

Open Project: A Lightweight Framework for Remote
Sharing of Mobile Applications

Matei Negulescu* Yang Li
University of British Columbia Google Research

mnegules@cs.ubc.ca yangli@acm.org

ABSTRACT
The form factor of mobile devices remains small while their
computing power grows at an accelerated rate. Prior work
has explored expanding the output space by leveraging free
displays in the environment. However, existing solutions
often do not scale. In this paper we discuss Open Project, an
end-to-end framework that allows a user to “project” a
native mobile application onto a display using a phone
camera, leveraging interaction spaces ranging from a PC
monitor to a public wall-sized display. Any display
becomes projectable instantaneously by simply accessing
the lightweight Open Project server via a web browser. By
distributing computation load onto each projecting mobile
device, our framework easily scales for hosting many
projection sessions and devices simultaneously. Our
performance experiments and user studies indicated that
Open Project supported a variety of useful collaborative,
sharing scenarios and performed reliably in diverse settings.

Author Keywords
Remote sharing; protocol and architecture design; mobile
interaction; computer vision; projection-based interaction.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User
Interfaces: Input Devices and Strategies, Interaction Styles.

INTRODUCTION
Mobile devices grow rapidly in computational power and
ubiquity. However, their small form factor, though highly
portable, offers a limited interaction bandwidth. In
particular, touchscreens, as the major modern input and
output medium, suffer from finger occlusion and restricted
view areas in spite of their high resolutions (e.g., an Apple
iPhone 4s affords a 3.5” touchscreen with a 960x640
resolution). They are awkward to use especially when more
than one user wants to interact with the device, e.g.,
viewing pictures together or playing a multiplayer game.

To address these problems, handheld projectors have shown
promise in enlarging the output area of a mobile application
[4,5,8,9,15]. However, handheld projectors are often
additional hardware to carry and also require special

sensors (e.g., a depth camera) for detecting user input in the
physical space [8,24]. In addition, projector-based solutions
suffer from physical limitations such as hand tremor which
makes stabilizing a projection during interaction difficult.

To leverage the intuitiveness of projector-based interaction
and overcome the above issues, recent work has explored
mobile content sharing using software-based projection
(e.g. [3,7,10,16]). For example, Deep Shot allows a user to
“post” mobile content onto a remote registered display
using a built-in phone camera [10]. More recently, Baur et
al.’s Virtual Projection allowed users to share a mobile
application by providing continuous feedback on the target
display to simulate a projection effect [3]. However, these
previous solutions face several challenges.

First, previous systems generally consider predefined target
displays for sharing. To set up a target display, the user
would need to install the required software component on
the display and also register the display before using it. In
contrast, we focus on ephemeral sharing scenarios on a
variety of displays, especially in a collaborative or public
setting, which desire little deployment overhead.

Second, previous solutions conduct computationally
intensive tasks such as computer vision on the server or on
the target display. This architectural design avoids complex
communication protocols and vision processing on low-end
mobile hardware. However, it does not scale for hosting
many target displays and simultaneous sharing sessions.

Last, previous systems that employ camera-based sharing
techniques detect vision features of the screenshot image on
the remote display. Although this solution is more
seamlessly integrated with the interaction environment, it
does not scale for realistic scenarios that often involve
sharing from varying distances and angles to remote
displays in different lighting conditions.

To address these issues, we developed Open Project, a
lightweight, highly scalable framework that allows users to
leverage the input and output capabilities of other available
devices, such as a large display, for interacting with mobile
applications. Similar to prior work, it allows a user to share
a running mobile application onto a target display by
“projecting” it via a mobile phone camera (see Figure 1).
However, it goes beyond prior work in several ways.

 * This work was done while the author was an intern at Google Research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
UIST’13, October 8–11, 2013, St. Andrews, United Kingdom.
ACM 978-1-4503-2268-3/13/10.
http://dx.doi.org/10.1145/2501988.2502030

First, we developed a web-based framework for supporting
multiple users simultaneously sharing content on one or
many displays. With the easily-accessible nature of web
services, any display can become immediately projectable
once it accesses the Open Project server in its web browser
and can support any number of sharing sessions—
deployment is as simple as opening a webpage. A mobile
device is paired automatically with a target display once the
user identifies the display’s 2D barcode, requiring no
authentication or pre-registration.

Second, we designed a decentralized architecture and
communication protocol for scalable mobile sharing. All
intensive computation—mainly realizing camera-based
projection and executing applications—is performed locally
on each individual mobile phone; when sharing, a video
feed of the application is transferred to the remote display.

This enables our framework to easily accommodate an
arbitrary number of projection devices and target displays.

Third, we created a robust “camera projection” algorithm
for creating a projection effect for users to select sharing
positions and dimensions on a target display. The algorithm
uses a dedicated checkerboard pattern, instead of relying on
screenshots, such that it performs reliably at great ranges,
varying lighting conditions and angles. Our algorithm
functions when the target screen is blank or has a
background image. It performs robustly against on or off-
screen distracters. A thorough evaluation of the projection
algorithm and the system as a whole provided solid findings
for how this kind of system performs in a realistic scenario.

RELATED WORK
In addition to projecting mobile screens onto a physical
surface (e.g. [4,5,8,9,15]), prior work investigated mobile
sharing to remote displays. One solution of sharing is to
send user data or application states to the target machine,
e.g., [7,10,12,14,16,19]. The other category of sharing is to
stream live copies of UIs—images—to the target machine,
and redirect user input to the originating device, e.g.,
[1,3,7,21,23]. Although transferring files or application
states allows better performance on the target machine, it
requires the target machine to handle the data or execute the
application which introduces security concerns when using
a shared or public display—our focus scenario. As a result,
we chose to share live screen images but keep data and
computation on the mobile device.

XICE [1] allows developers to share live views of mobile
apps onto other displays using a custom UI rendering
framework. While this approach allows less latency, it is
incompatible with existing mobile UI frameworks (e.g., on
Android or iPhone). Modifying mobile apps to leverage the
framework requires significant developer effort. Open
Project allows developers to enable remote sharing of any
mobile application with fewer than thirty lines of Java code.

