c2. d(r-2)/dr - (dt/dr). I d((dr/dt)2)/dt. 

61 Especially in unfinished draft statements, nearly all now gathered in ULC MS Add. 
2968, which he wrote with various intentions during the 'war' that he conducted 
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virtually single-handedly with the Leibnizians in the 1710s over his priorities of 
'invention' in calculus. The most informative of these - allowing that Newton often 
wrote '1677' and '1683' when he meant '1679' and '1684' - are published by I.B. 
Cohen in Supplement 1 (pp. 289-98) to his Introduction to Newton's 'Principia' 
(Cambridge University Press, 1971). Nothing could be clearer (if we are prepared 
to trust him!) than his firm declaration on Add. 3968.9, 101r (Introduction, p. 293) 
that 'In the end of the year 1679 in answer to a letter from Dr Hook ... I computed 
what would be the Orb in described by the Planets ... & I found now that whatsoever 
was the law of the forces wch kept the Planets in their Orbs, the areas described by 
a Radius drawn from them to the Sun would be proportional to the times in wC 
they are described.' 

62 What in essence Leibniz did in the short 'Tentamen de motuum caelestium causis', 
which he made public inActa Eruditorum, 82-6 (February 1689), with correction 
of a flaw in his argument made good in ibid. 446-51 (1706) (C.I. Gerhardt printed 
both texts together in his now obsolescent edition of Leibnizens mathematischen 
schriften (Halle, 1859), vol. 6, pp. 146-61), was twice to 'geometrically differentiate' 
the polar equation of an ellipse with focus as origin, r/a = (1 - e2)/(1 - e.cos 5P), 
where a is its semi-major axis and e its eccentricity, taking the 'Kepler' constant c 
= r2.d5/dt as a datum. It is nowadays merely a school exercise to deduce, first, that 

dr/dt = -{c/a(1 - e2)} e sin k, 
and thence 

dr/dt = {c2/a(1 - e2)r2} e cos = c2/r3 - c2/a(1 - e2)r2. 
On identifying c2/r3 to be, as Leibniz would have it, the outwards conatus generated 
bythe circulatio harmonica of the vortex, the other component k/r2, where k = 
c /a(l - e ), of the radial acceleration d2r/dt 'must' patently be the gravitational 
solicitatio which, for him, attracts the planet at every point (r,4) of its orbit to the 
Sun sited at that focus of it which is taken as the origin of coordinates. 

In his paper Leibniz states that he had not yet seen Newton's Principia when he 
wrote his paper (during a visit to Italy in autumn 1688). Although there have been 
those in the past not convinced by this disclaimer, Leibniz's mathematical argument 
is certainly original, and he has usually been given the benefit of any doubt (though 
not by Newton!). But who else but Borelli in his Theoricce could have directly 
influenced him to interpret the second-order difference equation which he ob- 
tained as a proof that the solar planets are held in orbit by inverse-square gravity? 
Or so it seemed to be to Eric Aiton in the several percipient articles that he 
published inAnnals of Science in the early 1960s (see 16, 65-82 (1960); 18, 31-41 
(1962); 20, 111-23 (1964); and 21, 169-73 (1965)). The truth, as we now know it 
since Domenico Bertoloni Meli began to study Leibniz's original papers, now in 
the Niedersachsische Landesbibliothek at Hanover, is far different. Leibniz did see 
a copy of Newton's Principia in Italy in autumn 1688, and the elaborate notes that 
he then made upon it - notably upon Lemmas 1-11 and the opening Propositions 
of its Book 1 - were the stimulus for and foundation of the variant proof that he 
gave of its Proposition 11 in his 1689 'Tentamen'. In the Cambridge doctoral thesis 
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on 'The formation of Leibniz's techniques and ideas about planetary motion in the 
years 1688 to 1690' (soon to be published by Oxford University Press) where he 
wrote up his findings (with careful transcription of the relevant MSS from the 
Leibniz Nachlass), Bertoloni Meli also briefly considered to what extent he may 
have drawn on Borelli. He tentatively concludes (page 58) that, although their 
'analysis of motion along the radius under the action of gravity and of an outwards 
tendency due to the rotation [of the vortex is similar,] at present evidence that 
Leibniz saw Borelli's Theoricce is lacking, although it is not impossible that Leibniz 
was indirectly influenced by it. Orbital motion had already been seen as the 
resultant of two opposite tendencies in Descartes's Principia Philosophice, Part 3, 
Proposition 120' - compare note 58 - 'which Leibniz carefully studied and ex- 
cerpted in the early 1680s ... it is more probable that this was Leibniz's source'. 

63 Newton replied only to Hooke's first two letters, of 24 November and 9 December 
1679. As he told Halley in June 1686 (see Correspondence vol. 2, p. 436), he 'never 
answered' two others from him of 6 and 17 January 1679/80. 

