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1 Introduction

User interactions in social data tell us a great deal about the real world, and
these insights are not limited to any particular segments of time. By under-
standing the time-dependent behavior of groups of social media users, we can
identify and even predict important real-world trends.

What sort of real-world activities, events, and trends might be reflected in
social data? And what properties of those events might we want to know?

Suppose that an influential financial analyst Tweets a strong opinion about
a particular stock and that Tweet goes viral. Or suppose a large number of
customers use Twitter to complain about a brand’s new product. In both cases,
good first questions are: when did the event happen, or when did the trend
start? As a follow-up, we can also ask: how significant is the change? How large
is the increase or decrease? More importantly, how large is this change relative
to typical changes on Twitter? The quantification not only allows an analyst to
distinguish the atypical from the typical, but it also allows them to compare one
atypical event to another. Are there characteristics of atypical events that allow
them to be separated into groups that can then be assigned real-world meaning
(e.g. seasonal trends, holiday events)? If so, do these assignments point toward
a particular choice of quantitative model for the event? If the identification of
an atypical period of time can be quantified, can it be automated? And can it
be used to predict future behavior?

After reading this paper, you will be well on your way to building a system
for discovering, measuring, comparing and discussing changes in time series data
that arise from online social interactions.

2 Trends and Events

We measure time-dependent user behavior with bucketed counts of mentions,
hashtags, followers, friends, links, or any quantity that can be counted over
time. If that quantity is defined by the presence of a word or phrase, that word
or phrase is called the topic. When discussing changes in a social data time
series, we must speak concretely about what kinds of change are interesting. For
example, growth over time of an audience is a simple but important measure of
change. Similarly, we may want to know about seasonal cycles of change. How
does June compare to December? Against the backdrop of steady growth and
cyclic variations, we can ask about emerging changes, in which a count rises
from something negligible or unimportant to something significant. We are also
interested in structural changes, where a time series abruptly shifts from one
state to another.

2.1 Difficulties

Identifying growth, cycles, and – especially – emerging and structural changes, is
hard. Why? A primary difficulty is the fact that we often don’t know in advance
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the scale or size of the change. The time interval over which a change occurs can
range from fractions of seconds to years, a difference of 10 orders of magnitude!
Additionally, the size of the change can range from counts of 10s through counts
of billions. The community of users generating or associated with the change can
range from a single person through a group of 100 million people. It is difficult to
construct algorithms that function consistently over such broad ranges of data.
Finally, we know that change of many sorts is happening all the time, and we
want to take care to identify single, rather than composite, changes.

The corpus of social data is enormous, and this size brings about other
difficulties. Most signals of interest are relatively small. Data that match a
particular topical filter are usually contaminated by other signals, and changes
in the data reflect the cumulative result of all underlying effects. The size of
the data also implies the existence of many atypical patterns that are entirely
due to statistical variation, rather than reflecting real-world events. Despite
this knowledge, humans prefer to associate any changes with meaningful and
nameable events. Even the distinction between the real world and the online
social interactions is complicated, and it can be difficult to establish causality. Do
the social data simply reflect the offline world? How do online social interactions
affect the rest of the world? The first step in unraveling this tangled feedback
network is to quantify the social data trends.

2.2 Analysis Trade-offs

Attempts to quantify changes in social data are subject to trade-offs. At times,
random fluctuations in the data will be identified as a trend. At other times,
real trends will not be identified. We identify three particular measures of per-
formance that account for these types of mistakes. First is the time-to-detection,
or the time between the real-world event and the detection in the social data.
Second is the precision, or the fraction of identified trends that are not statis-
tical flukes. Last is the recall, or the fraction of real trends that are identified
by the trend detection scheme. Two metrics similar to precision and recall are
the true positive rate and the false positive rate. These performance metrics can
not be simultaneously optimized. For example, if we wish to quickly identify
an emerging change, and we wish to do so with high confidence that were not
detecting random fluctuations, we will necessarily have low recall for real trends,
and be able to only identify very statistically significant patterns.

2.3 Classification

Once the detection scheme is defined, humans have to interpret and act on
anomalous events as they are observed. These actions can take the following
forms:

• alerting - start paying attention to something new and urgent

• informing - note the relative state of things available when someone checks
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• discovery - do iterative refinement for novelty detections or root cause
analysis

• model building - enable downstream consumption of the signal for other
modeling purposes

Given these challenges and considerations, lets organize the analysis around
three classes of anomalies, as seen in Figure 1. While anomalous decreases in
time series can be interesting, we will limit ourselves for the duration of the
paper to the specific case of atypical increases.

Ramp-up: from a well-understood steady state (negligible, constant, or pe-
riodic), the time series exhibits a continuing increase that is sustained over many
instances of the time resolution.

