
Gradient Estimation Using
Stochastic Computation Graphs

John Schulman1,2

joschu@eecs.berkeley.edu

Nicolas Heess1
heess@google.com

Theophane Weber1
theophane@google.com

Pieter Abbeel2
pabbeel@eecs.berkeley.edu

1 Google DeepMind 2 University of California, Berkeley, EECS Department

Abstract
In a variety of problems originating in supervised, unsupervised, and reinforce-
ment learning, the loss function is defined by an expectation over a collection
of random variables, which might be part of a probabilistic model or the exter-
nal world. Estimating the gradient of this loss function, using samples, lies at
the core of gradient-based learning algorithms for these problems. We introduce
the formalism of stochastic computation graphs—directed acyclic graphs that in-
clude both deterministic functions and conditional probability distributions—and
describe how to easily and automatically derive an unbiased estimator of the loss
function’s gradient. The resulting algorithm for computing the gradient estimator
is a simple modification of the standard backpropagation algorithm. The generic
scheme we propose unifies estimators derived in variety of prior work, along with
variance-reduction techniques therein. It could assist researchers in developing in-
tricate models involving a combination of stochastic and deterministic operations,
enabling, for example, attention, memory, and control actions.

1 Introduction
The great success of neural networks is due in part to the simplicity of the backpropagation al-
gorithm, which allows one to efficiently compute the gradient of any loss function defined as a
composition of differentiable functions. This simplicity has allowed researchers to search in the
space of architectures for those that are both highly expressive and conducive to optimization; yield-
ing, for example, convolutional neural networks in vision [12] and LSTMs for sequence data [9].
However, the backpropagation algorithm is only sufficient when the loss function is a deterministic,
differentiable function of the parameter vector.

A rich class of problems arising throughout machine learning requires optimizing loss functions
that involve an expectation over random variables. Two broad categories of these problems are (1)
likelihood maximization in probabilistic models with latent variables [17, 18], and (2) policy gradi-
ents in reinforcement learning [5, 23, 26]. Combining ideas from from those two perennial topics,
recent models of attention [15] and memory [29] have used networks that involve a combination of
stochastic and deterministic operations.

In most of these problems, from probabilistic modeling to reinforcement learning, the loss functions
and their gradients are intractable, as they involve either a sum over an exponential number of latent
variable configurations, or high-dimensional integrals that have no analytic solution. Prior work (see
Section 6) has provided problem-specific derivations of Monte-Carlo gradient estimators, however,
to our knowledge, no previous work addresses the general case.

Appendix C recalls several classic and recent techniques in variational inference [14, 10, 21] and re-
inforcement learning [23, 25, 15], where the loss functions can be straightforwardly described using

1

the formalism of stochastic computation graphs that we introduce. For these examples, the variance-
reduced gradient estimators derived in prior work are special cases of the results in Sections 3 and 4.

The contributions of this work are as follows:

• We introduce a formalism of stochastic computation graphs, and in this general setting, we derive
unbiased estimators for the gradient of the expected loss.

• We show how this estimator can be computed as the gradient of a certain differentiable function
(which we call the surrogate loss), hence, it can be computed efficiently using the backpropaga-
tion algorithm. This observation enables a practitioner to write an efficient implementation using
automatic differentiation software.

• We describe variance reduction techniques that can be applied to the setting of stochastic compu-
tation graphs, generalizing prior work from reinforcement learning and variational inference.

• We briefly describe how to generalize some other optimization techniques to this setting:
majorization-minimization algorithms, by constructing an expression that bounds the loss func-
tion; and quasi-Newton / Hessian-free methods [13], by computing estimates of Hessian-vector
products.

The main practical result of this article is that to compute the gradient estimator, one just needs
to make a simple modification to the backpropagation algorithm, where extra gradient signals are
introduced at the stochastic nodes. Equivalently, the resulting algorithm is just the backpropagation
algorithm, applied to the surrogate loss function, which has extra terms introduced at the stochastic
nodes. The modified backpropagation algorithm is presented in Section 5.

