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Abstract

Recent advances in Bayesian learning with large-scale data have witnessed emer-
gence of stochastic gradient MCMC algorithms (SG-MCMC), such as stochas-
tic gradient Langevin dynamics (SGLD), stochastic gradient Hamiltonian MCMC
(SGHMC), and the stochastic gradient thermostat. While finite-time convergence
properties of the SGLD with a 1st-order Euler integrator have recently been stud-
ied, corresponding theory for general SG-MCMCs has not been explored. In this
paper we consider general SG-MCMCs with high-order integrators, and develop
theory to analyze finite-time convergence properties and their asymptotic invariant
measures. Our theoretical results show faster convergence rates and more accu-
rate invariant measures for SG-MCMCs with higher-order integrators. For exam-
ple, with the proposed efficient 2nd-order symmetric splitting integrator, the mean
square error (MSE) of the posterior average for the SGHMC achieves an optimal
convergence rate of L−4/5 at L iterations, compared to L−2/3 for the SGHMC
and SGLD with 1st-order Euler integrators. Furthermore, convergence results of
decreasing-step-size SG-MCMCs are also developed, with the same convergence
rates as their fixed-step-size counterparts for a specific decreasing sequence. Ex-
periments on both synthetic and real datasets verify our theory, and show advan-
tages of the proposed method in two large-scale real applications.

1 Introduction
In large-scale Bayesian learning, diffusion based sampling methods have become increasingly pop-
ular. Most of these methods are based on Itô diffusions, defined as:

dXt = F (Xt)dt+ σ(Xt)dWt . (1)

Here Xt ∈ Rn represents model states, t the time index, Wt is Brownian motion, functions F :
Rn → Rn and σ : Rn → Rn×m (m not necessarily equal to n) are assumed to satisfy the usual
Lipschitz continuity condition.

In a Bayesian setting, the goal is to design appropriate functions F and σ, so that the stationary
distribution, ρ(X), of the Itô diffusion has a marginal distribution that is equal to the posterior
distribution of interest. For example, 1st-order Langevin dynamics (LD) correspond to X = θ,
F = −∇θU and σ =

√
2 In, with In being the n×n identity matrix; 2nd-order Langevin dynamics

correspond to X = (θ,p), F =
(

p
−D p−∇θU

)
, and σ =

√
2D
(

0 0
0 In

)
for some D > 0.

Here U is the unnormalized negative log-posterior, and p is known as the momentum [1, 2]. Based
on the Fokker-Planck equation [3], the stationary distributions of these dynamics exist and their
marginals over θ are equal to ρ(θ) ∝ exp(−U(θ)), the posterior distribution we are interested in.

Since Itô diffusions are continuous-time Markov processes, exact sampling is in general infeasible.
As a result, the following two approximations have been introduced in the machine learning liter-
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ature [1, 2, 4], to make the sampling numerically feasible and practically scalable: 1) Instead of
analytically integrating infinitesimal increments dt, numerical integration over small step h is used
to approximate the integration of the true dynamics. Although many numerical schemes have been
studied in the SDE literature, in machine learning only the 1st-order Euler scheme is widely applied.
2) During every integration, instead of working with the gradient of the full negative log-posterior
U(θ), a stochastic-gradient version of it, Ũl(θ), is calculated from the l-th minibatch of data, im-
portant when considering problems with massive data. In this paper, we call algorithms based on 1)
and 2) SG-MCMC algorithms. To be complete, some recently proposed SG-MCMC algorithms are
briefly reviewed in Appendix A. SG-MCMC algorithms often work well in practice, however some
theoretical concerns about the convergence properties have been raised [5–7].

Recently, [5, 6, 8] showed that the SGLD [4] converges weakly to the true posterior. In [7], the author
studied the sample-path inconsistency of the Hamiltonian PDE with stochastic gradients (but not the
SGHMC), and pointed out its incompatibility with data subsampling. However, real applications
only require convergence in the weak sense, i.e., instead of requiring sample-wise convergence as
in [7], only laws of sample paths are of concern∗. Very recently, the invariance measure of an SG-
MCMC with a specific stochastic gradient noise was studied in [9]. However, the technique is not
readily applicable to our general setting.

