
Hokusai — Sketching Streams in Real Time

Sergiy Matusevych
Yahoo! Research

sergiy.matusevych@gmail.com

Alexander J. Smola
Google Inc.

alex@smola.org

Amr Ahmed
Yahoo! Research

amahmed@cs.cmu.edu

Abstract

We describe 北斎 Hokusai, a real time sys-
tem which is able to capture frequency in-
formation for streams of arbitrary sequences
of symbols. The algorithm uses the Count-
Min sketch as its basis and exploits the fact
that sketching is linear. It provides real time
statistics of arbitrary events, e.g. streams of
queries as a function of time. We use a fac-
torizing approximation to provide point esti-
mates at arbitrary (time, item) combinations.
Queries can be answered in constant time.

1 Introduction

Obtaining frequency information of data streams is an
important problem in the analysis of sequence data.
Much work exists describing how to obtain highly
efficient frequency counts of sequences at any given
time. For instance, the Count-Min [6] sketch is capa-
ble of providing ε accuracy with failure probability δ in
O(log δ/ε) space. Even better guarantees are possible
for the space-saver sketch [12], albeit at the expense
of having to keep a dictionary of tokens and a consid-
erably more computationally expensive data structure
(we need an ordered list rather than just a flat array in
memory). The key point is that sketching algorithms
can be queried at any time to return the total number
of symbols of any given type seen so far.

While highly desirable in its own right it does not solve
the following: we would like to know how many sym-
bols were observed at some time in the past. For in-
stance, we may want to know how many queries of
”Britney Spears” were carried out, say at noontime
last year on Easter Sunday. Clearly we could address
this problem by brute force, that is by pre-processing
the logfiles. Query languages such as Pig [14] are well
suited to generating such summary statistics, albeit
unable to retrieve it in real time.

Figure 1: Real-time results for the item aggregation
sketch and web query (“gigi goyette”) that was pop-
ular at the time of our study. Points represent ac-
tual results; lines are LOESS smoothed with span 0.1.
The plot shows the exact time query started to gain
popularity and peaked, as well as daily fluctuations of
search traffic. Estimate and real traffic are virtually
indistinguishable and the error is minimal.

It is the latter that we focus on in this paper. We
present an algorithm capable of retrieving approximate
count statistics in real time for any given point or in-
terval in time without the need to peruse the original
data. We will see that the work required for retrieving
such statistics is O(log t) for lookup and O(t) for de-
coding (here t is the length of the requested sequence)
and moreover that the answers are exact under the
assumption of statistical independence. Experiments
show that even if this assumption is violated, as it typ-
ically is in practice, the statistics still match closely the
exact data. We use a number of blocks:

• The Count-Min sketch serves as the basic data ag-
gregator. This is desirable since it has the prop-
erty of being linear in the data stream. That is, if
we sketch time periods T and T ′, then the sketch

of T ∪ T ′ is given by the sum over the two indi-
vidual sketches. This makes it easy to aggregate
time intervals which are powers of 2.

• We exploit the fact that the Count-Min sketch is
linear in the resolution of the hash function. That
is, a sketch using a lower resolution hash function
is obtained by aggregating adjacent bins.

• We use the fact that for independent random vari-
ables the joint distribution can be characterized
exactly by retaining only the marginals.

• We use a Markovian approximation for sequences.

Our implementation stores Count-Min sketches of
both increasing time intervals in powers of 2, e.g. 1,
2, 4, 8, . . . minutes length. Moreover we also store
sketches of decreasing bit resolution. Finally, in or-
der to accelerate computation, we store sketches which
have both decreasing time and bit resolution. This
provides a suitable normalization.

Outline. We begin by giving a brief overview over the
Count-Min sketch [6] and how it can be parallelized
and made fault tolerant. In Section 3 we describe the
data structures used to aggregate the data in a linear
fashion and show how reduction in the bit resolution of
the hash function allows us to compute both time and
keyspace marginals. Using approximate independence
assumptions we can recover higher (time, item) reso-
lution of the sketch over time. In Section 4 we apply
sketches to O(1) probability estimates in the context
of probabilistic graphical models. Section 5 contains
experimental results.