2 Preliminaries
2.1 Gradient Estimators for a Single Random Variable

This section will discuss computing the gradient of an expectation taken over a single random
variable—the estimators described here will be the building blocks for more complex cases with
multiple variables. Suppose that x is a random variable, f is a function (say, the cost), and we are
interested in computing @

@✓

E
x

[f(x)]. There are a few different ways that the process for generating
x could be parameterized in terms of ✓, which lead to different gradient estimators.

• We might be given a parameterized probability distribution x ⇠ p(·; ✓). In this case, we can use
the score function (SF) estimator [3]:

@

@✓
E
x

[f(x)] = E
x


f(x)

@

@✓
log p(x; ✓)

�
. (1)

This classic equation is derived as follows:
@

@✓
E
x

[f(x)] =
@

@✓

Z
dx p(x; ✓)f(x) =

Z
dx

@

@✓
p(x; ✓)f(x)

=

Z
dx p(x; ✓)

@

@✓
log p(x; ✓)f(x) = E

x


f(x)

@

@✓
log p(x; ✓)

�
(2)

This equation is valid if and only if p(x; ✓) is a continuous function of ✓; however, it does not
need to be a continuous function of x [4].

• x may be a deterministic, differentiable function of ✓ and another random variable z, i.e., we can
write x(z, ✓). Then, we can use the pathwise derivative (PD) estimator, defined as follows.

@

@✓
E
z

[f(x(z, ✓))] = E
z


@

@✓
f(x(z, ✓))

�
. (3)

This equation, which merely swaps the derivative and expectation, is valid if and only if f(x(z, ✓))
is a continuous function of ✓ for all z [4]. 1 That is not true if, for example, f is a step function.
1 Note that for the pathwise derivative estimator, f(x(z, ✓)) merely needs to be a continuous function of

✓—it is sufficient that this function is almost-everywhere differentiable. A similar statement can be made
about p(x; ✓) and the score function estimator. See Glasserman [4] for a detailed discussion of the technical
requirements for these gradient estimators to be valid.

2

• Finally ✓ might appear both in the probability distribution and inside the expectation, e.g., in
@

@✓

E
z⇠p(·; ✓) [f(x(z, ✓))]. Then the gradient estimator has two terms:

@

@✓
E
z⇠p(·; ✓) [f(x(z, ✓))] = E

z⇠p(·; ✓)


@

@✓
f(x(z, ✓)) +

✓
@

@✓
log p(z; ✓)

◆
f(x(z, ✓))

�
. (4)

This formula can be derived by writing the expectation as an integral and differentiating, as in
Equation (2).

In some cases, it is possible to reparameterize a probabilistic model—moving ✓ from the distribution
to inside the expectation or vice versa. See [3] for a general discussion, and see [10, 21] for a recent
application of this idea to variational inference.

The SF and PD estimators are applicable in different scenarios and have different properties.

1. SF is valid under more permissive mathematical conditions than PD. SF can be used if f is
discontinuous, or if x is a discrete random variable.

2. SF only requires sample values f(x), whereas PD requires the derivatives f 0
(x). In the context

of control (reinforcement learning), SF can be used to obtain unbiased policy gradient estimators
in the “model-free” setting where we have no model of the dynamics, we only have access to
sample trajectories.

3. SF tends to have higher variance than PD, when both estimators are applicable (see for instance
[3, 21]). The variance of SF increases (often linearly) with the dimensionality of the sampled
variables. Hence, PD is usually preferable when x is high-dimensional. On the other hand, PD
has high variance if the function f is rough, which occurs in many time-series problems due to
an “exploding gradient problem” / “butterfly effect”.

4. PD allows for a deterministic limit, SF does not. This idea is exploited by the deterministic policy
gradient algorithm [22].

Nomenclature. The methods of estimating gradients of expectations have been independently pro-
posed in several different fields, which use differing terminology. What we call the score function
estimator (via [3]) is alternatively called the likelihood ratio estimator [5] and REINFORCE [26].
We chose this term because the score function is a well-known object in statistics. What we call
the pathwise derivative estimator (from the mathematical finance literature [4] and reinforcement
learning [16]) is alternatively called infinitesimal perturbation analysis and stochastic backpropa-
gation [21]. We chose this term because pathwise derivative is evocative of propagating a derivative
through a sample path.

