
Automated Decomposition of Build Targets

Mohsen Vakilian, Raluca Sauciuc, J. David Morgenthaler, Vahab Mirrokni

Google, USA

{vakilian, ralucas, jdm, mirrokni}@google.com

Abstract—A (build) target specifies the information that is
needed to automatically build a software artifact. This paper
focuses on underutilized targets—an important dependency prob-
lem that we identified at Google. An underutilized target is one
with files not needed by some of its dependents. Underutilized
targets result in less modular code, overly large artifacts, slow
builds, and unnecessary build and test triggers. To mitigate these
problems, programmers decompose underutilized targets into
smaller targets. However, manually decomposing a target is
tedious and error-prone. Although we prove that finding the best
target decomposition is NP-hard, we introduce a greedy algorithm
that proposes a decomposition through iterative unification of the
strongly connected components of the target. Our tool found
that 19,994 of 40,000 Java library targets at Google can be
decomposed to at least two targets. The results show that our
tool is (1) efficient because it analyzes a target in two minutes
on average and (2) effective because for each of 1,010 targets, it
would save at least 50% of the total execution time of the tests
triggered by the target.

I. INTRODUCTION

Software evolves rapidly [19], [25], [37]. To make the

rapid evolution of software more economical and reliable, the

industry has adopted Continuous Integration (CI) [11]. For

each code change, a CI system first invokes the build system

to build the code affected by the change. Then, it runs all the

tests that transitively depend on the affected code [15], [19],

[25], [37]. Google, other companies [4], [18], [22], [31], [32],

and open-source projects have adopted this practice [44], [45],

[49].

The faster the software evolves, the heavier the load on the

CI system is. On average, the Google code repository receives

over 5,500 code changes per day, which make the CI system

run over 100 million test cases per day [5]. These numbers

grow as Google grows. Dedicating more compute resources

to the CI system is not sufficient to keep up with this growth

rate. Thus, advanced technologies are needed to ensure that

build and test results are delivered to programmers correctly

and in a timely manner [5], [8], [15], [19], [25], [27], [37],

[52].

The Google build system, like other build systems [40]–[43],

[48], takes as input a set of build files that declare build targets.

We refer to a build target as a target in the rest of this paper.

Targets specify what is needed to produce an artifact such as a

library or binary. A target also specifies its unique name, kind,

source files, and dependencies on other targets (Figure 1). The

build system decides how to build a given target based on the

target’s specification.

Build specifications capture an important architectural as-

pect of software, namely, the dependency structure between

pieces of code. For example, at Google, several systems other

than the build system, e.g., Integrated Development Environ-

ments (IDEs) and CI [11] systems rely on build specifications.

IDEs rely on the build specifications to determine the code

that needs to be indexed. Similarly, a CI system uses the build

specifications to compute the set of tests affected by a code

change. Despite the sophisticated caching and parallelism of

Google’s build system [5], [8], [15], [19], [52], slow builds,

CI, and IDEs are still major issues.

Like code in languages such as C and Java, build specifi-

cations require significant, continuous maintenance. Research

suggests that build maintenance accounts for 27% and 44%

of code and test development, respectively [24]. Our prior

work [27] showed that build specifications are prone to code

smells such as unneeded and missing direct dependencies.

This paper focuses on a specific code smell, which we call

underutilized targets. An underutilized target has source files

that some of its dependents do not need. Underutilized targets

reduce modularity, make the builds and IDEs slower, increase

the size of executables, and increase the load on the CI system

by triggering unnecessary builds and tests.

A refactoring is a code change that preserves the behavior

of the program [12], [28]. Target decomposition, or simply

decomposition, is our term for a refactoring that mitigates

the problems of underutilized targets. It first decomposes an

underutilized target into smaller targets, which we refer to as

constituent targets or simply constituents, and then updates

the dependents of the original target to depend on only the

needed constituents.

Identifying and refactoring underutilized targets is tedious

and error-prone to do manually for several reasons. First,

a large code base has many targets (over 40,000 targets at

Google). This makes it nontrivial, if not impossible, to find

the targets whose decompositions would yield the largest

gains. Second, there are often many possible decompositions

for a target. Choosing an effective decomposition from this

large space is a daunting task. Third, manually decomposing

a target is error-prone because a valid decomposition must

obey the dependencies between the source files of the target.

Finally, decomposing a target without updating its dependents

will yield limited benefits. Once a target is decomposed into

smaller, constituent targets, its dependents have to change so

that they depend on the constituent targets. This refactoring

is tedious and error-prone because a target can have many

dependents owned by different development teams.

We propose two tools, DECOMPOSER and REFINER, for

identifying and refactoring underutilized targets. DECOM-

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.34

123

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.34

123

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.34

123

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.34

123

mailto:vakilian@google.com
mailto:ralucas@google.com
mailto:jdm@google.com
mailto:mirrokni@google.com

POSER identifies underutilized targets and suggests how to

decompose them to constituent targets. REFINER is a refac-

toring tool that updates the dependents of the underutilized

targets to depend on only the needed constituent targets.

DECOMPOSER estimates the impact of a decomposition on

the number of triggers, i.e., the number of binary and test

targets that the CI system builds and runs, respectively. In

addition, it suggests a decomposition using a greedy algorithm

that accounts for both the file-level dependencies between the

source files of a target and the target-level ones between the

target and its dependents. The algorithm first computes the

strongly connected components (SCCs) of the graph formed

by the file-level dependencies of the target. Then, it iteratively

unifies two components at a time until only two components

are left. Finally, the algorithm promotes each component to a

target.

Although we implemented DECOMPOSER and REFINER at

Google, the underlying techniques are generalizable to other

environments. These tools can be adapted to any environment

that can provide its file-level and target-level dependencies.

Our tools are sound assuming that the provided file-level and

target-level dependencies are sound.

The results of our large-scale empirical study show that

DECOMPOSER is both efficient and effective (Section X). We

ran DECOMPOSER on a large, random sample of targets that

consisted of 40,000 Java library targets at Google1. DECOM-

POSER analyzes a target within minutes (mean = 2, sd =

5). Out of the 40,000 targets, DECOMPOSER found 19,994

decomposable targets. A decomposable target is one that has at

least one valid decomposition (Section IV). DECOMPOSER is

also effective at saving unnecessary triggers. It estimated that

its proposed decompositions would significantly reduce the

test execution time (minutes) per change to each target (mean

= 98, sd = 1,250). On average, a decomposition proposed by

DECOMPOSER reduces the total execution time of the tests

triggered by the target by 12%. For each of 1,010 targets, the

decompositions proposed by DECOMPOSER would save more

than 50% of the execution time of the tests triggered by the

target. DECOMPOSER has been deployed at Google and used

by about a dozen programmers so far. This work makes several

research contributions:

• We quantify the benefit of a decomposition in terms of

the number of triggers that it saves (Section IV).

• We formalize the decomposition problem as a graph

problem and prove that finding the best decomposition

is NP-hard (Section V).

• We present the algorithm (Section VI) and implementa-

tion (Section IX) of DECOMPOSER—a tool for decom-

posing targets.

• We present REFINER—a tool that refactors build spec-

ifications to take advantage of a decomposition (Sec-

tion VII).

1For confidentiality reasons, we do not report exact statistics about the
dimensions of the Google code base.

• We evaluate DECOMPOSER through a large-scale empir-

ical study in an industrial environment (Section X).

