
Finding Related Tables

Anish Das Sarma], Lujun Fang†, Nitin Gupta], Alon Halevy],
Hongrae Lee], Fei Wu], Reynold Xin‡, Cong Yu]

† University of Michigan,] Google Inc., ‡ University of California, Berkeley
ljfang@umich.edu, {anish, nigupta, halevy, hrlee, wufei,congyu}@google.com,

rxin@cs.berkeley.edu

ABSTRACT
We consider the problem of finding related tables in a large
corpus of heterogenous tables. Detecting related tables pro-
vides users a powerful tool for enhancing their tables with
additional data and enables effective reuse of available pub-
lic data. Our first contribution is a framework that captures
several types of relatedness, including tables that are can-
didates for joins and tables that are candidates for union.
Our second contribution is a set of algorithms for detect-
ing related tables that can be either unioned or joined. We
describe a set of experiments that demonstrate that our al-
gorithms produce highly related tables. We also show that
we can often improve the results of table search by pulling
up tables that are ranked much lower based on their related-
ness to top-ranked tables. Finally, we describe how to scale
up our algorithms and show the results of running it on a
corpus of over a million tables extracted from Wikipedia.

Categories and Subject Descriptors
H.0 [Information Systems]: General

General Terms
Algorithms, Design, Management, Performance

Keywords
web tables, related tables, data integration

1. INTRODUCTION
Several online services are pursuing the vision of creating

repositories of high quality structured data [19, 4, 2, 5]. The
data sources in the repository may either be contributed by
users directly or extracted from the Web.

The main benefit of creating such repositories is to fuel
data integration, by facilitating the discovery and reuse of
existing data sets. For example, an economics student cre-
ating a data set with economic indicators for a particular

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

country should be able to easily find data about the popula-
tion and GDP of that country to add as columns in her table,
or data about economic indicators in neighboring countries
to add as new rows.

To realize this vision, we must provide users effective means
to explore the data sets available, and decide which data sets
fit their needs in terms of content, coverage, and quality. Im-
portantly, the search for related content should be part of
the natural workflow the user follows. For example, if the
user is looking at a particular table, she should be able to
simply type in a keyword describing a column she wants to
add to the table.

In Google Fusion Tables we are investigating a variety
of mechanisms for exploring data sets. In the simplest case,
we provide keyword search over the repository of public data
sets, while in another we provide search in the context of an
existing table.

Regardless of the input to the search problem, we are faced
with a fundamental problem of discovering related tables in a
vast collection of heterogeneous data. This paper describes a
framework for defining relatedness of tables and algorithms
for finding related tables.

The problem is challenging for two main reasons. First,
the schemas of the tables in the repository are partial at best
and are extremely heterogeneous. In some cases the crucial
aspects of the schema that are needed for reasoning about
relatedness are embedded in text surrounding the tables or
textual descriptions attached to them. Second, one needs
to consider different ways and degrees to which data can
be related. The following examples illustrate some of the
challenges.

Figure 1: 2010 Men Tennis Top 100 from ATP
World Tour

Figure 2: 2010 Men Tennis 100 - 200 from ATP
World Tour

Figure 3: 2010 Men Tennis Top 100 from ESPN

Consider the tables in Figure 1 and 2. The first describes
the top 100 men tennis players and the second describes the
next top 100 performers. These two tables are related: their
schema is identical, and they provide complementary sets of
entities. Their union would produce a meaningful table.

The table in Figure 3 is also related to the table in Fig-
ure 1. The two tables describe the same entities, but the ta-
ble in Figure 1 adds more information (i.e., columns) about
each entity, such as Tournaments Played. The join of the
two tables would produce a meaningful table. Note that even
in this simple example, the system would have to determine
that the two tables are about the tennis players in order to
compare the set of attributes in a meaningful fashion.

The table in Figure 4 is also related to the table in Fig-
ure 3, but the relationship is a bit more subtle. The two
tables describe the top tennis players from 2009 and 2010,
respectively. While the tables cannot be directly joined or
unioned, they both can be seen as the result of a selection
and projection on a larger table that contains the rankings
of tennis players in different years. Note that the year that
the tables’ data refers to is not part of the table itself, but
needs to be inferred from the context.

