
Investigating the Geography of Open Source Software
through Github

Yuri Takhteyev
University of Toronto
Faculty of Information

 yuri.takhteyev@utoronto.ca

Andrew Hilts
University of Toronto
Faculty of Information

andrew.hilts@utoronto.ca

ABSTRACT
The paper presents an empirical study of the geography of
open source software development that looks at Github, a
popular project hosting website. We show that developers
are highly clustered and concentrated primarily in North
America and Western and Northern Europe, though a
substantial minority is present in other regions. Code
contributions and attention show a strong local bias. Users
in North America account for a larger share of received
contributions than of contributions made. They also receive
a disproportionate amount of attention.

Author Keywords
open source software, geography, distance, collaboration,
empirical study, global software development

ACM Classification Keywords
D.2.9 [Software Engineering]: Management: Programming
teams; H.5.3 [Information Interfaces and Presentation]:
Group and Organization Interfaces: Computer-supported
cooperative work. K.1 [Computing Milieu]: The Computer
Industry

INTRODUCTION
Location has always been a crucial factor in organization of
work. The numerous reasons why specialized industries
cluster in particular places, for example, was already
analyzed by Marshall at the end of the 19th century
(Marshall, 1890/1927). The rise of modern
telecommunication technologies, however, has lead many
to ask whether place and distance would remain important
for work, especially for knowledge work that is assumed to
involve primarily manipulation of information. Much of the
research since the 1970s has suggested that place is likely to
continue to be important (Short et al, 1976; Olson & Olson,

2000; Bradner & Mark, 2002). Despite the challenges that
distance presents for cooperative work, however, remote
collaboration has become a daily reality for many
knowledge workers. This paper itself has been written
largely by the co-authors while they were separated by over
8,000 km. It is thus important for us to base our discussions
of the feasibility and challenges of global collaboration on
empirical studies that measure the extent of such
collaboration. In this paper, we look at the geographic
dimensions of open source software development using a
dataset derived from Github.com, a popular open-source
project hosting site. We explore both the geographic
distribution of Github users and the relationship between
distance and the formation of collaborative ties.

Software development presents a particularly interesting
domain in which to analyze the interaction between
distance and collaboration. It is often understood as a field
in which distance matters less, due to the largely immaterial
nature of software work. At the same time, software
production is vastly concentrated; California’s Silicon
Valley is often used as a text-book example of a regional
industry cluster. Open source software development is often
imagined to be even more independent of distance, since its
developers can be assumed to be free to start their projects
wherever they are and to contribute to any projects around
the world. A number of well-known examples seem to give
support to this global imaginary: Linux originated in
Helsinki, and the Ruby programming language was
developed in Japan, Ubuntu hails from South Africa. These
examples become more complicated, of course, once we
consider that the author of Linux now lives in the United
States, that Ruby came to prominence through “Rails”, a
system built in Chicago, and that Ubuntu is developed by a
company based in London.

EARLIER WORK

Locating OSS Developers
Studies about OSS developers in general are often limited
in reliability because the complete population of developers
cannot be easily defined or sampled. Prior studies have
typically relied on snowball surveys of developers (Ghosh
et al, 2005), case studies of specific projects (Spinellis
2006; Tang et al, 2006), or looked at online software

1

The paper is currently under review.
This version is from August 6, 2010.

repositories (Dempsey et al 1999; Robles & Gonzalez-
Barahona, 2006; Gonzalez-Barahona et al, 2008; Von
Engelhardt et al 2010). Survey methods, for example as
employed by Ghosh et al (2005), have the advantage of
allowing the researcher to select questions to be asked of
the participants, but raise particularly difficult questions of
generalizability. A case study examining a single or small
numbers of projects can be useful for in-depth analysis of
intra-project work dynamics (e.g., Ducheneaut, 2005;
Spinellis, 2006; Tang et al. 2006) and can be easier to
interpret, since researchers can rely on all that is known
about the particular project to discuss what this project is
(or is not) representative of. For broader generalization,
however, researchers need to look at a multitude of
projects.

Analyzing data from services offering hosting to a large
number of open source projects has been a popular solution.
While such studies retain certain characteristics of case
studies (each hosting service has its own unique history and
community), they can offer more generalizability than
studies of a single project or small set of them, while being
somewhat easier to interpret than snowball surveys.

SourceForge.org has been particularly important in
advancing research on OSS development (see, for example
Robles & Gonzalez-Barahona, 2006; Crowston et al.,
2006; Gonzalez-Barahona et al., 2008; Subramanyam &
Xia, 2008; Von Engelhardt et al, 2010). Its popularity
among researchers is closely linked with its popularity
among developers. Throughout the past decade,
SourceForge was widely seen as the place for hosting open
source software projects and was thus assumed to be more
representative of the total universe of OSS developers than
other, smaller, systems. The global representativeness of
SourceForge is questioned by scholars such as
Subramanyam & Xia (2008), who complement their studies
by an investigation of an Indian and a Chinese community
websites, Sarovar.org and HuiHoo.org. Unfortunately,
studies involving multiple hosting sites create challenges
for aggregating data and avoiding double-counting
developers who are involved with multiple sites. Studying
“global” hosting services as SourceForge, in contrast,
provides us with readily comparable project data as well as
a defined population of developers.

