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ABSTRACT 
The form factor of mobile devices remains small while their 
computing power grows at an accelerated rate. Prior work 
has explored expanding the output space by leveraging free 
displays in the environment. However, existing solutions 
often do not scale. In this paper we discuss Open Project, an 
end-to-end framework that allows a user to “project” a 
native mobile application onto a display using a phone 
camera, leveraging interaction spaces ranging from a PC 
monitor to a public wall-sized display. Any display 
becomes projectable instantaneously by simply accessing 
the lightweight Open Project server via a web browser. By 
distributing computation load onto each projecting mobile 
device, our framework easily scales for hosting many 
projection sessions and devices simultaneously. Our 
performance experiments and user studies indicated that 
Open Project supported a variety of useful collaborative, 
sharing scenarios and performed reliably in diverse settings.  
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INTRODUCTION 
Mobile devices grow rapidly in computational power and 
ubiquity. However, their small form factor, though highly 
portable, offers a limited interaction bandwidth. In 
particular, touchscreens, as the major modern input and 
output medium, suffer from finger occlusion and restricted 
view areas in spite of their high resolutions (e.g., an Apple 
iPhone 4s affords a 3.5” touchscreen with a 960x640 
resolution). They are awkward to use especially when more 
than one user wants to interact with the device, e.g., 
viewing pictures together or playing a multiplayer game.  

To address these problems, handheld projectors have shown 
promise in enlarging the output area of a mobile application 
[4,5,8,9,15]. However, handheld projectors are often 
additional hardware to carry and also require special 

sensors (e.g., a depth camera) for detecting user input in the 
physical space [8,24]. In addition, projector-based solutions 
suffer from physical limitations such as hand tremor which 
makes stabilizing a projection during interaction difficult. 

To leverage the intuitiveness of projector-based interaction 
and overcome the above issues, recent work has explored 
mobile content sharing using software-based projection 
(e.g. [3,7,10,16]). For example, Deep Shot allows a user to 
“post” mobile content onto a remote registered display 
using a built-in phone camera [10]. More recently, Baur et 
al.’s Virtual Projection allowed users to share a mobile 
application by providing continuous feedback on the target 
display to simulate a projection effect [3]. However, these 
previous solutions face several challenges. 

First, previous systems generally consider predefined target 
displays for sharing. To set up a target display, the user 
would need to install the required software component on 
the display and also register the display before using it. In 
contrast, we focus on ephemeral sharing scenarios on a 
variety of displays, especially in a collaborative or public 
setting, which desire little deployment overhead.  

Second, previous solutions conduct computationally 
intensive tasks such as computer vision on the server or on 
the target display. This architectural design avoids complex 
communication protocols and vision processing on low-end 
mobile hardware. However, it does not scale for hosting 
many target displays and simultaneous sharing sessions. 

Last, previous systems that employ camera-based sharing 
techniques detect vision features of the screenshot image on 
the remote display. Although this solution is more 
seamlessly integrated with the interaction environment, it 
does not scale for realistic scenarios that often involve 
sharing from varying distances and angles to remote 
displays in different lighting conditions.   

To address these issues, we developed Open Project, a 
lightweight, highly scalable framework that allows users to 
leverage the input and output capabilities of other available 
devices, such as a large display, for interacting with mobile 
applications. Similar to prior work, it allows a user to share 
a running mobile application onto a target display by 
“projecting” it via a mobile phone camera (see Figure 1). 
However, it goes beyond prior work in several ways. 
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First, we developed a web-based framework for supporting 
multiple users simultaneously sharing content on one or 
many displays. With the easily-accessible nature of web 
services, any display can become immediately projectable 
once it accesses the Open Project server in its web browser 
and can support any number of sharing sessions—
deployment is as simple as opening a webpage. A mobile 
device is paired automatically with a target display once the 
user identifies the display’s 2D barcode, requiring no 
authentication or pre-registration. 

Second, we designed a decentralized architecture and 
communication protocol for scalable mobile sharing. All 
intensive computation—mainly realizing camera-based 
projection and executing applications—is performed locally 
on each individual mobile phone; when sharing, a video 
feed of the application is transferred to the remote display. 

This enables our framework to easily accommodate an 
arbitrary number of projection devices and target displays. 

Third, we created a robust “camera projection” algorithm 
for creating a projection effect for users to select sharing 
positions and dimensions on a target display. The algorithm 
uses a dedicated checkerboard pattern, instead of relying on 
screenshots, such that it performs reliably at great ranges, 
varying lighting conditions and angles. Our algorithm 
functions when the target screen is blank or has a 
background image. It performs robustly against on or off-
screen distracters. A thorough evaluation of the projection 
algorithm and the system as a whole provided solid findings 
for how this kind of system performs in a realistic scenario. 