2 Count-Min Sketch

Algorithms for sketches of data streams aim at obtain-
ing count statistics for observed items as they keep on
arriving in an online fashion. That is, such algorithms
typically allow one to assess how many items of a given
kind are contained in the data stream. One of the most
exciting algorithms for this purpose is the Count-Min
sketch of [6], a generalization of the Bloom filter [3]
and the count sketch [5], which generates linear data
summaries without requiring storage of the keys. That
is, the maximum amount of memory is allocated for
storing count statistics rather than an auxiliary index.

Denote by X the domain of symbols in the data
stream. The Count-Min sketch allocates a matrix of
counters M ∈ Rd×n initially all set to zero. More-
over, we require d pairwise independent hash functions
h1, . . . , hd : X→ {0, . . . n− 1}. For each item insertion
d counters, as determined by the hash functions and
the key, are incremented. Retrieval works by taking
the minimum of the associated counts (this mitigates
errors due to collisions). Algorithm 1 comes with sur-
prisingly strong guarantees. In particular [6] proves:

Algorithm 1 Count-Min Sketch

insert(x):
for i = 1 to d do
M [i, hi(x)]←M [i, hi(x)] + 1

end for

query(x):
c = min {M [i, hi(x)] for all 1 ≤ i ≤ d}
return c

hash h1 M11 M12 M13 M14 M15 M16
. . . M1n

hash h2 M21 M22 M23 M24 M25 M26
. . . M2n

hash h3 M31 M32 M33 M34 M35 M36
. . . M3n

x

Figure 2: Item x is inserted into each row of the Count-
Min sketch (positions 2, 6, and 3 respectively).

Theorem 1 Assume that n = d eε e and d = dlog 1
δ e.

Then with probability at least 1 − δ the Count-Min
sketch returns at any time an estimate cx of the true
count nx for any x which satisfies

nx ≤ cx ≤ nx + ε
∑
x′

nx′ . (1)

That is, the guarantee (1) is simply an additive bound
on the deviation of counts. Tighter estimates can
be obtained from M by using an iterative procedure
which goes beyond Algorithm 1. In particular, the
Counter Braid iteration [11] provides guarantees of
exact reconstruction with high probability provided
that the number of stored symbols is sufficiently small
and sufficiently well distributed. Note that reconstruc-
tion using [11] requires linear time, hence it is not ap-
plicable to our scenario of high throughput sketches.
Furthermore, whenever the item distribution follows a
power law, a tighter bound is available [7]. The follow-
ing two corollaries are immediate consequences of the
fact that the Count-Min sketch is linear in the amount
of data and in the amount of memory available.

Corollary 2 Denote by MT and MT ′ the Count-Min
sketches for the data stream observed at time intervals
T and T ′. Then whenever T ∩ T ′ = ∅ we have that
MT∪T ′ = MT +MT ′ .

This is analogous to Bloom filter hashes of the union of
two sets — one simply takes the OR of both hashes.
In our case the Boolean semiring is replaced by the
semiring of integers (or real numbers) [4].

Corollary 3 Assume that n = 2b for b ∈ N and let
Mb be the summary obtained by the Count-Min sketch.
In this case the summary Mb−1 obtained by a sketch
Mb−1[i, j] = Mb[i, j] +Mb[i, j+ 2b−1] using hash func-
tions hb−1i (x) := hbi (x) mod 2b−1.

This is simply ’folding over’ the first and second half
of the Count-Min sketch on itself. These two corol-
laries mean that it is possible to increase the time
intervals simply by aggregating sketches over shorter
sub-intervals. Likewise, we may reduce the accuracy
after the fact simply by dropping the most significant
bits of h. This will become valuable when compress-
ing the Count-Min sketch by reducing either temporal
resolution or accuracy. Obviously as a consequence of
this compression we double the error incurred by the
sketch. The following chapters present algorithms to
counteract this effect.

3 Aggregation

We want to obtain information regarding item fre-
quency over an extended period of time. Assume that
we are interested in this data at a resolution of 1
minute (the time scale is arbitrary — we just use 1
minute for the sake of concreteness). Even in the case
where M might be relatively small (in the order of
1 MB) we would suffer from memory overflow if we
wanted to store 2 years (approximately 220 minutes
and hence 1 TB of data) in RAM to allow for fast
retrieval.1 Consequently we need to compress data.