2.2 Stochastic Computation Graphs

The results of this article will apply to stochastic computation graphs, which are defined as follows:

Definition 1 (Stochastic Computation Graph). A directed, acyclic graph, with three types of
nodes:

1. Input nodes, which are set externally, including the parameters we differentiate with
respect to.

2. Deterministic nodes, which are functions of their parents.

3. Stochastic nodes, which are distributed conditionally on their parents.

Each parent v of a non-input node w is connected to it by a directed edge (v, w).

In the subsequent diagrams of this article, we will use circles to denote stochastic nodes and squares
to denote deterministic nodes, as illustrated below. The structure of the graph fully specifies what
estimator we will use: SF, PD, or a combination thereof. This graphical notation is shown below,
along with the single-variable estimators from Section 2.1.

3

✓ Input node

Deterministic node

Stochastic node

✓ x f

Gives SF estimator

✓

z

x f

Gives PD estimator

2.3 Simple Examples

Several simple examples that illustrate the stochastic computation graph formalism are shown below.
The gradient estimators can be described by writing the expectations as integrals and differentiating,
as with the simpler estimators from Section 2.1. However, they are also implied by the general
results that we will present in Section 3.

Stochastic Computation Graph Objective Gradient Estimator

(1)
✓

x

y

f

(2)
✓

x

y

f

(3)
✓

x

y

f

(4)
✓

x

y

f

(5)
✓

x0 x1 x2

f1 f2

@x

@✓

@

@x

log p(y | x)f(y)

@

@✓

log p(x | ✓)f(y(x))

@

@✓

log p(x | ✓)f(y)

@

@✓

log p(x | ✓)f(x, y(✓)) + @y

@✓

@f

@y

@

@✓

log p(x1 | ✓, x0)(f1(x1) + f2(x2))

+
@

@✓

log p(x2 | ✓, x1)f2(x2)

E
y

[f(y)]

E
x

[f(y(x))]

E
x,y

[f(y)]

E
x

[f(x, y(✓))]

E
x1,x2 [f1(x1) + f2(x2)]

Figure 1: Simple stochastic computation graphs

These simple examples illustrate several important motifs, where stochastic and deterministic nodes
are arranged in series or in parallel. For example, note that in (2) the derivative of y does not appear
in the estimator, since the path from ✓ to f is “blocked” by x. Similarly, in (3), p(y | x) does not
appear (this type of behavior is particularly useful if we only have access to a simulator of a system,
but not access to the actual likelihood function). On the other hand, (4) has a direct path from ✓ to
f , which contributes a term to the gradient estimator. (5) resembles a parameterized Markov reward
process, and it illustrates that we’ll obtain score function terms of the form grad log-probability ⇥
future costs.

x

h1 h2

W1 W2b1 b2

soft-
max

y=label

cross-
entropy
loss

The examples above all have one input ✓, but the formal-
ism accommodates models with multiple inputs, for ex-
ample a stochastic neural network with multiple layers of
weights and biases, which may influence different sub-
sets of the stochastic and cost nodes. See Appendix C
for nontrivial examples with stochastic nodes and multi-
ple inputs. The figure on the right shows a deterministic
computation graph representing classification loss for a two-layer neural network, which has four
parameters (W

1

, b
1

,W
2

, b
2

) (weights and biases). Of course, this deterministic computation graph
is a special type of stochastic computation graph.

4

3 Main Results on Stochastic Computation Graphs
3.1 Gradient Estimators

This section will consider a general stochastic computation graph, in which a certain set of nodes
are designated as costs, and we would like to compute the gradient of the sum of costs with respect
to some input node ✓.

In brief, the main results of this section are as follows:

1. We derive a gradient estimator for an expected sum of costs in a stochastic computation graph.
This estimator contains two parts (1) a score function part, which is a sum of terms grad log-
prob of variable ⇥ sum of costs influenced by variable; and (2) a pathwise derivative term, that
propagates the dependence through differentiable functions.