A significant and recognized limitation of using
SourceForge in particular as a case study for investigating
the geography of OSS development is that the locations of
developers are not explicitly stored (Robles & Gonzalez-
Barahona, 2006; Gonzalez-Barahona et al., 2008; Von
Engelhardt et al, 2010). Therefore, researchers have relied
on a number of different methods for inferring users’
location. Locations can be inferred to some exntent from
the top-level domains (TLDs) of developer e-mail addresses
(eg., .ca, .jp, .br). E-mail address TLDs obtained from both
SourceForge and project mailing lists are widely employed

as the base data source for developer locations (Dempsey et
al, 1999; Robles & Gonzalez-Barahona, 2006; Gonzalez-
Barahona et al., 2008; Von Engelhardt). The researchers all
recognize that this method is limited due to the common
occurrence of generic TLDs such as .com, .net and .org,
users of which may not be clearly associated with a
country. In our own sample of Github users, accounts
reporting their location in the ten most commonly countries
other than the United States use an email address in their
country’s TLD with frequencies that vary from 2% (China)
to 37% (Germany), with the frequency of 10-20% being
most common.1

Some researchers have looked for ways to make use of
timezones associated with a user profile in addition to
proportional statistical inferences for users without a
timezone (Robles & Gonzalez-Barahona, 2006; Gonzalez-
Barahona et al., 2008). More recent work (e.g., Von
Engelhardt et al, 2010) has avoided this problem by making
use of a research database that provides IP addresses from
which the users log into SourceForge. (This dataset is not
publicly available and requires a signed agreement.)

While SourceForge has provided valuable data about the
OSS community, the emergence of new systems for version
control such as git and bazaar in the recent years, combined
with SourceForge’s slow adoption of such services (as well
as a number of other features) has lead to a proliferation of
several alternative hosting sites. In this paper, we look at
one of such sites, Github.com, which has recently grown in
popularity and does not feature some of the limitations
discussed above, providing richer data about OSS
development activities.

Results from the studies mentioned above show that
developers are predominately located in North American
and European countries, particularly in the United States.
(As Subramanyam & Xia point out, this could in part reflect
that those studies surveyed developers in those counties or
looked at “Western” hosting services such as SourceForge.)
An early study of Linux development archives found a
heavy European presence in the total number of
contributors (Dempsey et al, 1999). A survey by Ghosh et
al. (2005) found that French, American and German
residents were respectively the most numerous developers.
Later studies, however, presented different results. A
project-specific study by Tuomi (2005) found that most
developers identified with the United States (37%),
followed by Germany (17%), the United Kingdom (8%),
and Canada (6%). A study of SourceForge (Robles and
Gonzalez-Barahona, 2006; Gonzalez-Barahona et al. 2008)
similarly reported that most registered developers were
located in the USA (36%), Germany (8%), the UK (5%)
and Canada (4%). In another study of SourceForge, which
measured not merely registered, but active developers that
had contributed to a project within a year of the study, the

1Needless to say, very few (<1%) of the US-based users use a “.us”

2

concentration of developers in the United States in
particular was even greater: the United States accounted for
44%, followed by Germany (9%), the UK (5%), and
Canada (4%) (Von Engelhardt et al, 2010).

At a continental level, most developers of the FreeBSD
project were found to reside in North America (46%) and
Europe (39%), with small clusters appearing in Asia (10%),
Australia (2.5%), South America (1.6%), and Africa (0.8%)
(Spinellis, 2006). This ordering is roughly consistent with
the earlier study of SourceForge that reported registered
users as being located in North America (41%), Europe
(30%), Asia (11%), Oceania (4%),2 South America (3%)
and Africa (1%) (Robles and Gonzalez-Barahona, 2006;
Gonzalez-Barahona et al. 2008).

These results indicate that the most frequently occurring
national residences of registered SourceForge users are very
similar to the top countries by GDP, with the notable
exceptions of Japan performing lower and Canada and
Australia performing higher (Robles and Gonzalez-
Barahona, 2006; Gonzalez-Barahona et al., 2008).
Furthermore, an even greater proportion of active
SourceForge developers reside in OECD countries (Von
Engelhardt et al, 2010). However, the same study reported
that once Internet access was taken into account, the ratio of
countries’ Internet users to OSS developers were less
disparately distributed, though still uneven.

Ties and Distance
Uneven global distributions of open source software
developers likely has many reason. One simple factor, for
example, is the variation in Internet access in different parts
of the world (Gonzalez-Barahona et al, 2008; Von
Engelhardt et al, 2010), as well as the broader differences in
economic development. An important contributing factor,
however, is likely the locality of the open source practice.
Since open source software development has its roots in
specific places, we would expect it to remain
disproportionately concentrated in such places to the extent
that distance presents a barrier to collaboration and to the
reproduction of the practice elsewhere.