3.1 Time Aggregation

One strategy is to perform binary aggregation on the
time axis. That is, rather than retaining a 1 minute
resolution for 2 years, we only retain a 2m minute
resolution for the last 2m minutes. The rationale is
that old observations have an exponentially decreasing
value and consequently it is sufficient to store them at
a concomitantly decreased precision. This is achieved
by Algorithm 2. The basic idea is to keep aggregates
M i for time intervals of length {1, 1, 2, 4, 8, . . . , 2m}
available. Note that the sequence contains its own cu-
mulative sum, since 1 +

∑n−1
i=1 2i = 2n. To update M i

whenever it covers the time span [2i−1, 2i−1] it suffices
to sum over the terms covering the smaller segments.

Theorem 4 At t, the sketch M j contains statistics
for the period [t− δ, t− δ − 2j] where δ = t mod 2j.

1We could store this data on disk. Many tools exist for
offline parallel analytics which complement our approach.
However, we are interested in online instant access.

Algorithm 2 Time Aggregation

for all m do do
Initialize Count-Min sketch Mm = 0

end for
Initialize t = 0 and M̄ = 0
while data arrives do

Aggregate data into sketch M̄ for unit interval
t← t+ 1 (increment counter)
for j = 0 to argmax

{
l where i mod 2l = 0

}
do

T ← M̄ (back up temporary storage)
M̄ ← M̄ +M j (increment cumulative sum)
M j ← T (new value for M j)

end for
M̄ ← 0 (reset aggregator)

end while

Proof The proof proceeds by induction. At time
t = 0 this condition clearly holds since all counters
are empty. Now assume that it holds for time t > 0.
Denote by ∗ := argmax

{
l where i mod 2l = 0

}
the

largest exponent of 2 for which t is divisible by 2
∗
.

This is the last index which will become aggregated.

• For all M j with j > ∗ the condition holds if we
increment t← t+ 1 since the intervals are shifted
by one time step without crossing any power of 2.
• For all M j with j ≤ j∗ note that in the for

loop we update all such counters by cumula-
tive sums covering a consecutive contiguous se-
quence of shorter intervals via the cumulative sum
counter S. In other words, all these intervals start
from t− δ = 0 again.

Lemma 5 The amortized time required to update the
statistics is O(1) per time period regardless of T .

Proof This follows from the fact in 2−i of all
time periods we need to do i work. Hence the total
amortized workload is

∑∞
i=1 i · 2−i = 2.

One of the nice side-effects of this procedure is that
an “expensive” aggregation step which can involve up
to log t many additions is always followed by a cheap
update requiring only a single update (see Figure 3).
This means that the update operations may be carried
out as background threads in parallel to new updates,
as long as they complete their first step within the
update time period (this is trivially the case).

3.2 Item Aggregation

An alternative means of aggregating count statistics
over time is to retain the full time resolution while

1

1

1

1

1

1

1

1 1 2 4 8

Figure 3: Time aggregation. We always insert into
the leftmost aggregation interval. As time proceeds
(top to bottom), new intervals are inserted from the
left. Whenever an interval of length 2n is 2n steps
old, it aggregates all data in [0, 2n] as its new value.
The more shaded bins are contained in more than one
interval.

sacrificing accuracy. That is, we can shrink the num-
ber of bins n over time but we retain the unit time
intervals. More specifically, we can halve the reso-
lution each time the Count-Min sketch ages 2n time
steps. One of the advantages of this strategy is that
the work required for aggregation is directly propor-
tional to the remaining size of the bins (see Figure 3).
We invoke Corollary 3 to halve the amount of space
required successively. This yields Algorithm 3.