In this paper we focus on general SG-MCMCs, and study the role of their numerical integrators. Our
main contributions include: i) From a theoretical viewpoint, we prove weak convergence results for
general SG-MCMCs, which are of practical interest. Specifically, for a Kth-order numerical inte-
grator, the bias of the expected sample average of an SG-MCMC at iteration L is upper bounded by
L−K/(K+1) with optimal step size h ∝ L−1/(K+1), and the MSE by L−2K/(2K+1) with optimal
h ∝ L−1/(2K+1). This generalizes the results of the SGLD with an Euler integrator (K = 1) in
[5, 6, 8], and is better whenK ≥ 2; ii) From a practical perspective, we introduce a numerically effi-
cient 2nd-order integrator, based on symmetric splitting schemes [9]. When applied to the SGHMC,
it outperforms existing algorithms, including the SGLD and SGHMC with Euler integrators, con-
sidering both synthetic and large real datasets.

2 Preliminaries & Two Approximation Errors in SG-MCMCs

In weak convergence analysis, instead of working directly with sample-paths in (1), we study how
the expected value of any suitably smooth statistic of Xt evolves in time. This motivates the intro-
duction of an (infinitesimal) generator. Formally, the generator L of the diffusion (1) is defined for
any compactly supported twice differentiable function f : Rn → R, such that,

Lf(Xt) , lim
h→0+

E [f(Xt+h)]− f(Xt)

h
=

(
F (Xt) · ∇+

1

2

(
σ(Xt)σ(Xt)

T
)

:∇∇T
)
f(Xt) ,

where a ·b , aT b, A :B , tr(AT B), h → 0+ means h approaches zero along the positive real
axis. L is associated with an integrated form via Kolmogorov’s backward equation† : E [f(Xe

T )] =
eTLf(X0), where Xe

T denotes the exact solution of the diffusion (1) at time T . The operator eTL
is called the Kolmogorov operator for the diffusion (1). Since diffusion (1) is continuous, it is
generally infeasible to solve analytically (so is eTL). In practice, a local numerical integrator is
used for every small step h, with the corresponding Kolmogorov operator Ph approximating ehL.
Let Xn

lh denote the approximate sample path from such a numerical integrator; similarly, we have
E[f(Xn

lh)] = Phf(Xn
(l−1)h). Let A ◦B denote the composition of two operators A and B, i.e., A is

evaluated on the output of B. For time T = Lh, we have the following approximation

E [f(Xe
T )]

A1= ehL ◦ . . . ◦ ehLf(X0)
A2' Ph ◦ . . . ◦ Phf(X0) = E[f(Xn

T )],

with L compositions, where A1 is obtained by decomposing TL into L sub-operators, each for
a minibatch of data, while approximation A2 is manifested by approximating the infeasible ehL
with Ph from a feasible integrator, e.g., the symmetric splitting integrator proposed later, such that
∗For completeness, we provide mean sample-path properties of the SGHMC (similar to [7]) in Appendix J.
†More details of the equation are provided in Appendix B. Specifically, under mild conditions on F , we can

expand the operator ehL up to the mth-order (m ≥ 1) such that the remainder terms are bounded by O(hm+1).
Refer to [10] for more details. We will assume these conditions to hold for the F ’s in this paper.
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E [f(Xn
T )] is close to the exact expectation E [f(Xe

T )]. The latter is the first approximation error
introduced in SG-MCMCs. Formally, to characterize the degree of approximation accuracies for
different numerical methods, we use the following definition.