An important step in sharing is to specify a target on a
remote display. Previously, using a built-in phone camera
for direct pointing has shown promise for WYSIWYG
selection of distant targets [2,3,6,10,18]. For example, past
work has used a grid of static markers as anchors on the
remote screen to estimate where the phone is pointing
[2,18]. Open Project uses a single marker, which provides
continuous feedback and visual synchronization for
targeting.

Open Project is closely related to Virtual Projection [3],
which used the projection metaphor to share a smartphone’s
display via its camera. However, the two techniques are
different both in focus and in design. Open Project is aimed
at enabling impromptu sharing on arbitrary displays with
minimal deployment effort. It is particularly designed for
remote sharing on public, shared displays where
authentication or pre-registration should be avoided. In
particular, Open Project employs a web-based architecture

a) A user starts by aiming the phone camera at the barcode that

uniquely identifies the display.

b) The barcode, once identified, changes to a checkerboard

marker that continuously shifts as the user orients the phone
toward a target position, as if it were projected from the phone.

c) The user taps the phone screen to project the application at
the checkerboard position, and interacts with the application

via either the phone or its projection on the display. The
barcode reappears for other users to project their applications.

Figure 1. A user projects a foreground application running on
the phone (e.g., Photo Gallery) onto a wall-size display for a

larger view of it. To do so, the user activates Open Project on
the phone that (a) identifies a specific display, (b) selects a
target position and size, and (c) sharing the application.

to allow lightweight instantaneous deployment and easy
access to the projection service.

While Virtual Projection centralizes computation to the
server and the target display, Open Project employs a
distributed architecture that keeps most of the computation
on each individual mobile device; this approach can easily
scale for many simultaneous projection devices. In addition,
instead of relying on visual features of the screenshot of a
target display (e.g., [3,10]), Open Project employs a QR
code and a camera-propelled marker to indicate a specific
position on a remote display. The marker allows reliable
and efficient tracking on mobile hardware, and performs at
great ranges with varying lighting conditions and angles or
when the target display has no visual features.

Using camera frames to estimate motion is widely used in
computer vision. Rather than relying on a static scene (e.g.,
[22]), Open Project uses detected motion to propel a
tracking target to simulate the projection effect. We
designed a visual synchronization protocol to coordinate
two asynchronous but dependent movement processes.

REMOTE SHARING WITH OPEN PROJECT
A handheld projector allows a user to project content at a
specific location and size on a large, physical surface. Open
Project leverages the projection metaphor so that users can
easily share an arbitrary, native mobile application at a
desired position on a target display such as the wall-sized
display in Figure 1. Instead of relying on the screenshot of
the target display (e.g. [3,10]), we use the phone’s camera
to drive a marker on the remote display to locate where to
project—simulating physical projection. This approach
functions even when the screen has no visual features in its
background—a blank screen. Once the user identifies a
projection region, we send screen pixels to be rendered on
the remote display instead of the application itself, which
allows the sharing of an arbitrary, native application. As the
focus of our system is scalability and multi-user
collaborative scenarios, Open Project also implements a
visual handshake protocol to register users with any display
showing a browser pointed at the Open Project server.

To better describe our interaction flow, consider Angela
and Ben, two users at a mall. Angela wants to show Ben her
vacation pictures on her smartphone. Instead of giving Ben

her phone, Angela decides to use the nearby public display
to browse these pictures. To do so, Angela enables Open
Project in her Photo Gallery application, which starts a
camera view for her to capture the marker. Angela
identifies the public display by capturing its QR code (see
Figure 1a). Once the QR code is identified, it changes into a
checkerboard marker. The blue rectangle centered on the
marker represents the target region into which the mobile
application will be projected into (see Figures 1b) and
moves according to where Angela points her phone’s
camera. To change the target projection size, Angela slides
her finger in a circular motion on the touchscreen (as in
[20]): moving counterclockwise to enlarge and clockwise to
shrink the projection region.

Once satisfied with the location and size of the projection
on the display, Angela taps on the phone’s touchscreen to
affix the projection, which exits the camera view and
returns to the Photo Gallery. Meanwhile, the Photo Gallery
is shared at the size and location indicated by the projection
region on the remote display. Further movement of the
phone will not affect the projection. At this point, the QR
code reappears at the center of the display ready for other
users’ projection (see Figure 1c).

The users can now interact with Photo Gallery through both
the application running on the phone and its remote
projection. As Angela flicks through the pictures by
swiping on her phone, the changes take effect in realtime in
the mirrored remote representation. When Ben wants to
select an image, he swipes the projection directly on the
large touch-enabled display. Ben’s remote touch input is
relayed to Angela’s phone to select the image. Should
Angela want to maintain control over her application, she
can disable remote input through a menu option.

Meanwhile, a third user captures the QR code using Open
Project and shares his Maps application. All users occupy
different parts of the display to interact with their
applications; all computation occurs on their respective
mobile devices (Figure 2). Open Project is able to host
multiple concurrent projections on a display and the display
space is allocated in a First-Come-First-Serve manner. A
projection owns its region on the display—no other
projections can be placed on top of it—until the user stops
the projection from the phone.

THE OPEN PROJECT FRAMEWORK

We designed the framework to satisfy several important
goals. First, the framework should support common
collaborative and sharing scenarios for mobile users.
Second, the system should be usable for off-the-shelf
mobile devices, without requiring additional hardware or
sensors, should require minimal computation and
infrastructure, and should be robust in various settings.
Third, the system should be easy to deploy and incorporate.
To minimize deployment costs, Open Project requires
neither the installation of a custom kernel on mobile
devices nor additional software on the remote display.

Figure 2. Multiple users simultaneously projecting their
mobile applications (left: Maps and right: Photo Gallery).

Instead, Open Project allows developers to project their
mobile content by simply adding an Android library while
any remote display is share-capable by pointing a browser
at our URL.

The Runtime Architecture

The runtime architecture of the Open Project
consists of three components (see Figure
Project Server—a web service running on a centralized
server for managing projection sessions, 2)
Projector—a library running on the smartphone for
projecting the mobile application, and 3)
Display—a web application running in a br
display’s computer for serving one or multiple

Open Project allows an arbitrary display to become
projectable. The owner of the display simply starts a
browser on the display’s computer and accesses the
Project Server on the web, i.e., via an HTTP request
runs Projection Display in the browser. Projection
starts with a QR code shown at the center of the screen that
encodes an ID for identifying the display. Multiple displays
can make requests to Open Project Server at the same time
and each will be assigned a unique ID.