II. BUILD SYSTEM

A build system is responsible for transforming source code

into libraries, executable binaries, and other artifacts. The build

system takes as input a set of targets that programmers declare

in build files. Figure 1 shows sample build specifications.

When a programmer issues a command to build a target,

the build system first ensures that the required dependencies

of the target are built. Then, it builds the desired target from

its sources and dependencies. The final artifact depends on

the kind of the target. For example, for Java targets, the build

system produces JAR files.

A. Build Targets

Programmers have to specify four attributes in the specifica-

tion of a target τ : name, kind, source files, and dependencies.

The BUILD files shown in Figure 1 specify three targets

with names server_binary, server, and network. S(τ)
denotes the set of source files of the target named τ . The

targets shown in Figure 1 set their source files to be the set of

Java files in the directory that encloses the BUILD file. K(τ)
denotes the kind of target τ , which can be binary, library,

or test. In Figure 1, K(server_binary) = binary and

K(network) = K(server) = library. For both library

and binary targets, the build system generates JAR files. The

difference is that the JAR file for a binary target has an entry

main method and contains all the transitive dependencies of

the target. d(τ) is the set of targets that need to be built before

building τ . In Figure 1, d(server_binary) = {network,

server}.

B. Dependency Graphs

Programmers have to consider both target-level and file-

level dependencies when specifying targets. The graph in

Figure 2 illustrates both kinds of dependencies.

Build Graph (Target-level Dependencies). Targets specify a

build graph B = (T,E), where T is the set of all targets. For

each τ1, τ2 ∈ T , there is an edge (τ1, τ2) ∈ E if and only if

τ2 ∈ d(τ1).
Figure 2 shows a build graph with three library (network,

server, client), one binary (server_binary), and one test

(client_tests) targets.

The build system expects to be able to build each target

after building the dependencies of the target. Thus, the build

graph must be a directed acyclic graph (DAG).

The notation u G v denotes that there is a path from

vertex u to v in graph G, and u 6 G v denotes the lack thereof.

For build graph B, we say that target τ1 ∈ T transitively

depends on target τ2 ∈ T if and only if τ1 B τ2.

Cross References Graph (File-level Dependencies). The

shape of the build graph B = (T,E) is influenced by the file-

level dependencies. If a source file of τ1 references a symbol

(e.g., class or method) defined in a source file of τ2, then the

build specifications must satisfy τ2 ∈ d(τ1). More formally, let

124124124124

1 java_binary(

2 name = "server_binary",

3 srcs = glob(["*.java"]),

4 deps = [

5 "network",

6 "server",

7]

8)

(a) Contents of file
server_binary/BUILD

1 java_library(

2 name = "server",

3 srcs = glob(["*.java"]),

4 deps = [

5 "network",

6]

7)

(b) Contents of file server/BUILD

1 java_library(

2 name = "network",

3 srcs = glob(["*.java"]),

4 deps = []

5)

(c) Contents of file network/BUILD

Fig. 1: Three BUILD files that declare targets server_binary, server, and network shown in Figure 2. Attribute name specifies the
name of the target. The srcs attribute specifies the source files of the target. The expression glob(["*.java"]) resolves to all Java
files in the enclosing directory of the BUILD file. The deps attribute lists the targets that need to be built to compile the source files of the
target.

Fig. 2: A contrived graph that illustrates both target-level and file-level dependencies for an underutilized target named network and denoted
as l1 for brevity. Ci represents a strongly connected component (Section VI-A) of the cross references graph of l1.

f1 → f2 denote that file f1 references a symbol defined in file

f2. Similarly, let τ1 → τ2 denote that a file of τ1 references

a symbol defined in a file of τ2. To simplify the discussion

in the rest of the paper, we assume that τ1 → τ2 if and only

if (τ1, τ2) ∈ E(B). τ1 6→ τ2 indicates that τ1 → τ2 does not

hold.

Definition 1: The cross references between the source files

of a target τ can be represented as a graph G(τ), called the

cross references graph of τ . The vertices of G(τ) are members

of S(τ) and there is an edge (f1, f2) ∈ E(G(τ)) if and only

if f1 → f2.

The graph G(l1) is a subgraph of the graph shown in

Figure 2. In this example, G(l1) consists of ten vertices

corresponding to the files of l1 and the dependency edges

between these files.

C. Continuous Integration

The Google Continuous Integration (CI) system monitors

every code change. The CI system computes the set of targets

that may be affected by a code change. If a change affects

the build graph, the CI system will update the build graph

accordingly. In Figure 2, if any of the source files of network

(i.e., {f1, f2, · · · , f10}) change, the CI system will invoke

the build system to build the targets that transitively de-

pend on network, i.e., {server_binary, server, client,

client_tests} and run the tests included in the test targets

that transitively depend on network, i.e., client_tests.

III. UNDERUTILIZED TARGETS

Like ordinary source files in Java, C, and Python, build

files accumulate code smells over time. A code smell specific

to build files that we identified is underutilized target. If a

target has some dependent targets that need only a subset of its

source files, we consider the target underutilized. Underutilized

targets lead to less modular software, larger binaries, slower

builds, and unnecessary builds and tests triggered by the CI

system.

Consider the example in Figure 2. Target network has

two sets of files S1 = {f1, f2, . . ., f7} and S2 = {f8, f9,

f10}. Suppose that S1 is a set of implementation classes

and S2 is a set of interfaces and abstract classes. Files of

S1 depend on the files of S2 but not vice versa. Target

network is underutilized by one test target (client_tests).

As a result, if a change affects only the files in S1, the

CI system will unnecessarily trigger the build and execution

of one test target (client_tests). In addition, the binary

created for client_tests will be unnecessarily large be-

cause it will include the files in S1. As a result, an IDE will

have to index unnecessary files in the transitive dependencies

of client_tests. Underutilized targets are not specific to

Google. Any build system (e.g. Make [42], Rake [48], and

Gradle [43]) that allows target specifications can suffer from

underutilized targets.

Dependency Granularity. The finest levels of dependencies

that existing build systems (e.g., Make [42]) track are target-

125125125125

level dependencies. For instance, consider a Makefile that

builds a JAR file r1.jar from source file j1.java and

another JAR file r2.jar and builds r2.jar from source

files j2.java and j3.java. Make tracks the dependency of

r1.jar on r2.jar but not on the files of r2.jar. As a result,

if r2.jar changes due to a change to j3.java, Make will

rebuild r1.jar, even if r1.jar does not depend on j3.java.

In theory, a CI system can save triggers by tracking depen-

dencies at the file-level instead of target-level. However, the

existing CI systems use target-level dependencies to compute

the build and test triggers for three main reasons. First, main-

taining the latest file-level dependencies is more expensive

than that of target-level dependencies, because the number and

change frequency of file-level dependencies is larger. Google

has an internal, language-independent service to query file-

level dependencies. However, the performance and accuracy of

this service do not meet the demands of a CI system. Second,

sound inference of all runtime dependencies and dependencies

on data files and generated code is undecidable in general.

The Google CI system avoids this problem by allowing the

programmers document such dependencies of targets in build

specifications. Finally, saving triggers is not the only goal of

target decompositions. Even if fast and accurate tracking of

file-level dependencies were possible, decomposition would

have still been useful because it improves modularity.