RELATED WORK 
In addition to projecting mobile screens onto a physical 
surface (e.g. [4,5,8,9,15]), prior work investigated mobile 
sharing to remote displays. One solution of sharing is to 
send user data or application states to the target machine, 
e.g., [7,10,12,14,16,19]. The other category of sharing is to 
stream live copies of UIs—images—to the target machine, 
and redirect user input to the originating device, e.g., 
[1,3,7,21,23]. Although transferring files or application 
states allows better performance on the target machine, it 
requires the target machine to handle the data or execute the 
application which introduces security concerns when using 
a shared or public display—our focus scenario. As a result, 
we chose to share live screen images but keep data and 
computation on the mobile device. 

XICE [1] allows developers to share live views of mobile 
apps onto other displays using a custom UI rendering 
framework. While this approach allows less latency, it is 
incompatible with existing mobile UI frameworks (e.g., on 
Android or iPhone). Modifying mobile apps to leverage the 
framework requires significant developer effort. Open 
Project allows developers to enable remote sharing of any 
mobile application with fewer than thirty lines of Java code. 

An important step in sharing is to specify a target on a 
remote display. Previously, using a built-in phone camera 
for direct pointing has shown promise for WYSIWYG 
selection of distant targets [2,3,6,10,18]. For example, past 
work has used a grid of static markers as anchors on the 
remote screen to estimate where the phone is pointing 
[2,18]. Open Project uses a single marker, which provides 
continuous feedback and visual synchronization for 
targeting.  

Open Project is closely related to Virtual Projection [3], 
which used the projection metaphor to share a smartphone’s 
display via its camera. However, the two techniques are 
different both in focus and in design. Open Project is aimed 
at enabling impromptu sharing on arbitrary displays with 
minimal deployment effort. It is particularly designed for 
remote sharing on public, shared displays where 
authentication or pre-registration should be avoided. In 
particular, Open Project employs a web-based architecture 

 
a) A user starts by aiming the phone camera at the barcode that 

uniquely identifies the display.  

 
b) The barcode, once identified, changes to a checkerboard 

marker that continuously shifts as the user orients the phone 
toward a target position, as if it were projected from the phone.  

 
c) The user taps the phone screen to project the application at 
the checkerboard position, and interacts with the application 

via either the phone or its projection on the display. The 
barcode reappears for other users to project their applications.  

Figure 1. A user projects a foreground application running on 
the phone (e.g., Photo Gallery) onto a wall-size display for a 

larger view of it. To do so, the user activates Open Project on 
the phone that (a) identifies a specific display, (b) selects a 
target position and size, and (c) sharing the application. 



 

to allow lightweight instantaneous deployment and easy 
access to the projection service. 

While Virtual Projection centralizes computation to the 
server and the target display, Open Project employs a 
distributed architecture that keeps most of the computation 
on each individual mobile device; this approach can easily 
scale for many simultaneous projection devices. In addition, 
instead of relying on visual features of the screenshot of a 
target display (e.g., [3,10]), Open Project employs a QR 
code and a camera-propelled marker to indicate a specific 
position on a remote display. The marker allows reliable 
and efficient tracking on mobile hardware, and performs at 
great ranges with varying lighting conditions and angles or 
when the target display has no visual features. 

Using camera frames to estimate motion is widely used in 
computer vision. Rather than relying on a static scene (e.g., 
[22]), Open Project uses detected motion to propel a 
tracking target to simulate the projection effect. We 
designed a visual synchronization protocol to coordinate 
two asynchronous but dependent movement processes. 

REMOTE SHARING WITH OPEN PROJECT 
A handheld projector allows a user to project content at a 
specific location and size on a large, physical surface. Open 
Project leverages the projection metaphor so that users can 
easily share an arbitrary, native mobile application at a 
desired position on a target display such as the wall-sized 
display in Figure 1. Instead of relying on the screenshot of 
the target display (e.g. [3,10]), we use the phone’s camera 
to drive a marker on the remote display to locate where to 
project—simulating physical projection. This approach 
functions even when the screen has no visual features in its 
background—a blank screen. Once the user identifies a 
projection region, we send screen pixels to be rendered on 
the remote display instead of the application itself, which 
allows the sharing of an arbitrary, native application. As the 
focus of our system is scalability and multi-user 
collaborative scenarios, Open Project also implements a 
visual handshake protocol to register users with any display 
showing a browser pointed at the Open Project server.   