Note that this lightweight deployment can be as simple as
clicking on a bookmark that points to the
Server. The owner of the display can also choose to have a
background image or a blank screen. For example, on a
public display in a train station, a static background image
or dynamic graphics (such as ads) can be displayed as
usual, and a projection will be rendered on top of it.

In front of a display, a user activates Open
phone, e.g., via a menu, while the application of interest is
running in the foreground. There are three steps to
mobile application: identifying a target display
code, adjusting the projection region on the display,
sharing the phone screen on the selected projection

Identifying a Target Display
Open Projector starts by invoking the camera functionality
on the phone to search for a valid QR code
brings up a camera view on the phone for the user to aim
the camera at the QR code on the target display.
Projector detects a QR code, it decodes the
the QR code and requests the Open Project
a projection session. The server then notifies both the

Figure 3. The Open Project runtime architecture.

Instead, Open Project allows developers to project their
mobile content by simply adding an Android library while

capable by pointing a browser

Project framework
(see Figure 3): 1) Open

web service running on a centralized
projection sessions, 2) Open

library running on the smartphone for
projecting the mobile application, and 3) Projection

web application running in a browser on the
one or multiple projections.

allows an arbitrary display to become
owner of the display simply starts a

browser on the display’s computer and accesses the Open
, i.e., via an HTTP request. This

rojection Display
of the screen that
Multiple displays
at the same time

can be as simple as
the Open Project

The owner of the display can also choose to have a
For example, on a
background image

or dynamic graphics (such as ads) can be displayed as
, and a projection will be rendered on top of it.

 Projector on the
phone, e.g., via a menu, while the application of interest is

steps to project a
identifying a target display via the QR

on the display, and
projection region.

the camera functionality
code in the scene. It

brings up a camera view on the phone for the user to aim
on the target display. Once Open

decodes the display ID from
Project Server to create

. The server then notifies both the

Projection Display, identified by the
Open Projector with a session ID. Thereafter,
Display and Open Projector communicate with each other
through the Open Project Server using the assigned session
ID, which allows messages to be correctly routed when
multiple sessions are active (see Figure
Projection Display receives a new session ID, it responds
by turning the QR code into a checkerboard
user to adjust the projection region.

Adjusting the Projection Region
Once the Open Projector sees the checkerboard
calculates how much the detected marker
center of the camera view. It then
Display the deviation as the amount of adjustment that the
marker has to make on the display so that the
return to the center of the camera view
or orients the phone towards a target position on the
display, the marker adjustment is continuously sent to the
Projection Display, and the position change of
on the display is fed back to the phone
camera. We will elaborate on the detail

As mentioned earlier, a user can slide her finger on the
phone’s touchscreen in a circular motion
shrink a projection denoted by the blue
that the size and orientation of the
A user may rotate the phone to switch between landscape
and the portrait orientations, which will change the
orientation of the projection region

Sharing the phone screen
Once a user taps the camera view on the phone, the camera
view exits and the projection region is affixed. The system
now enters the sharing stage. In this stage, the phone’s
position and orientation become irrelevant to the projection
on the display. As the Open Projector has returned control
to the application (from the camera view), a user can now
interact with the application. Meanwhile,
Projector periodically polls the
application, compresses and sends
if the screen has been updated. The
receives the screenshot of the application,
renders it according to the determined

A user can interact with the mobil
phone as usual and the UI changes will be reflected on both
the local phone screen and the remote projection. In
addition, Open Project allows users to directly
application via the projection if the display supports
input. When a pointing event occurs,
touch event, the Projection Display
the boundary of an affixed projection
event to the paired Open Projector using its
allows the Projection Display to dispatch pointing
appropriate projections when multiple projections exist on
the same display. Additionally, the
acts as a window manager and ensur
not overlap, nor are moved off screen.

Figure 3. The Open Project runtime architecture.

the decoded ID, and the
a session ID. Thereafter, the Projection

Projector communicate with each other
using the assigned session

to be correctly routed when
(see Figures 2 & 3). Once

Projection Display receives a new session ID, it responds
into a checkerboard marker for the

user to adjust the projection region.

jector sees the checkerboard marker, it
marker deviates from the

center of the camera view. It then sends the Projection
the deviation as the amount of adjustment that the

on the display so that the marker can
the center of the camera view. As the user moves

a target position on the
adjustment is continuously sent to the

, and the position change of the marker
on the display is fed back to the phone visually through the
camera. We will elaborate on the details in the next section.

As mentioned earlier, a user can slide her finger on the
in a circular motion to enlarge or

denoted by the blue bounding box. Note
of the marker remain constant.

A user may rotate the phone to switch between landscape
, which will change the

n accordingly.

Once a user taps the camera view on the phone, the camera
view exits and the projection region is affixed. The system

In this stage, the phone’s
irrelevant to the projection

Projector has returned control
to the application (from the camera view), a user can now
interact with the application. Meanwhile, the Open

 screen image of the
sends the image to the display

. The Projection Display
of the application, scales and
determined projection region.

A user can interact with the mobile application on the
phone as usual and the UI changes will be reflected on both
the local phone screen and the remote projection. In

allows users to directly operate the
the projection if the display supports user

event occurs, such as a mouse or
Display verifies if it is within

the boundary of an affixed projection, and if so, relays the
using its session ID. This

Display to dispatch pointing events to
hen multiple projections exist on

Additionally, the Projection Display also
ensures that projections do

screen.

The Open Projector receives input events from its
projection on the display, and re-dispatches the events
the UI of the application that is being projected.
application responds to the events as if these events were
originated locally from the phone, and the UI changes will
be displayed on both sides as discussed earlier.

Algorithms for “Camera Projection”
An important step in Open Project is to position a
projection region on a remote display.
emulates a handheld projector through “camera projection”,
a technique that allows a user to physically target their
desired location on the remote display using a built
phone camera instead of a real projector. To
simultaneous projecting mobile devices and displays
architecture distributes the computation required for camera
projection onto each mobile device.