2. This gradient estimator can be computed efficiently by differentiating an appropriate “surrogate”
objective function.

Let ⇥ denote the set of input nodes, D the set of deterministic nodes, and S the set of stochastic
nodes. Further, we will designate a set of cost nodes C, which are scalar-valued and deterministic.
(Note that there is no loss of generality in assuming that the costs are deterministic—if a cost is
stochastic, we can simply append a deterministic node that applies the identity function to it.) We
will use ✓ to denote an input node (✓ 2 ⇥) that we differentiate with respect to. In the context of
machine learning, we will usually be most concerned with differentiating with respect to a parameter
vector (or tensor), however, the theory we present does not make any assumptions about what ✓
represents.

Notation Glossary
⇥: Input nodes
D: Deterministic nodes
S: Stochastic nodes
C: Cost nodes
v � w: v influences w
v �D

w: v deterministically influences w
DEPS

v

: “dependencies”,
{w 2 ⇥ [S | w �D

v}
ˆ

Q

v

: sum of cost nodes influenced by v.
v̂: denotes the sampled value of the node v.

For the results that follow, we need to define the
notion of “influence”, for which we will introduce
two relations � and �D. The relation v � w
(“v influences w”) means that there exists a se-
quence of nodes a

1

, a
2

, . . . , a
K

, with K � 0, such
that (v, a

1

), (a
1

, a
2

), . . . , (a
K�1

, a
K

), (a
K

, w) are
edges in the graph. The relation v �D w (“v deter-
ministically influences w”) is defined similarly, ex-
cept that now we require that each a

k

is a determin-
istic node. For example, in Figure 1, diagram (5)
above, ✓ influences {x

1

, x
2

, f
1

, f
2

}, but it only de-
terministically influences {x

1

, x
2

}.

Next, we will establish a condition that is sufficient
for the existence of the gradient. Namely, we will
stipulate that every edge (v, w) with w lying in the
“influenced” set of ✓ corresponds to a differentiable
dependency: if w is deterministic, then the Jacobian
@w

@v

must exist; if w is stochastic, then the probability mass function p(w | v, . . .) must be differen-
tiable with respect to v.

More formally:

Condition 1 (Differentiability Requirements). Given input node ✓ 2 ⇥, for all edges (v, w)
which satisfy ✓ �D v and ✓ �D w, then the following condition holds: if w is deterministic,
Jacobian @w

@v

exists, and if w is stochastic, then the derivative of the probability mass function
@

@v

p(w | PARENTS
w

) exists.

Note that Condition 1 does not require that all the functions in the graph are differentiable. If
the path from an input ✓ to deterministic node v is blocked by stochastic nodes, then v may be a
nondifferentiable function of its parents. If a path from input ✓ to stochastic node v is blocked by
other stochastic nodes, the likelihood of v given its parents need not be differentiable; in fact, it does
not need to be known2.

2This fact is particularly important for reinforcement learning, allowing us to compute policy gradient esti-
mates despite having a discontinuous dynamics function or reward function.

5

We need a few more definitions to state the main theorems. Let DEPS
v

:

= {w 2 ⇥ [S | w �D v},
the “dependencies” of node v, i.e., the set of nodes that deterministically influence it. Note the
following:

• If v 2 S , the probability mass function of v is a function of DEPS
v

, i.e., we can write p(v |DEPS
v

).
• If v 2 D, v is a deterministic function of DEPS

v

, so we can write v(DEPS
v

).

Let ˆQ
v

:

=

P
c�v,

c2C
ĉ, i.e., the sum of costs downstream of node v. These costs will be treated as

constant, fixed to the values obtained during sampling. In general, we will use the hat symbol v̂ to
denote a sample value of variable v, which will be treated as constant in the gradient formulae.