To better describe our interaction flow, consider Angela 
and Ben, two users at a mall. Angela wants to show Ben her 
vacation pictures on her smartphone. Instead of giving Ben 

her phone, Angela decides to use the nearby public display 
to browse these pictures. To do so, Angela enables Open 
Project in her Photo Gallery application, which starts a 
camera view for her to capture the marker. Angela 
identifies the public display by capturing its QR code (see 
Figure 1a). Once the QR code is identified, it changes into a 
checkerboard marker. The blue rectangle centered on the 
marker represents the target region into which the mobile 
application will be projected into (see Figures 1b) and 
moves according to where Angela points her phone’s 
camera. To change the target projection size, Angela slides 
her finger in a circular motion on the touchscreen (as in 
[20]): moving counterclockwise to enlarge and clockwise to 
shrink the projection region.  

Once satisfied with the location and size of the projection 
on the display, Angela taps on the phone’s touchscreen to 
affix the projection, which exits the camera view and 
returns to the Photo Gallery. Meanwhile, the Photo Gallery 
is shared at the size and location indicated by the projection 
region on the remote display. Further movement of the 
phone will not affect the projection. At this point, the QR 
code reappears at the center of the display ready for other 
users’ projection (see Figure 1c).  

The users can now interact with Photo Gallery through both 
the application running on the phone and its remote 
projection. As Angela flicks through the pictures by 
swiping on her phone, the changes take effect in realtime in 
the mirrored remote representation. When Ben wants to 
select an image, he swipes the projection directly on the 
large touch-enabled display. Ben’s remote touch input is 
relayed to Angela’s phone to select the image. Should 
Angela want to maintain control over her application, she 
can disable remote input through a menu option.  

Meanwhile, a third user captures the QR code using Open 
Project and shares his Maps application. All users occupy 
different parts of the display to interact with their 
applications; all computation occurs on their respective 
mobile devices (Figure 2). Open Project is able to host 
multiple concurrent projections on a display and the display 
space is allocated in a First-Come-First-Serve manner. A 
projection owns its region on the display—no other 
projections can be placed on top of it—until the user stops 
the projection from the phone.  

THE OPEN PROJECT FRAMEWORK 

We designed the framework to satisfy several important 
goals. First, the framework should support common 
collaborative and sharing scenarios for mobile users. 
Second, the system should be usable for off-the-shelf 
mobile devices, without requiring additional hardware or 
sensors, should require minimal computation and 
infrastructure, and should be robust in various settings. 
Third, the system should be easy to deploy and incorporate. 
To minimize deployment costs, Open Project requires 
neither the installation of a custom kernel on mobile 
devices nor additional software on the remote display. 

 

Figure 2. Multiple users simultaneously projecting their 
mobile applications (left: Maps and right: Photo Gallery). 



 

Instead, Open Project allows developers to project their 
mobile content by simply adding an Android library while 
any remote display is share-capable by pointing a browser 
at our URL. 

The Runtime Architecture 

The runtime architecture of the Open Project
consists of three components (see Figure 
Project Server—a web service running on a centralized 
server for managing projection sessions, 2) 
Projector—a library running on the smartphone for 
projecting the mobile application, and 3) 
Display—a web application running in a br
display’s computer for serving one or multiple

Open Project allows an arbitrary display to become 
projectable. The owner of the display simply starts a 
browser on the display’s computer and accesses the 
Project Server on the web, i.e., via an HTTP request
runs Projection Display in the browser. Projection 
starts with a QR code shown at the center of the screen that
encodes an ID for identifying the display. Multiple displays 
can make requests to Open Project Server at the same time 
and each will be assigned a unique ID.  

Note that this lightweight deployment can be as simple as 
clicking on a bookmark that points to the 
Server. The owner of the display can also choose to have a 
background image or a blank screen. For example, on a 
public display in a train station, a static background image 
or dynamic graphics (such as ads) can be displayed as 
usual, and a projection will be rendered on top of it.

In front of a display, a user activates Open 
phone, e.g., via a menu, while the application of interest is 
running in the foreground. There are three steps to
mobile application: identifying a target display
code, adjusting the projection region on the display, 
sharing the phone screen on the selected projection 

Identifying a Target Display 
Open Projector starts by invoking the camera functionality 
on the phone to search for a valid QR code 
brings up a camera view on the phone for the user to aim 
the camera at the QR code on the target display. 
Projector detects a QR code, it decodes the 
the QR code and requests the Open Project
a projection session. The server then notifies both the 

Figure 3. The Open Project runtime architecture.
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allows an arbitrary display to become 
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Multiple displays 
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the Open Project 

The owner of the display can also choose to have a 
For example, on a 
background image 
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 Projector on the 
phone, e.g., via a menu, while the application of interest is 

steps to project a 
identifying a target display via the QR 

on the display, and 
projection region.  

the camera functionality 
code in the scene. It 

brings up a camera view on the phone for the user to aim 
on the target display. Once Open 

decodes the display ID from 
Project Server to create 

. The server then notifies both the 

Projection Display, identified by the
Open Projector with a session ID. Thereafter, 
Display and Open Projector communicate with each other 
through the Open Project Server using the assigned session 
ID, which allows messages to be correctly routed when 
multiple sessions are active (see Figure
Projection Display receives a new session ID, it responds 
by turning the QR code into a checkerboard 
user to adjust the projection region.