The fundamental intuition behind the camera projection
algorithm is that a designated pattern on the display (
checkerboard in our current design), as the projection from
the camera, should stay at the center of the camera view.
When a user moves or orients the phone came
new location on the display, the pattern will deviate from
the center of the camera view. Based on the amount of
observed deviation, we can calculate how much the
pattern should be moved on the display so that it is centered
in the camera view again.

Designing a Target Pattern
An important issue for the algorithm to work is
appropriate target pattern that is easy and reliable
by a phone camera. A common solution has been detecting
features in a screenshot image (e.g. [3,13]). However,
a solution is dependent upon having an appropriately
feature-rich screenshot, is constrained
viewing conditions and at larger distances,
complicated when the screen is highly dynamic
other simultaneous projections are constantly updating)

Alternatively, checkerboard patterns have been extensively
used in computer vision for camera calibration
Checkerboards are distinctive markers that are
many lighting conditions, amongst complex
at various angles. Additionally, such a marker can be
dynamically scaled depending on the size and resolution of
the display to enable interaction at large distances. Finally
reliable detection of checkerboard markers can be

Figure 4. The two checkerboard patterns used for
positioning. One is the negation of the other in colors.

Projector receives input events from its

dispatches the events to
that is being projected. The

application responds to the events as if these events were
originated locally from the phone, and the UI changes will
be displayed on both sides as discussed earlier.

is to position a target
display. Open Project

emulates a handheld projector through “camera projection”,
allows a user to physically target their

using a built-in
o scale for many

and displays, our
computation required for camera

camera projection
on the display (e.g., a

checkerboard in our current design), as the projection from
at the center of the camera view.

the phone camera towards a
new location on the display, the pattern will deviate from
the center of the camera view. Based on the amount of

deviation, we can calculate how much the target
pattern should be moved on the display so that it is centered

the algorithm to work is to design an
and reliable to detect

A common solution has been detecting
). However, such

a solution is dependent upon having an appropriately
constrained under different

 and can become
highly dynamic (e.g., when

other simultaneous projections are constantly updating).

been extensively
calibration (e.g. [17]).

that are detectable in
complex distractors, and
uch a marker can be

amically scaled depending on the size and resolution of
large distances. Finally,

reliable detection of checkerboard markers can be achieved

efficiently on low-powered devices such as smartphones
making it ideal for Open Project.

In our specific design, we use
pattern (see Figure 4) that is resilient
gives more than enough inner intersection points for
calculating a homography matrix.
asymmetric design of the checkerboard
orientation of the camera with relation to the display

Detecting a Checkerboard Pattern
Our checkerboard detection algorithm
a popular computer vision open source library
particular, OpenCV provides a set o
calibration by estimating camera parameters from a series
of frames containing a checkerboard pattern.
algorithm is effective for one-time camera calibration
focused on accuracy over speed by continuously it
its search for quads whose intersections form the inner
points of a checkerboard. The algorithm is
when realtime tracking is needed
processor. Thus, we tailored the OpenCV algorithm in
ways. First, we eliminate quads quickly by aggressively
thresholding based on size and proximity.
eliminate the original algorithm’s iterative approach
finding intersection points by expanding quads.
study showed that iterating the search has diminishing
returns that do not justify the time cost.

Transforming Deviation from Camera to Display Coordinates
The output of the checkerboard detection algorithm is a set
of twelve internal intersection points in camera coordinates.
Let dx and dy be the offsets of the centroid of these points
from the center of the camera view
vertical axis (see Figure 5). We need to transform
offsets to display coordinates to find how much
checkerboard must be moved on the display

w d ¢x d ¢y 1é
ë

ù
û

T

= H dé
ë

where H is a 3-by-3 projective transformation, i.e., a
homography matrix, from camera to display coordinates

Typically, a homography H can be calculated using a
RANSAC approach [11], which iteratively finds the best
mapping and the transformation matrix between two sets of
points, in our case the 12 checkerboard points detected in

. The two checkerboard patterns used for

positioning. One is the negation of the other in colors.

Figure 5. Transforming the offset in camera coordinates,
dx and dy, to an offset in display coordinates,

powered devices such as smartphones,

design, we use a 5-by-4 checkerboard
resilient of false positives and

enough inner intersection points for
homography matrix. Furthermore, the

design of the checkerboard helps determine the
orientation of the camera with relation to the display.

detection algorithm is based on OpenCV,

open source library [25]. In
a set of functions for camera

camera parameters from a series
of frames containing a checkerboard pattern. While this

time camera calibration, it is
focused on accuracy over speed by continuously iterating
its search for quads whose intersections form the inner

The algorithm is less suitable
is needed on a smartphone

tailored the OpenCV algorithm in two
ds quickly by aggressively

thresholding based on size and proximity. Second, we
eliminate the original algorithm’s iterative approach for
finding intersection points by expanding quads. A pilot
study showed that iterating the search has diminishing

that do not justify the time cost.

Transforming Deviation from Camera to Display Coordinates
The output of the checkerboard detection algorithm is a set

points in camera coordinates.
the centroid of these points

the center of the camera view on the horizontal and
e need to transform these

to find how much the
on the display (Equation 1).

dx dy 1 ù
û

T
 (1)

projective transformation, i.e., a
, from camera to display coordinates.

can be calculated using a
iteratively finds the best

mapping and the transformation matrix between two sets of
checkerboard points detected in

Figure 5. Transforming the offset in camera coordinates,

display coordinates, dx’ and dy’.

camera coordinates and on the display. However, this
process can be simplified for our use. We can determine the
correspondences between the two sets of points, by sorting
the detected checkerboard points based on the phone’s
orientation (detected via built-in accelerometers) and their
order in the horizontal and vertical axis. Once the
correspondences are known, we can find the homography H
by calculating the least square solution of a linear system
(see Equation 2), which is much faster than RANSAC.

T = H O (2)

where O is a 3-by-12 matrix whose columns are each the
homogeneous coordinates of a checkerboard point observed
in camera coordinates. T captures the coordinates of the 12
checkerboard points on the display. In fact, we do not need
to know the absolute position of the checkerboard points on
the display due to the following deduction. Each point can
be represented as a relative coordinate, Trelative, to the
checkerboard center, Tcenter. We do the same for the
observed checkerboard points O. Thus,

Tcenter + Trelative = H (Ocenter + Orelative) (3)

Because Tcenter = H Ocenter is redundant for the calculation,
we acquire Equation 4.