Definition 1. An integrator is said to be aKth-order local integrator if for any smooth and bounded
function f , the corresponding Kolmogorov operator Ph satisfies the following relation:

Phf(x) = ehLf(x) +O(hK+1) . (2)

The second approximation error is manifested when handling large data. Specifically, the SGLD
and SGHMC use stochastic gradients in the 1st and 2nd-order LDs, respectively, by replacing in F
and L the full negative log-posterior U with a scaled log-posterior, Ũl, from the l-th minibatch. We
denote the corresponding generators with stochastic gradients as L̃l, e.g., the generator in the l-th
minibatch for the SGHMC becomes L̃l = L+∆Vl, where ∆Vl = (∇θŨl−∇θU)·∇p. As a result, in
SG-MCMC algorithms, we use the noisy operator P̃ lh to approximate ehL̃l such that E[f(Xn,s

lh )] =

P̃ lhf(X(l−1)h), where Xn,s
lh denotes the numerical sample-path with stochastic gradient noise, i.e.,

E [f(Xe
T )]

B1' ehL̃L ◦ . . . ◦ ehL̃1f(X0)
B2' P̃Lh ◦ . . . ◦ P̃ 1

hf(X0) = E[f(Xn,s
T )]. (3)

Approximations B1 and B2 in (3) are from the stochastic gradient and numerical integrator ap-
proximations, respectively. Similarly, we say P̃ lh corresponds to a Kth-order local integrator of L̃l
if P̃ lhf(x) = ehL̃lf(x) + O(hK+1). In the following sections, we focus on SG-MCMCs which
use numerical integrators with stochastic gradients, and for the first time analyze how the two intro-
duced errors affect their convergence behaviors. For notational simplicity, we henceforth use Xt to
represent the approximate sample-path Xn,s

t .

3 Convergence Analysis

This section develops theory to analyze finite-time convergence properties of general SG-MCMCs
with both fixed and decreasing step sizes, as well as their asymptotic invariant measures.

3.1 Finite-time error analysis

Given an ergodic‡ Itô diffusion (1) with an invariant measure ρ(x), the posterior average is defined
as: φ̄ ,

∫
X φ(x)ρ(x)dx for some test function φ(x) of interest. For a given numerical method

with generated samples (Xlh)Ll=1, we use the sample average φ̂ defined as φ̂ = 1
L

∑L
l=1 φ(Xlh) to

approximate φ̄. In the analysis, we define a functional ψ that solves the following Poisson Equation:

Lψ(Xlh) = φ(Xlh)− φ̄, or equivalently,
1

L

L∑
l=1

Lψ(Xlh) = φ̂− φ̄. (4)

The solution functional ψ(Xlh) characterizes the difference between φ(Xlh) and the posterior aver-
age φ̄ for every Xlh, thus would typically possess a unique solution, which is at least as smooth as
φ under the elliptic or hypoelliptic settings [12]. In the unbounded domain of Xlh ∈ Rn, to make
the presentation simple, we follow [6] and make certain assumptions on the solution functional,
ψ, of the Poisson equation (4), which are used in the detailed proofs. Extensive empirical results
have indicated the assumptions to hold in many real applications, though extra work is needed for
theoretical verifications for different models, which is beyond the scope of this paper.

Assumption 1. ψ and its up to 3rd-order derivatives, Dkψ, are bounded by a function§ V , i.e.,
‖Dkψ‖ ≤ CkVpk for k = (0, 1, 2, 3), Ck, pk > 0. Furthermore, the expectation of V on {Xlh}
is bounded: supl EVp(Xlh) < ∞, and V is smooth such that sups∈(0,1) Vp (sX+ (1− s)Y) ≤
C (Vp (X) + Vp (Y)), ∀X,Y, p ≤ max{2pk} for some C > 0.

‡See [6, 11] for conditions to ensure (1) is ergodic.
§The existence of such function can be translated into finding a Lyapunov function for the corresponding

SDEs, an important topic in PDE literatures [13]. See Assumption 4.1 in [6] and Appendix C for more details.
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We emphasize that our proof techniques are related to those of the SGLD [6, 12], but with significant
distinctions in that, instead of expanding the function ψ(Xlh) [6], whose parameter Xlh does not
endow an explicit form in general SG-MCMCs, we start from expanding the Kolmogorov’s back-
ward equation for each minibatch. Moreover, our techniques apply for general SG-MCMCs, instead
of for one specific algorithm. More specifically, given a Kth-order local integrator with the corre-
sponding Kolmogorov operator P̃ lh, according to Definition 1 and (3), the Kolmogorov’s backward
equation for the l-th minibatch can be expanded as:

E[ψ(Xlh)] = P̃ lhψ(X(l−1)h) = ehL̃lψ(X(l−1)h) +O(hK+1)

=
(
I + hL̃l

)
ψ(X(l−1)h) +

K∑
k=2

hk

k!
L̃kl ψ(X(l−1)h) +O(hK+1) , (5)

where I is the identity map. Recall that L̃l = L+∆Vl, e.g., ∆Vl = (∇θŨl−∇θU) ·∇p in SGHMC.
By further using the Poisson equation (4) to simplify related terms associated with L, after some
algebra shown in Appendix D, the bias can be derived from (5) as: |Eφ̂− φ̄| =∣∣∣∣∣E[ψ(Xlh)]− ψ(X0)

Lh
− 1

L

∑
l

E[∆Vlψ(X(l−1)h)]−
K∑
k=2

hk−1

k!L

L∑
l=1

E[L̃kl ψ(X(l−1)h)]

∣∣∣∣∣+O(hK) .

All terms in the above equation can be bounded, with details provided in Appendix D. This gives us
a bound for the bias of an SG-MCMC algorithm in Theorem 2.
Theorem 2. Under Assumption 1, let ‖·‖ be the operator norm. The bias of an SG-MCMC with a
Kth-order integrator at time T = hL can be bounded as:∣∣∣Eφ̂− φ̄∣∣∣ = O

(
1

Lh
+

∑
l ‖E∆Vl‖
L

+ hK
)
.

Note the bound above includes the term
∑
l ‖E∆Vl‖ /L, measuring the difference between the ex-

pectation of stochastic gradients and the true gradient. It vanishes when the stochastic gradient is
an unbiased estimation of the exact gradient, an assumption made in the SGLD. This on the other
hand indicates that if the stochastic gradient is biased, |Eφ̂ − φ̄| might diverge when the growth of∑
l ‖E∆Vl‖ is faster than O(L). We point this out to show our result to be more informative than

that of the SGLD [6], though this case might not happen in real applications. By expanding the proof
for the bias, we are also able to bound the MSE of SG-MCMC algorithms, given in Theorem 3.

Theorem 3. Under Assumption 1, and assume Ũl is an unbiased estimate of Ul. For a smooth test
function φ, the MSE of an SG-MCMC with a Kth-order integrator at time T = hL is bounded, for
some C > 0 independent of (L, h), as

E
(
φ̂− φ̄

)2

≤ C

(
1
L

∑
l E ‖∆Vl‖

2

L
+

1

Lh
+ h2K

)
.

Compared to the SGLD [6], the extra term 1
L2

∑
l E ‖∆Vl‖

2 relates to the variance of noisy gradi-
ents. As long as the variance is bounded, the MSE still converges with the same rate. Specifically,
when optimizing bounds for the bias and MSE, the optimal bias decreases at a rate of L−K/(K+1)

with step size h ∝ L−1/(K+1); while this is L−2K/(2K+1) with step size h ∝ L−1/(2K+1) for the
MSE¶. These rates decrease faster than those of the SGLD [6] when K ≥ 2. The case of K = 2 for
the SGHMC with our proposed symmetric splitting integrator is discussed in Section 4.

3.2 Stationary invariant measures

The asymptotic invariant measures of SG-MCMCs correspond toL approaching infinity in the above
analysis. According to the bias and MSE above, asymptotically (L→∞) the sample average φ̂ is a
random variable with mean Eφ̂ = φ̄+O(hK), and variance E(φ̂−Eφ̂)2 ≤ E(φ̂−φ̄)2+E(φ̄−Eφ̂)2 =
O(h2K), close to the true φ̄. This section defines distance between measures, and studies more
formally how the approximation errors affect the invariant measures of SG-MCMC algorithms.
¶To compare with the standard MCMC convergence rate of 1/2, the rate needs to be taken a square root.
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First we note that under mild conditions, the existence of a stationary invariant measure for an SG-
MCMC can be guaranteed by application of the Krylov–Bogolyubov Theorem [14]. Examining the
conditions is beyond the scope of this paper. For simplicity, we follow [12] and assume stationary
invariant measures do exist for SG-MCMCs. We denote the corresponding invariant measure as ρ̃h,
and the true posterior of a model as ρ. Similar to [12], we assume our numerical solver is geometric
ergodic, meaning that for a test function φ, we have