Algorithm 3 Item Aggregation

t← 0 (initialize counter)
while data arrives do

Receive aggregated data sketch M̄ for unit inter-
val
t← t+ 1 (increment counter)
At ← M̄
for k = 1 to blog2 tc do
for all i, j do (reduce item resolution)

At−2
k

[i, j]← At−2
k

[i, j] +At−2
k

[i, j + 2m−k]

Shrink At−2
k

to length 2m−k

end for
end while

Note that as before this algorithm requires only O(1)
computational cost. Even better than before, this cost
is now O(1) for all steps rather than being an amor-
tized (i.e. average) cost: at each time step there is
one intervals of size 2i with 2i ≤ n for each i that
needs halving. The cost of doing so is bounded by∑l
i=0 2i = 2l+1 − 1 < 2n.

Moreover, the amount of storage required per time
interval [t − 2i, t − 2i−1] is constant since for every
doubling of the interval size we halve the amount of
storage required per sketch. This means that we can
retain full temporal resolution, albeit at the expense
of increasingly lose bounds on the item counts. In the
extreme case where 2m = n we end up with a sketch
which tells us simply how many tokens we received at
a given point in time but no information whatsoever
regarding the type of the tokens.

32 bins

16 bins

16 bins

8 bins

8 bins

8 bins

8 bins

Figure 4: Item aggregation. Every 2n with n ∈ N
we halve the amount of bits used in the sketch. This
allows us to sketch T time steps in O(log T) space.
Obviously having fewer storage bins means that we
have less space available to store fine-grained informa-
tion regarding the observed keys. However, for heavy
hitters this is sufficient.

Note that by default the absolute error also doubles at
every aggregation step (the scaling is slightly different
for power law distributions). This means that after
several iterations the accuracy of the sketch becomes
very poor for low-frequency items while still providing
good quality for the heavy hitters. We will exploit
this as follows — for low frequency items we will use
an interpolation estimate whereas for high frequency
items we will use the aggregate sketch directly.

3.3 Resolution Extrapolation

We can take advantage of the following observation to
improve our estimates: at some point in time we would
like to obtain to-the-minute resolution of observations
for arbitrary objects. In the extreme case we may have
to-the-minute counts for all events and simultaneously
highly specific counts for a long period of time. The
basic idea in extrapolating counts is to use the fact that
a joint distribution p(x, t) over time and events can be
recovered using its marginals p(x) and p(t) whenever
x and t are independent of each other. In terms of
counts this means that we estimate

n̂xt =
nx · nt
n

where n =
∑
t

nt =
∑
x

nx. (2)

The quantities nx and nt are available (as upper
bounds) via the Count-Min sketches M i and Aj re-
spectively. Finally, n could be obtained at runtime by
carrying out the summation over t or x respectively.
However, this is too costly as it requires summing over
O(T) bins at time T . Instead, we compute a third set
of aggregate statistics simultaneously to Algorithms 2
and 3 which performs both time and item aggregation.

Algorithm 4 Item and Time Aggregation

t← 0 (initialize counter)
while data arrives do

Wait until item and time aggregation complete
t← t+ 1 (increment counter)
S = M2 (we only start combining at time 2)
for j = 1 to argmax

{
l where i mod 2l = 0

}
do

S[i, j]← S[i, j] + S[i, j + 2m−j]
Shrink S to length 2m−j

T ← S (back up temporary storage)
S ← S +Bj (increment cumulative sum)
Bj ← T (new value for Bj)

end for
end while

While individual estimates on nt and nx would allow
for upper bounds via Theorem 1, and likewise a lower
bound on n, we only obtain an approximation (we take
a ratio between two upper bounds): we use (2) for each
hash function separately and perform the min opera-
tion subsequently. At time T the query for n(x, t)
requires:

n̂(x, t) := min
i

M ∗ [i, hi(x)]At[i, hm−
∗

i (x)]

B∗ [i, hm−
∗

i (x)]
(3)

where ∗ := blog2(T − t)c

We compute ∗ as the indicator for the most recent
interval containing information pertaining t after we
have seen T instants of data. The use of hm−

∗
is

needed to restrict the key range to the available ar-
ray. As a consequence we obtain estimates of counts
at full time and token resolution, albeit at decreasing
accuracy as we look further into the past.