64 See pages 131-135 of my 'Newton's early thoughts on planetary motion' [note 38]. 
65 More precisely, one of the two secretaries. Nehemiah Grew had earlier been 

delegated to deal with the Society's foreign correspondence: a post which, to be 
charitable, he took lightly. I find it commendable of Hooke that he approached 
Newton for help in his endeavour 'philosophically' to reactivate the Society, and 
not at all laudable of the latter that he declined to do so: even though (as Hooke 
could not know) he was just back from a lengthy stay in Lincolnshire, where he had 
nursed his mother on her death-bed and then settled her affairs. 

66 See Correspondence vol. 2, p. 297. As Newton probably knew, Hooke had already 
published this notion, likewise without specifying what the variation of the central 
attraction with distance might be, in a 1670 Cutler lecture on 'An attempt to prove 
the motion of the Earth by observation', printed under the same title at London in 
1674. (See R.T. Gunther, Early science in Oxford 8: The Cutler Lectures of Robert 
Hooke (Oxford, 1931).) The basis that he there adduces for motion in the heavens 
well show how inchoate his notions on planetary dynamics then were, supposing as 
he did 'That all Calestial Bodies whatever, have an attraction or gravitating power 
towards their own Centers, whereby they attract not only their own parts, ... but 
also all the other ... Bodies ... within the sphere of their activity.... That all bodies 
whatsoever that are put into a direct and simple motion, will so continue to move 
forward in a streight line, till they are by some other effectual powers deflected and 
bent into a Motion, describing a Circle, Ellipsis, or some other more compounded 
Curve Line. ... That these attractive powers are so much the more powerful in 
operating, by how much the nearer the body wrought upon is to their own Centers' 
(ibid., pp. 27-28). 

67 Newton to Hooke, 28 November 1679 (Correspondence vol. 2, pp. 300-301). 
68 In my drawing on page 132 of my 'Newton's early thoughts on planetary motion', 

I somewhat bloated out this everywhere convex path of inwardly spiralling fall, as 
seen by a stationary external observer. 
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69 See Correspondence vol. 2, pp. 305-306. The redrawn figure on page 133 of my 
'Newton's early thoughts ...' perhaps better conveys Hooke's preferred 'Elleptueid' 
than the roughly scrawled one in the amanuensis copy which alone now survives of 
Hooke's letter. 

70 Correspondence vol. 2, pp. 307-308. 
71 For an approximate one, building on Jean Pelseneer's analysis on pages 250-253 

of the article in Isis 12, 237-54 (1929), where he was the first to print Newton's 
letter, see note 55 of my 'Newton's earliest thoughts ...'. 

72 Correspondence vol. 2, p. 309. 
73 Correspondence vol. 2, p. 313. 
74 That which he gave to Conduitt in November of that year; see note 6. 
75 More fully (see note 61) to quote Newton's statement on Add. 3968.9, 101r, he 

there wrote (this would be about autumn 1714): 'In the end of the year 1679 in 
answer to a Letter from Dr Hook, ... I computed what would be the Orb described 
by the Planets. For I had found before by the sesquialterate proportion of the 
temporaperiodica of the Planets with respect to their distances from the Sun, that 
the forces wch kept them in their Orbs about the Sun were as the squares of their 
mean distances from the Sun reciprocally: & I found now that whatsoever was the 
law of the forces ..., the areas described by a Radius drawn from them to the Sun 
would be proportional to the times in wch they were described. And by the help of 
these two Propositions I found that their Orbs would be such Ellipses as Kepler 
had described.' 

76 Newton would remind Halley in July 1686 that 'when I had tried [my method] in 
the Ellipsis, I threw the calculation by being upon other studies. & so it rested ... 
till upon your request I sought for that paper, & not finding it [I] did it again ...'. 

77 Compare my summaries in footnote to The mathematical papers of Isaac Newton 
vol. 5, pp. 524-525 and vol. 6, pp. 481-482. Here is not the place to say more. 

78 Correspondence of Isaac Newton vol. 2, p. 431. 
79 Correspondence vol. 2, pp. 433-434. 
80 Ibid., p. 434. 
81 Newton implicitly cites Proposition 40 of his 1685 'De motu Corporum Liber 

primus'. The text of this, now printed in Mathematical Papers vol. 6, pp. 180-185, 
would appear virtually unaltered in his 1687 Principia as Proposition 71 of its Book 
1. Let me comment that all who read this passage assume that it means that Newton 
found it difficult to prove the result (as he certainly did not). It is the unexpected- 
ness of the result which he here insists upon, confirming the exactness of a seeming 
approximation, without which no one may make any accurate test of terrestrial 
gravity against the distant motions of the Moon and the planets. 