Inspired by these examples, this paper makes the follow-
ing contributions. We describe a framework that captures
different kinds of relatedness. The key idea is that tables
are considered related to each other if they can be viewed
as results to queries over the same (possibly hypothetical)
original table. Second, we present algorithms for detecting

Figure 4: 2009 Men Tennis Top 100 from ESPN

tables that are entity complement and therefore are candi-
dates to be unioned. The crux of the algorithms is to deter-
mine that the entities in a table T2 are a coherent expansion
of the entities in a table T1. (E.g., T2 describes a same or
similar concept as T1 does.) Based on the same ideas, we
describe an algorithm for detecting tables that are schema
complement, thereby candidates for a join.

Next, we describe experiments showing the effectiveness of
our algorithms and providing an evaluation of the different
components of the algorithms. We also show that discov-
ering related tables can also improve table search. In par-
ticular, we show that tables that are related to top-ranked
tables but that do not appear in the top results are often
judged to be on par with top ranked results. Hence, discov-
ering related tables can provide a semantics-based method
to improve table search. Finally, we discuss how to scale up
the computation of related tables to large table corpora and
demonstrate the result on the corpus of over 1 million tables
extracted from Wikipedia.

Section 2 proposes a framework for defining relatedness
of tables. Section 3 and 4 then describe the algorithms to
measure entity complement and schema complement respec-
tively. We describe our experiments in Section 5, and how
to scale up the computation of related tables in Section 6.
We review the related work in Section 7 and conclude in
Section 8.

2. PROBLEM DEFINITION
We assume a large corpus of heterogenous tables T , such

as the collection of HTML tables found on the Web [11, 24].
The quality of the tables in T varies a lot, and we usually
have only partial meta-data about each table. For instance,
we may only have a guess at the column headers, and the
relations represented by the table need to be inferred from
cell values and the surrounding text.

Given the corpus T and a table T1, our goal is to return
a ranked list of tables in T that are related to T1. As we
saw in the examples, tables can be related to each other in
a variety of ways. However, the common theme underlying
all the notions of relatedness is that tables T1 and T2 are
related if they include content that conceivably could have
been in a single table T . This observation is the basis for the
framework we propose for measuring relatedness of tables:

• A pair of tables T1 and T2 is said to be related if we
can identify a virtual table T such that T1 and T2 are
the results of applying two queries, Q1 and Q2, respec-
tively, over T . The schema of T1 (resp. T2) may involve
renaming of the attributes of Q1(T) (resp. Q2(T)).

• The table T should be coherent. For example, we could
decide that a table storing the prices of tea in China
is related to the table with the winners of the Boston
Marathon, because in principle we can imagine a table
T that stores both. However, T would not be coherent
by any reasonable design principle. In contrast, a table
storing the ranks of the top tennis players in the world
in the past 10 years is coherent, and therefore the table
with the top ranked players in 2011 is related to the
table with the top players in 2010.

• The queries Q1 and Q2 should have similar structure.
For example, they can both be projections on T or
both be selections on T , or same sequence of selec-
tions and projections on T (although the selection or
projection conditions can be different). As we see be-
low, different structures of Q1 and Q2 correspond to
specific types of related tables.

The above framework captures the vast majority of re-
lated tables we see in practice. In our paper, we consider
two most common types of related tables: Entity Comple-
ment and Schema Complement, resulting from applying dif-
ferent selection or projection conditions in similarly struc-
tured queries, respectively, over the same underlying virtual
table. Our definitions of entity and schema complements are
asymmetric, to address the differences between the queried
table and the result tables. In a sense, combining related ta-
bles can be viewed as reverse-engineering vertical/horizontal
fragmentation in distributed DBMS. However, since web ta-
bles are noisy in nature, the requirements here are more
flexible: for example, overlap between related tables or re-
naming of attributes should be allowed.

Definition 1. Entity Complement (EC). Table T2 ∈
T is entity complement to T1 ∈ T if there exists a coherent
virtual table T , such that Q1(T) = T1 and Q2(T) = T2,
where:

1. Qi takes the form Qi(T) = σPi(X)(T), where X con-
tains a set of attributes in T and Pi is a selection pred-
icate over X.

2. The combination of Q1 and Q2 cover all the tuples in
T , and Q2 covers some tuples not covered by Q1.

3. Optionally, each Qi renames or projects a set of at-
tributes A (same for different Qi) with the restriction
that ∃A′ ⊆ A,A′ → X in T .

