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Abstract

In this paper we describe the development of an accurate, small-
footprint, large vocabulary speech recognizer for mobile de-
vices. To achieve the best recognition accuracy, state-of-the-art
deep neural networks (DNNss) are adopted as acoustic models.
A variety of speedup techniques for DNN score computation
are used to enable real-time operation on mobile devices. To
reduce the memory and disk usage, on-the-fly language model
(LM) rescoring is performed with a compressed n-gram LM.
We were able to build an accurate and compact system that runs
well below real-time on a Nexus 4 Android phone.

Index Terms: Deep neural networks, embedded speech recog-
nition, SIMD, LM compression.

1. Introduction

Smartphones and tablets are rapidly overtaking desktop and lap-
top computers as people’s primary computing device. They are
heavily used to access the web, read and write messages, inter-
act on social networks, etc. This popularity comes despite the
fact that it is significantly more difficult to input text on these
devices, predominantly by using an on-screen keyboard.

Automatic speech recognition (ASR) is a natural, and in-
creasingly popular, alternative to typing on mobile sevices.
Google offers the ability to search by voice [1] on Android,
i0S, and Chrome; Apple’s iOS devices come with Siri, a con-
versational assistant. On both Android and iOS devices, users
can also speak to fill in any text field where they can type (see,
e.g., [2]), a capability heavily used to dictate SM'S messages and
e-mail.

A major limitation of these products is that speech recogni-
tion is performed on a server. Mobile network connections are
often slow or intermittent, and sometimes non-existant. There-
fore, in this study, we investigate techniques to build an accu-
rate, small-footprint speech recognition system that can run in
real-time on modern mobile devices.

Previously, speech recognition on handheld computers
and smartphones has been studied in the DARPA sponsored
Transtac Program, where speech-to-speech translation systems
were developed on the phone [3, 4, 5]. In the Transtac sys-
tems, Gaussian mixture models (GMMs) were used to as acous-
tic models. While the task was a small domain, with limited
training data, the memory usage in the resulting systems was
moderately high.

In this paper, we focus on large vocabulary on-device dic-
tation. We show that deep neural networks (DNNs) can pro-
vide large accuracy improvements over GMM acoustic models,
with a significantly smaller footprint. We also demonstrate how
memory usage can be significantly reduced by performing on-
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the-fly rescoring with a compressed language model during de-
coding.

The rest of this paper is organized as follows. In Section 2,
the embedded GMM acoustic model is described. Section 3
presents the training of embedded DNNSs, and the techniques we
employed to speed up DNN inference at runtime. Section 4 de-
scribes the compressed language models for on-the-fly rescor-
ing. Section 5 shows the experimental results of recognition
accuracy and speed on Nexus 4 platform. Finally, Section 6
concludes the paper and discusses future work.

2. GMM Acoustic Model

Our embedded GMM acoustic model is trained on 4.2M utter-
ances, or more than 3,000 hours of speech data containing ran-
domly sampled anonymized voice search queries and other dic-
tation requests on mobile devices. The acoustic features are
9 contiguous frames of 13-dimensional PLP features spliced
and projected to 40 dimensions by linear discriminant analysis
(LDA). Semi-tied covariances [6] are used to further diagonal-
ize the LDA transformed features. Boosted-MMI [7] was used
to train the model discriminatively.

The GMM acoustic model contains 1.3k clustered acoustic
states, with a total of 100k Gaussians. To reduce model size
and speed up computation on embedded platforms, the floating-
point GMM model is converted to a fixed-point representation,
similar to that described in [8]. Each dimension of the Gaussian
mean vector is quantized into 8 bits, and 16-bit for precision
vector. The resulting fixed-point GMM model size is about 1/3
of the floating-point model, and there is no loss of accuracy due
to this conversion in our empirical testing.

3. DNNs for Embedded Recognition

We have previously described the use of deep neural networks
for probability estimation in our cloud-based mobile voice
recognition system [9]. We have adopted this system for devel-
oping DNN models for embedded recognition, and summarize
it here.

The model is a standard feed-forward neural network with
k hidden layers of n;, nodes, each computing a nonlinear func-
tion of the weighted sum of the outputs of the previous layer.
The input layer is the concatenation of n; consecutive frames
of 40-dimensional log filterbank energies calculated on 25ms
windows of speech every 10ms. The n, softmax outputs es-
timate the posterior of each acoustic state. We have experi-
mented with conventional logistic nonlinearities and rectified
linear units that have recently shown superior performance in
our large scale task [10], while also reducing computation.
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While our server-based model has SOM parameters (k = 4,
np = 2560, n; = 26 and n, = 7969), to reduce the memory
and computation requirement for the embedded model, we ex-
perimented with a variety of sizes and chose k = 6, nj, = 512,
n; = 16 and n, = 2000, or 2.7M parameters. The input win-
dow is asymmetric; each additional frame of future context adds
10ms of latency to the system so we limit ourselves to 5 future
frames, and choose around 10 frames of past context, trading
off accuracy and computation.