Mean shift: from a well-understood steady state, the mean of the time
series shifts abruptly to a significantly different value and maintains that value
over a time span much longer than the time resolution.

Pulse: from a well-understood steady state, the value of a time series in-
creases significantly, then returns to previously-typical values. Pulses with widths
similar to the time resolution capture the briefest events that can be observed.
Those with widths much larger than the time resolution represent extended
events that can be further characterized by the area under the pulse.

Figure 1: Three basic types of anomalies.

There is some interrelation between these basic anomaly types. For example,
a pulse can be thought of as a pair of mean shift or ramp-up/ramp-down anoma-
lies. A higher-level feature like a cycle can also be thought of as a sequence of
these anomalies.

A final challenge is the mapping between anomalies and real-world events.
The word “event” can refer to a nameable change (e.g. Superbowl mentions),
but it can also refer to any interval in a time series that is sufficiently atypical,
with no meaning attached. In the remainder of this paper, we use the word
event to refer to specific, nameable happenings in the either the online or the
offline world.

We encourage the reader to systematically think about what sorts of change
are important to the problem they’re trying to solve, and what sorts of action are
to be taken upon detection. Identifying and characterizing atypical behavior in
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social data time series can be difficult, but it provides us with brand-new insights
into group behavior and the interplay between the online and the offline world.

3 Brief Survey of Analytical Approaches

In the section, we will work through the details of a simple technique for trend
detection in a time series defined by a topic on Twitter. We will then briefly
review a set of other techniques that extend, generalize, or improve on the simple
case. See the Appendix for a link to implementations of these techniques.

Many techniques for identifying trending behavior define a background model,
which can be thought to represent the null hypothesis, or the case of no trend.
Deviations from the background model are described by a figure-of-merit called
η, and large values of η can be said to disprove the null hypothesis. In other
techniques, the model includes both a background component and trend-like
component. In these cases, the η value quantifies the extent to which the data
look more like a trend than a non-trend. Whatever the model, we say that the
topic is trending at the time the η exceeds a predetermined value, often called
θ.

To calculate η, we typically must choose some model parameter values. If
we have access to historical data that is labeled with truth (trend or non-trend)
and the true trend start time, we can measure the performance of a choice of
model and parameter values, in terms of the precision, the recall, and time-to-
detection.

3.1 Point-by-point Poisson Model

The Poisson distribution describes the probability of observing a particular
count of some quantity, when many sources have individually low probabili-
ties of contributing to the count. This sounds applicable to the case of counting
in social data, because each individual has a small chance of Tweeting about a
given topic, but the large Twitter user base leads to significant counts. We can
do a rather simple form of trend detection by assuming that the counts in a
social data time series are Poisson-distributed around some average value, and
then looking for unlikely counts according to the Poisson model. Consider, for
example, the number of Tweets in some time interval that contain the hash-
tagged phrase “#scotus” (referencing the Supreme Court of the United States).
If we ignore variations in the overall rate of Tweeting, we might expect the
counts of “#scotus”-containing Tweets to vary, but the distributions of counts
will generally follow the Poisson distribution,

P (ci; ν) = νci · e−ν/ci! (1)

where P is the probability of observing ci “#scotus” Tweets in the given time
window, when the expected number of such Tweets is ν. While we have no way
of knowing the true value of ν, a good source for this information is the time
interval previous to the one being tested, ci−1. We identify trends by counts ci
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that are particularly unlikely, given the previous count, ci−1, and the assumption
of Poisson distributed data.

In this Poisson model, the unlikeliness of a particular count ci can be quan-
tified by the distance from the mean (ν) in multiples of the confidence interval
(CI) with confidence level α. Confidence intervals for a Poisson mean ν and con-
fidence level α can be found in [1]. The parameter η describes the unlikeliness
of a particular point:

ci = η · CI(α, ν) + ν,where ν = ci−1. (2)

In other words, a count ci is defined to reject the null hypothesis when

ci >= ηc · CI(α, ci−1) + ci−1, (3)

for predetermined values of ηc and α. Together, these two parameters control
the performance of the algorithm.

In Figure 2, we plot the hourly counts for a data set defined by the “#scotus”
hashtag. While there may be minor events driving mentions of “#scotus”, this
time series does not contain any major real-world events, and the values of η
are relatively low.

The point-by-point Poisson model is an attempt to simplify the problem of
background description by assuming a very simple model. Yet this simplicity can
be a source of challenges. First, we see that the data are generally not Poisson-
distributed around the previous data point. For example, given a choice of α =
0.99, we should see values of η > 1 only about 1% of the time. Nevertheless, the
parameter η is indicative of atypical counts, just not with the usual probability
interpretation. For example, Figure 3 shows a time series with a very distinctive,
large spike, and the corresponding values of η are very large.