82 See Correspondence vol. 2, pp. 435-436. 
83 Correspondence vol. 2, p. 441. 
84 Ibid., p. 442. 
85 Edward Paget, a young Fellow at Trinity College in Cambridge, had just set foot 

on the long path to dissipation in India which was his ultimate lot. In April 1682, 
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with strong support from Newton, he had been appointed Master of the Mathe- 
matical School at Christ's Hospital, at that time just to the North of St Paul's and 
so hard by Gresham College, the then meeting place of the Royal Society, of which 
he soon became a Fellow. For several years thereafter he maintained not merely 
his scientific interests - even as he bore Newton's 'demonstration' up to London 
in November 1684 he was (see Newton to Francis Aston, 23 February 1684/5 = 

Correspondence vol. 2, p. 415) himself fresh from promoting a 'designe' for estab- 
lishing a 'Philosophick meeting' in Cambridge; by close contact with his Trinity 
colleagues. He made an ideal intermediary for Newton to entrust his 'copy' to. 

86 See Correspondence vol. 2, pp. 441 445. What Newton had in fact 'gathered' from 
Kepler's 'Theorem' 20 years before was the very different conclusion that the 
centrifugal 'endeavours' of the planets from the Sun are in 'the [inverse] duplicate 
proportion' of the distances. 

87 What Herivel sought to identify as the original 'calculation' made by Newton in the 
winter of 1679/80 (seeArch. Int. Hist. Sci. 14,23-33 (1961)) is a considerably revised 
autograph, lacking any title, which now occupies pride of place in the box (Add. 
MS 3965) of his 'Principia' papers in Cambridge University Library. (Rouse Ball 
has printed its text, shorn of the proofs of three minor lemmas, in his 1893 Essay 
[note 2], pp. 116-120 and it is reproduced in facsimile in Part 3 of The preliminary 
manuscriptsfor Isaac Newton's 1687 'Principia': 1684-1685 (Cambridge University 
Press, 1989).) When he did so, however, Herivel was seemingly unaware that the 
latter, except for an inserted Prop. 2, is all but identical with the text of a simplified 
'Demonstration that the planets by their gravity towards the Sun may move in 
ellipses' which Newton let John Locke see (and may well have specially composed 
for him) in March 1690, shortly after they first met. (This was first printed, from 
the copy - now Bodleian Library, Oxford. MS Locke c.31, 101r-103r [ + 104r] - 
then made by Locke's secretary, by Lord Peter King in his Life of John Locke, with 
extracts from his correspondence, journals and common-place books (London, 
21830) vol. 1, pp. 389-400.) This indeed demonstrates, at elaborate to tedious 
length, precisely the two propositions - that Kepler's area law holds true for any 
central force, and hence that a 'planet' may orbit in an ellipse about its 'Sun' set at 
a focus under the pull of inverse-square gravity to it - that Newton afterwards stated 
he had first derived in the winter of 1679/80. But these are also the core of what 
anyone would wish to know about the Principia, and there seems no reason to look 
for an origin for Newton's paper other than in Locke's requesting Newton for a 
simple proof of what by 1689/90 were in print as Propositions 1 and 11 of the first 
book of the Principia. 

There are other reasons that seem to exclude what I may presume to call 
Herivel's backdating by ten years of Newton's paper. Even after A.R. and M.B. 
Hall (in Arch. Int. Hist. Sci. 16, 23-28 (1963)) first drew Herivel's notice to the 
Locke 'copy' - so it is now known, though it is more probably one of an antecedent 
version - Herivel did not alter his opinion (see Arch. Int. Hist. Sci. 16, 13-22 and 
his Background to Newton's 'Principia' [note 9], pp. 108-117), but rather became 
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aggressively convinced that he was right in a series of scholarly scuffles which I will 
not tiresomely here document. However, R.S. Westfall in 1969 found the evidence 
in favour of his interpretation 'impressive' (see his note in Arch. Int. Hist. Sci. 22, 
51-60) and came out yet more forcefully for him in Never at rest (Cambridge 
University Press, 1980), pp. 387-388, 403. 

88 It is printed in full by I.B. Cohen in Supplement 1.7 (pp. 297-298) to his 1971 
Introduction to Newton's 'Principia' [note 61]. 

89 On this amanuensis copy, and the augmented autograph version of it (now ULC. 
Add 3965.1) which I mention in my next sentence, see note 87. 

90 Paget (at its author's behest?) took a great deal of trouble to ensure that Flamsteed 
should read the 'De motu Corporum in gyrum'. One can hardly say that the latter 
fell over himself to oblige. In the last days of 1684 he took the 'hard weather' then 
prevailing as his excuse not to travel the half dozen miles up river to the City to see 
it while it was still in Paget's custody. A month later, after Paget in response sent it 
down to Greenwich for him to look over, he pleaded that 'a benefice ... bestowed 

upon me in the meane time' had left him no 'leasure to peruse it yet' (from the 
letters that he wrote to Newton on 5 and 25 January 1684/5; see Correspondence 
vol. 2, pp. 410,414.) I presume that he thereafter sat on it - however, possibly could 
he have begun to make sense of its technicalities? - until the Principia appeared, 
and then discarded it. (It was not to be found among his papers when Baily went 
through them in the early 1830s.) 