Trelative = H Orelative (4)

However, Trelative still requires us to know the physical size
of the checkerboard on the display which is constant during
projection. One solution is to use a predetermined fixed
checkerboard size for all displays. However, this is
inappropriate for diverse projection constraints, e.g., a large
checkerboard might be used for a wall-size display to allow
long-range projection while a small one can suffice on a PC
monitor. A second solution is to let Projection Display pass
the checkerboard size being used to the Projector on the
phone at runtime—an extra step. Instead, we can eliminate
this requirement by further deduction. We can take the size
factor, S, out of Trelative:

S Tunit = H Orelative (5)

where S is a 3x3 scaling transformation matrix and Tunit is
the set of checkerboard points at a unit scale, independent
of the actual physical size and position of the checkerboard.
We then acquire:

Tunit = S-1 H Orelative (6)

We can calculate S-1 H as a whole, but not individually.
However, we can use the expression as a whole, based on
Equation 1, to transform dx and dy. This gives us the
amount of adjustment needed at the unit scale. Once the
Projection Display—which knows the actual size of the
checkerboard S—receives this adjustment it can recover dx’
and dy’ by applying S to scale up the unit scale adjustment.

Synchronizing by Alternating Checkerboard Patterns
Generating updates on the phone and updating the
checkerboard on the display are two asynchronous but
dependent processes. An update is relative and applied to
the marker’s current position; the updated position is then

used by the phone to generate the next update. As a result,
when an update is sent to the Projection Display over the
network, the phone has to wait for it to be processed by the
Projection Display before analyzing a new frame and
generating another update. This requires the two processes
to be synchronized so that only one of them runs at a time.

To determine if an update has been processed, i.e., the
checkerboard has been moved, we cannot rely on the
checkerboard’s deviation change observed through the
camera as the phone is in constant motion even when not
intended by the user. Thus, the Display must indicate that
an update has been processed explicitly. Though it is
possible to send this message to the phone over the
network, it complicates the protocol and increases latency.

Instead, we use a visual synchronization mechanism by
alternating between two distinct checkerboard patterns that
share the same dimension (see Figure 4). When the display
moves the checkerboard in response to an update request, it
flips the checkerboard pattern to visually acknowledge.
Once the phone detects the checkerboard switch, it starts to
process a new frame and sends a new update.

Generating an update only when a checkerboard pattern
flips synchronizes the processes well. However, it is
possible that, before an update is processed or received by
the display, the phone is already in a new position or
orientation due to system latency and fast motion of the
user’s hand. To maximally follow the user motion, we
choose to constantly generate updates, without waiting for
the pattern to switch, but with an important enhancement.
Each update is sent with the type of the pattern that it
applies to, i.e., either type 1 or 2 (Figure 4). When an
update reaches the display, the display checks its pattern
type, applies the one that is consistent with the
checkerboard pattern being shown and at the same time
flips the pattern that will discard subsequent inconsistent
updates. This ensures that a correct update is used for the
current checkerboard position and is based on the
assumption that in general an update would not take too
long, i.e., longer than two pattern switches, to arrive at the
display. This approach allows a later update to override an
earlier unprocessed one, and leverages nondeterministic
ordering of messages over the network (e.g. a late update
can arrive early).

IMPLEMENTATION

We implemented Open Projector as a library based on the
Android 4.0 platform. We employed the Zxing library [26]
to detect the QR marker, and customized the OpenCV
library to detect the checkerboard marker. Most of the
computation for processing a frame and generating updates
is written in C++ and performed natively to improve
performance. It is then integrated via Android NDK with
the rest of the library written in Java. Developers can enable
Open Project for their Android application by using the
Java API of the library (see Figure 7).

For sharing an application, the library grabs
cache of the application at an empirically determined
10fps to avoid overloading the phone processor
screen bitmap is compressed as a JPEG and sent over
network as an encoded Base64 byte stream.
as touch or mouse events from the remote display is
converted as an Android TouchEvent and dispatch
application’s UI (view) hierarchy.
communicates with the Open Project Server
regular socket connection, which can be implemented with
Web Sockets in the future.

The Projection Display is implemented as a web application
and is automatically deployed on a target display when the
browser points to the Open Project Server
screen HTML5 canvas in the browser
projections and listening for user events
application is connected with the server via Web Sockets
Our server is implemented based on Tomcat
source web server [27]. The server merely routes messages
and image data from mobile devices to screens. With the
exception of decoding messages, it does not perform any
additional computation, improving scalability
applications require no deployment and can
to simultaneous requests from many different users
case, mobile devices. Finally, as all the
performed efficiently on the individual mobile device, the
Open Project Server and the Projection Display need only
limited hardware infrastructure for wide deployment

// Instantiate a VirtualProjection instance
VirtualProjection projector = new OpenProject(activity);
// Start a projection
projector.startProjection (new OpenProjectCallback() {
 public void onSharingStarted () {
 // The user has selected a projection region and the sharing
 // stage is started.
 }
 public void onCanceled () {
 // The projection is canceled by the user.
 // before the sharing is started
 }
 public void onFinished () {
 // The sharing is ended by the user.
 }
 public void onFailed () {
 // VirtualProjection failed to find a target display region.
 }
 }

});

Figure 7. An example code snippet for enabling
Project in an application.

Figure 6. Example applications shared with

grabs the drawing
n empirically determined rate of

to avoid overloading the phone processor. A new
JPEG and sent over the

byte stream. User input such
from the remote display is

dispatched to the
 The library

Server through a
which can be implemented with

as a web application
and is automatically deployed on a target display when the

Server. We use a full
he browser for rendering

user events. The web
via Web Sockets.
Tomcat, an open

The server merely routes messages
mobile devices to screens. With the

exception of decoding messages, it does not perform any
, improving scalability. Web

can easily respond
to simultaneous requests from many different users–in this

the computation is
performed efficiently on the individual mobile device, the

Display need only
wide deployment.

ENABLING A MOBILE APPLICATION FOR PROJECTION

A developer can easily hook their mobile application into
the Open Project framework. Although our current
implementation is based on the Android platform, the API
framework can be generalized for other platforms.