Once a value of α is chosen, the definition and identification of a trend is
still dependent on the choice of two parameters values: ηc and the time interval
for a single data point. As ηc is increased, the precision is increased, but more
real trends are missed (decreased recall). A similar trade-off exists for the bin
width, as shown in Figure 4: small bins provide faster identification of trends,
but lead to worse precision.

Despite the challenge of choosing appropriate parameter values, the point-by-
point Poisson model can be very appealing. It’s fast, in part because it requires
a single data point for the background model. It’s also easy to implement, and
its single measure of atypicality, η, is fairly easy to interpret.

3.2 Cycle-corrected Poisson Model

Most social data time series exhibit cyclic patterns that reflect genuine human
cycles of activity. For example, if the majority of users that generate a particular
body of Tweets live in a narrow band of time zones, we would naturally expect
to see fewer Tweets during night hours for those time zones. Thus, the patterns
of hours, days, weeks, and even months can be reflected in changes in rates of
social media use.
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Figure 2: Mentions of “#scotus” per hour. The time series data are
shown in the blue dots with black lines. For each point, η is calculated
based on the previous point, and plotted in red. In this case, α = 0.99.
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Figure 3: Mentions per 3-hour intervals of Steve Jobs, around the time
of his death. The time series data are shown in the blue dots with black
lines. For each point, η is calculated based on the previous point, and
plotted in red. In this case, α = 0.99.
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Figure 4: Counts of “#scotus” mentions, in variously-sized bins. The
time series data are shown in the blue dots with black lines. For each
point, η is calculated based on the previous point, and plotted in red.
In this case, α = 0.99.
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To reduce the rate of false trend identification due to expected, cyclic human
activity, the cycle-corrected Poisson model builds on the foundation of the point-
by-point Poisson model, and uses a background model derived from data similar
to the point being tested. For example, if a data point represents 3 hours of data
from a Friday night in the Eastern US, it would not make a good model to use
the previous three hours as the Poisson mean. People Tweet about different
topics at 2-5PM than they do at 5-8PM, leading to topical time series with
large variations simply due to the progression of the day. A better background
model for the data from 5-8PM on a particular Friday is an average over the
data from the 5-8PM interval on other days of the week. We can build an even
better model by taking the average over the same time interval, but only from
previous Fridays. If monthly cycles of activity are important, we might even
build our background estimate from only Fridays around the same time of the
month.

The primary drawback of this technique, relative to the point-by-point model,
is the need to sample and retain enough data to calculate the background esti-
mates. If anomalous events have previously occurred in the time series, this will
contribute to the rolling averages and artificially increase the rate of false posi-
tives. Figures 5 and 6 shows a comparison of the two Poisson-based background
model discussed in this and in the previous section. The cycle-corrected model
shows generally reduced η values (fewer false positives), but actually produces
a greater η value at the initial spike around hour 650.

Continuing to expand on the basic Poisson model, there is a variety of further
improvements that can be made. Any value chosen for the Poisson mean can be
further stabilized by calculating an average over a rolling window of adjacent
data points. If the long-term overall growth rate for the data is known, this
baseline can be subtracted from the data. Ihler, Hutchins, Smyth [2] present a
framework for removing the effects of previously-occurring anomalies from the
Poisson background model.

3.3 A Data-driven Method

There is a two-fold drawback to the Poisson models: first, it is impossible to
choose values for α and ηc that are a good choice for trends of all shapes and
sizes. Moreover, our decision to use the Poisson distribution as a model for the
variations in the data is not necessarily a good choice. In fact, we know that
many social data time series are not Poisson-distributed. What if we were to
avoid these problems by simply comparing the data to real examples of trending
and non-trending data?

Nikolov suggests we do just this in a non-parametric method [3]. We begin
by compiling a library of labeled time series, identifying each as trending or non-
trending. We then define a weight that is a function of the distance between a
labeled time series and the data in question. The final result is given by the
ratio of the total weight for the trending time series divided by the total weight
for the non-trending time series.

We start by collecting reference time series from historical data. Based on
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Figure 5: Counts of “#scotus” mentions, in 1-hour bins. The time
series data are shown in the blue dots with black lines. For each point,
η is calculated based on the previous point, and plotted in red. In this
case, α = 0.99.
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Figure 6: Counts of “#scotus” mentions, in 1-hour bins. The time
series data are shown in the blue dots with black lines. For each point,
η is calculated based on the average value from the same hour on
previous days in the time series, and plotted in red. In this case, α =
0.99.
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their shape and the details of real-life events associated with them, we label
them + (trending) or − (non-trending). The sets of references time series are
named R+ and R− (and together comprise R). The model has been shown to
be effective when the size of R is O(100). In general, the elements of R+ and
R− are much longer than the time series with which they are compared.