Now we can write down a general expression for the gradient of the expected sum of costs in a
stochastic computation graph:

Theorem 1. Suppose that ✓ 2 ⇥ satisfies Condition 1. Then the following two equivalent equa-
tions hold:

@

@✓
E
"
X

c2C
c

#
= E

2

664
X

w2S,

✓�D

w

✓
@

@✓
log p(w | DEPS

w

)

◆
ˆQ
w

+

X

c2C
✓�D

c

@

@✓
c(DEPS

c

)

3

775 (5)

= E

2

664
X

c2C
ĉ

X

w�c,

✓�D

w

@

@✓
log p(w | DEPS

w

) +

X

c2C,
✓�D

c

@

@✓
c(DEPS

c

)

3

775 (6)

Proof: See Appendix A.

The estimator expressions above have two terms. The first term is due to the influence of ✓ on proba-
bility distributions. The second term is due to the influence of ✓ on the cost variables through a chain
of differentiable functions. The distribution term involves a sum of gradients times “downstream”
costs. The first term in Equation (5) involves a sum of gradients times “downstream” costs, whereas
the first term in Equation (6) has a sum of costs times “upstream” gradients.

3.2 Surrogate Loss Functions
Surrogate Loss Computation Graph

(1)
✓

x

log p(y|x) ˆf

(2)
✓

log p(x; ✓)

ˆ

f

(3)
✓

log p(x; ✓)

ˆ

f

(4)
✓

log p(x; ✓)

ˆ

f

y

f

(5)
✓

x0
log p(x1|x0; ✓)

(

ˆ

f1 +
ˆ

f2)
log p(x2|x1; ✓)

ˆ

f2

Figure 2: Deterministic compu-
tation graphs obtained as surro-
gate loss functions of stochas-
tic computation graphs from Fig-
ure 1.

The next corollary lets us write down a “surrogate” objective L,
which is a function of the inputs that we can differentiate to obtain
an unbiased gradient estimator.
Corollary 1. Let L(⇥,S) :

=

P
w

log p(w | DEPS
w

)

ˆQ
w

+P
c2C c(DEPS

c

). Then differentiation of L gives us an unbiased gra-
dient estimate: @

@✓

E
⇥P

c2C c
⇤
= E

⇥
@

@✓

L(⇥,S)
⇤
.

One practical consequence of this result is that we can apply a stan-
dard automatic differentiation procedure to L to obtain an unbiased
gradient estimator. In other words, we convert the stochastic com-
putation graph into a deterministic computation graph, to which we
can apply the backpropagation algorithm.

There are several alternative ways to define the surrogate objective
function that give the same gradient as L from Corollary 1. We
could also write L(⇥,S) :=

P
w

p(ŵ | DEPS
w

)

ˆ

P

v

ˆQ
w

+

P
c2C c(DEPS

c

),

where ˆP
w

is the probability p(w|DEPS
w

) obtained during sampling,
which is viewed as a constant.

The surrogate objective from Corollary 1 is actually an upper bound
on the true objective in the case that (1) all costs c 2 C are negative,
(2) the the costs are not deterministically influenced by the parameters ⇥. This construction al-
lows from majorization-minimization algorithms (similar to EM) to be applied to general stochastic
computation graphs. See Appendix B for details.

6

3.3 Higher-Order Derivatives.

The gradient estimator for a stochastic computation graph is itself a stochastic computation graph.
Hence, it is possible to compute the gradient yet again (for each component of the gradient vector),
and get an estimator of the Hessian. For most problems of interest, it is not efficient to compute
this dense Hessian. On the other hand, one can also differentiate the gradient-vector product to get
a Hessian-vector product—this computation is usually not much more expensive than the gradient
computation itself. The Hessian-vector product can be used to implement a quasi-Newton algo-
rithm via the conjugate gradient algorithm [28]. A variant of this technique, called Hessian-free
optimization [13], has been used to train large neural networks.

4 Variance Reduction
Consider estimating @

@✓

E
x⇠p(·; ✓) [f(x)]. Clearly this expectation is unaffected by subtracting a con-

stant b from the integrand, which gives @

@✓

E
x⇠p(·; ✓) [f(x)� b]. Taking the score function estimator,

we get @

@✓

E
x⇠p(·; ✓) [f(x)] = E

x⇠p(·; ✓)
⇥

@

@✓

log p(x; ✓)(f(x)� b)
⇤
. Taking b = E

x

[f(x)] gener-
ally leads to substantial variance reduction—b is often called a baseline3 (see [6] for a more thorough
discussion of baselines and their variance reduction properties).