Olson & Olson (2000) review a substantial body of research
that shows the many different ways in which distance can
hinder collaboration, even in the presence of modern
communication technologies. Distance can impede
collaboration by preventing face-to-face interaction,
introducing differences of context and culture, and often by
introducing a difference of time zone. Studies of software
development projects have shown that such projects are not
immune to the effect of distance (Carmel and Agarwel,
2001; Holmström et al, 2006; Herbsleb, 2001; Del Rosso,
2009). However, a number of methods have been proposed
for reducing the effects of distance in software
development, such as the division of software into more

2We assume that in this case Oceania includes Australia and New Zealand.

autonomous, loosely-coupled modules (Olson & Olson,
2000; Carmel and Agarwel, 2001; German, 2003; Gutwin,
2004). Cultural distance can be also reduced by
collaborating with international partners with similar
language or cultural values (Carmel and Agarwel, 2001).
Carmel and Agarwel predict that “projects will increasingly
look like a global virtual archipelago with several separate
clusters of colocated professionals sprinkled with dispersed
individuals working remotely” (p. 29).

Studies of open source software developers have also
demonstrated the effects of distance, though many studies
have also pointed out the commonality of long-distance
collaboration in OSS. Spinellis (2006) compared the
geographic distance between mentor-mentee pairs in the
FreeBSD project and found that these pairs were more
likely to be established within the same geographic area
than regular collaborating developers. However, the author
also notes that such mentorship relationships are also found
across continents. Furthermore, the study reported the
average distance between all FreeBSD contributors and that
of closely collaborating contributors are roughly equal, at
around 6,500 km, suggesting that collaborative activity in
that project was not heavily constrained by geographic
distance. Tang et al (2009) measured the 'spread' (in hours)
between the timezones of an OSS project's mailing list
discussants. They found that discussion initiators from
outside of North America, Canada and the EU experience
high response delays. Distance has also been found to be a
factor in studies of other collaborative communities such as
Wikipedia and Flickr (Crandall et al, 2009, Hecht and
Gergle, 2010).

Degrees of Participation in OSS Projects
While in theory anyone can contribute to an open source
project, permissions and respect within the development
community are not evenly distributed. Crowston &
Howison (2005) conceptualized different degrees of
involvement in an open source development project as a
layered onion. On the outside of the project operate the
software users, some of whom also operate at the project’s
periphery as mailing list subscribers. The next layer of
involvement includes bug reporters and fixers, while the
core of the project consists of the regular developers who
write and commit the bulk of the source code. Indeed, many
scholars have observed the tendency of OSS projects to
feature a core group of developers plus a wider peripheral
community (see Crowston et al. 2006). For instance,
Mockus et al.'s widely-cited study found that a small core
of developers (15%) contribute a large majority (83%) of
modification requests to Apache's source code (Mockus et
al. 2000). A later case study also noted a core/periphery
structure of 15 developers contributing 57% of new code in
the FreeBSD project, albeit with a less extreme
concentration than Mockus et al's findings (Dinh-Trong and
Bieman, 2005).

3

The roles and responsibilities afforded to different areas
within development hierarchies each contribute to the the
project's overall culture, community and evolving software
product. Indeed, Kuk found that the KDE developer mailing
list exhibits a concentration of discussion topics
surrounding a core group of mailing list participants (Kuk,
2006). Kuk argues that this participation inequality is
essential for knowledge sharing and management of OSS
development, which is consistent with the general models
of learning, such as Lave & Wenger’s (1991) notion of
“legitimate peripheral participation” in communities of
practice. Peripheral participants can also have an impact on
projects’ development by providing ideas, even if such
ideas are filtered by the core group (Barcellini et al. 2008).

Various authors have argued that the core group of
developers in an open source project tend to be more
homogeneous than those occupying the periphery. This
homogeneity is expressed in terms of shared goals and
mental models in relation to the specific software project
and in terms of perceived technical expertise (e.g.,
Ducheneaut, 2005). Demazière et al. (2007) case study
found that a core of contributors to the project had a shared
“community of experience” (p. 11), while an intermediate
circle of contributors had more diverse involvement
rationales for participation. This shared sense of community
and thus low sociocultural distance could be encouraged by
the fact that developers are self-selected and thus perceive
an alignment between their own goals and the project's
goals (Lundell et al., 2002).

The different degrees of participation become important for
studies of the geography of open source software
development. For example, we can expect that more central
forms of participation (e.g., maintaining a project) can be
associated with central places, while peripheral forms of
participation (e.g., filing bug reports and making smaller
code contributions) may be more prevalent in peripheral
locations. For example, studies that measured not merely
registered, but active developers have often reported higher
concentration of developers in the United States than those
that attempted to count all developers.

DATA SOURCE AND METHOD

Github
In this paper we look at geographic dimensions of
development on Github, a website that provides hosting for
open source software projects using git. While Github now
provides a range of features, including bugtracking, blogs,
and project wikis, its defining feature has been version
control using git. Git is a version control system developed
in 2005. Together with other “distributed” version control
systems (such as bazaar and mercurial), git makes it easier
to merge once-forked repositories, thus encouraging
frequent code-forking and enabling a more decentralized
development model (Torvalds 2007, Bird et al, 2009). The

rapid growth in popularity of distributed version control has
lead to appearance of sites providing hosting of software
repositories using such systems. In the recent years, Github
emerged as the most popular hosting system focused on git.
Github now hosts such popular projects as Ruby on Rails,
CakePHP, JQuery and curl and has recently claimed to be
hosting one million repositories (Holman, 2010).3

GitHub users are invited to specify their geographic
location in their individual profiles. While not all users
provide their location, many do. The locations provided
vary in precision and seriousness, though the
overwhelming majority of those who specify a location
provide a description that can be easily interpreted as
referring to a particular place (see below). GitHub therefore
offers a public dataset with self-reported user location data,
avoiding the problems commonly associated with analysis
of SourceForge data.