To add Open Project to an application
instantiates the OpenProject class
to the current activity—a screen on the Android platform
(see Figure 7). Open Projector will extract the
hierarchy for capturing the UI
dispatching events from the remote display.
can select how to start projecting e.g.,
Remote input can be disabled
function call to maintain user control over the

To start a projection, a developer calls
OpenProjectCallback which allows
a status change in the projection process. These callbacks
give the developer the option to update the UI or signal the
user, e.g., beeping when the sharing stage is started

To demonstrate our API’s ease of
Project support to several sample applications provided by
the Android SDK (see Figure 6)
Photo Gallery, a TicTacToe game, and a Drawing
application. Based on these examples, we estimate that
developers can add Open Project
applications with less than 30 lines of Java code.

EVALUATIONS

In addition to demonstrating the usefulness of
in a set of sample mobile applications, we evaluated
Project in two ways. We first investigate
of our checkerboard updating algorithms
performed a user study to gauge user reactions to the tool.

Performance Experiments
We intended to find out, under different conditions,
effective range of the checkerboard marker detection
how fast we can update its position.

Apparatus
We used a Thinkpad T420s as our server (running Ubuntu
Linux 10.04), a Galaxy Nexus smartphone
Open Projector (with 11.8cm diagonal size at a resolution
of 1280x720), and a PC connected to five
(each is 68x120 cm) tiled by Windows 7
PC showed a fullscreen Chrome browser running Projection

OpenProjectCallback() {

// The user has selected a projection region and the sharing

failed to find a target display region.

. An example code snippet for enabling Open

. Example applications shared with Open Project: a) Maps, b) Photo Gallery, c) TicTacToe, and d) a drawing pad.

ATION FOR PROJECTION

hook their mobile application into
. Although our current

implementation is based on the Android platform, the API
framework can be generalized for other platforms.

to an application, a developer
 by passing it a reference

a screen on the Android platform
will extract the root of the UI

UI rendering cache and
dispatching events from the remote display. A developer

e.g., through a menu item.
 on demand through a

function call to maintain user control over the application.

calls startProjection with
s the developer to handle

projection process. These callbacks
give the developer the option to update the UI or signal the

ng when the sharing stage is started.

ease of use, we added Open
several sample applications provided by

): a Maps application, a
Photo Gallery, a TicTacToe game, and a Drawing

Based on these examples, we estimate that
Open Project to their Android

less than 30 lines of Java code.

In addition to demonstrating the usefulness of Open Project
mobile applications, we evaluated Open

We first investigated the performance
our checkerboard updating algorithms. We then

gauge user reactions to the tool.

, under different conditions, the
of the checkerboard marker detection and

.

a Thinkpad T420s as our server (running Ubuntu
Linux 10.04), a Galaxy Nexus smartphone for running

(with 11.8cm diagonal size at a resolution
connected to five Samsung displays

tiled by Windows 7 (see Figure 1). The
PC showed a fullscreen Chrome browser running Projection

: a) Maps, b) Photo Gallery, c) TicTacToe, and d) a drawing pad.

Display. Each display had a resolution of
totaling 4500x1600 over five screens. The width of the two
bezels between adjacent displays is 5cm. A
connected to a Belkin N750DB router’s Wi-

Experimental Design & Procedures
To find the effective range of our checkerboard detection
and the time duration for updating the checkerboard
position, we evaluated the system at various
angles, background distractors, and lighting

The major factors for the checkerboard detection
the checkerboard marker’s size, the viewing distance and
angle from the phone camera. The angle is
only to perspective distortion but also foreshortening.
Therefore, we tested our system for three angles: 90
and 30°. Note that at an acute angle of 30
range that is closer to the display (140-240cm
account the significant perspective foreshortening.
angle, we used six distances that cover the available space
in the laboratory room. We used a fixed
marker—a 5x4 array of 3cm black and white squares.
small marker size was selected so as to detect the threshold
distance within our small testing environment

We also took into account two common
computer-vision system: background
lighting. For distracters, we tested three representative
conditions: the marker is shown on a white screen
marker is displayed on top of a full-sized
image, and the marker is surrounded by three
projections (a Maps app, a Contacts app,
app). Two lighting conditions were tested: on and off.

Measures
In each condition, we mounted the phone such that the
center of its camera view sat at a height of 115cm,
perpendicular to the ground in portrait mode
aligned with that of the checkerboard. The checkerboard
marker was fixed on the display to maintain the designated
spatial configuration. We then calculate two
processing 200 consecutive camera frames
detection rate as the percentage of frames in which
algorithm finds the marker. This reflects how reliably
algorithm can detect the marker. We also
update time by looking at the duration between two
adjacent checkerboard pattern switches detected by the
algorithm—an update cycle. The update time
frame processing time, and other time costs such as
to update the camera view, transmit an update
network and render the new pattern on the
that the update and detection rate are two correlated
measures, i.e., when the detection rate is low, it takes a
longer time to generate an update, and vice versa.

Results
We summarize Open Project’s detection
time performance under different conditions
When the update time is above 500ms, our algorithm is too
slow to catch up to a regular user’s motion, and we mark

resolution of 900x1600,
width of the two
All devices were
-Fi network.

checkerboard detection
ing the checkerboard

at various distances,
angles, background distractors, and lighting (see Figure 8).

the checkerboard detection include
viewing distance and

is critical due not
perspective distortion but also foreshortening.

for three angles: 90°, 60°
at an acute angle of 30° we consider a

240cm) to take into
account the significant perspective foreshortening. For each

that cover the available space
fixed checkerboard

5x4 array of 3cm black and white squares. The
small marker size was selected so as to detect the threshold

environment.

common factors for a
background distracters and

, we tested three representative
on a white screen, the

sized background
and the marker is surrounded by three distracter

 and a YouTube
on and off.

we mounted the phone such that the
at a height of 115cm,

portrait mode, with its center
. The checkerboard

the display to maintain the designated
two measures by

camera frames. We define the
as the percentage of frames in which the

how reliably our
also measure the

duration between two
ches detected by the

e update time includes the
frame processing time, and other time costs such as the time

n update over the
render the new pattern on the display. Note

that the update and detection rate are two correlated
measures, i.e., when the detection rate is low, it takes a
longer time to generate an update, and vice versa.

’s detection rate and update
conditions in Figure 8.