In other words, T1 and T2 are obtained by applying different
selection predicates P1 and P2 on the same set of attributes
X in T , and apply projections that include the key attributes
with respect to X. The tables in Figures 1 and 2 are entity
complement to each other, since we can have a virtual table
T containing top-200 men tennis players in 2010 and apply
selection conditions over the “Rank” attribute. Note the
attribute set A to be projected does not need to contain all
the attributes in X as long as ∃A′ ⊆ A,A′ → X in T . For

example, tables in Figure 1 and 2 are entity complements to
each other even if the Rank attribute is not projected, since
the “Rank” attribute can be inferred from “Player” attribute
in T given that each player has a fixed ranking in 2010.

The relatedness of two tables depends on how close the
selection conditions P1 and P2 are to each other. The close-
ness of the selection conditions can be approximated by the
degree of coherence of entities in T1 and T2 (to be discussed
in detail in Section 3.1). For example, the table about South
American countries is more related to that of North Ameri-
can countries than the table with Asian countries.

Note that entity complement tables T1 and T2 can be
union-ed in a “lossless” fashion over the common attributes
(possibly hidden but inferrable). More formally, we have
that ΠX(T ′1) ∪ ΠX(T ′2) = σP1(X)∨P2(X)ΠX(T), where T ′i is
augmented Ti with derivable attributes.

Definition 2. Schema Complement (SC). Table T2 ∈
T is schema complement to T1 ∈ T if there exists a coherent
virtual T , such that Q1(T) = T1 and Q2(T) = T2 where:

1. Qi takes the form Qi(T) = ΠAi(T), where Ai is the set
of attributes (with optionally renaming) to be projected.

2. A2 \ A1 6= ∅, A1 ∪ A2 covers all T ’s attributes, and
A1∩A2 covers key attributes of A1 and A2 (i.e., ∃X ⊆
A1 ∩A2, X → Ai).

3. Optionally, each Qi applies a fixed selection predicate
P over the set of key attributes X.

In other words, T2 contains the same set of entities (due
to identical selection conditions) as T1 does, for a different
and yet semantically related set of attributes. The table in
Figures 1 is schema complement to the table in Figure 3.
Note that schema complements allow us to perform lossless
joins: T1 1 T2 = ΠA1∪A2σP (X)(T).

We will focus our discussion of relatedness on entity com-
plement (Section 3) and schema complement (Section 4).
However, our framework is flexible enough to incorporate
other types of relatedness. For example, the relationship
between the tables in Figures 3 and 4 involves queries Q1

and Q2 that differ in their selection condition on attribute
year that is not inferable from the projected attributes. So,
in contrast to the entity complement condition above, here
T1 and T2 didn’t retain all attributes to infer X, resulting
in a “lossy union”. For example, same players in two ta-
bles can have different points, which are not explained by
the attributes in the two tables. This distinction shows that
looking at consistency of values across the two tables is a
critical component in detection of entity complement, as we
shall study in more detail later.

Note that different relatedness types are not mutually ex-
clusive. Furthermore, the context of the search for related
tables can often dictate what kind of relationship the user is
looking for. For example, the user may be explicitly search-
ing to add rows to her table, in which case entity complement
tables should be proposed. One of the benefits of our frame-
work is to recognize the different kinds of relatedness and
point them out when multiple ones apply.

In summary the problem addressed by this paper is as
follows: Given a corpus of tables T , a query table T , a
constant k, a relatedness type R, select k tables, T1, T2, . . . ,
Tk ∈ T , with the highest relatedness scores of type R to T .

3. ENTITY COMPLEMENT TABLES
This section considers the problem of finding a ranked list

of entity-complement tables to an input table T1. As a pre-
processing step, we implemented a rule-based and machine-
learned classifier from [30] for the detection of header rows
(schema rows) and subject columns (a column contains the
entities the table is about) for all tables in the corpus. For
example, in the table in Figure 3, the pre-processing step
detects “Player” column as the subject column and the the
attribute names as the header row. When we cannot detect
a subject column we return no related tables, since both en-
tity and schema complement definitions require existences
of key attributes. Following our definitions, our algorithm
is guided by the following criteria:

Entity Consistency: We would like a related table T2 to
have the same type of entities as T1, as required by the
coherence of the vitual table T and closeness of Q1 and Q2

in Definition 1. E.g., entities in Figures 1 and Figure 2 are
both active men tennis players in 2010. We use Ei or E(Ti)
to represent the set of entities described in Ti. In particular,
they are the cell contents of Ti’s subject column.

Entity Expansion: T2 should substantially add new enti-
ties to those in T1 (e.g., the players in Figure 2 are different
from those in in Figure 1), as required by Point 2 in Defini-
tion 1.