Adjusting the Projection Region 
Once the Open Projector sees the checkerboard 
calculates how much the detected marker 
center of the camera view. It then 
Display the deviation as the amount of adjustment that the 
marker has to make on the display so that the 
return to the center of the camera view
or orients the phone towards a target position on the 
display, the marker adjustment is continuously sent to the 
Projection Display, and the position change of
on the display is fed back to the phone
camera. We will elaborate on the detail

As mentioned earlier, a user can slide her finger on the 
phone’s touchscreen in a circular motion
shrink a projection denoted by the blue
that the size and orientation of the 
A user may rotate the phone to switch between landscape 
and the portrait orientations, which will change the 
orientation of the projection region 

Sharing the phone screen 
Once a user taps the camera view on the phone, the camera 
view exits and the projection region is affixed. The system 
now enters the sharing stage. In this stage, the phone’s 
position and orientation become irrelevant to the projection 
on the display. As the Open Projector has returned control 
to the application (from the camera view), a user can now 
interact with the application. Meanwhile, 
Projector periodically polls the 
application, compresses and sends 
if the screen has been updated. The 
receives the screenshot of the application, 
renders it according to the determined 

A user can interact with the mobil
phone as usual and the UI changes will be reflected on both 
the local phone screen and the remote projection. In 
addition, Open Project allows users to directly 
application via the projection if the display supports 
input. When a pointing event occurs, 
touch event, the Projection Display
the boundary of an affixed projection
event to the paired Open Projector using its 
allows the Projection Display to dispatch pointing
appropriate projections when multiple projections exist on 
the same display. Additionally, the 
acts as a window manager and ensur
not overlap, nor are moved off screen.

 

Figure 3. The Open Project runtime architecture. 
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the center of the camera view. As the user moves 
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Once a user taps the camera view on the phone, the camera 
view exits and the projection region is affixed. The system 

In this stage, the phone’s 
irrelevant to the projection 

Projector has returned control 
to the application (from the camera view), a user can now 
interact with the application. Meanwhile, the Open 

 screen image of the 
sends the image to the display 

. The Projection Display 
of the application, scales and 
determined projection region. 

A user can interact with the mobile application on the 
phone as usual and the UI changes will be reflected on both 
the local phone screen and the remote projection. In 

allows users to directly operate the 
the projection if the display supports user 

event occurs, such as a mouse or 
Display verifies if it is within 
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The Open Projector receives input events from its 
projection on the display, and re-dispatches the events
the UI of the application that is being projected. 
application responds to the events as if these events were 
originated locally from the phone, and the UI changes will 
be displayed on both sides as discussed earlier.

Algorithms for “Camera Projection” 
An important step in Open Project is to position a 
projection region on a remote display.
emulates a handheld projector through “camera projection”, 
a technique that allows a user to physically target their 
desired location on the remote display using a built
phone camera instead of a real projector. To 
simultaneous projecting mobile devices and displays
architecture distributes the computation required for camera 
projection onto each mobile device.  

The fundamental intuition behind the camera projection 
algorithm is that a designated pattern on the display (
checkerboard in our current design), as the projection from 
the camera, should stay at the center of the camera view. 
When a user moves or orients the phone came
new location on the display, the pattern will deviate from 
the center of the camera view. Based on the amount of 
observed deviation, we can calculate how much the 
pattern should be moved on the display so that it is centered 
in the camera view again.  

Designing a Target Pattern 
An important issue for the algorithm to work is 
appropriate target pattern that is easy and reliable 
by a phone camera. A common solution has been detecting 
features in a screenshot image (e.g. [3,13]). However,
a solution is dependent upon having an appropriately 
feature-rich screenshot, is constrained 
viewing conditions and at larger distances, 
complicated when the screen is highly dynamic
other simultaneous projections are constantly updating)

Alternatively, checkerboard patterns have been extensively 
used in computer vision for camera calibration
Checkerboards are distinctive markers that are 
many lighting conditions, amongst complex 
at various angles. Additionally, such a marker can be 
dynamically scaled depending on the size and resolution of 
the display to enable interaction at large distances. Finally
reliable detection of checkerboard markers can be 

Figure 4. The two checkerboard patterns used for 
positioning. One is the negation of the other in colors.
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uch a marker can be 

amically scaled depending on the size and resolution of 
large distances. Finally, 

reliable detection of checkerboard markers can be achieved 

efficiently on low-powered devices such as smartphones
making it ideal for Open Project.  