91 Most of the errors in the text (though not the crudities of its badly drawn figures) 
are made good in the edited version which Rigaud adjoined on pages 1-19 of the 
Appendix to his 1838 Historical Essay [note 1]. The title 'Isaac Newtoni proposi- 
tiones de motu' there given to it is not of course Newton's own, but derives from 
the entry in the Society's Journal Book minuting the meeting on 10 December 1684 
where it was ordered that a copy of the original holograph 'copy' brought to London 
by Paget should forthwith be transcribed into the Register Book. Because Rigaud 
was unaware that Newton's autograph draft of his tract yet existed among his papers 
(then still) in the possession of the Portsmouth family, surely no one will quibble 
at the minimal licence that he took in attaching the title to it that he did. 

The main purpose of transcribing a copy of it, however inferior, in the Society's 
Register Book was, as the Journal Book minute here specifies, 'for the securing his 
invention to himself. To that end 'Mr Halley was desired to put Mr Newton in mind 
of his promise [to do so] till such time as he could be at leisure to publish it. Mr 
Paget was desired to join with [him].' 

92 This posits that 'Spatium quod corpus urgente quacunque vi centripeta ipso motus 
initio describit esse in duplicata ratione temporis': needlessly so, as it is directly 
deducible from Theorem 1. The draft also lacks any explicit enunciation of two 
lemmas to which Newton appeals in the body of his argument. One of these, 
summing a geometrical progression, will be familiar; but the other adduces a far 
from immediately evident property of the ellipse (and hyperbola) with a nonchalant 
'Constat ex Conicis'. 
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93 See The mathematicalpapers of Isaac Newton vol. 6, pp. 30-91, where I give an 
edited version of his draft (ULC. MS Add. 3965.7, 55r-62r/62; this is now repro- 
duced in facsimile as Part la of Thepreliminary manuscriptsforlsaac Newton's 1687 
'Principia' [note 87]), together with my English rendering of its text, additional 
figures and extensive footnotes. 

94 My translation of Newton's Latin (which I have quoted in note 92). 
95 In his Latin: 'Loquor de spatijs BD ... minutissimis inque infinitum diminuendis sic 

ut pro CF ... scribere liceat circulorum radios SB ...'. 
96 This, given a complicated demonstration by Apollonius in Proposition 45 of Book 

3 of his Conics in rider to Proposition 42 on the product of tangential intercepts, 
directly follows from the constancy of the sum of the two radii vectores drawn from 
any point on the ellipse to its two foci, and was so standardly proved from the late 
1630s onwards. 

97 The basic Apollonian defining 'symptom' of the ellipse with respect to conjugate 
diameters. (See Conics, Book 1, Proposition 21.) 

98 That this is Proposition 31 of Book 7 of Apollonius's Conics was all but unknown 
in Europe until Borelli published his Latin translation of Books 5-7 (from Arabic; 
they do not survive in their original Greek) at Florence in 1661. The theorem had, 
however, been independently derived some dozen years previously by the Belgian 
geometer Gregory St Vincent in Proposition LXXII of Book IV of his Opus 
geometricum (Antwerp, 1647). But does Newton here refer to either of these? 

We are saved the need to conjecture, for Massimo Galuzzi has recently tracked 
down his source in a 'Coroll: 6' appended by him in his copy (now Trinity College, 
Cambridge, NQ. 16.203) of van Schooten's second Latin edition of Descartes's 1637 
Geometrie (Geometria ... in Latinam linguam versa, & Commentariis illustrata ... 
Nunc demum diligenter recognita ... multisque egregiis accessionibus exornata, 2 vols. 
(Amsterdam, 1659/1661)) to Theorem XIII of the tract by Jan de Witt on Elementa 
curvarum added to its second volume. There (page 220/foot) he states, virtually in 
the words of his later 'De motu' Lemma, that 'Parallelogramma omnia circa datam 
Ellipsin descripta sunt inter se aequalia. Nam' - in de Witt's figure I-' [est] 
RH. CH:: BH = DA.PH = AS. ergo RH (= AY) x PH = CH x DA per Euclid: 
lib. 3 prop. 36 coroll' (which demonstrates that the product of the intercepts of two 
chords in a circle are equal). 

But what credence are we now to place in Whiston's words when (in his 1749 
Memoirs [note 5], pp. 38-39) he lauded Newton as 'this wonderful Man [who] in 
Mathematicks, could sometimes see almost by Intuition, even without Demonstra- 
tion, as was the Case in that famous Proposition in his Principia, that All Parallelo- 
grams circumscribed about the Conjugate Diameters of an Ellipsis are equal; which 
he told Mr Cotes he used before it had ever been demonstrated by any one'? 