IV. TARGET DECOMPOSITION

A refactoring to remove underutilized targets is to de-

compose them into smaller targets. We call the refactor-

ing target decomposition or decomposition and the smaller

targets constituent targets or simply constituents. For the

example in Section III, this refactoring would decompose

the underutilized target network into two constituent targets

network_a and network_b such that S(network_a) = S1,

S(network_b) = S2 and network_a depends on network_b

(i.e., d(network_a) = {network_b}).

Decomposition Granularity. Intuitively, the best decompo-

sition of a target is one that removes the largest number

of unneeded dependencies from binaries and tests on the

files of the target. Finer-grained decompositions can remove

a larger number of unneeded dependencies. For example,

decomposing a target into three constituent targets can remove

more unneeded dependencies than decomposing the target into

two constituent targets.

While avoiding unnecessary triggers is important, there

are also other factors that influence modularity decisions.

Programmers may prefer coarse-grained modules because such

modules may be easier to name, may make it easier to find

code, and may better match the structure of the organization.

Thus, by default, DECOMPOSER proposes a decomposition

of a given target into exactly two constituents. Nonetheless,

DECOMPOSER can be configured to propose decompositions

to more constituents.

Validity. Let τ/〈τ1, τ2〉 denote a decomposition of target τ into

two constituent targets τ1 and τ2. The decomposition partitions

the files of target τ between τ1 and τ2. It also adds two new

targets τ1 and τ2, makes τ a target without source files, and

makes τ depend on both τ1 and τ2.

An arbitrary partitioning of the files of a target τ into two

targets may not produce a valid decomposition. A decompo-

sition τ/〈τ1, τ2〉 is valid if and only if τ2 6→ τ1. Otherwise,

if τ1 → τ2 and τ2 → τ1, applying the decomposition will

introduce a cyclic dependency between τ1 and τ2, which

breaks the modularity of the system and is disallowed by the

build system.

To simplify the exposition, we consider the decomposition

τ/〈τ1, τ2〉 where τ1 6→ τ2 and τ2 → τ1 invalid, despite the

fact that this decomposition keeps the build graph acyclic. We

do not lose any generality by considering such a decompo-

sition invalid, because reordering τ1 and τ2 produces a valid

decomposition τ/〈τ2, τ1〉.
The decomposition network/〈network_a, network_b〉

described above is valid because network_b 6→ network_a.

Trigger Saving. We measure the benefit of a decomposition

by the number of binary and test triggers that it saves. Let

∆(τ/〈τ1, τ2〉) denote the quantitative benefit of τ/〈τ1, τ2〉. We

refer to ∆(τ/〈τ1, τ2〉) as the trigger saving of τ/〈τ1, τ2〉.
Note that a decomposition τ/〈τ1, τ2〉 alone does not remove

any unneeded dependencies unless the dependents of τ are

changed to depend on τ1 or τ2. Thus, when quantifying the

benefit of a decomposition, we assume that the dependents of

τ will be changed to depend on τ1 and/or τ2 wherever possible.

Definition 2: D(τ) denotes the set of binary and test targets

that transitively depend on target τ .

After applying the decomposition network/〈network_a,-
network_b〉, we will have |D(network_a)| = 1,

|D(network_b)| = 2, |D(network_a) − D(network_b)|
= 0, and |D(network_b) − D(network_a)| = 1. Note

that because network_a → network_b, we have

D(network_a) ⊆ D(network_b). If a code change affects

only the files in S(network_a), the decomposition will save

|D(network_b) − D(network_a)| triggers. Similarly, if a

code change affects only the files in S(network_b), the

decomposition will save |D(network_a) − D(network_b)|
triggers.

Let p1 be the probability that a change affects only a file in

S(τ1). Similarly, let p2 be the probability that a change affects

only a file in S(τ2). We approximate p1 by |S(τ1)|/(|S(τ1)|+
|S(τ2)|) and p2 by |S(τ2)|/(|S(τ1)|+ |S(τ2)|). These formula

are approximations and not exact values of p1 and p2 because

an accurate computation has to account for any change to the

transitive dependencies of τ1 and τ2. We approximate p1 and

p2 because their accurate computations are expensive.

Definition 3: ∆(τ/〈τ1, τ2〉), the trigger saving of decompo-

sition τ/〈τ1, τ2〉, is:

p1|D(τ2)−D(τ1)|+ p2|D(τ1)−D(τ2)|,

where

p1 =
|S(τ1)|

|S(τ1)|+ |S(τ2)|
, p2 =

|S(τ2)|

|S(τ1)|+ |S(τ2)|
.

126126126126

S(τ1) S(τ2)

bbb

D(τ1) D(τ2)

τ

Legend

a set of

a set of files

a target

a dependency

after decomposition
that will remain

a dependency

after decomposition
that will be removed

dependents

Fig. 3: Decomposition τ/〈τ1, τ2〉 removes unneeded dependen-
cies (dashed arrows) that cause unnecessary build or test triggers.
∆(τ/〈τ1, τ2〉) is the average number of triggers that the decomposi-
tion would save every time a change affects the files in only S(τ1)
or only S(τ2).

Intuitively, ∆(τ/〈τ1, τ2〉) is the expected number of binary

and test targets that won’t be triggered after applying the

decomposition and updating the dependents of τ . The greater

∆(τ/〈τ1, τ2〉) is, the more triggers will be saved by the decom-

position. Figure 3 illustrates what ∆(τ/〈τ1, τ2〉) measures.

For the decomposition network/〈network_a,-
network_b〉, we have p1 = 7

10
and p2 = 3

10
. Thus,

∆(network/〈network_a, network_b〉) = 7

10
·1+ 3

10
·0 = 0.7.

This implies that decomposing target network can save on

average 0.7 triggers every time a change affects only

S(network_a) or only S(network_b). Although the saving

is small in this contrived example, decomposing targets yields

significant benefits in practice (Section X).

V. HARDNESS OF DECOMPOSITION

Theorem 1: Given a target τ , finding the decomposition

τ/〈τ1, τ2〉 that maximizes ∆(τ/〈τ1, τ2〉) is an NP-hard prob-

lem.

Proof: We prove NP-hardness by showing a reduction

from the maximum clique problem in graph theory. The proof

is included in an accompanying technical report [39].

VI. DECOMPOSITION ALGORITHM

Since finding the best decomposition is an NP-hard problem,

we propose an efficient greedy algorithm that finds effective

decompositions in practice. Our algorithm suggests a decom-

position in the following steps:

1) Compute the strongly connected components (SCCs) of

the cross references graph of the given target.

2) Find the binary and test targets that transitively depend

on each SCC.

3) Partition the SCCs of the target into two sets with a goal

of maximizing the trigger saving (Definition 3).

4) Update the build specifications to apply the decomposi-

tion.

The rest of this section describes the above steps.

A. Strongly Connected Components (SCCs)

A directed graph G is strongly connected if and only if

for each pair of vertices v1, v2 ∈ V (G), v1 G v2 and

v2 G v1. A strongly connected component of a graph G is

a maximal subgraph of G that is strongly connected. We refer

to a strongly connected component as an SCC. A component

is a subgraph that is either an SCC or the union of two

components.

S(τ, C) denotes the set of files of target τ in component

C. For example, target network in Figure 2 consists of four

SCCs. We have S(τ, C1) = {f1, f2, f3, f4}.

The SCCs of G(τ) form the smallest units of decomposing

target τ . That is, any valid decomposition must assign all files

of an SCC to the same constituent target. Otherwise, there will

be a cyclic dependency between the constituent targets. Thus,

the decomposition problem reduces to decomposing the set of

SCCs instead of the set of files.