GitHub also borrows a number of features from recently
popular “social media” systems such as Twitter. A Github
user can choose to “follow” another user, essentially
subscribing to an update stream of the followed user’
activity, which is displayed when a user logs into the
website. Similarly, users can choose to “watch” other users’
repositories. The system also tracks code contributions
between users, making it easy to identify who has made
contributions to whose repositories.4 Github thus provides
researchers with a collection of relational data, measuring
several different relationships (following, watching, making
a contribution) and making it possible to investigate how
each of those relationships is affected by place.

Data collection
We collected our data through Github’s public API, which
offers the same data as available on the Github’s website
but presents it in a structured format for simpler processing.
The data were collected from May to July of 2010. The data
collection followed a recursive procedure. We started with
a single account, belonging to one of Github’s founders.
We then identified accounts connected to this user, then
looked for accounts connected to the newly found ones,
repeating this procedure until we achieved closure. New
accounts were identified through the four kinds of
connections mentioned in the previous section: (1) those
that follow accounts collected earlier, (2) those followed by
the accounts collected earlier, (3) those whose repositories
were being “watched” by accounts collected earlier, (4)
those who had made code contributions to the repositories
watched by accounts collected earlier. (In the case of
following, Github makes it easy to retrieve lists of users

3This number includes forked repositories.

4Github’s tracking of contributions depends on the user providing the site
with the same email address as they use in their git client. However, the
site provides the users with an incentive to use the same address in both
places, since the users can see when their contributions are not being
properly associated with their account.

4

who follow and are being followed by a given account. In
the cases of watching and contributions, the system only
allows one-way queries: a list of repositories watched by a
user and a list of contributors to a repository.)

The process reached closure at 70,414 accounts – at this
point none of the accounts in this set were connected to any
of the accounts outside. This number is smaller than the
number of registered users advertised by Github at the time
– around 250,000. We believe that this is likely due a large
number of isolated accounts.

Relations
In addition to collecting the basic account records for those
70,414 users, we also collected the relationships between
them, obtaining pairs linked by directed relationships of
following, repository-watching and code contributions.
In the case of following, the ties were binary. In the case of
repository watching and code-contributions the ties have
weights: user X can make just one contribution to Y’s
repository, or a large number of them. Similarly, user X can
watch just one or many repositories maintained by Y. For
some of our statistics below we count the number of unique
pairs while for others we count the total number of
contributions and “watchings.”

Git differs in an important way from centralized revision
control systems such as Subversion in that one can easily
“fork” and later re-synchronize repositories. As a result,
Github contains a substantial number of forked repositories.
While such forking is potentially an interesting
phenomenon for investigation, we limited our analysis of
code contributions to only original repositories, ignoring all
forks. The reason for this is that contributions to forked
repositories often do not imply any direct connection
between the contributor and the author of the forked
repository: the presence of a contribution by user X in the
repository of Z may simply mean that Z’s repository is a
copy of Y’s, to which X made a contribution. X and Z may
have no relations. While contributions to the original
(unforked) repositories may be similarly made indirectly (X
could contribute to Z’s copy of Y’s repository, after which
Y would pick up the contribution from Z’s repository), we
believe such indirect flow is meaningful, and in some ways
is the raison d’être of distributed source control: users often
make contributions to forked repositories with the intention
that such contributions would eventually propagate to the
original repository.

Geocoding
Of the 70,414 accounts, 32,503 (46%) specified some value
for location. Nearly all of those descriptions (31,977, or
45% of all accounts) referred to an actual location,
identifying at least the country. A substantial majority
(26,509 or 38% of all accounts) further identified location
at the level of a city or some other place with an area of up

to 25,000 km² – the size of a large metropolitan region.5

The share of accounts identifying a specific location was
higher for the more active accounts. For example, for
accounts associated with the 10,000 most watched
repositories, as many as 82% provided a specific location.

The users employed a total of 8,767 unique descriptions to
specify their locations. The diversity of methods and
conventions for describing locations presented a substantial
problem for geocoding. Table 1 shows some examples of
the ways users identified their location as being in Tokyo.
As indicated by those examples, users may or may not
specify the country and have different conventions as to the
order in which the country, the city and other geographic
units are listed. Ignoring such variation runs a substantial
risk of under-counting users from outside the United States.
On the other hand, searching location strings for names of
cities can introduce false positives and again bias the data
towards larger cities, for example by counting places like
London, Ontario towards London, England. Some of the
popular geocoding APIs similarly introduced a substantial
number of false positives.