99 More precisely, Halley reported back to Newton on 5 April that 'the last part of 
your divine Treatise ... came to [London] yesterday sennight' (i.e. on 28 March), 
but he had not then 'received' it, 'having had occasion to be out of Town the last 
week' (Correspondence, vol. 2, p. 473). 'The first part', he added, 'will be finished 
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within this three weeks, and considering the shortness of the third over the second, 
the same press that did the first will get it done so soon as the second can be finished 
by another press; but I find some difficulty to match the letter [typeface] justly.... 
I find I shall not get the whole compleat before [the end of?] Trinity [Easter] term, 
when I hope to have it published' (ibid., pp. 473-474). Editors are ever optimistic. 
Only on 5 July 1687 was Halley able to write to Newton that 'I have at length brought 
your Book to an end ... [Your] last errata came just in time to be inserted' 
(Correspondence, vol. 2, p. 481). 'I will', he went on, 'present from you the books 
you desire to the R. Society, Mr Boyle, Mr Pagit, Mr Flamsteed and if there be any 
elce in town that you design to gratifie that way; and I have sent you to bestow on 
your friends in the University 20 Copies' (ibid.). 

100 Nor was he on Halley's list (see the previous note) of those 'in town' to be 'gratified' 
with a gift copy of the Principia when it appeared: a most ungenerous act on 
Newton's part considering the prime role played in its genesis by their correspond- 
ence in the early winter of 1679/80. 

101 See note 90 above. 
102 Shorn of its concluding folios, what came before (now ULC. Add. 3965.7, 63, 63, 

64-70) was afterwards acquired by Newton - in what circumstances I do not know, 
but suppose that Halley proudly showed him his 'improvement' of the 'De Motu', 
and then left it with him when he was duly chastened. I likewise am unaware 
whether it was Newton himself or the 19th-century cataloguers of the Portsmouth 
papers (see note 2) who set the 'copy' in its present place next to his autograph draft 
of it. 

103 Had Hooke possessed a deeper grasp of the requisite mathematics, his could well 
have been the treatise on the dynamics of motion that Halley brought out in the 
mid-1680s, and Newton would perhaps have remained forgotten in his out-of-the- 
way Fenland University. Instead, as Patri J. Pugliese has pointed out in his recent 
essay on 'Hooke and the dynamics of motion in a curved path' in (ed. M. Hunter 
& S. Schaffer) Robert Hooke: new studies (Woodbridge, The Boydell Press, 1989), 
pp. 181-205, in an unpublished paper (now Trinity College, Cambridge. MS 
O.lla.116) which he wrote in the late summer of 1685, Hooke was still not au fait 
with the general measure of a central force which Newton had set out in his 'De 
motu Corporum in gyrum' the previous autumn. Instead, in the single instance of 
determining a non-circular orbit which he there attempted, that where the central 
force varies directly as the distance, he could yet only effect an approximate 
construction of the orbit in the manner Newton had outlined to him in December 
1679. 

104 The three (of its originally some nine) gatherings in eights of the foolscap-size folios 
of this 'De motu Corporum Liber Primus' which now survive are all in Cambridge 
University Library: two, namely its ff. 9-16 /17-24, among the superseded draft 
sheets (now MS Dd.9.46, 24-31 /64-71 respectively) for Book 1 of the Principia 
which Newton presumed to deposit there in the late 1680s as 'lectures' of his in 
fulfilment of statutory obligation on him as Lucasian Professor to do so, and the 
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third, its ff. 41-48 (now MS Add. 3965.3, 7-14) in the scientific papers of his which 
Lord Portsmouth gave to the University in 1888. In their pristine state each of these 
(they are reproduced in photo-facsimile in Preliminary manuscripts ... [note 37], pp. 
63-77, 79-93, 217-231) was a fair copy by his secretary Humphrey Newton; what 
we have are the edited, and on occasion much interlineated and otherwise 
augmented, revised versions of these made by Newton himself, who has also added 
the foliations at the top right-hand corner of each recto. I have edited (in Mathe- 
maticalpapers vol. 6, pp. 96-187) the greatest part of what yet survives of its text, 
but it deserves the fuller monograph to itself, which has yet to be. An evident major 
problem here is to know, at least in outline, what was in its missing portion. I.B. 
Cohen's spadework in his Introduction [note 61], in both his chapter 4.2 (pp. 83-92) 
and especially his Supplement 4 (pp. 310-321) has here opened up the way, though 
in one point I would disagree with his analysis. Let me, from his shoulder, just say 
this in summary. 