∫
X φ(x)ρ̃h(dx) =

∫
X Exφ(Xlh)ρ̃h(dx) for

any l ≥ 0 from the ergodic theorem, where Ex denotes the expectation conditional on X0 = x. The
geometric ergodicity implies that the integration is independent of the starting point of an algorithm.
Given this, we have the following theorem on invariant measures of SG-MCMCs.
Theorem 4. Assume that a Kth-order integrator is geometric ergodic and its invariance mea-
sures ρ̃h exist. Define the distance between the invariant measures ρ̃h and ρ as: d(ρ̃h, ρ) ,
supφ

∣∣∫
X φ(x)ρ̃h(dx)−

∫
X φ(x)ρ(dx)

∣∣. Then any invariant measure ρ̃h of an SG-MCMC is close
to ρwith an error up to an order ofO(hK), i.e., there exists someC ≥ 0 such that: d(ρ̃h, ρ) ≤ ChK .

For a Kth-order integrator with full gradients, the corresponding invariant measure has been shown
to be bounded by an order of O(hK) [9, 12]. As a result, Theorem 4 suggests only orders of nu-
merical approximations but not the stochastic gradient approximation affect the asymptotic invariant
measure of an SG-MCMC algorithm. This is also reflected by experiments presented in Section 5.

3.3 SG-MCMCs with decreasing step sizes

The original SGLD was first proposed with a decreasing-step-size sequence [4], instead of fixing
step sizes, as analyzed in [6]. In [5], the authors provide theoretical foundations on its asymptotic
convergence properties. We demonstrate in this section that for general SG-MCMC algorithms, de-
creasing step sizes for each minibatch are also feasible. Note our techniques here are different from
those used for the decreasing-step-size SGLD [5], which interestingly result in similar convergence
patterns. Specifically, by adapting the same techniques used in the previous sections, we establish
conditions on the step size sequence to ensure asymptotic convergence, and develop theory on their
finite-time ergodic error as well. To guarantee asymptotic consistency, the following conditions on
decreasing step size sequences are required.
Assumption 2. The step sizes {hl} are decreasing‖, i.e., 0 < hl+1 < hl, and satisfy that 1)∑∞
l=1 hl =∞; and 2) limL→∞

∑L
l=1 h

K+1
l∑L

l=1 hl
= 0.

Denote the finite sum of step sizes as SL ,
∑L
l=1 hl. Under Assumption 2, we need to mod-

ify the sample average φ̄ defined in Section 3.1 as a weighted summation of {φ(Xlh)}: φ̃ =∑L
l=1

hl

SL
φ(Xlh). For simplicity, we assume Ũl to be an unbiased estimate ofU such that E∆Vl = 0.

Extending techniques in previous sections, we develop the following bounds for the bias and MSE.
Theorem 5. Under Assumptions 1 and 2, for a smooth test function φ, the bias and MSE of a
decreasing-step-size SG-MCMC with a Kth-order integrator at time SL are bounded as:

BIAS:
∣∣∣Eφ̃− φ̄∣∣∣ = O

(
1

SL
+

∑L
l=1 h

K+1
l

SL

)
(6)

MSE: E
(
φ̃− φ̄

)2

≤ C

(∑
l

h2
l

S2
L

E ‖∆Vl‖2 +
1

SL
+

(
∑L
l=1 h

K+1
l )2

S2
L

)
. (7)

As a result, the asymptotic bias approaches 0 according to the assumptions. If further assuming∗∗∑∞
l=1 h

2
l

S2
L

= 0, the MSE also goes to 0. In words, the decreasing-step-size SG-MCMCs are consistent.