When the update time is above 500ms, our algorithm is too
slow to catch up to a regular user’s motion, and we mark

such a condition red in Figure 8. Otherwise, we mark it
green. The checkerboard detection algorithm is most
reliable when the lights are on
distraction at more straightforward angles.
with our very small marker size at 90
comfortably stay at a distance of 280cm and experience
update times well below 500ms. We
scale linearly with the physical size of the rendered
checkerboard marker which can be dynamically modified.

User Studies

We intended to find out 1) if a user can use our camera
projection technique to adjust a target projection region o

Figure 8. The detection rate (%) and update times in diff
conditions (green represents less than 500ms update time).

Distances at 90° and 60° range from 200cm to 300cm.
Distances at 30° range from 140cm to 240cm. They all have

even increments of 20cm.

. Otherwise, we mark it
he checkerboard detection algorithm is most

reliable when the lights are on, when there is less
at more straightforward angles. For example,

at 90° or 60°, a user can
comfortably stay at a distance of 280cm and experience

below 500ms. We expect distance to
scale linearly with the physical size of the rendered

which can be dynamically modified.

to find out 1) if a user can use our camera
projection technique to adjust a target projection region on

Figure 8. The detection rate (%) and update times in different
s (green represents less than 500ms update time).

range from 200cm to 300cm.
range from 140cm to 240cm. They all have
even increments of 20cm.

the display, and 2) how mobile users react to our system as
a whole. We recruited 10 participants (2 females, 8 males,
with a mean age of 22.4) from an IT company, all highly
experienced smartphone users. Only one participant had
experience with handheld physical projection systems.

Experimental Design
To answer these questions, our study consisted of two
sessions. First, a participant moved and resized the
projection region on the five-display setup used in our
performance experiment. After a warm-up session, a
participant starts the task by enabling Open Project on a test
application. Starting from the center of the display, the
participant must move the projection region to a given
location, randomly selected from two categories: those
nearby, or at most 68cm away; and those far away, or
greater than 170cm. The initial projection dimensions are
22x37cm. A participant needs to scale the projection region
up to one of two scales: 31x52cm, and 44x74cm (i.e. 1.4
times or twice the original dimensions). We marked each
target location and size on the display. Participants confirm
the final projection region and complete a trial by clicking
on a button on the smartphone. Participants performed the
task 12 times for each setting.

In the second session, participants were asked to project
three Open Project-enabled applications onto a 68x120cm
touch-sensitive display running at 900x1600 resolution. For
this session, we used a citywide free wi-fi network instead
of a dedicated network as previous, to experience a realistic
network configuration. A participant first played a game of
Tic-Tac-Toe with the computer. Then, the participant used
the Gallery to find an image of a dog randomly positioned
from a list of 15 distractor images. Last, the participant used
Maps to find downtown Seattle and Vancouver from San
Francisco using only panning and zooming. For a good
understanding of the interaction, participants performed the
tasks twice: once interacting on their smartphone, and once
using the touch-sensitive large display. Participants were
asked to think aloud and give qualitative feedback.

Results
Using a within-subjects analysis of variance with distance
and scale as factors, we found both factors have a
significant effect on the task completion time (p < 0.05).
Participants took longer to position the projection farther
away (M=12s, SD=4s) than closer to the starting position
(M=11s, SD=3s). Tasks including scaling to twice the
dimensions took 12s on average (SD=4s) while those
requiring minor scaling took 11s (SD=4s). Task completion
times include acquiring the Stop button for each trial.

To find out how accurately participants positioned the
projection region, we calculated the distance from the final
projection to the target. Participants were able to accurately
position the projection both nearby (offset M=2.1cm,
SD=1.5cm) and far away (offset M=2.6cm, SD=2.6cm),
i.e., a mean error of 3% of the total distance traveled.

We evaluated how accurately participants were able to scale
the projection to match the target size, by considering the
percentage amount the participant’s projection differed
from the target dimensions. Similar to positioning,
participants were highly accurate in scaling. When scaling
to 1.4 times the original dimensions, participants resized
their projection to within 5.3% of the target size
(SD=4.6%). When scaling to twice participants had a mean
error of 4%. (SD=3.4%).

Qualitative Feedback
Overall, participants were highly positive regarding Open
Project for sharing media, collaborate with others or
expanding the output space. On a five-point Likert scale,
participants rated Open Project highly useful for
applications such as presentations (M=4.4), collaborating
tasks (M=3.9), and for sharing media with others (M=4.4).
Participants rated Open Project as very easy to understand
(M=4.3) and easy to use (M=3.7). Participants saw Open
Project as somewhat useful for mobile gaming (M=3.6).

In terms of qualitative feedback, participants saw Open
Project as a useful addition to their mobile experience.
Participants praised the ability to share information quickly
and efficiently on a nearby display.

 “It’s difficult to share stuff regularly. Only one person can
view the screen at a time. It’s a turn-based experience.” [P2].

In terms of the specifics of Open Project, participants found
the physical positioning with the camera projection
technique to be “a natural instinct”. Participants also saw
Open Project as a way to control the privacy of their mobile
device while still sharing some information.

 “I am nervous to hand over my phone. With [Open Project],
I don’t have to hand over my phone that has a lot of private
data. […] It’s nice to have control over what is shared.” [P10]

However, our participants did notice the performance was
lacking for our current implementation.

 “In terms of mobile gaming the performance needs to
improve. However the concept is useful. With a better frame
rate I would change my score accordingly.” [P1]

Finally, participants suggested using Open Project to enable
the smartphones as a central repository of data and
computation, streaming information to various outputs.
Participants thought of our web framework as effectively
replicating common hardware used to stream music or
video to remote devices with minimal deployment effort.

DISCUSSION
Open Project performs as much computation as possible on
the mobile device, maintaining a lightweight server that
simply acts as a router. Our current implementation
achieves a similar image transmission frame rate to
previous techniques (e.g. [3]). However, performance
suffers in dynamic applications such as video sharing or
realtime gaming. To improve the frame rate, future work
can take better advantage of mobile hardware (e.g. using
the GPU for marker detection) and use dedicated libraries

for content streaming such as VNC. As VNC is a point-to-
point protocol, the Open Project Server will have to set up
direct connections between a display and its remote clients.