To maximize precision, we used a combination of methods
to code the data. First, we attempted to parse the location
into (1) a city and country pair, (2) a city and state/province
pair, or (3) a city, state/province and country triplet,
allowing for a variety of ordering and delimiters. (When
looking for city-province-country triplets, we checked
immediately that such a province exists in the
corresponding country.) In cases where such parsing was
successful, we used Geonames database6 to check if a city
by such a name in fact exists in the stated province and
country. If such a city was found, we accepted it as the
intended location and associated the account with geo
coordinates provided by Geonames. Location that could not
be parsed or were parsed into a pair or triplet that could not
be found in Geonames, were then run through Yahoo’s
GeoAPI. We found that Yahoo’s GeoAPI identified the

5The 25,000 cutoff was introduced for the sake of consistency. If we were
to include “San Francisco Bay Area” as a “specific” location, we wanted to
make sure to also include other areas of comparable size, such as “Wales.”

6http://geonames.org/

5

Tokyo, Japan

Tokyo

tokyo

Tokyo Japan

Tokyo/Japan

TOKYO

 東京

Tokyo, JP

Japan/Tokyo

Japan Tokyo

Tokyo JP

Tokyo, Japan.

tokyo, Japan

tokyo.japan

tokyo japan

東京都千代田区,
日本「Tokyo,Japan 」

Tokyo, Ulanbaatr

Tokyo Shibuya

Tokyo, Setagaya

Tokyo, JPN

Table 1: User-supplied locations descriptions for Tokyo.

http://geonames.org/

locations correctly in the majority of cases, but produced a
very large number of false positives. For this reason, the
results were checked and corrected by hand, then verified
using the Geonames database. Overall, we decoded 57% of
the locations using the fully automated method, while 43%
of descriptions required some degree of manual processing.

Clustering
Locations specified by the users referred to units of rather
different size, which in some cases overlapped each other.
For example, some users identified their location as
“Brooklyn, NY” while others placed themselves in “New
York, NY.” (This problem is common with self-reported
locations. Many statistics for Twitter show “Brooklyn, NY”
as a separate city.) To avoid ad-hoc solutions to this
problem (e.g., manually assigning Brooklyn to New York),
we merged the locations into regional clusters, using an
iterative procedure, replacing nearby locations with a single
point located at the average of their geocoordinates,
weighted by the number of observations at each point. For
example, the 238 observations labeled “New York, NY”
and 180 observations labeled “Brooklyn, NY,” would be
replaced by a single point, now representing 418 accounts,
located between the geo-coordinates originally assigned to
“New York” and “Brooklyn” (238/418th of the way from
the original New York point to the original Brooklyn
Point). This procedure resulted in 679 local clusters. The
average distance between the original position of a location
and the center of the cluster to which it was assigned was
22 km, with a standard deviation of 27 km. The maximum
distance was 158 km. The resulting clusters varied
substantially in the number of observations that were
merged into them. For example, a cluster corresponding to
San Francisco Bay Area included 103 unique points
(representing 1985 accounts), while 38% of the clusters
consisted of a single location.

RESULTS

Users and contributions by region
Consistent with earlier studies of open source software
developers, the United States accounts for the largest share
of the registered user accounts by far: 39%. The remaining
61% of users are spread between a large number of
countries, none of which accounts for more than 7%. (The
second largest country is the United Kingdom, at 7%,
followed by Germany at 6%. Both numbers are
consistent with the earlier literature.)7 We present country
statistics for the top ten countries in table 2.

Since countries vary substantially in size, we avoid further
discussion of results by country and instead focus on two

7While our numbers are consistent with the counts of registered open
source developers by Robles & Gonzalez-Barahona (2006) and Tuomi
(2005), they differ substantially from those reported by Ghosh et al (2005),
which gave substantially higher numbers for European countries and in
particularly for France (15%).

levels: macro-regional and local, only mentioning specific
countries when regional statistics appear substantially
influenced by a single country.

For macro-regional analysis we merged country data into
sub-regions as defined by the UN Statistics Department.8

Due to the large number of sub-regions, most of which have
rather few data points, we further merged sub-regions
within the same continental region to the extent that they
appeared to have similar profiles. In particular, we merged
all sub-regions within Africa and Asia and merged all sub-
regions in the Americas except for North America into
“Latin America,” keeping “North America” separate due to
its obviously different profile from the other American sub-
regions. Finally we merged the four sub-regions of Europe
into two: “Western and Northern Europe” (further “W&N
Europe”) and “Eastern and Southern Europe” (further
“E&S Europe”). In both cases we merged sub-regions that
seemed to be quite similar in terms of the statistics
discussed below.

As shown in table 3 and the outer ring of figure 1, North
America and W&N Europe account respectively for 43%
and 26% of the users. The remaining regions account for
11% or less each. The North America’s remains about the
same if we only count users for whom we registered at least
one code contribution, but rises to 48% when we count at
the total number of contributions associated with accounts
in North America. This gain comes at the expense of each
of the other regions except for Australia and New Zealand.
The loss is most substantial for Latin America, which
accounts for 6.4% of registered user accounts but only for

8See http://unstats.un.org/unsd/methods/m49/m49regin.htm. It needs to be
noted that UNSD’s sub-regions differ somewhat from colloquial usage of
the regional names. In particular, “North America” includes only United
States and Canada, but not Mexico.