Among the kinds of decreasing step size sequences, a commonly recognized one is hl ∝ l−α for
0 < α < 1. We show in the following corollary that such a sequence leads to a valid sequence.
Corollary 6. Using the step size sequences hl ∝ l−α for 0 < α < 1, all the step size assumptions
in Theorem 5 are satisfied. As a result, the bias and MSE approach zero asymptotically, i.e., the
sample average φ̃ is asymptotically consistent with the posterior average φ̄.
‖Actually the sequence need not be decreasing; we assume it is decreasing for simplicity.
∗∗The assumption of

∑∞
l=1 h

2
l <∞ satisfies this requirement, but is weaker than the original assumption.
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Remark 7. Theorem 5 indicates the sample average φ̃ asymptotically converges to the true posterior
average φ̄. It is possible to find out the optimal decreasing rates for the specific decreasing sequence
hl ∝ l−α. Specifically, using the bounds for

∑L
l=1 l

−α (see the proof of Corollary 6), for the two
terms in the bias (6) in Theorem 5, 1

SL
decreases at a rate of O(Lα−1), whereas (

∑L
l=1 h

K+1
l )/SL

decreases as O(L−Kα). The balance between these two terms is achieved when α = 1/(K + 1),
which agrees with Theorem 2 on the optimal rate of fixed-step-size SG-MCMCs. Similarly, for
the MSE (7), the first term decreases as L−1, independent of α, while the second and third terms
decrease asO(Lα−1) andO(L−2Kα), respectively, thus the balance is achieved whenα = 1/(2K+
1), which also agrees with the optimal rate for the fixed-step-size MSE in Theorem 3.

According to Theorem 5, one theoretical advantage of decreasing-step-size SG-MCMCs over fixed-
step-size variants is the asymptotically unbiased estimation of posterior averages, though the benefit
might not be significant in large-scale real applications where the asymptotic regime is not reached.

4 Practical Numerical Integrators
Given the theory for SG-MCMCs with high-order integrators, we here propose a 2nd-order symmet-
ric splitting integrator for practical use. The Euler integrator is known as a 1st-order integrator; the
proof and its detailed applications on the SGLD and SGHMC are given in Appendix I.

The main idea of the symmetric splitting scheme is to split the local generator L̃l into several
sub-generators that can be solved analytically††. Unfortunately, one cannot easily apply a splitting
scheme with the SGLD. However, for the SGHMC, it can be readily split into: L̃l = LA+LB+LOl

,
where

LA = p ·∇θ, LB = −D p ·∇p, LOl
= −∇θŨ(θ) · ∇p + 2D In : ∇p∇Tp . (8)

These sub-generators correspond to the following SDEs, which are all analytically solvable:

A :

{
dθ = pdt
dp = 0

, B :

{
dθ = 0
dp = −D pdt

, O :

{
dθ = 0

dp = −∇θŨl(θ)dt+
√

2DdW
(9)

Based on these sub-SDEs, the local Kolmogorov operator P̃ lh is defined as:

E[f(Xlh)] = P̃ lhf(X(l−1)h), where, P̃ lh , e
h
2LA ◦ eh

2LB ◦ ehLOl ◦ eh
2LB ◦ eh

2LA ,

so that the corresponding updates for Xlh = (θlh,plh) consist of the following 5 steps:

θ
(1)
lh = θ(l−1)h + p(l−1)h h/2⇒ p

(1)
lh = e−Dh/2 p(l−1)h ⇒ p

(2)
lh = p

(1)
lh −∇θŨl(θ

(1)
lh )h+

√
2Dhζl

⇒ plh = e−Dh/2 p
(2)
lh ⇒ θlh = θ

(1)
lh + plh h/2 ,

where (θ
(1)
lh ,p

(1)
lh ,p

(2)
lh ) are intermediate variables. We denote such a splitting method as the

ABOBA scheme. From the Markovian property of a Kolmogorov operator, it is readily seen that
all such symmetric splitting schemes (with different orders of ‘A’, ‘B’ and ‘O’) are equivalent [15].
Lemma 8 below shows the symmetric splitting scheme is a 2nd-order local integrator.
Lemma 8. The symmetric splitting scheme is a 2nd-order local integrator, i.e., the corresponding
Kolmogorov operator P̃ lh satisfies: P̃ lh = ehL̃l +O(h3).