Condensation Graph. If each SCC of G is contracted to a

single vertex, the resulting graph is the condensation graph of

G denoted as C(G). In Figure 2, C(G(l1)) has four vertices

C1, C2, C3, and C4 and three edges. As a starting point,

our algorithm computes C(G(τ)) using a standard DFS-based

algorithm [10] that runs in O(N) time and space, where

N = |V (G(τ))|.
If there is no limit on the number of constituent targets

and C(G(τ)) has n vertices corresponding to SCCs (C1, C2,

· · · , Cn), then the best decomposition of τ will be τ/〈τ1, τ2,-
· · · , τn〉, where S(τi) = S(τ, Ci) for each i ∈ {1, . . . , n}.

However, due to the potential drawbacks of such a fine-

grained decomposition (Section IV), our algorithm proposes

a decomposition to only two constituent targets by default.

B. Dependents

A decomposition τ/〈τ1, τ2〉 is ideal if it maximizes

∆(τ/〈τ1, τ2〉) (Definition 3). ∆(τ/〈τ1, τ2〉) depends on D(τ1)
and D(τ2) (Definition 2), i.e., the set of binary and test targets

that transitively depend on τ1 and τ2, respectively. To find

constituent targets τ1 and τ2, our algorithm first computes

D(τ, C) for each SCC c. D(τ, C) is the set of binary and

test targets that transitively depend on SCC C of G(τ). In

Figure 2, D(network, Ci) is a set of bj and tk targets that

can reach a file in Ci by following the dependency edges.

In Figure 2, we have D(network, C1) = D(network, C2) =

D(network, C3) = {server_binary} and D(network, C4)
= {server_binary, client_tests}. Finally, we compute

D(τ), the set of binary and test targets that transitively depend

on τ by taking the union of D(τ, C) for all SCC C of G(τ).

C. Unifying Components

We define unification as an operation that takes two com-

ponents C1 and C2 of G(τ) and creates a new component

C such that S(τ, C) = S(τ, C1) ∪ S(τ, C2) and contracts

the two vertices of C(G(τ)) corresponding to C1 and C2 to a

vertex corresponding to C. If C1 and C2 are unified to C, we

will have D(τ, C) = D(τ, C1) ∪ D(τ, C2).

127127127127

Fig. 4: Unifying the components of the cross references graph of tar-
get network in Figure 2. The graph on the left is C(G(network)).
First, C2 and C3 are unified to C23. Then, C1 and C4 are unified to
C14. The final condensation graph (on the right) is invalid because it
has a cycle. As a result, a decomposition corresponding to C14 and
C23 is invalid, too.

Figure 4 shows two subsequent unifications applied on

the condensation graph of target l1 in Figure 2. The first

unification contracts vertices C2 and C3 to a new vertex C23,

where S(l1, C23) = S(l1, C2) ∪ S(l1, C3) = {f5, f6, f7, f8,

f9}.

1) Iterative Unification: After computing the SCCs of the

cross references graph of a target, the algorithm iteratively

unifies two components at each step until only two are left.

The two remaining components form the two new constituent

targets. Unification does not increase the trigger saving. Fol-

lowing a greedy scheme, at each step, the algorithm unifies

two components whose unification incurs the least cost. Let

δ(τ, C1, C2) be the cost of unifying components C1 and C2

of G(τ). Intuitively, δ(τ, C1, C2) is the average number of

triggers per change that would be saved if C1 and C2 are not

unified. Similar to Definition 3, we define δ(τ, C1, C2) as

p1|D(τ, C2)−D(τ, C1)|+ p2|D(τ, C1)−D(τ, C2)|,

where

p1 =
|S(τ, C1)|

|S(τ, C1)|+ |S(τ, C2)|
, p2 =

|S(τ, C2)|

|S(τ, C1)|+ |S(τ, C2)|
.

At each step, the greedy algorithm unifies two components

C1 and C2 such that δ(τ, C1, C2) = mini,j δ(τ, Ci, Cj). For

target l1 in Figure 2, the algorithm first unifies C1 and C2

to C12, because it incurs the least cost (δ(l1, C1, C2) = 0).

Next, it unifies C3 and C4 to C34, because it has the smallest

unification cost (δ(l1, C3, C4) = 2

3
). Finally, it will turn C12

and C34 into constituent targets.

2) Avoiding Invalid Decompositions: The unification algo-

rithm as described above may produce invalid decompositions.

Consider the example condensation graph in Figure 4. Suppose

the greedy algorithm first unifies C2 and C3 into C23, and then

C1 and C4 into C14. These unifications produce an invalid

decomposition. This is because the targets corresponding to

C23 and C14 introduce a circular dependency to the build

graph.

Lemma 1: Contracting two vertices that are adjacent in a

topological ordering of a DAG results in another DAG.

Lemma 2: Contracting two root vertices (i.e., vertices with-

out incoming edges) or two leave vertices (i.e., vertices without

outgoing edges) of a DAG results in another DAG.

input : B, the build graph
input : τ , an underutilized target
input : τ1, τ2, constituent targets of τ (τ1 6∈ Deps(τ2))

1 foreach u ∈ V(B) where (u, τ) ∈ E(B) do
2 E(B) ← E(B) - (u, τ)
3 if not builds(u) then
4 E(B) ← E(B) ∪ (u, τ2)
5 if not builds(u) then
6 E(B) ← E(B) - (u, τ2) ∪ (u, τ1)
7 if not builds(u) then
8 E(B) ← E(B) - (u, τ1) ∪ (u, τ)

Fig. 5: Given an underutilized target τ , REFINER generates a patch for
each dependent of τ that does not need to depend on both constituents
of τ .

We use Lemmas 1 and 2 to guarantee that unifying com-

ponents always produces a valid decomposition. Rather than

considering the unifications of all pairs of components, we

make the algorithm consider the unifications of only those

pairs of components that are both roots, both leaves, or

adjacent in a topological ordering of the condensation graph.

D. Constituent Targets

Currently, rewriting the build specifications to introduce the

constituent targets is semi-automated. The iterative unification

of the components of τ terminates when only two components

are left. Next, the programmer has to set S(τ) to ∅ and specify

the constituent targets whose source files correspond to those

of the two components. The programmer has to set d(τ1)
to {τ2}, d(τ2) to d(τ), and d(τ) to {τ1, τ2}. Finally, the

programmer has to run a separate tool that removes unneeded

dependencies of targets and converts indirect dependencies to

direct ones.

VII. DEPENDENCY REFINEMENT

Decomposing an underutilized target alone brings several

benefits. First, it improves the modularity of the system.

Second, it reduces the build time when a code change does

not affect all the constituent targets. Third, new targets that

programmers will add in future can depend only on the needed

constituent targets instead of the whole underutilized target.

Such finer-grained dependencies reduce the overall build time

and size of binaries. Nonetheless, to unleash the full benefits

of a decomposition, the dependents of the target need to

change to depend on only the needed constituent targets. This

change is a refactoring because it just makes the build-time

dependencies finer-grained and does not affect the behavior of

any program. We call this refactoring dependency refinement.

If the underutilized target has many dependents, the depen-

dency refinement will become time-consuming to do manually.

Thus, we developed a tool called REFINER to automate this

refactoring. Given an underutilized target, REFINER automati-

cally and safely generates a patch that refines the dependencies

of the dependents of the underutilized target to only the needed

constituents.