6

Country Share of
users

Share of
contributors

Share of
conributions

USA 38.6 38.7 43.1

UK 7.3 7.7 6.5

Germany 5.9 6.2 6.1

Canada 4.2 4.3 4.3

Brazil 4.2 3.6 2.2

Japan 3.9 3.9 5.2

France 3.0 3.2 3.2

Australia 2.9 3.1 3.1

Russia 2.2 2.3 2.2

Sweden 2.0 2.2 2.3

Table 2: Github participation by country (%).

3.6% of the contributions. (A large part of this loss comes
from Brazil, which accounts for 4.2% of users and 2.2% of
contributions.)

Despite the dominance of North America and W&N
Europe, it is important to note that other regions do jointly
account for 31% users and 30% of the contributions.

Users and Contributions by Local Cluster
Beyond macro-regional differences, users and their
contributions are concentrated in a handful of locations.
The top five local clusters – “San Francisco,” “London,”
“New York,” “Tokyo” and “Boston” – account for 20% of
registered users and 25% of the contributions. The top ten,
shown in table 3, account for 29% and 35% of users and
contributions respectively. The top fifty account for 63%
and 71%. Looking at the clusters, at the same time, makes it
easier to note the presence of users outside North America
and W&N Europe: the fourth largest cluster is Tokyo, while
Brazil’s São Paulo ranks 12th by he number of users and 14th

by he number of contributions.

Distance and Ties
The Github dataset, however, allows us to not only look at
where the users are, but also at how distance affects ties
between them. We identified 51,507 contributor-owner
pairs – cases of a registered user making a contribution to
an unforked repository of some other user. 33% of those
pairs could be located on both end. Of those, 24% fall
within the same local cluster. Contributor-owner pairs,
however, vary in the number of contributions made. As it
turns out, contributor-owner pairs located in the same
cluster have more contributions on average. If we add up all

contributions, 41% of the total begin and end in the same
cluster.

It appears that one of the reasons for the locality of
contributions is the fact that contributors and repository
“owners” may be associated with the same organizations.

7

North
America

W&N
Europe

E&S Europe Asia Latin
America

Australia and
New Zealand

Africa

Users 42.9 25.7 10.6 10.2 6.4 3.6 0.6

Contributors 43.0 27.4 10.5 9.0 5.5 3.9 0.6

Contributions 47.5 27.3 8.4 8.6 3.6 4.1 0.5

Receivers 44.3 26.6 9.9 9.2 5.4 4.0 0.6

Received
contributions

50.9 26.5 7.4 7.3 3.2 3.9 0.7

Users with watched
repositories

42.6 25.9 10.4 10.5 6.2 3.7 0.6

Being watched 58.9 20.8 6.1 5.4 3.7 4.6 0.4

Followed users 44.5 25.7 9.9 9.5 6.3 3.6 0.5

Being followed 55.4 20.4 5.8 9.3 5.0 3.7 0.3

Table 3: Github participation by region (%).

North America
W&N Europe
E&S Europe
Asia
Latin America
Australia and
New Zealand
Africa

From outer ring to inner:
share of users,
share of contributors,
share of contributions,
share of received contributions,
share of watched repositories

Figure 1: Five participation metrics as a diagram.

Users have an option to specify their “company” in their
profiles, and we checked whether the contributor’s and the
owner’s reported company matched. In-company
contributions accounted for 22% of all contributions and
74% of such contributions were within the same local
cluster. Even cross-company contributions, however,
tended to be local: 32% were in the same cluster.

There was also a substantial – though weaker – tendency
towards locality for user-following: 30% of following ties
are local. This tendency is still observable – but yet lower –
for repository-watching: only 8% of such ties are local.
(The number rises slightly – to 11% – if we count
separately each watched repository, allowing for multiple
watching ties between the same pair of users. As with
contributions, local pairs users watch a larger number of
repositories.) The share of local repository watching pairs
goes down to 7% if we consider only cross-company ties.

We interpret the difference between repository-watching
and following as reflecting a difference between
instrumental and social ties. Users likely “watch”
repositories for software their use in one way or another.
They “follow” people whom they find interesting as
individuals. The latter relation is much more likely to
reflect pre-existing social ties, often local ones.

The high prevalence of local ties can be explained in part
by the high degree of local clustering noted earlier. When
users are concentrated in a handful of places, they will form
a large number of local ties even if ties are formed fully at
random. The observed prevalence of local ties, however, far
surpasses this clustering effect. For example, if users in the
San Francisco cluster made contributions choosing recients
at random, about 7% of their contributions would land back
in the San Francisco cluster. For users located in other local

clusters, the number would be much smaller, due to those
clusters’ smaller share of the total user population. Overall,
at the current level of clustering, we would expect about 2%
of the ties to fall within clusters if the ties were formed
randomly.