When this integrator is applied to the SGHMC, the following properties can be obtained.
Remark 9. Applying Theorem 2 to the SGHMC with the symmetric splitting scheme (K = 2), the
bias is bounded as: |Eφ̂ − φ̄| = O( 1

Lh +
∑

l‖E∆Vl‖
L + h2). The optimal bias decreasing rate is

L−2/3, compared to L−1/2 for the SGLD [6]. Similarly, the MSE is bounded by: E(φ̂ − φ̄)2 ≤
C(

1
L

∑
l E‖∆Vl‖2

L + 1
Lh + h4), decreasing optimally as L−4/5 with step size h ∝ L−1/5, compared

to the MSE of L−2/3 for the SGLD [6]. This indicates that the SGHMC with the splitting integrator
converges faster than the SGLD and SGHMC with 1st-order Euler integrators.
Remark 10. For a decreasing-step-size SGHMC, based on Remark 7, the optimal step size decreas-
ing rate for the bias is α = 1/3, and α = 1/5 for the MSE. These agree with their fixed-step-size
counterparts in Remark 9, thus are faster than the SGLD/SGHMC with 1st-order Euler integrators.
††This is different from the traditional splitting in SDE literatures[9, 15], where L instead of L̃l is split.
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Figure 2: Bias of SGHMC-D (left) and MSE of SGHMC-F (right) with different step size rates α.
Thick red curves correspond to theoretically optimal rates.

5 Experiments
We here verify our theory and compare with related algorithms on both synthetic data and large-scale
machine learning applications.

step size
0.001 0.005 0.01 0.02 0.05 0.1

B
IA

S

10 -4

10 -3

10 -2

10 -1

Splitting
Euler

Figure 1: Comparisons of symmet-
ric splitting and Euler integrators.

Synthetic data We consider a standard Gaussian model
where xi ∼ N (θ, 1), θ ∼ N (0, 1). 1000 data samples {xi}
are generated, and every minibatch in the stochastic gradient
is of size 10. The test function is defined as φ(θ) , θ2, with
explicit expression for the posterior average. To evaluate the
expectations in the bias and MSE, we average over 200 runs
with random initializations.
First we compare the invariant measures (with L = 106) of
the proposed splitting integrator and Euler integrator for the
SGHMC. Results of the SGLD are omitted since they are not
as competitive. Figure 1 plots the biases with different step
sizes. It is clear that the Euler integrator has larger biases
in the invariant measure, and quickly explodes when the step size becomes large, which does not
happen for the splitting integrator. In real applications we also find this happen frequently (shown
in the next section), making the Euler scheme an unstable integrator.
Next we examine the asymptotically optimal step size rates for the SGHMC. From the theory we
know these are α = 1/3 for the bias and α = 1/5 for the MSE, in both fixed-step-size SGHMC
(SGHMC-F) and decreasing-step-size SGHMC (SGHMC-D). For the step sizes, we did a grid search
to select the best prefactors, which resulted in h=0.033×L−α for the SGHMC-F and hl=0.045×l−α
for the SGHMC-D, with different α values. We plot the traces of the bias for the SGHMC-D and the
MSE for the SGHMC-F in Figure 2. Similar results for the bias of the SGHMC-F and the MSE of
the SGHMC-D are plotted in Appendix K. We find that when rates are smaller than the theoretically
optimal rates, i.e., α = 1/3 (bias) and α = 1/5 (MSE), the bias and MSE tend to decrease faster
than the optimal rates at the beginning (especially for the SGHMC-F), but eventually they slow down
and are surpassed by the optimal rates, consistent with the asymptotic theory. This also suggests that
if only a small number of iterations were feasible, setting a larger step size than the theoretically
optimal one might be beneficial in practice.
Finally, we study the relative convergence speed of the SGHMC and SGLD. We test both fixed-
step-size and decreasing-step-size versions. For fixed-step-size experiments, the step sizes are set
to h = CL−α, with α chosen according to the theory for SGLD and SGHMC. To provide a fair
comparison, the constants C are selected via a grid search from 10−3 to 0.5 with an interval of
0.002 for L = 500, it is then fixed in the other runs with different L values. The parameter D in
the SGHMC is selected within (10, 20, 30) as well. For decreasing-step-size experiments, an initial
step size is chosen within [0.003, 0.05] with an interval of 0.002 for different algorithms‡‡, and then
it decreases according to their theoretical optimal rates. Figure 3 shows a comparison of the biases
for the SGHMC and SGLD. As indicated by both theory and experiments, the SGHMC with the
splitting integrator yields a faster convergence speed than the SGLD with an Euler integrator.