Figure 5 lists the pseudocode of REFINER. REFINER ex-

amines every dependent u of the given underutilized target τ
(line 1). Let τ1 and τ2 be the constituents of τ such that τ2 does

128128128128

not depend on τ1. First, REFINER removes the dependency

of u on τ (line 2). If u continues to build successfully, this

suggests that the dependency on u was unneeded. Otherwise,

REFINER first tries a dependency on τ2 (line 4) and then τ1
(line 6). If u cannot be built successfully with a dependency

on either τ1 or τ2, it means that u needs both τ1 and τ2. In

this case, REFINER adds back the dependency on τ (line 8).

While DECOMPOSER proposes a change to a single build file,

REFINER often generates a patch that affects many build files.

Our prior work on enforcing direct dependencies [27]

prepares the foundation for applying REFINER. The direct

dependencies of a target define the symbols that the target

references directly. Enforcing direct dependencies requires

the programmers to explicitly specify these dependencies

even if they are already in the transitive dependencies of

the target. Enforcing the specification of direct dependencies

allows REFINER to focus on only the direct dependents of the

underutilized target.

Depending on the number of dependents of the underutilized

target, REFINER may take several hours to run. The bottleneck

is in building all the dependents affected by the decomposition.

We run all the tests that are affected by the patch that REFINER

generates. If REFINER does not cause new breakages, we

submit the patch to be reviewed by the programmers that own

the build specifications affected by the patch. Depending on

the number and availability of the owners, the review process

may take from several days to weeks.

VIII. SOUNDNESS

We say that the target-level and file-level dependency graphs

are sound if and only if all the dependencies that appear in

source and build files are included in these graphs.

Soundness of DECOMPOSER. We show that if the file-level

and target-level dependency graphs are sound, the greedy

decomposition algorithm will also be sound. That is, applying

the resulting decomposition does not cause the build graph to

become cyclic or miss a dependency that exists in the source

or build files.

The decomposition τ/〈τ1, τ2〉 does not affect the target-level

dependencies that do not involve τ , τ1, and τ2. So, we only

need to show that the decomposition updates the dependencies

involving τ , τ1, and τ2 in a sound way.

Lemma 1 implies that unifying only the neighboring compo-

nents of the cross references graph prevents the decomposition

from adding any cycles to the build graph.

The decomposition distributes the original dependencies of

τ between τ1 and τ2 and makes τ depend on τ1 and τ2. Those

targets that used to depend on τ do not miss any dependency

either, because the transitive dependencies of τ before and

after the decomposition are the same. Thus, the decomposition

does not miss any dependencies.

Soundness of REFINER. If the target-level dependencies are

sound, we show that REFINER is also sound. REFINER may

change only the dependencies of each dependent u of the

underutilized target τ . REFINER relies on the build system

to ensure that the changes to target-level dependencies do not

break the build of u. Because each target has to specify its

direct dependencies, dependents of u will continue to build

after the changes to u.

IX. IMPLEMENTATION

DECOMPOSER is a Java program that leverages several

internal Google services through Remote Procedure Calls. It

uses Google Protocol Buffers [47] to exchange data with these

services. DECOMPOSER gets the file-level dependencies of a

target from a service. It uses these dependencies to construct

the cross references graph (e.g., G(network) in Figure 2) and

compute the dependencies of other targets on the files of the

target under analysis (e.g., dependency edges (server, f2),
(server_binary, f9), and (client, f8) in Figure 2). For

target-level dependencies, DECOMPOSER uses an in-memory

graph [15] that the CI system maintains to compute the

targets affected by a change. DECOMPOSER queries a database

that contains the log data of the CI system to estimate the

trigger savings in terms of past test execution times. To make

the implementation more reusable and extensible to open

repositories (e.g., the Maven Central Repository [46]), we

employed the Facade design pattern [13, pp. 185–193] to

provide abstractions for the services that DECOMPOSER relies

on.

DECOMPOSER uses FlumeJava [9] for analyzing targets in

parallel. FlumeJava is a Java framework developed at Google

for MapReduce computations. When run in parallel mode,

DECOMPOSER distributes the input list of targets among

thousands of FlumeJava mappers that run independently of

each other in Google’s data centers.

REFINER is a Python program that relies on the build

system, the target-level dependencies, and a headless tool for

rewriting build specifications.

X. EMPIRICAL RESULTS

We evaluated DECOMPOSER to answer the following re-

search questions:

• RQ1: What percentage of targets can be decomposed?

• RQ2: How effective are the decompositions that DECOM-

POSER suggests?

• RQ3: How efficient is DECOMPOSER?

• RQ4: How receptive are programmers to the changes that

DECOMPOSER and REFINER propose?

A. RQ1: What percentage of targets can be decomposed?

We ran DECOMPOSER on a random sample of targets at

Google comprising of 40,000 Java library targets. DECOM-

POSER reported that 19,994 (50%) of the analyzed targets were

decomposable. A target is decomposable if and only if its cross

references graph has at least two SCCs. DECOMPOSER found

that decomposable targets have on average ten files, nine SCCs,

and 2,062 dependents (Table I).

129129129129

TABLE I: STATISTICS ABOUT DECOMPOSABLE TARGETS AS ESTIMATED

BY DECOMPOSER. “TRIGGER TIME” IS THE TOTAL EXECUTION TIME OF

THE TESTS THAT A CHANGE TO A TARGET TRIGGERS. “SAVED TRIGGERS”
IS COMPUTED ACCORDING TO DEFINITION 3. “SAVED TRIGGERS PCT.” IS

THE RATIO OF “SAVED TRIGGERS” OVER “DEPENDENTS”. “SAVED TRIG-
GER TIME” IS THE TOTAL TEST EXECUTION TIME OF THE SAVED TRIGGERS.
“SAVED TRIGGER TIME PCT.” IS THE RATIO OF “SAVED TRIGGER TIME”
OVER “TRIGGER TIME”. “DECOMPOSER EXEC. TIME” IS THE EXECUTION

TIME OF DECOMPOSER ITSELF.

Min Max Mean SD

Files 2 1,098 10 27

SCCs 2 903 9 22
Dependents 0 674,992 2,062 24,234
Trigger Time (mins) 0 127,860 845 5,978
Saved Triggers (∆) 0 396,360 276 6,245
Saved Triggers Pct.
(∆%)

0 99 11 19

Saved Trigger Time
(mins)

0 60,837 98 1,250

Saved Trigger Time
Pct.

0 99 12 22

DECOMPOSER Exec.
Time (mins)

1 369 2 5

B. RQ2: How effective are the decompositions that Decom-

poser suggests?

We measure the effectiveness of a decomposition by calcu-

lating the number (RQ2.1) and percentage (RQ2.2) of saved

triggers and the duration (RQ2.3) and percentage (RQ2.4) of

saved test execution time.

Tables II–V demonstrate the effectiveness of DECOMPOSER.

The first column of each of these tables partitions the values

of a metric into multiple intervals. The second and third

columns report the number and percentage of the targets

that fall within each interval, respectively. The fourth and

fifth columns are cumulative versions of the second and third

columns, respectively. The distributions consistently show that

decomposing a small fraction of targets yields substantial

benefits. By estimating the benefits of decomposing each

target, DECOMPOSER enables the programmers to focus on

the decompositions with the largest gains.