In our specific design, we use 
pattern (see Figure 4) that is resilient 
gives more than enough inner intersection points for 
calculating a homography matrix. 
asymmetric design of the checkerboard 
orientation of the camera with relation to the display

Detecting a Checkerboard Pattern  
Our checkerboard detection algorithm 
a popular computer vision open source library 
particular, OpenCV provides a set o
calibration by estimating camera parameters from a series 
of frames containing a checkerboard pattern. 
algorithm is effective for one-time camera calibration
focused on accuracy over speed by continuously it
its search for quads whose intersections form the inner 
points of a checkerboard. The algorithm is 
when realtime tracking is needed 
processor. Thus, we tailored the OpenCV algorithm in 
ways. First, we eliminate quads quickly by aggressively 
thresholding based on size and proximity.
eliminate the original algorithm’s iterative approach 
finding intersection points by expanding quads. 
study showed that iterating the search has diminishing 
returns that do not justify the time cost.

Transforming Deviation from Camera to Display Coordinates
The output of the checkerboard detection algorithm is a set 
of twelve internal intersection points in camera coordinates. 
Let dx and dy be the offsets of the centroid of these points 
from the center of the camera view 
vertical axis (see Figure 5). We need to transform 
offsets to display coordinates to find how much 
checkerboard must be moved on the display

w d ¢x d ¢y 1é
ë

ù
û

T

= H dé
ë

where H is a 3-by-3 projective transformation, i.e., a 
homography matrix, from camera to display coordinates

Typically, a homography H can be calculated using a 
RANSAC approach [11], which iteratively finds the best 
mapping and the transformation matrix between two sets of 
points, in our case the 12 checkerboard points detected in 
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Figure 5. Transforming the offset in camera coordinates, 
dx and dy, to an offset in display coordinates, 
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Figure 5. Transforming the offset in camera coordinates, 

display coordinates, dx’ and dy’. 



 

camera coordinates and on the display. However, this 
process can be simplified for our use. We can determine the 
correspondences between the two sets of points, by sorting 
the detected checkerboard points based on the phone’s 
orientation (detected via built-in accelerometers) and their 
order in the horizontal and vertical axis. Once the 
correspondences are known, we can find the homography H 
by calculating the least square solution of a linear system 
(see Equation 2), which is much faster than RANSAC. 

T = H O                                       (2) 

where O is a 3-by-12 matrix whose columns are each the 
homogeneous coordinates of a checkerboard point observed 
in camera coordinates. T captures the coordinates of the 12 
checkerboard points on the display. In fact, we do not need 
to know the absolute position of the checkerboard points on 
the display due to the following deduction. Each point can 
be represented as a relative coordinate, Trelative, to the 
checkerboard center, Tcenter. We do the same for the 
observed checkerboard points O. Thus, 

Tcenter + Trelative = H ( Ocenter  + Orelative )             (3) 

Because Tcenter = H Ocenter is redundant for the calculation, 
we acquire Equation 4. 

Trelative = H Orelative                                  (4) 

However, Trelative still requires us to know the physical size 
of the checkerboard on the display which is constant during 
projection. One solution is to use a predetermined fixed 
checkerboard size for all displays. However, this is 
inappropriate for diverse projection constraints, e.g., a large 
checkerboard might be used for a wall-size display to allow 
long-range projection while a small one can suffice on a PC 
monitor. A second solution is to let Projection Display pass 
the checkerboard size being used to the Projector on the 
phone at runtime—an extra step. Instead, we can eliminate 
this requirement by further deduction. We can take the size 
factor, S, out of Trelative: 

S Tunit = H Orelative                                  (5) 

where S is a 3x3 scaling transformation matrix and Tunit is 
the set of checkerboard points at a unit scale, independent 
of the actual physical size and position of the checkerboard. 
We then acquire: 

Tunit = S-1 H Orelative                               (6) 

We can calculate S-1 H as a whole, but not individually. 
However, we can use the expression as a whole, based on 
Equation 1, to transform dx and dy. This gives us the 
amount of adjustment needed at the unit scale. Once the 
Projection Display—which knows the actual size of the 
checkerboard S—receives this adjustment it can recover dx’ 
and dy’ by applying S to scale up the unit scale adjustment. 

Synchronizing by Alternating Checkerboard Patterns 
Generating updates on the phone and updating the 
checkerboard on the display are two asynchronous but 
dependent processes. An update is relative and applied to 
the marker’s current position; the updated position is then 

used by the phone to generate the next update. As a result, 
when an update is sent to the Projection Display over the 
network, the phone has to wait for it to be processed by the 
Projection Display before analyzing a new frame and 
generating another update. This requires the two processes 
to be synchronized so that only one of them runs at a time. 

To determine if an update has been processed, i.e., the 
checkerboard has been moved, we cannot rely on the 
checkerboard’s deviation change observed through the 
camera as the phone is in constant motion even when not 
intended by the user. Thus, the Display must indicate that 
an update has been processed explicitly. Though it is 
possible to send this message to the phone over the 
network, it complicates the protocol and increases latency. 