We next define a distance between two same-length time series: d(r, s), where
r is in R+ or R− and s is the time series that were evaluating for trending
behavior. To facilitate comparison, both time series are unit-normalized. We
use the Euclidean distance:

d(r, s) = ΣNi (ri − si)2, (4)

where ri and si are the i-th points in the N -length time series r and s. Other
choices of distance functions emphasize different properties of the time series,
and lead to different value of the trend detection metrics discussed below. If
r is longer than s, we define the distance to be the smallest of all distances
d(rs, s), where rs is any s-length sub-series of r. Given a distance function, we
then define a weight in terms of a scaling parameter λ.

W (r, s) = e−λ·d(r,s) (5)

The parameter λ controls the relative importance of very similar vs. very differ-
ent reference series. For example, a large value of lambda generates very small
weights for elements of R very different from s.

We then sum up the weights from the trending and non-trending comparisons
and produce a final metric from their ratio:

η(s) =
Σr∈R+W (r, s)

Σr∈R−W (r, s)
(6)

To demonstrate the performance of this technique on a known trend, Figure 7
shows a plot of a single element of R+, along with η as calculated for this time
series. The η curve rises dramatically soon after the real spike in the data, with
the lag time demonstrating the effect of the data-smoothing.

The primary difficulty with this method is the need for a labeled set of ref-
erence time series. To obtain similar detection performance over a broad range
of trend shapes and sizes, it is also important to apply a series of transforma-
tions to all r and s. In our implementation, these transformation include the
previously-mentioned unit normalization, a smoothing with an average taken
over a sliding window, and a logarithmic scaling (see [3] or the code referenced
in the Appendix for details of the transformations). Examples of the transformed
reference time series are shown in Figure 8.

Even though the shapes of the labeled time series provide the model for
trending and non-trending time series, the analyst still controls the performance
of the algorithm by setting parameter values. The values chosen for the scaling
parameter, the lengths of s and r, the time series precision, and any other
transformation parameters lead directly to the true-positive and false-positive
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Figure 7: Data from a trending time series are plotted in black with
blue dots, for 2-minute time intervals. Based on a library of 500 refer-
ence trends in R+ and 500 reference non-trends in R−, the figure of
merit η is calculated for each point and plotted in red. The length of
elements of R is 300 minutes, while the length of the tested sub-series
(s) is 230 minutes. For distance calculations, the data are smoothed
over a 10 minute window.
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Figure 8: A plot of elements of R+ (red lines) and R− (black dashed
lines), after the smoothing and scaling described in [3]. The trending
series in R+ rise sharply at the right side of the plot, while changes
in series in R− are more evenly distributed.
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Figure 9: A plot of the Receiver Operating Characteristic curve for
variations in θ and a particular set of algorithm parameters. To high-
light the details, the right figure plots the logarithm of the true-
negative rate, instead of the true positive rate.

metrics. With the labeled reference series in hand, we can easily calculate these
metrics by removing random test sets of elements from R+ or R− and running
these series through the analysis.

We have conducted a performance analysis by fixing all parameters except
for θ, the critical value of η that defines our split between trends and non-
trends. We produce time series of η values for a set of 100 known trending
time series and 100 known non-trending time series, all independent from the
500 trending and 500 non-trending time series used as references series (R).
By applying variations in θ to the η values from the test series, we can trace
out a curve in the true-positive rate (TPR) / false-positive rate (FPR) space:
the Receiver Operating Characteristic (ROC) curve. This curve is shown in two
forms in Figure 9, and represents the quality of the classification. The large area
under the ROC curve indicates that this technique, with an appropriate set of
parameter values, can simultaneously provide high TRP and low FPR.
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4 Conclusion

Trends in social data tell us about what is important to users of social media.
Trends not only reflect real-world events, but also drive offline behavior. By
identifying trending behavior, we can be informed of current events, we can
discover emerging events, and we can model future events. But reliable, precise,
and fast trend detection is made difficult by the size and diversity of the social
data corpus, along with the large variations in the time and volume scales of
social data sets.

We have overviewed three techniques of trend detection that strike various
balances between simplicity, speed, accuracy, and precision. If simplicity is ex-
tremely important, or for a pilot model, we recommend the point-by-point Pois-
son technique. This technique is most appropriate to small sets of time series, in
which typical behavior can be manually observed and correlated with the atyp-
icality parameter (η). If a sufficient history of data is available, we recommend
enhancing the technique to account for cyclic behavior, as in the cycle-corrected
Poisson technique. This is a relatively small step up in complexity, and provides
a significantly decreased rate of false positive signals.

When optimal true- and false-positive rates are worth extra model complex-
ity and technical commitment, the data-driven method is worth investigating.
While it is potentially difficult to collect and label a sufficient number of com-
parison time series, the technique provides stable results across a wide variety
of trend detection problem.

A Appendix

The latest version of this document and implementations of the trend detection
models can be found at: https://github.com/jeffakolb/Gnip-Trend-Detection.
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