Distance also matters for longer ties. Figure 2 shows a
histogram of contribution and following ties grouped by
length into 300 km buckets. The three-hump shape of the
histogram is explained by the fact that the users are
distributed unevenly around the globe. Since a large
number of the users are concentrated on the two coasts of
the United States and in Western Europe, we we can expect
a substantial number of contributions with the length of a
little over 4,000 km (the distance between the two coasts)
and around 8,000-9,000 km (the distance from California to
Western Europe). On the other hand, we can expect
relatively few contribution ties with length of 5,000 km,
since there are no major clusters located at that distance
from such major centers as San Francisco, New York or
London. (A circle 5,000 km in radius centered on San
Francisco would be located almost entirely in the ocean or
the Canadian North.) The histogram includes a line that
shows the percentage of ties that we would expect to fall in
each bucket if the users formed connections randomly while
remaining in their current location.9 (This line was obtained
through a simulation.) As we can see, the general shape of
this simulated distribution repeats the shape of the observed
distributions, but there is a substantial deficit of connections
past 5,000 km, which is easiest to see in the range from
7,000 to 10,000 km.

Asymmetries
While users in North America make a disproportionate
number of contributions (relative to the total number of
registered users), they account for a yet larger share of
contributions received 51% vs 48%. Repositories associated
with North American accounts also account for 59% of
repository-watching. For most other regions, the opposite
is true. E&S Europe, Asia and Latin America, jointly
account for 21% of contributions made, but only 18% of
contributions received. (See table 3.) They account for a yet
smaller share of repositories being watched: 16%. North
American users are also being followed at a
disproportionate rate. Though this effect is substantially
weaker than for repository-watching, this weakening
appears to be in part due to the stronger locality of
following.10

9Note that if the actual distribution were not taken into consideration – that
is, if the users were placed randomly on the map and then formed random
connections – we would expect the number of ties to grow steadily up to
10,000 km, then reduce back to nothing at 20,000 km, reflecting the shape
and dimensions of the globe.

10We do not present here an analysis of ties between local clusters, because
such analysis is complicated by fact that North America accounts for a
larger number of clusters and thus scores disproportionately on all cross-
local ties.

8

Cluster Share
of users

Share of
contributors

Share of
contributions

San Francisco, USA 7.4 7.4 9.7

London, UK 4.2 4.4 3.7

New York, USA 3.9 3.7 4.1

Tokyo, Japan 2.6 2.7 3.2

Boston, USA 2.2 2.4 3.3

Seattle, USA 2.0 2.0 2.2

Chicago, USA 1.9 2.1 2.4

Washington, USA 1.8 2.1 1.9

Los Angeles, USA 1.8 1.6 2.9

Paris, France 1.6 1.8 1.6

Table 4: Github participation by local clusters (%).

CONCLUSION
Our analysis of the geographic dimensions of open source
participation on Github provides a picture of a distributed
yet clustered world. Participants are spread around the
world, though concentrated substantially in some regions,
generally replicating the proportions found by other
researchers. However, they are closely clustered in a
relatively small number of places, lending some evidence to
Carmel and Agarwel's prediction of a global virtual
archipelago of groups of cooperating developers (2001).
Distance has an important effect on code contribution and
following of users, with a lesser effect on the attention
directed towards software repositories. Place matters in
open source software development.

ACKNOWLEDGMENTS
This material is based in part on work supported by an
award from Project Open Source|Open Access, KMDI.

REFERENCES
1.Barcellini, F., Détienne, F., Burkhardt, J., and Sack, W. A

socio-cognitive analysis of online design discussions in an
Open Source Software community. Interacting with
Computers 20, 1 (2008). 141-165

2.Bird, C., Rigby, P. C., Barr, E. T., Hamilton, D. J.,
German, D. M., and Devanbu, P. The promises and perils
of mining git. In Proc. MSR '09. IEEE Computer Society
(2009).

3.Bradner, E. and Mark, G. Why distance matters: Effects
on cooperation, persuasion and deception. In Proc. CSCW
2002, ACM Press (2002). 226-235.

4.Carmel, E., and Agarwel, R. Tactical Approaches for
Alleviating Distance in Global Software Development.
IEEE Software 18, 2 (2001). 22-29.

5.Crandall, D., Backstrom, L., Huttenlocher, D., and
Klienberg, J. Mapping the world's photos. In Proc. WWW
2009. ACM Press (2009).

6.Crowston, K. and Howison, J. The social structure of
open source software development teams. First Monday
10, 2 (2005). Online.

7.Crowston, K., Wei, K., Li, Q., and Howison, J. Core and
periphery in Free/Libre and Open Source software team
communications. In Proc. HICSS '06. IEEE Computer
Society (2006).

8.Del Rosso, C. Comprehend and analyze knowledge
networks to improve software evolution. J. Softw. Maint.
Evol.: Res. Pract. 21 (2009). 189-125.

9.Demazière, D., Horn, F. and Zune, M. Individual and
organizational approaches of voluntary participation in
FLOSS: An analysis based on the case of Spip. In Proc.
1st Workshop on the diffusion of FLOSS and the
Organisation of the Software Industry: From Social
Networks to Economic and Legal Models. (2007).

10.Dempsey, B. J., Weiss, D., Jones, P. and Grenberg, J. A

9

300
900

1500
2100

2700
3300

3900
4500

5100
5700

6300
6900

7500
8100

8700
9300

9900
10500

11100
11700

12300
12900

13500
14100

14700
15300

15900
16500

17100
17700

18300
18900

19500
20100

0

5

10

15

20

25

30

35

40

45

50

following
contributions
simulated

Figure 2: Distribution of ties by length, using 300 km buckets.

quantitative profile of a community of open source Linux
developers. Unpublished working paper, School of
Information and Library Science, University of North
Carolina at Chapel Hill (1999).
http://sils.unc.edu/research/publications/reports/TR-1999-
05.pdf

11.Dinh-Trong, T. T. and Bieman, J. M. The FreeBSD
project: A replication case study of open source
development. IEEE Transactions on Software
Engineering 31, 6 (2005). 481-494.