Schema Consistency: The two tables T1 and T2 should
have similar (if not the same) schemas, thereby describing
similar properties of the entities, as required by Point 3 in
Definition 1.

We describe our entity consistency and expansion mea-
sures in Section 3.1. Section 3.2 describes schema consis-
tency. Section 3.3 describes how the individual scores of
these components are combined into one measure.

3.1 Entity Consistency and Expansion
The main challenge in constructing a single measure for

the relatedness of two tables’ (T1 and T2’s) entity sets is
the inherent trade-off between entity consistency and entity
expansion: Adding more entities expands the initial set but
may compromise its consistency.

Example 1. Consider the following sets of entities:

• E(T1) = {India,Korea,Malaysia}

• E(T2) = {Japan}

• E(T3) = {Canada, United States}

• E(T4) = {Japan,China}

• E(T5) = {Malaysia, Japan,China, Thailand,Canada}.

Each of the tables T2, T3, T4, T5 describe additional entities
to E(T1); therefore, to some degree all of them are entity
complements. Clearly, E(T1) includes a set of Asian coun-
tries. Therefore, it is reasonable to assert that E(T2) is more
related to E(T1) than E(T3). Similarly, we could deduce that
E(T4) is even better than E(T2) since it provides a larger
(and related) set of entities. The comparison between E(T5),
E(T2) and E(T4) is less clear. T5 has the largest set of Asian
countries, but also contains a non-Asian country.

In the remainder of this section, we start by discussing the
sources of signals we use to compute a consistency score.

Then, we present concrete entity consistency score defini-
tions. We consider two high level approaches: (1) For each
additional entity in T2, compute its relatedness to each en-
tity in T1, and then aggregate the pairwise entity related-
ness; (2) Take the set of additional entities in T2 as a whole,
and directly compute its consistency with respect to T1. We
also discuss how to capture the amount of expansion and
combine it with the entity consistency score.

Sources of signal
The problem of determining relatedness of entity sets would
be simplified if there was a very detailed classification of all
the entities in the world. In the example of deciding the
relatedness of two countries, we would need not only classi-
fication of countries by continent, but also by parts of con-
tinents (e.g., south-east Asian countries tend to be grouped
quite often). We would also need groupings based on other
aspects, such as coffee-producing countries or mountainous
countries. Since no such detailed classification exists, we in-
fer entity groups based on several signals we can mine from
the Web. In particular, we consider three sources of signal:

WebIsA database: WebIsA (used by [30], implemented us-
ing the techniques mentioned in [26]) is a database of enti-
ties and their classes, e.g., (Paris, City), constructed from
mentions of entities in text. This dataset has a high cov-
erage/recall since it includes even fine-granularity clusters
mentioned in text documents, such as south-east asian coun-
tries. On the other hand, WebIsA contains a lot of noise be-
cause the extraction techniques are far from perfect. Given
a name of an entity, the WebIsA database will return a set
of classes that it considers the entity to be a member of.
The names of these classes are the labels we use in our al-
gorithm, and we call them WebIsA labels. Using WebIsA we
obtained around 1.5M labeled subject columns and ∼155M
instances [30].

Freebase types: Freebase [3] is a curated database of en-
tities types and properties. Freebase typically has high pre-
cision though significantly lower coverage compared to We-
bIsA. Given an entity, a search in Freebase returns a set of
Freebase types that the entity may be a member of. We call
these types Freebase labels. Using Freebase, we obtained
around 600K labeled subject columns and ∼16M instances.
Throughout this paper, we also assume uniqueness of Free-
base ids, which are used for entity resolution; we say that
two rows in two tables correspond to the same entity if and
only if the cells in their subject column map to the same
Freebase entity identifier. In other words, we treat Freebase
identifiers as the golden standard for entity resolution; obvi-
ously, entity resolution is an orthogonal problem and more
sophisticated techniques may be plugged in directly.

Table co-occurrence: We construct labels by counting co-
occurrences of entities in tables. Specifically, each Web table
T can be regarded as a“label”and an entity has the label T if
it appear in T . Note that computing table co-occurrences is
much more expensive than the other two label sources, since
the number of tables containing an entity are usually larger
than the number of WebIsA or Freebase labels an entity has.
We refer to these labels as WebTable labels.