Instead, we use a visual synchronization mechanism by 
alternating between two distinct checkerboard patterns that 
share the same dimension (see Figure 4). When the display 
moves the checkerboard in response to an update request, it 
flips the checkerboard pattern to visually acknowledge. 
Once the phone detects the checkerboard switch, it starts to 
process a new frame and sends a new update.  

Generating an update only when a checkerboard pattern 
flips synchronizes the processes well. However, it is 
possible that, before an update is processed or received by 
the display, the phone is already in a new position or 
orientation due to system latency and fast motion of the 
user’s hand. To maximally follow the user motion, we 
choose to constantly generate updates, without waiting for 
the pattern to switch, but with an important enhancement. 
Each update is sent with the type of the pattern that it 
applies to, i.e., either type 1 or 2 (Figure 4). When an 
update reaches the display, the display checks its pattern 
type, applies the one that is consistent with the 
checkerboard pattern being shown and at the same time 
flips the pattern that will discard subsequent inconsistent 
updates. This ensures that a correct update is used for the 
current checkerboard position and is based on the 
assumption that in general an update would not take too 
long, i.e., longer than two pattern switches, to arrive at the 
display. This approach allows a later update to override an 
earlier unprocessed one, and leverages nondeterministic 
ordering of messages over the network (e.g. a late update 
can arrive early).  

IMPLEMENTATION 

We implemented Open Projector as a library based on the 
Android 4.0 platform. We employed the Zxing library [26] 
to detect the QR marker, and customized the OpenCV 
library to detect the checkerboard marker. Most of the 
computation for processing a frame and generating updates 
is written in C++ and performed natively to improve 
performance. It is then integrated via Android NDK with 
the rest of the library written in Java. Developers can enable 
Open Project for their Android application by using the 
Java API of the library (see Figure 7).  



 

For sharing an application, the library grabs
cache of the application at an empirically determined
10fps to avoid overloading the phone processor
screen bitmap is compressed as a JPEG and sent over 
network as an encoded Base64 byte stream.
as touch or mouse events from the remote display is 
converted as an Android TouchEvent and dispatch
application’s UI (view) hierarchy. 
communicates with the Open Project Server 
regular socket connection, which can be implemented with 
Web Sockets in the future. 

The Projection Display is implemented as a web application
and is automatically deployed on a target display when the 
browser points to the Open Project Server
screen HTML5 canvas in the browser
projections and listening for user events
application is connected with the server via Web Sockets
Our server is implemented based on Tomcat
source web server [27]. The server merely routes messages 
and image data from mobile devices to screens. With the 
exception of decoding messages, it does not perform any
additional computation, improving scalability
applications require no deployment and can 
to simultaneous requests from many different users
case, mobile devices. Finally, as all the 
performed efficiently on the individual mobile device, the 
Open Project Server and the Projection Display need only 
limited hardware infrastructure for wide deployment

// Instantiate a VirtualProjection instance  
VirtualProjection projector = new OpenProject(activity); 
// Start a projection  
projector.startProjection (new OpenProjectCallback() {   
   public void onSharingStarted () {  
      // The user has selected a projection region and the sharing
      // stage is started.  
    }  
    public void onCanceled () {  
      // The projection is canceled by the user.  
      // before the sharing is started  
    }  
    public void onFinished () {  
      // The sharing is ended by the user.  
    }  
    public void onFailed () {  
      // VirtualProjection failed to find a target display region.
    }  
  }  

});  

Figure 7. An example code snippet for enabling 
Project in an application. 
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ENABLING A MOBILE APPLICATION FOR PROJECTION

A developer can easily hook their mobile application into 
the Open Project framework. Although our current 
implementation is based on the Android platform, the API 
framework can be generalized for other platforms.

To add Open Project to an application
instantiates the OpenProject class 
to the current activity—a screen on the Android platform
(see Figure 7). Open Projector will extract the
hierarchy for capturing the UI 
dispatching events from the remote display.
can select how to start projecting e.g., 
Remote input can be disabled 
function call to maintain user control over the

To start a projection, a developer calls 
OpenProjectCallback which allows
a status change in the projection process. These callbacks 
give the developer the option to update the UI or signal the 
user, e.g., beeping when the sharing stage is started

To demonstrate our API’s ease of 
Project support to several sample applications provided by 
the Android SDK (see Figure 6)
Photo Gallery, a TicTacToe game, and a Drawing
application. Based on these examples, we estimate that 
developers can add Open Project
applications with less than 30 lines of Java code.