12.Ducheneaut, N. Socialization in an Open Source
Software Community: A Socio-Technical Analysis. In
Proc. CSCW 2005, ACM Press (2005). 323–368.

13.German, D.M. The GNOME project: A case study of
open source, global software development. Software
Process Improvement and Practice 8 (2003). 201-215.

14.Ghosh, R. A., Glott, R. Krieger, B. and Robles, G.. Free/
libre and open source software: Survey and study. Report,
International Institute of Infonomics, University of
Maastricht, Maastricht, The Netherlands, 2005.

15.Ghosh, R. Understanding free software developers:
Findings from the FLOSS study. In Feller, J., Fitzgerald,
B., Hissam, S. and Lakhani, K.R. (eds.), Perspectives on
Free and Open Source Software. Boston, MA: MIT Press,
Boston, MA, USA, 2005.

16.Gonzalez-Barahona, J.M, Robles, G., Andradas-
Izquierdo, R., and Ghosh, R.A. Geographic origin of libre
software developers. Information Economics and Policy
20 (2008). 356–363.

17.Gutwin, C., Penner, R., Schneider, K. Group Awareness
in Distributed Software Development. In Proc. CSCW
2004. ACM Press (2004). 72-81.

18.Guy, I., Jacovi, M., Perer, A., Ronen, I. and Uziel, E.
Same places, same things, same people? Mining user
similarity on social media. In Proc. CSCW 2010, ACM
Press (2010). 41-50.

19.Hecht, B. and Gergle, D. On the “localness” of user-
generated content. In Proc. CSCW 2010, ACM Press
(2010). 229-232.

20.Herbsleb, J.D., Mockus, A., Finholt, T.A., and Grinter,
R.E. An empirical study of global software development:
Distance and speed. In Proc. ISCE 2001. IEEE (2001).
81-90.

21.Holman, Z. One million repositories. GitHub Blog
(2010). http://github.com/blog/685-one-million-
repositories.

22.Holmström, H., Fitzgerald, B., Ågerfalk, P.J., and
Conchúir, E.O. Agile practices reduce distance in global
software development. Information Systems Management
23, 3 2006. 7-18.

23.Kuk, G. Strategic Interaction and Knowledge Sharing in
the KDE Developer Mailing List. Management Science
52, 7 (2006). 1031-1042.

24.Lave, J. and Wenger, E. Situated Learning: Legitimate
Peripheral Participation. Cambridge: Cambridge
University Press, 1991.

25.Lundell, B., Lings, B., Ågerfalk, P.J., Fitzgerald, B.
(2006). The distributed open source software
development model: Observations on communication,
coordination and control. In Proc. ECIS 2006, (2006).

26.Marshall, A. Book IV: The Agents of Production.
Chapter X. Industrial organization, continued. The
concentration of specialized industries in particular
localities” In Principles of Economics: An Introductory
Volume, London: McMillan and Co., 1890/1927. 267–
277.

27.Mockus, A., Fielding, R. T., Herbsleb, J. D. Two Case
Studies of Open Source Software Development: Apache
and Mozilla. ACM Transactions on Software Engineering
and Methodology 11, 3 (2002). 309-346.

28.Olson, G.M. and Olson, J.S. Distance matters. Human-
Computer Interaction 15 (2000). 139-178.

29.Robles, G. and Gonzalez-Barahona, J.M. (2006).
Geographic Location of Developers at SourceForge. In
Proc. MSR'06, Shanghai, China.

30.Short, J. A., Williams, E., and Christie, B. The social
psychology of telecommunications. John Wiley & Sons,
New York, 1976.

31.Spinellis, D. Global software development in the
freeBSD project. In Proc. GSD '06, ACM Press (2006).
73-79.

32.Subramanyam, R. and Xia, M. Free/Libre Open Source
Software development in developing and developed
countries: A conceptual framework with an exploratory
study. Decision Support Systems 46 (2008). 173–186.

33.Tang, R., Hassan, A. E. and Zou, Y. A Case Study on
the Impact of Global Participation on Mailing Lists
Communications of Open Source Projects. In Proc.
KCSD 2009, JSAI (2009). 63-76.

34.Torvalds, L. Linus Torvalds on git. Google Tech Talks
[video]. Available at http://www.youtube.com/watch?
v=4XpnKHJAok8

35.Tuomi, I. Evolution of the Linux credits file:
Methodological challenges and reference data for open
source research. First Monday 9, 6 (2004). Online

36.Von Engelhardt, S., Freytag, A. and Schulz, C. On the
Geographic Allocation of Open Source Software
Activities. Jena Economic Research Papers, (2010).

10

http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.youtube.com/watch?v=4XpnKHJAok8
http://github.com/blog/685-one-million-repositories
http://github.com/blog/685-one-million-repositories
http://github.com/blog/685-one-million-repositories