Relatedness between a pair of entities
We now discuss how to decide the relatedness of a pair of
entities with the signals we discussed above. We assign

weighted labels L(ei) = {l1i : w1
i , l

2
i : w2

i , ...} to each en-

tity ei, and we represent the vector of labels by ~L(ei). The
labels here are a combination of WebIsA labels, Freebase la-
bels and WebTable labels. We then compute the relatedness
between ei and ej as the dot product of the two vectors:

re(ei, ej) = ~L(ei) · ~L(ej). (1)

The dot product captures the simple intuition that enti-
ties are more similar if they: (1) share more labels. (2)
share labels with large weights. A naive baseline approach
to assigning weights on labels would be to simply consider
uniform weights; with uniform weights, relatedness becomes
equivalent to computing the number of common labels:

reu(ei, ej) = |{l|l ∈ L(ei) ∩ l ∈ L(ej)}| (2)

We improve on the above baseline by considering domain
sizes of labels to assign weights. Specifically, we consider
weights normalized by domain size, capturing the intuition
that assigning a label with a very large domain gives less
information than on a more specific domain. For example,
the label “car” has a smaller domain than “thing”, hence is
more useful. With weights being the inverse of domain sizes
of labels, we obtain weighted relatedness rew:

rew(ei, ej) =
∑

l∈L(ei)∩L(ej)

1

|D(l)| , (3)

where D(l) is the domain of label l. (In the case of a labels
from table co-occurrence described above, the domain size is
given by the number of entities in the table.) In Section 5,
we show the benefits of constructing labels from all three
sources and our weighting scheme.

Relatedness between entity sets
Next we present two approaches to computing relatedness
between entity sets: (1) a baseline approach that aggregates
relatedness of pairs of entities, and (2) an improved measure
computing relatedness between sets of entities directly.

To compute the relatedness for two sets of entities E1 and
E2, a baseline approach simply averages relatedness of all
pairs of entities between them:

SAvgPair
EP (E1, E2) =

1

|E1||E2|
∑

e1∈E1,e2∈E2

re(e1, e2). (4)

Equation 4 does not capture the amount of expansion ob-
tained from E2. To capture the amount of expansion of E2,
a different normalization coefficient 1

|E1|
other than 1

|E1||E2|

can be used (i.e., we multiply SAvgPair
EP by size of E2):

SSumPair
EP (E1, E2) =

1

|E1|
∑

e1∈E1,e2∈E2

re(e1, e2). (5)

The drawback of both above equations, however, is that they
fail to capture the relatedness of more than pairs of entities.
For example, China can be related to Japan because they are
both Asian countries, U.S. can be related to Japan because
they are both developed countries. However, it is less clear
how the set of {China, U.S.} is related to Japan.

Therefore, we propose computing relatedness of sets of
entities directly, but using a similar label-vector idea as for
pairs of entities. Suppose we can represent an entity set
Ei as L(Ei) = {l1i : w1

i , l
2
i : w2

i , ...}, then relatedness of

two entity sets E1 and E2 can be similarly computed as the
similarity of label vectors:

SSet
EP (E1, E2) = ~L(E1) · ~L(E2). (6)

Labels and weights of an entity set are derived from labels
and weights of composing entities. A straightforward way
to decide the weight of label l for an entity set Ei is to use
the average of l’s weights over the entities constituting Ei:

w(Ei, l) =
1

|Ei|
∑

ei∈Ei

w(ei, l). (7)

We note that under this weighting method, the result of

SSet
EP (E1, E2) = ~L(E1) · ~L(E2) is identical to Equation (4).

Also note that when w(ei, l) is always equal to 1 (i.e., uni-
form label weights), it is equivalent to the majority-vote
column label weighting method discussed in [30]. To im-
prove over these two baselines, the weighting method needs
to have a non-linear increase of weights, thereby capturing
higher-order correlations between k-sets of entities (instead
of pairs of entities):

w(Ei, l) =
(
∑

ei∈Ei
w(ei, l))

ni

|Ei|mi
, (ni > 1, ni ≥ mi). (8)

The difference between n2 and m2 controls how SSet
EP cap-

tures the amount of entity expansion from E2 to E1. When
n2 = m2, the quantity of entity expansion is ignored. E.g.,
n1 = 1,m1 = 1, n2 = 1,m2 = 1 makes SSet

EP equivalent to
SAvgPair
EP . When n2 > m2, the amount of entity expansion

is captured. E.g., n1 = 1,m1 = 1, n2 = 1,m2 = 0 makes
SSet
EP equivalent to SSumPair

EP . ni > 1(i = 1, 2) captures the
non-linear increase of weights for E1 and E2.