Since (3) is only an approximation of the true counts
we use it only whenever the Count-Min estimate with
reduced bit resolution is not accurate enough. Given
that the accuracy decreases with e2−b where 2b is the
number of bins used in the sketch, we have the fol-
lowing variant of the sketching algorithm for queries:
use the simplified item aggregate whenever the error
is small enough. Otherwise switch to interpolation.
Since we know that the absolute error of the Count-
Min sketch is well controlled, we know that this strat-
egy is self consistent for frequent items. See Algo-
rithm 5 for details.

n(t)

n(x)n

Figure 5: Resolution interpolation. We approximate

n(x, t) by n(t)n(x)
n assuming independence, i.e. by ap-

proximating p(a, b) ≈ p(a) · p(b). This is analogous to
density estimation via copulas [13].

Algorithm 5 Improved Interpolating Sketch

query(x, t):

Obtain ñ(x, t) := miniA
t[i, h

m−j∗(x)
i]

if ñ(x, t) > et
2b

then
return ñ(x, t) (heavy hitter)

else
Compute n̂(x, t) using (3).
return n̂(x, t) (interpolate)

end if

4 Beyond Sketches

Often we want to estimate the likelihood of a sequence
of symbols, e.g. probabilistic graphical models. Unfor-
tunately it is undesirable to insert long sequences di-
rectly into the Count-Min sketch. The reason for this
is that, as stated in Theorem 1, the error in approx-
imating the counts is an absolute error rather than
being relative to the key frequency. While this is not a
problem for relatively frequently occurring terms (pro-
vided that we know that they are frequent), the error
may not be acceptable for low probability (and hence
infrequently occurring) keys. We resort to tools from
undirected graphical models to obtain O(1) estimates
for item frequencies of more complex objects.

Cliques For sequences we use a Markovian approxi-
mation. That is, we model e.g. trigrams in terms of a
product of unigrams or in terms of a chain of bigrams.
For concreteness consider modeling the string ’abc’:

p(abc) ≈ p(a) · p(b) · p(c) Unigrams (4)

p(abc) ≈ p(a, b)p(c|b) =
p(a, b)p(b, c)

p(b)
Bigrams (5)

Clearly, whenever (4) is exact, it is included in (5) as
a special case, since the bigram model subsumes the

unigram representation as a special case. In general we
may use the Markov model (4) and (5) as a frequency
estimate for items that are too rare to track.

Since we only have access to the item frequencies
rather than the true probabilities of occurrence it is
advisable to use hierarchical smoothing. While it
would be most desirable to use a Dirichlet-process
style smoothing along the lines of [16], the latter is
too costly to apply in real time as it requires consid-
erably more than O(1) computation. Instead we may
resort to a simplified approach like backoff smoothing:

p̂(a) =
na + n0
n+ Ln0

and p̂(ab) =
nab + n1p̂(a)p̂(b)

n+ n1
. (6)

Here n0 and n1 are parameters which describe the
amount of backoff smoothing we employ to estimate
the joint as a product of the marginals. More gen-
erally, we may use Good-Turing or Kneser-Ney [10]
smoothing. Eq. (5) can be extended as follows:

Theorem 6 Assume that x has an independence
structure that can be expressed as an undirected graph
G(V,E) in the sense of an undirected graphical model
(here V denotes the vertices associated with the coor-
dinates of x and E denotes the edges in the sense of
an undirected graphical model). Moreover denote by T
a junction tree containing G(V,E) as subgraph with a
set of cliques C and a set of separator sets S, then it
suffices if we obtain counts for xC and xS with C ∈ C

and S ∈ S to generate frequency estimates via

p̂(x) = n|S|−|C|
∏
C∈C

nxC

∏
S∈S

n−1xS
(7)

Proof This follows immediately from the
Hammersley-Clifford Theorem [2], the fact that
a junction tree contains the maximum cliques of
an undirected graph, and the fact that empirical
frequencies converge to their probabilities.

In this view (4) and (5) are simple applications of a
Markov chain. It also provides us with a recipe for
selecting and generating extrapolation formulae for
more complex structures.