Folios 1-8 were soon expanded into (the uncorrected text of) the 20 opening 
ones of the revise of it (see note 106) which Newton likewise deposited in the 
University Library as 'Lucasian lectures' of his (see Dd.9.46, 4-23, reproduced in 
Preliminary manuscripts, pp. 37-61): what is new there is pretty certainly the 
elaborate Scholium to the Definitions, most of the Corollaries to the 'Axiomata 
sive Leges Motus' and the general Scholium thereto. 'Prop. XXII. Theor. IX' 
(which is Prop. XXXIII of the Principia's first book) breaks off, its proof scarcely 
begun, at the bottom of f. 31; and the latter part of 'Prop. XXXIV. Theor. XVI' 
(which is the Principia's ensuing Prop. LXIV) 'opens' in mid-sentence on f.41, 
continuing in sequel through Propositions XXXV-XLII ( Props. LXV-LXXIII) 
till 'Prop. XLIII Theor. XXV' ( Prop. LXXIV) terminates in a continuation 
squiggle at the end of f. 48. Propositions XXIII-XXXII on the missing ff. 33-40 can 
fairly certainly be identified as the sire of Propositions XXXIV-XXXVII, LVII- 
LXIII of the Principia's first book. Of what came after we know just one thing: 
Halley (the only one, it would seem, whom Newton allowed to read the 'Liber 
Primus') refers among other notes that he made on it - presumably at the latter's 
request - to a 'Prop. LXXII' in it, which must (see Cohen, Introduction, p. 317) be 
in essence Prop. XXII of the Principia's second book. We will probably never know 
for sure what the intervening Propositions XLIV-LXXI were, but it may be that to 
conjecture that their content was substantially that of Book 1, Props. LXXV- 
LXXVIII, LXXXIII-XCIII and of Book 2, Props. I-VII, XV-XVII, XIX-XXI in 
the published Principia does not stray too far from the truth. 

105 I paraphrase Newton's Latin in preface to the highly technical 'De Mundi Syste- 
mate Liber Tertius' with which he came to replace it: 'De hoc argumento compo- 
sueram Librum .. methodo populari, ut a pluribus legeretur' (Principia, 11687, p. 
401). Two holograph texts of this original 'Liber Secundus' survive, both in Cam- 
bridge University Library: one seemingly complete (now Add. 3990) among the 
Portsmouth papers, and a fair copy (MS. Dd.4.18) of the first part of it which 
Newton deposited there, or so its marginal divisions claim, as five of his Lucasian 
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'Prelect[iones]'. A year after Newton's death in 1727, as agreed under the terms 
by which he came to acquire his papers, his nephew-in-law John Conduitt published 
the first, fuller version - the manuscript is overwritten with the printer's pagings - 
as De mundi systemate liber Isaaci Newtoni. (The profits of this, as of all other 

publications of his papers in Conduitt's lifetime, went to Newton's money-grubbing 
heirs-in-law, namely his mother's progeny by her second marriage; see Mathemati- 
calpapers vol. 1, xx, note 12.) I.B. Cohen has outlined some of the many problems 
of textual interpretation and inconsistency between the various printed editions 
that face the scholar, both in his Introduction (pp. vii-xxii) to the reprint (London, 
Dawson's, 1969) of the English translation (perhaps by Andrew Motte) which 
appeared the same year as the Latin editio princeps under the title A treatise of the 
system of the world (London, 1728); also in Chapter 4.6 ( + Supplement VI thereto) 
of his Introduction [note 61], 109-15 ( + 327-335). 

The one section of this first 'Liber Secundus' that makes mathematical demands 
upon its reader is that where Newton seeks to lay out a simple and effective way of 
constructing the orbit of a comet from timed sightings of it (on which see Mathe- 
maticalpapers, vol. 6, pp. 482-497). There is no doubt that he was deeply dissatisfied 
with this: 'In Autumn last', he wrote to Halley in his long letter of 20 June 1686, 'I 
spent two months in calculations to no purpose for want of a good method' 
(Correspondence, vol. 2, p. 437). That alone could well have been his reason for 
discarding this attempt at outlining 'in a popular way' the richnesses that ensue on 
applying the technical theorems to the System of the [celestial] World'. 

106 As with the 'De Motu Corporum Liber Primus' (see the previous note) from which 
it was in part honed, this revised treatise was initially penned in Humphrey 
Newton's fair hand, then amended and where necessary further augmented by 
Newton himself before at length, in April 1686, it was judged ready to be sent to 
Halley, thereafter to become (after yet further minor changes) Book 1 of the 
published Principia. This final script, carrying the printer's markings-up, has been 
in the Royal Society's possession since at least the time of Newton's presidency: its 
varia are denoted by M in I.B. Cohen's Isaac Newton's 'Philosophice naturalis 

principia mathematica' the third edition (1726) with variant readings (Cambridge 
University Press, 1972). The working draft has much more interest. Like its parent, 
it is, other than for its opening 20 folios (tailored to fit ff. 1-8 of the 'Liber Primus' 
which they greatly expand) and for its last four, collected in gatherings of eight folios 
at a time, these paginated on the top, right corner of the first recto only. Its greatest 
part, ff. 1-[20], 21-[28], 29-[36], 37-[44], 55(sic!)-[62], 63-[70],... 95-[102] - Book 
1 of the Principia up to (and including the first half of) Prop. LIV - is again extant 
as an unintended consequence of Newton lazily electing to deposit it as the 
purported script of his 'best Lucasian lectures' in the University Library, where they 
are now (recently rebound in this correct sequence) ff. 4-23,24-31, 64-71, 48-55, 
40-47, 88-95, 96-103, 32-39, 80-87, 72-79 of MS Dd.9.46; and its last four folios 
127-[130], embracing the latter half of Prop. XCVI and its Scholium together with 
Props. XCVII, XCVIII and their (and Book l's final) Scholium, survive as ff. 425 
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bis/615-617 of MS Add. 3970 in the 'Portsmouth' papers. (These are reproduced 
in facsimile on pages 37-93, 110-215, 233-8 of The preliminary papers ...) 