The projection metaphor allows users to easily access any
part of the display with radial movement of the arm and
wrist. However, physical projection suffers from poor
stability and angle-dependent distortion dependent on
viewing angle. Open Project’s marker-based positioning
embodies a partial projection metaphor that takes advantage
of the intuitive physical targeting but stabilizes the
projection when the user interacts with the projected app.
We can strengthen the projection metaphor, e.g., by adding
a live view of the projected content to the marker while
positioning. We can also enable multiple phones to
simultaneously position their content by embedding a
unique identifier (e.g., a QR code) into the marker.

Finally, the Open Project framework enables vision-based
digital sharing at a large scale with minimal effort. The
web-based architecture means that any display capable of
showing a browser can be turned into an output device
without installation. It is also possible to implement Open
Projector (the mobile component in our framework) as a
built-in function of a mobile platform for improved
performance and simple invoking, e.g., via a hard button.

CONCLUSION
We presented Open Project, an open, web-based framework
for enabling mobile sharing and collaboration at a large
scale. It employs an intuitive, projection-based metaphor
for a user to easily share a mobile application by projecting
it onto a target large display. Open Project can turn any
computer display projectable instantaneously and without
deployment, and its “camera projection” algorithm, for
simulating a projection effect, performs reliably in various
viewing conditions. Developers can add support for Open
Project in native mobile apps by simply linking our library,
requiring no additional hardware or sensors. Our study
participants responded highly positively to Open Project-
enabled applications for mobile sharing and collaboration.

REFERENCES
1. Arthur, R. and Olsen,Jr., D.R. XICE windowing toolkit:

Seamless display annexation. ACM Trans. Computer-Human
Interaction. 18, 3 (2011), 14:1–14:46.

2. Ballagas, R., Rohs, M., and Sheridan, J.G. Sweep and point
and shoot: phonecam-based interactions for large public
displays. CHI ’05 Extended Abstracts, 2005, 1200–1203.

3. Baur, D., Boring, S., and Feiner, S. Virtual projection:
exploring optical projection as a metaphor for multi-device
interaction. Proc. of CHI'12, ACM (2012), 1693–1702.

4. Beardsley, P., van Baar, J., Raskar, R., and Forlines, C.
Interaction using a handheld projector. Computer Graphics
and Applications, IEEE 25, 1 (2005), 39 –43.

5. Blasko, G., Feiner, S., and Coriand, F. Exploring Interaction
with a Simulated Wrist-Worn Projection Display. Proc. of
Wearable Computers, IEEE Computer Society (2005), 2–9.

6. Boring, S., Jurmu, M., and Butz, A. Scroll, tilt or move it:
using mobile phones to continuously control pointers on
large public displays. Proc. of OzCHI'09, 2009, 161–168.

7. Bragdon, A., DeLine, R., Hinckley, K., and Morris, M.R.
Code space: touch + air gesture hybrid interactions for
supporting developer meetings. Proc. of ITS'11, 2011, 212–
221.

8. Cao, X. and Balakrishnan, R. Interacting with dynamically
defined information spaces using a handheld projector and a
pen. ACM Press (2006), 225.

9. Cao, X., Forlines, C., and Balakrishnan, R. Multi-user
interaction using handheld projectors. Proc. of UIST'07,
ACM (2007), 43–52.

10. Chang, T.-H. and Li, Y. Deep shot: a framework for
migrating tasks across devices using mobile phone cameras.
Proc. of CHI'11, ACM (2011), 2163–2172.

11. Fischler, M.A. and Bolles, R.C. Random sample consensus: a
paradigm for model fitting with applications to image
analysis and automated cartography. Commun. ACM 24, 6
(1981), 381–395.

12. Greenberg, S. and Rounding, M. The notification collage:
posting information to public and personal displays. Proc. of
CHI'01, ACM (2001), 514–521.

13. Herbert, L., Pears, N., Jackson, D., and Olivier, P. Mobile
Device and Intelligent Display Interaction via Scale-invariant
Image Feature Matching. PECCS, 2011, 207–214.

14. Izadi, S., Brignull, H., Rodden, T., Rogers, Y., and
Underwood, M. Dynamo: a public interactive surface
supporting the cooperative sharing and exchange of media.
Proc. of UIST'03, ACM (2003), 159–168.

15. Molyneaux, D., Izadi, S., Kim, D., et al. Interactive
Environment-Aware Handheld Projectors for Pervasive
Computing Spaces. Pervasive, (2012), 197–215.

16. Rekimoto, J. and Saitoh, M. Augmented surfaces: a spatially
continuous work space for hybrid computing environments.
Proc. of CHI'99, ACM (1999), 378–385.

17. Remondino, F. and Fraser, C. Digital camera calibration
methods: considerations and comparisons. Photogrammetry,
Remote Sensing and Spatial Information Sciences, (2006).

18. Rohs, M. Real-world interaction with camera phones. Proc.
of UCS'05, Springer-Verlag (2005), 74–89.

19. Shen, C., Everitt, K., and Ryall, K. UbiTable: Impromptu
Face-to-Face Collaboration on Horizontal Interactive
Surfaces. Proc. of UbiComp 2003, (2003), 281–288.

20. Smith, G.M. and schraefel, m. c. The radial scroll tool:
scrolling support for stylus- or touch-based document
navigation. Proc. of UIST'04, ACM (2004), 53–56.

21. Tan, D.S., Meyers, B., and Czerwinski, M. WinCuts:
manipulating arbitrary window regions for more effective
use of screen space. CHI’04 extended abstracts, 2004, 1525–
1528.

22. Wang, J., Zhai, S., and Canny, J. Camera phone based
motion sensing: interaction techniques, applications and
performance study. Proc. of UIST'06, ACM (2006), 101–
110.

23. Wigdor, D., Jiang, H., Forlines, C., Borkin, M., and Shen, C.
WeSpace: the design development and deployment of a
walk-up and share multi-surface visual collaboration system.
Proc. of CHI'09, ACM (2009), 1237–1246.

24. Wilson, A.D. and Benko, H. Combining multiple depth
cameras and projectors for interactions on, above and
between surfaces. Proc. of UIST'10, ACM (2010), 273–282.

25. OpenCV. http://opencv.org/.
26. zxing - 1D/2D barcode image processing library.

http://code.google.com/p/zxing/.
27. Apache Tomcat http://tomcat.apache.org/.