Maximum Entropy Estimation A natural choice
for estimating joint probabilities from marginals would
be to perform a (smoothed) maximum entropy esti-
mate which is then guaranteed to be consistent. How-
ever, this is too costly, as it requires at least O(m)
operations, where m is the size of the support of the
distribution. Such an estimate will lead to

p(x|θ) = exp

(
d∑
i=1

θ[i, hi(x)]− g(θ)

)
(8)

This follows directly, e.g. from [8, 1]. The advantage
is that after significant computation to obtain θ we
can provide more accurate frequency estimates at the
same cost as the original Count-Min sketch. Note that
the likelihood of the data stream is given by∏

t

p(xt|θ) = exp
(
trM>θ − ng(θ)

)
. (9)

Unfortunately computing g(θ) is very costly — it re-
quires that we have access to the support of the distri-
bution, which would require an auxiliary data struc-
ture in its own right, thus obviating the advantages
afforded by sketches. This is why we do not pursue
this avenue further in the present paper.

5 Experiments

5.1 Setup

Code We implemented the Count-Min sketch algo-
rithms 2, 3 and 4 in the client-server setting, using
C++ and ICE (http://www.zeroc.com) middleware.
The experiments were run on quad core 2GHz Linux
x86 servers with 16GB RAM and Gigabit network con-
nection, and used sketches with 4 hash functions, 223

bins, and 211 aggregation intervals (amounting to 7
days in 5 minute intervals). For trigram interpolation,
we load Wikipedia into a single 12GB sketch with 3
hash functions, 230 bins, and no time aggregation.

Data We use two datasets for our research. One
is a proprietary dataset containing a subset of search
queries of five days in May 2011. The second dataset
contains the entire textual dump of the English ver-
sion of Wikipedia as per January 4, 2012 (we removed
the XML markup as a preprocessing step). In all
cases full statistics of the data were computed using
Hadoop. These counts serve as the gold standard for
any sketches and allow us to obtain a proper evalua-
tion of the estimated frequency counts.

Our choice of data (see Figure 6) was guided by both
the need to build algorithms applicable in an industrial
context and by the need to provide reproducible exper-
imental descriptions. Furthermore, both datasets are
quite different in terms of the size of their long tail.
The smaller query dataset has a very significant com-
ponent of infrequent terms whereas Wikipedia, largely
prose, displays a much lighter tail with a support of
only 4.5 Million unique terms.

5.2 Performance

In our experiments all three types of sketches were able
to consistently handle over 50k inserts per second. For
read requests we measured on average 22k requests per

http://www.zeroc.com

Web query data, 5 days sample

Term frequency

N
um

be
r

of
 u

ni
qu

e
te

rm
s

100

102

104

106

97.9M unique terms,
378.1M total

100 101 102 103 104 105 106

Wikipedia data

Term frequency

N
um

be
r

of
 u

ni
qu

e
te

rm
s

100

101

102

103

104

105

106 4.5M unique terms,
1291.5M total

100 102 104 106

Figure 6: (Top) web query data from 5 days in May
2011; (Bottom) English text in Wikipedia as per Jan-
uary 4, 2012. While both datasets exhibit power-law
behavior they differ quite a bit in size and support.

second for time aggregation sketch, and 8,5k requests
per second for item aggregation and resolution inter-
polation. Performance is proportional to the network
bandwidth: inserts are one-way, asynchronous, and
use very short messages, whereas queries require two-
way communication and response messages are larger.

5.3 Accuracy

The first set of experiments is to evaluate the accuracy
of the sketches under temporal aggregation. Since the
Wikipedia dataset constitutes a snapshot in time we
only study the accuracy for the query dataset. The
Wikipedia dataset is only used to study interpolation.
The experimental protocol is as follows:

Gold Standard For all experiments we computed
the true counts using a batch algorithm on
Hadoop. It serves as reference for our estimates.

Time aggregation as described in Section 3.1.
Key aggregation as described in Section 3.2.
Interpolation as described in Section 3.3.
Absolute deviation is given by the absolute amount

that the sketch deviates from the true counts. In
the case of item aggregation sketching estimates
are always an overestimate. In all other cases
this is not necessarily true. We compute it us-

ing
∑
x |n̂x − nx|.

Relative deviation is given by the ratio between the

deviation and the estimate, i.e.
∑
x
|n̂x−nx|
n̂x

. Note
that this quantity may exceed 1 since we aggre-
gate over all keys.