When Newton revised the initial fair copy of the new 'Liber Primus' he sub- 
divided it into 14Articula (renamed Sectiones in the published Principia). An edited 
version of 'Artic.' IV-X ( = ff. 38-[44], 55-102) and the latter half of XIV ( = ff. 
127-130) will be found in Mathematicalpapers, vol. 6, pp. 230-409 and vol. 3, pp. 
549-553. 

107 'wch I ought not to diminish now tis yorS' Newton added in sequel in his letter to 
Halley on 20 June 1686 (Correspondence, vol.2, p.437). 

108 Not least by Bernoulli himself, who must have known that his solution to the 
'Probleme inverse des Forces centripetes', which eventually appeared in the Mem- 
oires de mathematique & de physique ... de l'Academie Royales des Sciences. Annee 
M.DCC.X (Paris, 1713), stole Newton's thunder. (Compare Mathematical papers, 
vol. 6, pp. 344-359, especially pp. 349-350 of footnote (209).) I appreciate, however, 
that the garb of geometrical limit-increments in which Newton clothed his reason- 
ing may not at once be seen to be identical with the Leibnizian dress into which 
Bernoulli retailored it, and which could therefore, not least in its clarity, seem his 
independent discovery. 

To continue note 60, if Vbe the speed at an 'initial' point (R,O) in its path of an 
orbiting body, and t be the time of passage thereafter to the general point (r, p), 
from d(v2)/dr = - 2f(r) it follows that 

v2 = (r.d/dt)2 + (dr/dt)2 = V2 - 2 f f(r).dr. 

Because r .dd/dt = c (= RVsin a where a is the angle which the orbit makes with 
the initial radius vector R), there straightforwardly ensues 

fr C dr and r 1 .dr. 
=R r2 VV2 - c2/r2 dr and t =R 2- C2/r2 

For an inverse-square law f(r) = gR2/r2, and consequently v2 = V2 + 2gR2/r - 2gR; 
it follows that the only orbit that can be traversed is the conic 

1/r = (g/V2sin a).{ 1 - e cos (0 - e)}, 
of major axis 2R /(2 - V2/gR) and eccentricity e2 = 1 - (V /gR)(2 - V2/gR) sin2a. 
But in his Corollary 3, almost as if to show the world what he could do with a careless 
flexing of his mathematical muscle, Newton himself passed to pose - and in its 
essence resolve - the entirely novel problem of determining the orbit in an 
inverse-cube force field, f(r) = gR3/r3. (Compare pp. 124-6 of my discussion of 
'The mathematical principles underlying Newton's Principia mathematica' J. Hist. 
Astron. 1, 116-38.) 

109 I do not insinuate that Halley had any mercenary purpose in mind when he 
encouraged Newton to write the Principia. No one set on making profit out of the 
edition would have taken anywhere near the care that he put into checking the 
script and overseeing it through press. In particular, upon receiving Newton's 'Liber 
Secundus' early in March 1687, he wrote back on 7 March (see Correspondence, 
vol. 2, p. 472) not only that he had put it out to a second printer who 'promises me 
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to get it done in 7 weeks' so as to have it 'finished much about the same time' as 
the first (which had then been in press for almost a year), but he also added that 'if 
[your third book de Systemate mundi) be likewise ready, and not too long to be got 
printed by the same time, ... I will endeavour by a third hand to get it all done 
togather'. Newton hastened to comply with Halley's offer, for the latter reported 
back just a month later on 5 April that, even though he himself had been 'out of 
Town the last week' and not been there to receive it, the 'Liber Tertius' had safely 
arrived in London 'yesterday sennight' (on 28 March). The following three months 
during which the three books came sheet by sheet off the presses at separate 
printers must have been nightmarish. Halley certainly deserved some monetary 
return for all his effort, and he was too practical a man to be above taking it. 

Of the 62 quarto sheets that make up the 1687 Principia, we have it from Halley 
(see ibid.) that his first printer - he is named on the Principia's title-page to be 
Joseph Streater - composed the initial 30, namely (title + Prcfatio + editorial 
ode =) A / (pages 1-232 =) B-I, K-T, W-Z, Aa-Ff; his 'second' - who, because 
of the identity of the type-face and the fluid continuity between sheets Ff and Gg, 
I feel sure was Streater also - (pages 233-[384-,]'400' =) Gg-Ii, Kk-Uu, Ww-Zz, 
***; and his last (pages 401-510 + Errata =) Aaa-Iii, Kkk-Ooo. How much he 
was charged for this (per sheet, then as now) I do not know. Twenty-five years later 
the cost of setting and correcting the relatively de luxe revised edition brought out 
in 1713 by the new-found Cambridge University Press was assessed by it printers 
at 10s.6d per sheet, on which they took 50% profit. (See D.F. McKenzie, The 
Cambridge University Press 1696-1712. A bibliographical study (C.U.P., 1966), vol. 
1, p. 330) The paper used was of course extra to this. 