Our context dependency (CD) phone trees were initially
constructed using a GMM training system that gave 14,247
states. By pruning this system using likelihood gain thresh-
olds, we can choose an arbitrary number of CD states. We used
an earlier large scale model with the full state inventory that
achieved around 14% WER to align the training data, then map
the 14k states to the desired smaller inventory. Thus we use a
better model to label the training data to an accuracy that cannot
be achieved with the embedded scale model.

3.1. Training

Training uses conventional backpropagation of gradients from a
cross entropy error criterion. We use minibatches of 200 frames
with an exponentially decaying learning rate and a momentum
of 0.9. We train our neural networks on a dedicated GPU based
system. With all of the data available locally on this system, the
neural network trainer can choose minibatches and calculate the
backpropagation updates.

3.2. Decoding speedup

Mobile CPUs are designed primarily for lower power usage and
do not have as many or as powerful math units as CPUs used
in server or desktop applications. This makes DNN inference,
which is mathematically computationally expensive, a particu-
lar challenge. We exploit a number of techniques to speed up
the DNN score computation on these platforms.

As described in [11], we use a fixed-point representation
of DNNs. All activations and intermediate layer weights are
quantized into 8-bit signed char, and biases are encoded as
32-bit int. The input layer remains floating-point, to better ac-
commodate the larger dynamic ranges of input features. There
is no measured accuracy loss resulting from this conversion to
fixed-point format.

Single Instruction Multiple Data (SIMD) instructions are
used to speed up the DNN computation. With our choice of
smaller-sized fixed-point integer units, the SIMD acceleration is
significantly more efficient, exploiting up to 8 way parallelism
in each computation. We use a combination of inline assembly
to speed up the most expensive matrix multiplication functions,
and compiler intrinsics in the sigmoid and rectified linear cal-
culations.

Batched lazy computation [11] is also performed. To ex-
ploit the multiple cores present on modern smartphones, we
compute the activations up to the last layer in a dedicated thread.
The output posteriors of the last layer are computed only when
needed by the decoder in a separate thread. Each thread com-
putes results for a batch of frames at a time. The choice of batch
size is a tradeoff between computation efficiency and recogni-
tion latency.

Finally, frame skipping [12] is adopted to further reduce
computation. Activations and posteriors are computed only ev-
ery ny frames and used for n;, consecutive frames. In experi-
ments we find that for n, = 2, the accuracy loss is negligible;
however for n, > 3, the accuracy degrades quickly.
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4. Language Model Compression

We create n-gram language models appropriate for embed-
ded recognition by first training a 1M word vocabulary and
18M n-gram Katz-smoothed 4-gram language model using
Google’s large-scale LM training infrastructure [13]. The lan-
guage model is trained using a very large corpus (on the order
of 20 billion words) from a variety of sources, including search
queries, web documents and transcribed speech logs.

To reduce memory usage, we use two language models dur-
ing decoding. First, a highly-pruned LM is used to build a small
CLG transducer [14] that is traversed by the decoder. Second,
we use a larger LM to perform on-the-fly lattice rescoring dur-
ing search, similar to [15]. We have observed that a CLG trans-
ducer is generally two to three times larger than a standalone
LM, so this rescoring technique significantly reduces the mem-
ory footprint.

Both language models used in decoding are obtained by
shrinking the 1M vocabulary and 18M n-gram LM. We aggres-
sively reduce the vocabulary to the S0K highest unigram terms.
We then apply relative entropy pruning [16] as implemented
in the OpenGrm toolkit [17]. The resulting finite state model
for rescoring LM has 1.4M n-grams, with just 280K states and
1.7M arcs. The LM for first pass decoding contains only uni-
grams and about 200 bigrams.

We further reduce the memory footprint of the rescoring
LM by storing it in an extremely memory-efficient manner, dis-
cussed below.

4.1. Succinct storage using LOUDS

If you consider a backoff language model’s structure, the fail-
ure arcs from (n 4 1)-gram contexts to n-gram contexts and,
ultimately, to the unigram state form a tree. Trees can be stored
using 2 bits per node using a level-order unary degree sequence
(LOUDS), where we visit the nodes breadth-first writing 1s for
the number of (n + 1)-gram contexts and then terminating with
a 0 bit. We build a bit sequence similarly for the degree of out-
bound non-¢ arcs.