TABLE II: DISTRIBUTION OF THE NUMBER OF SAVED TRIGGERS

Saved
Triggers Freq.

Freq.
(%)

Cum.
Freq.

Cum.
Freq.
(%)

[900,∞) 355 6.9 355 6.9

[800, 900) 29 0.6 384 7.5

[700, 800) 26 0.5 410 8.0

[600, 700) 36 0.7 446 8.7

[500, 600) 60 1.2 506 9.9

[400, 500) 72 1.4 578 11.3

[300, 400) 101 2.0 679 13.2

[200, 300) 184 3.6 863 16.8

[100, 200) 322 6.3 1,185 23.1

(0, 100) 3,944 76.9 5,129 100.0

1) RQ2.1: How many triggers can Decomposer save?:

DECOMPOSER estimates that the decompositions it suggests

TABLE III: DISTRIBUTION OF THE PERCENTAGE OF SAVED TRIGGERS

Saved
Triggers

(%) Freq.
Freq.
(%)

Cum.
Freq.

Cum.
Freq.
(%)

[90, 100] 31 0.6 31 0.6

[80, 90) 71 1.4 102 2.0

[70, 80) 124 2.4 226 4.4

[60, 70) 248 4.8 474 9.2

[50, 60) 533 10.4 1,007 19.6

[40, 50) 632 12.3 1,639 32.0

[30, 40) 618 12.0 2,257 44.0

[20, 30) 629 12.3 2,886 56.3

[10, 20) 707 13.8 3,593 70.1

(0, 10) 1,536 29.9 5,129 100.0

TABLE IV: DISTRIBUTION OF SAVED TRIGGER TIMES

Saved
Trigger
Time
(min) Freq.

Freq.
(%)

Cum.
Freq.

Cum.
Freq.
(%)

[60,∞) 1,145 25.1 1,145 25.1

[30, 60) 287 6.3 1,432 31.3

[10, 30) 633 13.9 2,065 45.2

[5, 10) 442 9.7 2,507 54.9

[2, 5) 641 14.0 3,148 68.9

[1, 2) 521 11.4 3,669 80.3

(0, 1) 900 19.7 4,569 100.0

for 26% of the decomposable targets (5,129 of 19,994) would

save at least one trigger. Moreover, it found that on average

decomposing a target saves 276 triggers (Table I) per change

to the target. Table II shows that decomposing any one of 355

targets would save at least 900 triggers of the target.

2) RQ2.2: What percentage of triggers can Decomposer

save?: The decompositions suggested by DECOMPOSER save

11% of the triggers on average (Table I). Table III shows that

decomposing any one of only 31 targets would save at least

90% of the triggers per change to the target.

3) RQ2.3: How much test execution time can Decomposer

save?: The decompositions that DECOMPOSER suggests save

98 minutes of the test execution time of a decomposable target

TABLE V: DISTRIBUTION OF THE PERCENTAGE OF SAVED TRIGGER TIME

Saved
Triggers

Time (%) Freq.
Freq.
(%)

Cum.
Freq.

Cum.
Freq.
(%)

[90, 100] 62 1.4 62 1.4

[80, 90) 87 1.9 149 3.3

[70, 80) 153 3.3 302 6.6

[60, 70) 246 5.4 548 12.0

[50, 60) 462 10.1 1,010 22.1

[40, 50) 601 13.2 1,611 35.3

[30, 40) 492 10.8 2,103 46.0

[20, 30) 448 9.8 2,551 55.8

[10, 20) 533 11.7 3,084 67.5

(0, 10) 1,485 32.5 4,569 100.0

130130130130

TABLE VI: THE RATIO OF THE DURATION OF EACH PHASE OF DECOM-
POSER OVER THE EXECUTION TIME OF DECOMPOSER AVERAGED OVER ALL

OF THE 40,000 ANALYZED TARGETS.

Phase Duration Pct.

Constructing the cross references graph 4

Computing the SCCs 0

Computing the target-level dependencies 66

Computing the dependents of SCCs 30

Unifying SCCs 0

on average (Table I). DECOMPOSER estimates the execution

time of the saved test triggers by computing the average

execution time of the saved test targets during the past day.

Table IV indicates that decomposing any of 1,145 targets

would reduce the test execution time per change to the target

by at least an hour.

4) RQ2.4: What percentage of test execution time can

Decomposer save?: On average, a decomposition that DE-

COMPOSER proposes for a target would save 12% of the

execution time of the tests that are triggered by a change

to the target (Table I). This number is close to the average

percentage of triggers that are saved by a decomposition

(Section X-B2). This is not surprising because saving more

triggers tends to save more test execution time. Table V

indicates that the decompositions proposed by DECOMPOSER

for 1,010 decomposable targets would save at least 50% of

the test execution time of each of these targets.

C. RQ3: How efficient is Decomposer?

On average, DECOMPOSER analyzes a target in two minutes

(Table I). This implies that if we had run DECOMPOSER on the

40,000 targets sequentially, it would have taken it more than

55 days to finish. DECOMPOSER analyzes all these targets in

parallel overnight. Table VI shows the average breakdown of

the execution time of each phase of DECOMPOSER. The table

shows that the most expensive phases of the algorithm are

computing the target-level dependencies and the dependents of

SCCs. The target-level dependencies are represented as a large

directed graph. Each edge of this graph indicates a dependency

of a target on another target. Deserializing this graph from the

file system is expensive. Computing the dependents of SCCs

is expensive for targets with many dependents.

D. RQ4: How receptive are programmers to the changes that

Decomposer and Refiner propose?

As a preliminary evaluation, we selected seven targets for

decomposition. DECOMPOSER estimated high trigger savings

for these targets and the dependents of these targets declared

all their direct dependencies. Every code change at Google gets

peer reviewed. We submitted code changes based on the results

of DECOMPOSER for these seven targets. Six code changes got

reviewed, four of which got approved. Two code changes got

rejected, because the reviewer expected the target to change

rarely. This experience highlights an opportunity to improve

DECOMPOSER (Section XII). We submitted two code changes

created by REFINER, both of which got approved. The number

of reviewed code changes is low, because the review process

is slow and can take up to several weeks, especially when the

changes affect code owned by multiple teams or the owners

are not available. Nonetheless, the preliminary results suggest

that programmers are receptive to the code changes generated

by DECOMPOSER and REFINER.

XI. RELATED WORK

Despite the recent move of the software industry to CI [4],

[19], [22], [31], [32], there has been little research on CI. The

rest of this section overviews several empirical studies, code

smell detection and refactoring tools for build specifications

and discusses our work with respect to software remodulariza-

tion and regression testing.

Empirical Studies. McIntosh et al. [24] studied the version

histories of ten projects and found that build maintenance

accounts for up to 27% overhead on source code development

and 44% overhead on test development. In another study of six

open-source projects [23], McIntosh et al. found that the size

of build files and source files are highly correlated. In short,

these studies show that build maintenance incurs significant

engineering cost. This cost calls for tool support for evolving

build specifications.

Underutilized Targets. Build Analyzer is an interactive com-

mercial tool for optimizing the build time of C/C++ code [36].

It allows programmers to identify fat headers, the header

files that are build bottlenecks, and decompose them into

two smaller header files. Little has been reported about the

decomposition algorithm and empirical evaluation of Build

Analyzer. Although Build Analyzer refactors header files and

not build specifications, fat headers and underutilized targets

are related code smells.