Large-scale machine learning applications For real applications, we test the SGLD with an
Euler integrator, the SGHMC with the splitting integrator (SGHMC-S), and the SGHMC with an

‡‡Using the same initial step size is not fair because the SGLD requires much smaller step sizes.
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Figure 3: Biases for the fixed-step-size (left) and decreasing-step-size (right) SGHMC and SGLD.

Euler integrator (SGHMC-E). First we test them on the latent Dirichlet allocation model (LDA)
[16]. The data used consists of 10M randomly downloaded documents from Wikipedia, using scripts
provided in [17]. We randomly select 1K documents for testing and validation, respectively. As
in [17, 18], the vocabulary size is 7,702. We use the Expanded-Natural reparametrization trick to
sample from the probabilistic simplex [19]. The step sizes are chosen from {2, 5, 8, 20, 50, 80}×10−5,
and parameter D from {20, 40, 80}. The minibatch size is set to 100, with one pass of the whole
data in the experiments (and therefore L = 100K). We collect 300 posterior samples to calculate
test perplexities, with a standard holdout technique as described in [18].
Next a recently studied sigmoid belief network model (SBN) [20] is tested, which is a directed coun-
terpart of the popular RBM model. We use a one layer model where the bottom layer corresponds to
binary observed data, which is generated from the hidden layer (also binary) via a sigmoid function.
As shown in [18], the SBN is readily learned by SG-MCMCs. We test the model on the MNIST
dataset, which consists of 60K hand written digits of size 28× 28 for training, and 10K for testing.
Again the step sizes are chosen from {3, 4, 5, 6}×10−4, D from {0.9, 1, 5}/

√
h. The minibatch is

set to 200, with 5000 iterations for training. Like applied for the RBM [21], an advance technique
called anneal importance sampler (AIS) is adopted for calculating test likelihoods.

step size
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Figure 4: SGHMC with 200 topics. The Eu-
ler explodes with large step sizes.

We briefly describe the results here, more details
are provided in Appendix K. For LDA with 200
topics, the best test perplexities for the SGHMC-S,
SGHMC-E and SGLD are 1168, 1180 and 2496, re-
spectively; while these are 1157, 1187 and 2511, re-
spectively, for 500 topics. Similar to the synthetic
experiments, we also observed SGHMC-E crashed
when using large step sizes. This is illustrated more
clearly in Figure 4. For the SBN with 100 hid-
den units, we obtain negative test log-likelihoods of
103, 105 and 126 for the SGHMC-S, SGHMC-E and
SGLD, respectively; and these are 98, 100, and 110 for 200 hidden units. Note the SGHMC-S on
SBN yields state-of-the-art results on test likelihoods compared to [22], which was 113 for 200 hid-
den units. A decrease of 2 units in the neg-log-likelihood with AIS is considered to be a reasonable
gain [20], which is approximately equal to the gain from a shallow to a deep model [22]. SGHMC-S
is more accuracy and robust than SGHMC-E due to its 2nd-order splitting integrator.

6 Conclusion
For the first time, we develop theory to analyze finite-time ergodic errors, as well as asymptotic
invariant measures, of general SG-MCMCs with high-order integrators. Our theory applies for
both fixed and decreasing step size SG-MCMCs, which are shown to be equivalent in terms of
convergence rates, and are faster with our proposed 2nd-order integrator than previous SG-MCMCs
with 1st-order Euler integrators. Experiments on both synthetic and large real datasets validate our
theory. The theory also indicates that with increasing order of numerical integrators, the convergence
rate of an SG-MCMC is able to theoretically approach the standard MCMC convergence rate. Given
the theoretical convergence results, SG-MCMCs can be used effectively in real applications.
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