The LOUDS data structure provides first-child, last-child,
and parent navigation, so we are able to store a language model
without storing any next-state values. As a contiguous, index-
free data object, the language model can be easily memory
mapped.

The implementation of this model is part of the OpenFst
library [18] and covered in detail in [19]. The precise storage
requirements, measured in bits, are

dns +ng + (W + L)(ns + na) + Wny +c

where n is the number of states, n ¢ the number of final states,
ne 1s the number of arcs, L is the number of bits per word-
id, and W is the number of bits per probability value. This
is approximately one third the storage required by OpenFst’s
vector representation. For the models discussed here, we use 16
bits for both labels and weights.

During run time, to support fast navigation in the language
model, we build additional indexes of the LOUDS bit sequences
to support the operations rank,(z) the number of b valued bits
before index 4, and its inverse select,(r). We maintain a two
level index that adds an additional 0.251(4ns + nq) bits. Here
it is important to make use of fast assembly operations such as
find first set during decoding, which we do through compiler
intrinsics.



4.2. Symbol table compression

The word symbol table for an LM is used to map words to
unique identifiers. Symbol tabels are another example of a
data structure that can be represented as a tree. In this case
we relied upon the implementation contained in the MARISA
library [20].

This produces a symbol table that fits in just one third the
space of the concatenated strings of the vocabulary, yet pro-
vides a bidirectional mapping between integers and vocabulary
strings. We are able to store our vocabulary in about 126K
bytes, less than 3 bytes per entry in a memory mappable im-
age.

The MARISA library assigns the string to integer ids during
compression, so we relabel all of the other components in our
system to match this assignment.

S. Experimental Results

To evaluate accuracy performance, we use a test set of 20,000
anonymized transcribed utterances from users speaking in order
to fill in text fields on mobile devices. This biases the test set
towards dictation, as opposed to voice search queries, because
dictation is more useful than search when no network connec-
tion is available.

To measure speed performance, we decode a subset of 100
utterances on an Android Nexus 4 (LG) phone. The Nexus 4 is
equipped with a 1.5GHz quad-core Qualcomm Snapdragon S4
pro CPU, and 2GB of RAM. It runs the Android 4.2 operating
system. To reduce start up loading time, all data files, includ-
ing the acoustic model, the CLG transducer, the rescoring LM
and the symbol tables are memory mapped on the device. We
use a background thread to “prefetch” the memory mapped re-
sources when decoding starts, which mitigates the slowdown in
decoding for the first several utterances.

5.1. GMM acoustic model

The GMM configuration achieves a word error rate (WER) of
20.7% on this task, with an average real-time (RT) factor of
0.63. To achieve this speed, the system uses integer arithmetic
for likelihood calculation and decoding. The Mahalanobis dis-
tance computation is accelerated using fixed-point SIMD in-
structions. Gaussian selection is used to reduce the burden
of likelihood computation, and further efficiencies come from
computing likelihoods for batches of frames.

5.2. Accuracy with DNNs

We compare the accuracy of DNNs with different configura-
tions to the baseline GMM acoustic model in Table 1. A DNN
with 1.48M parameters already outperforms the GMM in accu-
racy, with a disk size of only 17% of the GMM’s. By increasing
the number of hidden layers from 4 to 6 and number of outputs
from 1000 to 2000, we obtain a large improvement of 27.5%
relative in WER compared to the GMM baseline. The disk size
of this DNN is 26% of the size of the GMMs.

For comparison, we also evaluate a server-sized DNN with
an order of magnitude of more parameters, and it gives 12.3%
WER. Note that all experiments in Table 1 use smaller LMs in
decoding. In addition, with an un-pruned server LM, the server
DNN achieves 9.9% WER while the server GMM achieves
13.5%. Therefore, compared to a full-size DNN server system,
there is a 2.4% absolute loss due to smaller LMs, and 2.8% due
to smaller DNN. Compared to the full-size GMM server sys-
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tem, the embedded DNN system is about 10% relatively worse
in WER.

The impact of frame skipping is evaluated with the
DNN_6x512 model. As shown in Table 2, the accuracy per-
formance quickly degrades when ny, is larger than 2.