We can make a general statement for the case of stochastic computation graphs—that we can
add a baseline to every stochastic node, which depends all of the nodes it doesn’t influence. Let
NONINFLUENCED(v) := {w | v ⌃ w}.

Theorem 2.

@

@✓
E
"
X

c2C
c

#
= E

2

64
X

v2S
v�✓

✓
@

@✓
log p(v | PARENTS

v

)

◆
(

ˆQ
v

� b(NONINFLUENCED(v)) +
X

c2C⌫✓

@

@✓
c

3

75

Proof: See Appendix A.

5 Algorithms
As shown in Section 3, the gradient estimator can be obtained by differentiating a surrogate objective
function L. Hence, this derivative can be computed by performing the backpropagation algorithm
on L. That is likely to be the most practical and efficient method, and can be facilitated by automatic
differentiation software.

Algorithm 1 shows explicitly how to compute the gradient estimator in a backwards pass through

the stochastic computation graph. The algorithm will recursively compute g
v

:

=

@

@v

E
P

c2C
v�c

c

�
at

every deterministic and input node v.

6 Related Work
As discussed in Section 2, the score function and pathwise derivative estimators have been used in a
variety of different fields, under different names. See [3] for a review of gradient estimation, mostly
from the simulation optimization literature. Glasserman’s textbook provides an extensive treatment
of various gradient estimators and Monte Carlo estimators in general. Griewank and Walther’s
textbook [8] is a comprehensive reference on computation graphs and automatic differentiation (of
deterministic programs.) The notation and nomenclature we use is inspired by Bayes nets and
influence diagrams [19]. (In fact, a stochastic computation graph is a type of Bayes network; where
the deterministic nodes correspond to degenerate probability distributions.)

The topic of gradient estimation has drawn significant recent interest in machine learning. Gradients
for networks with stochastic units was investigated in Bengio et al. [2], though they are concerned

3The optimal baseline for scalar ✓ is in fact the weighted expectation
E
x

[

f(x)s(x)2
]

E
x

[

s(x)2
]

where s(x) =

@

@✓

log p(x; ✓).

7

Algorithm 1 Compute Gradient Estimator for Stochastic Computation Graph
for v 2 Graph do . Initialization at output nodes

g
v

=

⇢
1
dim v

if v 2 C
0
dim v

otherwise
end for
Compute ˆQ

w

for all nodes w 2 Graph
for v in REVERSETOPOLOGICALSORT(NONINPUTS) do . Reverse traversal

for w 2 PARENTS
v

do
if not ISSTOCHASTIC(w) then

if ISSTOCHASTIC(v) then
g
w

+= (

@

@w

log p(v | PARENTS
v

))

ˆQ
w

else
g
w

+= (

@v

@w

)

Tg
v

end if
end if

end for
end for
return [g

✓

]

✓2⇥

with differentiating through individual units and layers; not how to deal with arbitrarily structured
models and loss functions. Kingma and Welling [11] consider a similar framework, although only
with continuous latent variables, and point out that reparameterization can be used to to convert
hierarchical Bayesian models into neural networks, which can then be trained by backpropagation.

The score function method is used to perform variational inference in general models (in the context
of probabilistic programming) in Wingate and Weber [27], and similarly in Ranganath et al. [20];
both papers mostly focus on mean-field approximations without amortized inference. It is used to
train generative models using neural networks with discrete stochastic units in Mnih and Gregor [14]
and Gregor et al. in [7]; both amortize inference by using an inference network.

Generative models with continuous valued latent variables networks are trained (again using an
inference network) with the reparametrization method by Rezende, Mohamed, and Wierstra [21] and
by Kingma and Welling [10]. Rezende et al. also provide a detailed discussion of reparameterization,
including a discussion comparing the variance of the SF and PD estimators.