We are not aware of any sketching algorithm address-
ing the problem of providing aggregates for arbitrary
time intervals. Hence we compare our results to the ex-
act offline aggregation results. Furthermore, we com-
pare to a naive aggregation per time slice and also to a
piecewise constant model. One would expect the latter
to perform well, given that we are dealing with time-
series data which is unlikely to change dramatically in
between intervals.

As can be seen in Figure 7, the interpolation algorithm
is well competitive relative to algorithms that perform
constant interpolation or that reduce item counts. As
expected the error increases with the amount of time
past. This is the case since we compress data every 2n

time steps by a factor of 2. The fact that the error of
the ’item aggregation’ variant is considerably higher
than of the ’time aggregation’ algorithm suggests that
the item frequency does not vary strongly over time for
most items, when compared to the variation between
items. Hence the relative frequency of occurrence is
generally a better estimate. That said, by using in-
terpolation we combine the best of both worlds and
obtain overall good estimates.

To obtain a more detailed estimate we stratify accu-
racy per item frequency interval, i.e. we stratify by the
number of occurrences of the item, as depicted in Fig-
ure 8. Not very surprisingly for frequent items, reduc-
ing the bit resolution of the sketch is less damaging,
as follows directly from Theorem 1, hence for heavy
hitters interpolation is on par with item aggregation.

5.4 Multigram Interpolation

We show that the factorizing approximation of Sec-
tion 4 can be used to obtain good estimates of multi-
grams in both textual documents and query streams.
To show that this works for interpolating terms, we
approximate trigrams by sketching unigrams and bi-
grams with a regular Count-Min sketch. We do that
in three different ways:

Unigram approximation by consuming unigrams
and using (4) to estimate trigram probabilities;

Bigram approximation by consuming bigrams and
unigrams and using (5);

Trigram sketching by consuming and querying
sketch for trigrams directly.

Figure 7: Absolute accuracy n̂ − n of three different
aggregation algorithms.

Absolute Relative
error error

Unigram approximation 24977905.97 0.265740
Bigram approximation 1222160.44 0.013002

Trigram sketching 8352974.60 0.088867

Table 1: Absolute and relative deviation of trigram
approximation models using Wikipedia data.

Table 1 compares the resulting estimates with exact
trigram counts. Note that due to the lower number of
collisions, our bigram approximation has less than 15%
the error of direct aggregation. This is quite significant
since it means that in order to store higher order terms
direct sketching may not be quite so desirable (possi-
bly with the exception of storing the heaviest hitters
directly). It offers a very fast and cheap means of re-
trieving estimates relative to exact storage.

6 Discussion

Summary In this paper we presented an algorithm
for aggregating statistics on data streams which re-
tains temporal information of the items. At its heart
we used the Count-Min sketch to obtain a simple yet
effective compressed representation of the data. By
using time and item aggregation we showed how it is
possible to obtain sketches for a more extensive set of
query types. Moreover, we showed how the theory of
graphical models can be employed to obtain estimates
of structured set of covariates.

Our system allows real-time data access in constant
time without any need for expensive preprocessing.
This makes it an attractive alternative to batch pro-

cessing systems which, while accurate, are unable to
respond to requests without latency and which are
therefore less well suited to online data analysis. Ex-
periments demonstrated the excellent performance of
the proposed algorithms.

An alternative of our work is to use empirical Laplace
transforms to aggregate data. That is, many sketches
are amenable to weighted inserts over time. This al-
lows us to obtain sketches of the Laplace-transform
counts of a sequence. Decoding then occurs at the
client issuing a frequency query to the server. Details
of this are the subject of future work.

Extension to Delayed Updates In some cases
data may arrive with some delay. Here the Count-
Min sketch excels due to the fact that it is a linear
statistic of the data: We can always insert data later
into the appropriate (aged) records at a later stage.

A second (and much more significant) advantage is
that the additive property of Corollary 2 also ap-
plies to sets. Denote by S(X) the data sketch struc-
ture given by Algorithms 2, 3, and 4. In this case
S(X∪X′) = S(X) +S(X′). Hence we may use MapRe-
duce to carry out sketches on subsets of the data first
and then aggregate the terms between mappers. Since
everything is linear once the data has been inserted
this exhibits perfect scaling properties.