In comparison with other technical works on mathematics, science and astron- 
omy published in London in the late 17th century, many times more copies of the 
1687 Principia are still extant. To the 163, scattered worldwide, which Henry 
Macomber had tracked down by mid-1952 (compare his 'Census ... of copies of the 
1687 first edition...' in The papers of the Bibliographical Society of America vol. 47, 
pp. 269-300 (1953).) I could myself add several tens more. That profusion need 
mean no more than that virtually every copy of a relatively small edition has 
survived. Though the known circumstances are not wholly against that having 
happened, the assumption seems unrealistic. Almost 40 years ago A.N.L. Munby, 
wise by long experience to the 'so many varying factors' that can determine how 
many copies of a book do survive, thought to hazard that 'the whole edition cannot 
have comprised less than three hundred copies, and the figure may well have been 
a hundred more ...'; see Notes Rec. R. Soc. Lond. 10, 28-39 (1952). We now know, 
however, that in England around the turn of the century runs of 500 and more copies 
were common for mathematical and science books. (That for the Principia's second 
edition in 1713 was 700; again see McKenzie's Cambridge University Press, 1696- 
1712 vol. 1, p. 330). I therefore see nothing outrageous in supposing that Halley 
ordered some 500 copies to be printed. 

This figure agrees well with the price that Halley proposed to charge for the 1687 
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Principia. In his letter of 5 July 1687 accompanying the 20 copies of it that (see note 
99) he sent Newton 'to bestow on your friends in the University', he added: 'In the 
same parcell you will receive 40 more, wch, having no [!] acquaintance in Cambridg, 
I must entreat you to put into the hands of one or more of your ablest booksellers 
to dispose of them: I entend the price of them bound in Calves' leather and lettered 
to be 9 shill here, those I send you I value in quires [sheets] at 6 shill: to take my 
money as they are sold, or at 5h . a price certain for ready or elce at some short 
time; for I am satisfied that there is no dealing in books without interesting the 
Booksellers, and I am contented to lett them go halves with me, rather than have 
your excellent work smothered by their combinations' (Correspondence, vol. 2, pp. 
481-482, minimally corrected by the original in King's College, Cambridge. MS 
Keynes 97). In the absence of certain knowledge of the book's sale, let me assume 
that the few copies he himself managed to sell at 5 shillings cash down (I am sure 
that Newton, if only not to be beholden to him, would have paid him that price on 
the extra 40 that Halley sent along, whether he sold them or not) roughly made up 
for the cost of the 20 free copies that he presented to Newton and those (25 or so?) 
others that he himself gave away. Even by going fifty-fifty with the booksellers at 3 
shillings a copy on the edition, he would have made £75 or more. Against this sum 
must be set Streater's charge for composing and correcting the book's 62 sheets at 
no more than some 15 shillings each and the cost, say £20(?), of the paper and ink 
used. I cannot see that he would have been less than £10 in pocket for all his time 
and trouble. 

110 That there are two versions of the title-page of the 1687 Principia has long been 
known; see for instance Munby's 'The distribution of the first edition' [note 109], 
28, where the variants in type-setting, but not the complete pages, are reproduced. 
For their greatest part they do not differ in announcing (within double rules) 
"PHILOSOPHIE / NATURALIS / PRINCIPIA / MATHEMATICA / [rule] / 
Autore IS. NEWTON, Trin. Coll. Cantab. Soc. Matheseos / Professore Lucasiano, 
& Societatis Regalis Sodali. / [rule] / IMPRIMATUR [!] / S. PEPYS, Reg. Soc. 
PRASES. lJulii 5. 1686'. After a further rule, however, the original title concluded: 
'LONDINI, / Jussu Societatis Regic ac Typis Josephi Streater. Prostat apud / plures 
Bibliopolas. Anno MDCLXXXVII'. In perhaps a quarter of the known copies, this 
original has been cut out in favour of a replacement, pasted on its stub, which ends: 
'L[!]ONDINI, / Jussu Societatis Regice ac Typis Josephi Streater. Prostant Vena- / les 

apud Sam. Smith ad insignia Principis Wallice in Camiterio / D. Pauli, aliosq; 
nonnullos Bibliopolas.Anno MDCLXXXVII'. By fluke, the two appear, one each, 
in the two facsimiles of the 1687 Principia that have been published in recent years: 
the first in that by Editions culture et civilisation (Brussels, 1965), and the latter in 
the one published by Dawson's (London, 1953). 
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