EVALUATIONS 

In addition to demonstrating the usefulness of 
in a set of sample mobile applications, we evaluated 
Project in two ways. We first investigate
of our checkerboard updating algorithms
performed a user study to gauge user reactions to the tool.

Performance Experiments 
We intended to find out, under different conditions, 
effective range of the checkerboard marker detection
how fast we can update its position.

Apparatus 
We used a Thinkpad T420s as our server (running Ubuntu 
Linux 10.04), a Galaxy Nexus smartphone
Open Projector (with 11.8cm diagonal size at a resolution 
of 1280x720), and a PC connected to five 
(each is 68x120 cm) tiled by Windows 7
PC showed a fullscreen Chrome browser running Projection 
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Display. Each display had a resolution of 
totaling 4500x1600 over five screens. The width of the two 
bezels between adjacent displays is 5cm. A
connected to a Belkin N750DB router’s Wi-

Experimental Design & Procedures 
To find the effective range of our checkerboard detection 
and the time duration for updating the checkerboard 
position, we evaluated the system at various 
angles, background distractors, and lighting

The major factors for the checkerboard detection
the checkerboard marker’s size, the viewing distance and 
angle from the phone camera. The angle is
only to perspective distortion but also foreshortening. 
Therefore, we tested our system for three angles: 90
and 30°. Note that at an acute angle of 30
range that is closer to the display (140-240cm
account the significant perspective foreshortening. 
angle, we used six distances that cover the available space 
in the laboratory room. We used a fixed 
marker—a 5x4 array of 3cm black and white squares. 
small marker size was selected so as to detect the threshold 
distance within our small testing environment

We also took into account two common
computer-vision system: background 
lighting. For distracters, we tested three representative 
conditions: the marker is shown on a white screen
marker is displayed on top of a full-sized
image, and the marker is surrounded by three 
projections (a Maps app, a Contacts app, 
app). Two lighting conditions were tested: on and off.

Measures 
In each condition, we mounted the phone such that the 
center of its camera view sat at a height of 115cm, 
perpendicular to the ground in portrait mode
aligned with that of the checkerboard. The checkerboard 
marker was fixed on the display to maintain the designated 
spatial configuration. We then calculate two
processing 200 consecutive camera frames
detection rate as the percentage of frames in which 
algorithm finds the marker. This reflects how reliably 
algorithm can detect the marker. We also 
update time by looking at the duration between two 
adjacent checkerboard pattern switches detected by the 
algorithm—an update cycle. The update time
frame processing time, and other time costs such as
to update the camera view, transmit an update
network and render the new pattern on the 
that the update and detection rate are two correlated 
measures, i.e., when the detection rate is low, it takes a 
longer time to generate an update, and vice versa.

Results 
We summarize Open Project’s detection 
time performance under different conditions
When the update time is above 500ms, our algorithm is too 
slow to catch up to a regular user’s motion, and we mark 
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the display, and 2) how mobile users react to our system as 
a whole. We recruited 10 participants (2 females, 8 males, 
with a mean age of 22.4) from an IT company, all highly 
experienced smartphone users. Only one participant had 
experience with handheld physical projection systems. 

Experimental Design 
To answer these questions, our study consisted of two 
sessions. First, a participant moved and resized the 
projection region on the five-display setup used in our 
performance experiment. After a warm-up session, a 
participant starts the task by enabling Open Project on a test 
application. Starting from the center of the display, the 
participant must move the projection region to a given 
location, randomly selected from two categories: those 
nearby, or at most 68cm away; and those far away, or 
greater than 170cm. The initial projection dimensions are 
22x37cm. A participant needs to scale the projection region 
up to one of two scales: 31x52cm, and 44x74cm (i.e. 1.4 
times or twice the original dimensions). We marked each 
target location and size on the display. Participants confirm 
the final projection region and complete a trial by clicking 
on a button on the smartphone. Participants performed the 
task 12 times for each setting.  

In the second session, participants were asked to project 
three Open Project-enabled applications onto a 68x120cm 
touch-sensitive display running at 900x1600 resolution. For 
this session, we used a citywide free wi-fi network instead 
of a dedicated network as previous, to experience a realistic 
network configuration. A participant first played a game of 
Tic-Tac-Toe with the computer. Then, the participant used 
the Gallery to find an image of a dog randomly positioned 
from a list of 15 distractor images. Last, the participant used 
Maps to find downtown Seattle and Vancouver from San 
Francisco using only panning and zooming. For a good 
understanding of the interaction, participants performed the 
tasks twice: once interacting on their smartphone, and once 
using the touch-sensitive large display. Participants were 
asked to think aloud and give qualitative feedback. 

Results 
Using a within-subjects analysis of variance with distance 
and scale as factors, we found both factors have a 
significant effect on the task completion time (p < 0.05). 
Participants took longer to position the projection farther 
away (M=12s, SD=4s) than closer to the starting position 
(M=11s, SD=3s). Tasks including scaling to twice the 
dimensions took 12s on average (SD=4s) while those 
requiring minor scaling took 11s (SD=4s). Task completion 
times include acquiring the Stop button for each trial.  