In our prior work [27], we discussed several code smells

specific to build specifications, including under-declared de-

pendencies, zombie targets, and visibility debt. We introduced

a tool called Clipper that takes a binary target as input and

ranks the libraries in the transitive closure of the dependencies

of the binary by their utilization rates, i.e., the percentage of

the symbols of the library that are used by the binary. Clipper

helps programmers find the libraries that are bringing too many

unneeded symbols to the binary. Clipper, DECOMPOSER, and

REFINER are complementary tools. Programmers can use Clip-

per to find underutilized targets and then use DECOMPOSER

and REFINER to decompose them.

Software Remodularization. Remodularization is decompos-

ing a code base that is almost monolithic into modules [50].

Researchers have developed tools for remodularizing legacy

software. These tools employ clustering [3], [21], [38], [51],

search-based [6], [26], [30], or information retrieval [20]

techniques to find a set of modules that optimizes some

metrics. These metrics are usually inspired by properties such

as high cohesion and low coupling [1], [7]. While existing

remodularization tools target legacy software with poor mod-

ularity, our tools are intended for modern software that is

relatively modular but can benefit from finer-grained modules.

131131131131

Analyzing, Visualizing, and Refactoring Makefiles.

MAKAO [2] is a tool that visualizes Makefiles by analyzing

their dynamic build traces. It also supports refactorings

such as target creation. SYMake [35] is a static analysis

tool that can detect several code smells of Makefiles such

as cyclic dependencies and duplicate prerequisites and

supports refactorings such as target creation and renaming.

While MAKAO and SYMake support basic refactorings of

Makefiles, neither can detect or refactor underutilized targets.

Test Selection. The goal of test-selection techniques [14], [16],

[17], [29], [33], [34], [53] is to select a subset of the tests of

one version of a program to run on a future version of the

program without compromising the fault-detection capability

of the test suite.

Since we defined the effectiveness of a decomposition in

terms of the triggers that it saves (Definition 3), decompos-

ing underutilized targets can be viewed as a test-selection

technique. Target decomposition is a refactoring that makes

the test-selection technique of the CI system more effective.

However, the benefits of decomposing targets are not limited

to test selection. Decomposing underutilized targets can reduce

build time, binary size, and improve the modularity of code

and the performance of IDEs (Section III).

XII. LIMITATIONS AND FUTURE WORK

Generalizability. The evaluation results are limited to Java

targets at Google. Nonetheless, DECOMPOSER and REFINER

are both language independent, because they operate at the

level of files and targets. We have designed DECOMPOSER

and REFINER for adaptability to software repositories outside

Google, e.g., the Maven Central Repository [46]. The target-

level dependency graph of the Maven Central Repository can

be constructed from the POM files. Similar to Google build

specifications, the POM files specify the targets and their de-

pendencies. The file-level dependency graph can be extracted

from the cross references within and between the artifacts (e.g.,

JAR files) published in the Maven Central Repository. Once

the target-level and file-level dependency graphs are computed,

DECOMPOSER and REFINER can use these graphs to decom-

pose targets and refine dependencies, respectively. Sometimes,

Google programmers manually decompose underutilized JAR

files built from open-source code. This anecdote indicates the

practical value of automated decomposition of open-source

targets.

Soundness. DECOMPOSER and REFINER are sound as long

as the target-level and file-level dependency graphs are sound

(Section VIII). Currently, the target-level dependencies miss

the dependencies on generated targets, and the file-level

dependencies include only the static dependencies. As the

services that report these dependencies become more accurate,

DECOMPOSER and REFINER benefit, too.

Objective Function. DECOMPOSER uses the number of saved

triggers as an objective function to find a decomposition.

In future, we plan to experiment with different objective

functions. Alternative objective functions can optimize the

decomposition to reduce the size of binaries. In addition,

the objective function can be extended to take the change

rates of files into account. Files that rarely change trigger few

tests. Finally, future research can explore the impact of code

co-evolution on decomposition. For instance, decomposing a

target into two constituents that are often affected by the same

changes will save few triggers.

Decomposition Algorithm. DECOMPOSER employs a greedy

algorithm to suggest a decomposition. This algorithm is fast

and can suggest decompositions to an arbitrary number of

constituents. However, finding an approximation algorithm

with a provable guarantee of closeness to the optimal decom-

position or proving the lack of such an algorithm are open

problems. Future research can study alternative decomposition

algorithms.

Adoption. So far, about a dozen programmers at Google have

used DECOMPOSER. Our vision is to integrate DECOMPOSER

into the programming workflow to gain a wider adoption. Ide-

ally, DECOMPOSER would continuously monitor every code

change and suggest that programmers decompose a target

whenever the benefit of the decomposition goes above a certain

threshold.

XIII. CONCLUSIONS

Build specifications embody the dependency structure of

large-scale software. Build specifications are code, too. Like

any other code, build specifications accumulate code smells as

software evolves. This paper focuses on a specific code smell

of build specifications that we identified in Google’s code

base, namely, underutilized build targets. We present a tool for

large-scale identification and decomposition of underutilized

build targets. Our evaluation results show that our tool is

both effective and efficient at (1) estimating the benefits of

decomposing build targets, and (2) proposing decompositions

of build targets. Besides the promising results of our tool

at Google, perhaps a broader contribution of our work is

highlighting a challenging problem that the software industry

faces: improving the quality of build specifications at scale.

ACKNOWLEDGMENTS

The first author was employed by Google while working on

this project. We thank Nicholas Chen, Munawar Hafiz, Ralph

Johnson, Darko Marinov, Stas Negara, Tao Xie, and the student

participants of the software engineering seminar at Illinois for

their comments on a draft of this paper. We also thank Eddie

Aftandilian, John Penix, Sanjay Bhansali, Kevin Bourrillion,

Robert Bowdidge, Dana Dahlstrom, Misha Gridnev, Jeremy

Manson, John Micco, Ben St. John, Jeffrey van Gogh, Collin

Winter, and many others at Google for their suggestions and

engineering support.

REFERENCES

[1] H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil, and S. Ducasse. Towards
Automatically Improving Package Structure while Respecting Original
Design Decisions. In Proceedings of the 20th Working Conference on

Reverse Engineering (WCRE), pages 212–221, 2013.

132132132132

[2] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter. Design
Recovery and Maintenance of Build Systems. In Proceedings of the

23rd IEEE International Conference on Software Maintenance (ICSM),
pages 114–123, 2007.

[3] N. Anquetil and T. C. Lethbridge. Experiments with Clustering as a
Software Remodularization Method. In Proceedings of the 6th Working

Conference on Reverse Engineering (WCRE), pages 235–255, 1999.
[4] C. AtLee, L. Blakk, J. O’Duinn, and A. Z. Gasparnian. Firefox Release

Engineering. In The Architecture of Open Source Applications, volume 2.
Lulu, 2012.

[5] M. Barnathan, G. Estren, and P. Lebeck-Jobe. Building Software at
Google Scale. http://www.youtube.com/watch?v=2qv3fcXW1mg, 2012.

[6] G. Bavota, F. Carnevale, A. D. Lucia, M. D. Penta, and R. Oliveto.
Putting the Developer in-the-Loop: An Interactive GA for Software Re-
modularization. In Proceedings of the 4th International Symposium on
Search Based Software Engineering (SSBSE), pages 75–89, 2012.