Note that the issue might arise that different subsets
of the data span slightly different time ranges. In this
case it is important to ensure that all sketches are syn-
chronized to the same time intervals since otherwise
aliasing might occur (e.g. a summary of 1 week’s data
might start on different days on different machines).

Parallelization Note that the sketches discussed in
the present paper are well amenable to parallelization.
In fact, we may use consistent hashing [9] to distribute
hash functions and keys over a range of workstations.
Details of this strategy are described in [15]. In a nut-
shell the idea is to send keys to several machines, each
of which compute only a single row of the matrix M ,
each of them using a different hash function. The com-
bination of both ideas leads to a powerful enterprise
framework for sketching data streams in real time.

Acknowledgments This work was supported by
the Australian Research Council. We thank George
Varghese for inspiring discussions.

Figure 8: Absolute n̂−n and relative n̂−n
n̂ accuracy, stratified by item frequency interval. Left column: absolute

error. Right column: relative deviation. Top row: error over time, stratified by frequency of occurrence of items.
Bottom row: error for the heaviest hitters.

References

[1] Y. Altun and A. J. Smola. Unifying divergence
minimization and statistical inference via convex
duality. In H.U. Simon and G. Lugosi, editors,
Proc. Annual Conf. Computational Learning The-
ory, LNCS, pages 139–153. Springer, 2006.

[2] J. Besag. Spatial interaction and the statisti-
cal analysis of lattice systems (with discussion).
Journal of the Royal Statistical Society. Series B,
36(2):192–236, 1974.

[3] B.H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–
426, 1970.

[4] A. Broder and M. Mitzenmacher. Network ap-
plications of bloom filters: A survey. In Internet
Mathematics, volume 1. A. K. Peters, Ltd., 2004.

[5] M. Charikar, K. Chen, and M. Farach-Colton.
Finding frequent items in data streams. Theo-
retical Computer Science, 312(1):3–15, 2004.

[6] G. Cormode and M. Muthukrishnan. An im-
proved data stream summary: The count-min
sketch and its applications. In LATIN: Latin
American Symposium on Theoretical Informatics,
2004.

[7] G. Cormode and S. Muthukrishnan. Summarizing
and mining skewed data streams. In SDM, 2005.

[8] T. M. Cover and J. A. Thomas. Elements of In-
formation Theory. John Wiley and Sons, New
York, 1991.

[9] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing
and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In
Symposium on the Theory of Computing STOC,
pages 654–663, New York, May 1997. Association
for Computing Machinery.

[10] R. Kneser and H. Ney. Improved backing-off for
M-gram language modeling. In Proc. ICASSP
’95, pages 181–184, Detroit, MI, May 1995.

[11] Y. Lu, A. Montanari, B. Prabhakar, S. Dharma-
purikar, and A. Kabbani. Counter braids: a novel
counter architecture for per-flow measurement. In
Z. Liu, V. Misra, and P.J. Shenoy, editors, Pro-
ceedings of the 2008 ACM SIGMETRICS Inter-
national Conference on Measurement and Model-
ing of Computer Systems, pages 121–132. ACM,
2008.

[12] A. Metwally, D. Agrawal, and A. El Abbadi. An
integrated efficient solution for computing fre-
quent and top-k elements in data streams. ACM
Trans. Database Systems, 31(3):1095–1133, 2006.

[13] R. B. Nelsen. An introduction to copulas.
Springer, 2006.

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language
for data processing. In Jason Tsong-Li Wang, ed-
itor, ACM SIGMOD Conference on Management
of Data, Vancouver, BC, Canada, pages 1099–
1110. ACM, 2008.

[15] A. J. Smola, S. Matusevich, and A. Ahmed.
Divide and prosper — fault tolerant scalable
sketches. In Conference on Very Large Databases,
2012. submitted.

[16] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hier-
archical dirichlet processes. Journal of the Amer-
ican Statistical Association, 101(576):1566–1581,
2006.

	Introduction
	Count-Min Sketch
	Aggregation
	Time Aggregation
	Item Aggregation
	Resolution Extrapolation

	Beyond Sketches
	Experiments
	Setup
	Performance
	Accuracy
	Multigram Interpolation

	Discussion