To find out how accurately participants positioned the 
projection region, we calculated the distance from the final 
projection to the target. Participants were able to accurately 
position the projection both nearby (offset M=2.1cm, 
SD=1.5cm) and far away (offset M=2.6cm, SD=2.6cm), 
i.e., a mean error of 3% of the total distance traveled. 

We evaluated how accurately participants were able to scale 
the projection to match the target size, by considering the 
percentage amount the participant’s projection differed 
from the target dimensions. Similar to positioning, 
participants were highly accurate in scaling. When scaling 
to 1.4 times the original dimensions, participants resized 
their projection to within 5.3% of the target size 
(SD=4.6%). When scaling to twice participants had a mean 
error of 4%. (SD=3.4%).  

Qualitative Feedback  
Overall, participants were highly positive regarding Open 
Project for sharing media, collaborate with others or 
expanding the output space. On a five-point Likert scale, 
participants rated Open Project highly useful for 
applications such as presentations (M=4.4), collaborating 
tasks (M=3.9), and for sharing media with others (M=4.4). 
Participants rated Open Project as very easy to understand 
(M=4.3) and easy to use (M=3.7). Participants saw Open 
Project as somewhat useful for mobile gaming (M=3.6). 

In terms of qualitative feedback, participants saw Open 
Project as a useful addition to their mobile experience. 
Participants praised the ability to share information quickly 
and efficiently on a nearby display. 

    “It’s difficult to share stuff regularly. Only one person can 
view the screen at a time. It’s a turn-based experience.” [P2]. 

In terms of the specifics of Open Project, participants found 
the physical positioning with the camera projection 
technique to be “a natural instinct”. Participants also saw 
Open Project as a way to control the privacy of their mobile 
device while still sharing some information.  

    “I am nervous to hand over my phone. With [Open Project], 
I don’t have to hand over my phone that has a lot of private 
data. […] It’s nice to have control over what is shared.” [P10] 

However, our participants did notice the performance was 
lacking for our current implementation.  

    “In terms of mobile gaming the performance needs to 
improve. However the concept is useful. With a better frame 
rate I would change my score accordingly.” [P1] 

Finally, participants suggested using Open Project to enable 
the smartphones as a central repository of data and 
computation, streaming information to various outputs. 
Participants thought of our web framework as effectively 
replicating common hardware used to stream music or 
video to remote devices with minimal deployment effort. 

DISCUSSION 
Open Project performs as much computation as possible on 
the mobile device, maintaining a lightweight server that 
simply acts as a router. Our current implementation 
achieves a similar image transmission frame rate to 
previous techniques (e.g. [3]). However, performance 
suffers in dynamic applications such as video sharing or 
realtime gaming.  To improve the frame rate, future work 
can take better advantage of mobile hardware (e.g. using 
the GPU for marker detection) and use dedicated libraries 



 

for content streaming such as VNC. As VNC is a point-to-
point protocol, the Open Project Server will have to set up 
direct connections between a display and its remote clients.  

The projection metaphor allows users to easily access any 
part of the display with radial movement of the arm and 
wrist. However, physical projection suffers from poor 
stability and angle-dependent distortion dependent on 
viewing angle. Open Project’s marker-based positioning 
embodies a partial projection metaphor that takes advantage 
of the intuitive physical targeting but stabilizes the 
projection when the user interacts with the projected app. 
We can strengthen the projection metaphor, e.g., by adding 
a live view of the projected content to the marker while 
positioning. We can also enable multiple phones to 
simultaneously position their content by embedding a 
unique identifier (e.g., a QR code) into the marker. 

Finally, the Open Project framework enables vision-based 
digital sharing at a large scale with minimal effort. The 
web-based architecture means that any display capable of 
showing a browser can be turned into an output device 
without installation. It is also possible to implement Open 
Projector (the mobile component in our framework) as a 
built-in function of a mobile platform for improved 
performance and simple invoking, e.g., via a hard button.  

CONCLUSION 
We presented Open Project, an open, web-based framework 
for enabling mobile sharing and collaboration at a large 
scale. It employs an intuitive, projection-based metaphor 
for a user to easily share a mobile application by projecting 
it onto a target large display. Open Project can turn any 
computer display projectable instantaneously and without 
deployment, and its “camera projection” algorithm, for 
simulating a projection effect, performs reliably in various 
viewing conditions. Developers can add support for Open 
Project in native mobile apps by simply linking our library, 
requiring no additional hardware or sensors. Our study 
participants responded highly positively to Open Project-
enabled applications for mobile sharing and collaboration. 
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