[7] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto. Software Re-
Modularization Based on Structural and Semantic Metrics. In Proceed-

ings of the 17th Working Conference on Reverse Engineering (WCRE),
pages 195–204, 2010.

[8] M. Besta, Y. Miretskiy, and J. Cox. Build in the Cloud: Distributing
Build Outputs. [Blog post] http://goo.gl/jaQTiF, 2011.

[9] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum. FlumeJava: Easy, Efficient Data-Parallel
Pipelines. In Proceedings of the 2010 ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages 363–
375, 2010.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Elementary
Graph Algorithms. In Introduction to Algorithms. The MIT Press, 2009.

[11] P. M. Duvall, S. Matyas, and A. Glover. Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley, 2007.

[12] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
[14] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel.

An Empirical Study of Regression Test Selection Techniques. ACM
Transactions on Software Engineering and Methodology, 10:184–208,
2001.

[15] P. Gupta, M. Ivey, and J. Penix. Testing at the Speed and Scale of
Google, 2011. [Blog post] http://goo.gl/dmOUMN.

[16] M. J. Harrold, J. A. Jones, T. Li, D. Liang, and A. Gujarathi. Re-
gression Test Selection for Java Software. In Proceedings of the 2001

ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 312–326, 2001.

[17] M. J. Harrold and M. L. Souffa. An Incremental Approach to Unit
Testing during Maintenance. In Proceedings of the Conference on
Software Maintenance (ICSM), pages 362–367, 1988.

[18] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros,
and M. d’Amorim. SPLat: Lightweight Dynamic Analysis for Reducing
Combinatorics in Testing Configurable Systems. In Proceedings of the
ACM SIGSOFT Symposium on Foundations of Software Engineering

(FSE), pages 257–267, 2013.
[19] A. Kumar. Development at the Speed and Scale of Google. QCon San

Francisco, http://goo.gl/hCPQxZ, 2010.
[20] J. I. Maletic and A. Marcus. Supporting Program Comprehension

Using Semantic and Structural Information. In Proceedings of the 23rd

International Conference on Software Engineering (ICSE), pages 103–
112, 2001.

[21] O. Maqbool and H. Babri. Hierarchical Clustering for Software
Architecture Recovery. IEEE Transactions on Software Engineering,
pages 759–780, 2007.

[22] D. Marsh. From Code to Monkeys: Continuous Delivery at Netflix.
QCon San Francisco, http://goo.gl/lQWQrY, 2013.

[23] S. McIntosh, B. Adams, and A. E. Hassan. The Evolution of Java Build
Systems. Empirical Software Engineering, pages 578–608, 2012.

[24] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan.
An Empirical Study of Build Maintenance Effort. In Proceedings of the

33rd International Conference on Software Engineering (ICSE), pages
141–150, 2011.

[25] J. Micco. Tools for Continuous Integration at Google Scale.
http://www.youtube.com/watch?v=KH2 sB1A6lA, 2012.

[26] B. S. Mitchell and S. Mancoridis. On the Automatic Modularization
of Software Systems Using the Bunch Tool. IEEE Transactions on

Software Engineering, pages 193–208, 2006.
[27] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali. Searching

for Build Debt: Experiences Managing Technical Debt at Google. In
Proceedings of the 3rd International Workshop on Managing Technical

Debt (MTD), pages 1–6, 2012.
[28] W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,

University of Illinois at Urbana-Champaign, 1992.
[29] A. Orso, N. Shi, and M. J. Harrold. Scaling Regression Testing to Large

Software Systems. In Proceedings of the ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE), pages 241–
251, 2004.

[30] K. Praditwong, M. Harman, and X. Yao. Software Module Clustering
as a Multi-Objective Search Problem. IEEE Transactions on Software
Engineering, pages 264–282, 2011.

[31] C. Prasad and W. Schulte. Taking Control of Your Engineering Tools.
Computer, pages 63–66, 2013.

[32] C. Rossi. Release Engineering at Facebook. QCon San Francisco,
http://goo.gl/b5LY80, 2012.

[33] G. Rothermel and M. J. Harrold. Analyzing Regression Test Selection
Techniques. IEEE Transactions on Software Engineering, 22(8):529–
551, 1996.

[34] G. Rothermel and M. J. Harrold. Empirical Studies of a Safe Regression
Test Selection Technique. IEEE Transactions on Software Engineering,
24:401–419, 1998.

[35] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen. Build
Code Analysis with Symbolic Evaluation. In Proceedings of the 34th

International Conference on Software Engineering (ICSE), pages 650–
660, 2012.

[36] A. Telea and L. Voinea. A Tool for Optimizing the Build Performance
of Large Software Code Bases. In Proceedings of the 12th European

Conference on Software Maintenance and Reengineering (CSMR), pages
323–325, 2008.

[37] J. Thomas and A. Kumar. Google Engineering Tools. [Blog post]
http://goo.gl/zOpl1T, 2011.

[38] V. Tzerpos and R. C. Holt. ACCD: An Algorithm for Comprehension-
Driven Clustering. In Proceedings of the 7th Working Conference on

Reverse Engineering (WCRE), pages 258–267, 2000.
[39] M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and V. Mirrokni.

Automated Decomposition of Build Targets (Extended Version).
http://hdl.handle.net/2142/47551, 2014.

[40] Apache Ant. http://ant.apache.org/.
[41] Apache Maven. http://maven.apache.org/.
[42] GNU Make. http://www.gnu.org/software/make/ .
[43] Gradle. http://www.gradle.org/.
[44] Hudson. http://hudson-ci.org/.
[45] Jenkins. http://jenkins-ci.org/ .
[46] Maven Central Repository. http://search.maven.org/.
[47] Google Protocol Buffers: Google’s Data Interchange

Format. Documentation and open-source release
https://developers.google.com/protocol-buffers/ .

[48] Rake. http://rake.rubyforge.org/.
[49] Travis. https://travis-ci.org/.
[50] T. Wiggerts. Using Clustering Algorithms in Legacy Systems Remod-

ularization. In Proceedings of the 4th Working Conference on Reverse

Engineering (WCRE), pages 33–43, 1997.
[51] J. Wu, A. E. Hassan, and R. C. Holt. Comparison of Clustering

Algorithms in the Context of Software Evolution. In Proceedings of the

21st IEEE International Conference on Software Maintenance (ICSM),
pages 525–535, 2005.

[52] N. York. Build in the Cloud: Accessing Source Code, 2011. [Blog post]
http://goo.gl/H9WUGe.

[53] J. Zheng, B. Robinson, L. Williams, and K. Smiley. Applying Regression
Test Selection for COTS-based Applications. In Proceedings of the 28th
International Conference on Software Engineering (ICSE), pages 512–
522, 2006.

133133133133

http://www.youtube.com/watch?v=2qv3fcXW1mg
http://goo.gl/jaQTiF
http://goo.gl/dmOUMN
http://goo.gl/hCPQxZ
http://goo.gl/lQWQrY
http://www.youtube.com/watch?v=KH2_sB1A6lA
http://goo.gl/b5LY80
http://goo.gl/zOpl1T
http://hdl.handle.net/2142/47551
http://ant.apache.org/
http://maven.apache.org/
http://www.gnu.org/software/make/
http://www.gradle.org/
http://hudson-ci.org/
http://jenkins-ci.org/
http://search.maven.org/
https://developers.google.com/protocol-buffers/
http://rake.rubyforge.org/
https://travis-ci.org/
http://goo.gl/H9WUGe