Table 2: Accuracy results with frame skipping in a DNN system.

ny 1 2 3 4 5
WER (%) || 15.1 | 152 | 15.6 | 16.0 | 16.7

5.3. Speed benchmark

For speed benchmark, we measure average RT factor as well
as 90-percentile RT factor. As shown in Table 3, the baseline
GMM system with SIMD optimization gives an average RT
factor of 0.63. The fixed-point DNN gives 1.32xRT without
SIMD optimization, and 0.75xRT with SIMD. Batched lazy
computation improves average RT by 0.06 but degrades the 90-
percentile RT performance, probably due to less efficient on-
demand computation for difficult utterances. After frame skip-
ping with n, = 2, the speed of DNN system is further im-
proved slightly to 0.66 xRT. Finally, the overhead of the com-
pact LOUDS based LM is about 0.13 xRT on average.

Table 3: Averge real-time (RT) and 90-percentile RT factors of
different system settings.

| | Average RT [ RT(90) |

GMM 0.63 0.90
DNN (fixed-point) 1.32 1.43
+ SIMD 0.75 0.87
+ lazy batch 0.69 1.01
+ frame skipping 0.66 0.97
+ LOUDS 0.79 1.24

5.4. System Footprint

Compared to the baseline GMM system, the new system with
LM compression and DNN acoustic model achieves a much
smaller footprint. The data files sizes are listed in Table 4. Note
that conversion of the 34MB floating-point GMM model to a
14MB fixed-point GMM model itself provides a large reduction
in size.

The use of DNN reduces the size by 10MB, and the LM
compression contributed to another 18MB reduction. Our final
embedded DNN system size is reduced from 46MB to 17MB,
while achieving a big WER reduction from 20.7% to 15.2%.

6. Conclusions

In this paper, we have described a fast, accurate and small-
footprint speech recognition system for large vocabulary dic-
tation on the device. DNNs are used as acoustic model, which
provides a 27.5% relative WER improvement over the baseline
GMM models. The use of DNNs also significantly reduces the
memory usage. Various techniques are adopted to speed up the
DNN inference at decoding time. In addition, a LOUDS based
language model compression reduces the rescoring LM size by
more than 60% relative. Overall, the size of the data files of the
system is reduced from 46MB to 17MB.



Table 1: Comparison of GMM and DNNs with different sizes. The input layer is denoted by number of filterbank energies X the context
window size (left + current + right). The hidden layers are denoted by number of hidden layers x number of nodes per layer. The

number of outputs is the number of HMM states in the model.

[ Model [ WER (%) | Input Layer [ Hidden Layers | # Outputs [ # Parameters [ Size |
GMM 20.7 - - 1314 8.08M 14MB
DNN_4x400 22.6 40x (8+1+4) 4x400 512 0.9M 1.5MB
DNN_4x480 20.3 40x (10+1+5) 4x480 1000 1.5M | 2.4MB
DNN_6x512 15.1 40x (10+1+5) 6x512 2000 2M | 3.7MB
l Server DNN [ 12.3 [ 40%x(20+1+5) [ 4%2560 [ 7969 [ 49.3M [ 50.8MB ‘
Table 4: Comparison of data file sizes (in MB) in baseline GMM (7] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon,
system and DNN system with and without LOUDS LM compres- ZTiEmY;ZZSEV;Z?;}; B ?f;tig }\/Ilhéli‘g(;;m;ggéand feature-space
sion. AM denotes acoustic model, CLG is the transducer for de- ) o & o “ ] ’ B
coding, LM denotes the rescoring LM, and symbols denote the (8] E. Bocchieri, “Fixed-point arithmetic,” Automatic Speech Recog-
word svmbol table nition on Mobile Devices and over Communication Networks, pp.
4 : 255-275, 2008.

l System [ AM [ CLG [ LM [ Symbols [ Total ‘ [9] N. Jaitly, P. Nguyen, A. W. Senior, and V. Vanhoucke, “Applica-
GMM 14 27 20 0.55 46 tion of pretrained deep neural networks to large vocabulary speech
+LOUDS 14 27 10.7 0.13 27 recognition,” in Proc. Interspeech, 2012.

[10] M. D. Zeiler et al., “On rectified linear units for speech process-
DNN 3.7 2.8 29 0.55 36 ing,” in Proc. ICASSP, 2013.
+LOUDS | 3.7 2.8 10.7 0.13 17
[11] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed
of neural networks on CPUs,” in Proc. Deep Learning and Unsu-
Future work includes speeding up rescoring using the pervised Feature Learning NIPS Workshop, 2011.
LOUDS LM as well as further compression techniques. We [12] V. Vanhoucke, M. Devin, and G. Heigold, “Multiframe deep neu-
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