Bengio, Leonard, and Courville [2] have recently written a paper about gradient estimation in neural
networks with stochastic units or non-differentiable activation functions—including Monte Carlo
estimators and heuristic approximations. The notion that policy gradients can be computed in mul-
tiple ways was pointed out in early work on policy gradients by Williams [26]. However, all of this
prior work deals with specific structures of the stochastic computation graph and does not address
the general case.

7 Conclusion
We have developed a framework for describing a computation with stochastic and deterministic
operations, called a stochastic computation graph. Given a stochastic computation graph, we can
automatically obtain a gradient estimator, given that the graph satisfies the appropriate conditions
on differentiability of the functions at its nodes. The gradient can be computed efficiently in a
backwards traversal through the graph: one approach is to apply the standard backpropagation al-
gorithm to one of the surrogate loss functions from Section 3; another approach (which is roughly
equivalent) is to apply a modified backpropagation procedure shown in Algorithm 1. The results we
have presented are sufficiently general to automatically reproduce a variety of gradient estimators
that have been derived in prior work in reinforcement learning and probabilistic modeling, as we
show in Appendix C. We hope that this work will facilitate further development of interesting and
expressive models.

8 Acknowledgements
We would like to thank Shakir Mohamed, Dave Silver, Yuval Tassa, Andriy Mnih, and others at
DeepMind for insightful comments.

8

References
[1] J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelligence

Research, pages 319–350, 2001.
[2] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons

for conditional computation. arXiv preprint arXiv:1308.3432, 2013.
[3] M. C. Fu. Gradient estimation. Handbooks in operations research and management science, 13:575–616,

2006.
[4] P. Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer Science & Business

Media, 2003.
[5] P. W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM,

33(10):75–84, 1990.
[6] E. Greensmith, P. L. Bartlett, and J. Baxter. Variance reduction techniques for gradient estimates in

reinforcement learning. The Journal of Machine Learning Research, 5:1471–1530, 2004.
[7] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra. Deep autoregressive networks. arXiv

preprint arXiv:1310.8499, 2013.
[8] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic differenti-

ation. Siam, 2008.
[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

[10] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv:1312.6114, 2013.
[11] D. P. Kingma and M. Welling. Efficient gradient-based inference through transformations between bayes

nets and neural nets. arXiv preprint arXiv:1402.0480, 2014.
[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, 1998.
[13] J. Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th International Con-

ference on Machine Learning (ICML-10), pages 735–742, 2010.
[14] A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. arXiv:1402.0030,

2014.
[15] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models of visual attention. In Advances

in Neural Information Processing Systems, pages 2204–2212, 2014.
[16] R. Munos. Policy gradient in continuous time. The Journal of Machine Learning Research, 7:771–791,

2006.
[17] R. M. Neal. Learning stochastic feedforward networks. Department of Computer Science, University of

Toronto, 1990.
[18] R. M. Neal and G. E. Hinton. A view of the em algorithm that justifies incremental, sparse, and other

variants. In Learning in graphical models, pages 355–368. Springer, 1998.
[19] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kauf-

mann, 2014.
[20] R. Ranganath, S. Gerrish, and D. M. Blei. Black box variational inference. arXiv preprint

arXiv:1401.0118, 2013.
[21] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in

deep generative models. arXiv:1401.4082, 2014.
[22] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradient

algorithms. In ICML, 2014.
[23] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy gradient methods for reinforcement

learning with function approximation. In NIPS, volume 99, pages 1057–1063. Citeseer, 1999.
[24] N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis. Learning model-free robot control by a Monte

Carlo EM algorithm. Autonomous Robots, 27(2):123–130, 2009.
[25] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Recurrent policy gradients. Logic Journal of IGPL,

18(5):620–634, 2010.
[26] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.

Machine learning, 8(3-4):229–256, 1992.
[27] D. Wingate and T. Weber. Automated variational inference in probabilistic programming. arXiv preprint

arXiv:1301.1299, 2013.
[28] S. J. Wright and J. Nocedal. Numerical optimization, volume 2. Springer New York, 1999.
[29] W. Zaremba and I. Sutskever. Reinforcement learning neural Turing machines. arXiv preprint

arXiv:1505.00521, 2015.

9