In our experiments in Section 5, we show that our ap-
proach above significantly improves over the baselines.

3.2 Schema Similarity
We now discuss how to compute the schema similarity be-

tween the query table T1 and a candidate related table T2,
denoted SSS(T1, T2). Our system implements state-of-the-
art schema mapping techniques to obtain a schema similar-
ity score; i.e., schema mappings are computed by a combina-
tion of similarity in attribute names (we used Java’s Second-
String similarity package [1, 12]), data types, and values (we
used a variant of Jaccard similarity). Since there’s a large
body of work on schema mapping [15, 28], we only describe
the salient features of our setting.

Use of Labels: Since our tables are extracted from the Web,
we often don’t have a schema, either because the table was
published without schema, or detection of the schema is
hard [30]. Therefore, we rely strongly on the column-labels
in addition to attribute names. As mentioned earlier, column-
labels are generated using WebIsA database as well as Free-
base: We aggregate cell-value labels to obtain a set of la-
bels for the column. We then employ a generalized Jaccard
similarity measure over the set of labels and the attribute
names, where the generalization considers pairwise string
similarity (instead of string equality in traditional Jaccard).
Intuitively, we consider the set of labels and attribute name
on each table to form nodes in a bipartite graph, and pair-
wise edges representing string similarity; we then compute
the max-weight matching to obtain the name similarity.

Schema Mapping Score: We aggregate pairwise attribute
matching scores to compute an overall schema mapping score

as follows. Given schemas S1(A1
1, . . . , A

1
n1

) and S2(A2
1, . . . , A

2
n2

)
over tables T1 and T2, we first obtain pairwise matching
scores between every pair of attributes A1

i and A2
j . Subse-

quently, we compute an overall one-to-one schema mapping
through a bipartite max-weight matching between the two
sets of attributes: We construct a weighted bipartite graph
G(V1, V2, E) where the set of vertices Vi correspond to the
set of attributes in Si, and the weighted edge between A1

i

and A2
j gives its attribute matching score. The max-weight

bipartite matching then gives the overall schema mapping.
Let the weight of this matching be W and let the number
of edges in the matching be N . The schema mapping score
is then computed as SSS(T1, T2) = W

n1+n2−N
; intuitively, we

find the overall strength of the mapping by aggregating the
strength of the chosen attribute matches and dividing it by
the total number of distinct attributes.

Consistency of Values
Recall from Section 2 that value consistency could be a key
to distinguish whether two tables are entity complements
or the relation between them is more complex. We discuss
how to determine whether two tables have consistent (i.e.,
non-conflicting) values. For instance, if two tables have the
entity“United States”, we expect both tables to have“Wash-
ington, DC” in the “capital” attribute. However, this may
not always be true due to noisy web data or data recorded
at different times (e.g., for attribute President). Further-
more, for numeric attributes like “population”, the values
may not be exactly the same or may be given using different
units. We assume that unit transformations are handled by
another module and do not consider them here.

We consider value consistency when two tables share some
entities. For tables that contain shared entities, we evaluate
their consistency by averaging the similarity in their values
over all corresponding value pairs. The similarity of textual
fields is obtained by string similarity. For numeric values

v1, v2, we use a simple numeric similarity: (1− |v1−v2|
max{v1,v2}

).

Rather than computing an independent value consistency
score for two tables, we incorporate value consistency as
another signal into the schema similarity score: attributes
in two tables can be matched only if their value consistent
score is larger than a threshold (e.g., 0.8).

3.3 Summary
The entity complement score of T2 to T1, EC(T1, T2), is

computed by combining the entity consistency and expan-
sion score SEP (T1, T2) = SEP (E1, E2 \E1) and schema con-
sistency score SSS(T1, T2):

EC(T1, T2) = SEP (T1, T2) ∗ SSS(T1, T2). (9)

While more complex combinations of these two factors are
possible, the above equation captures the intuition that both
scores need to be non-zero if T2 is entity complement to T1.

4. SCHEMA COMPLEMENT
In this section, we describe how we identify schema com-

plement tables. Given a table T1, we are interested in finding
tables T2 that provide the best set of additional columns. In-
tuitively, we want to add as many properties as possible to
the entities in T1 while preserving the “consistency” of its
schema. We consider the following factors:

Coverage of entity set: T2 should consist of most of the

entities in T1, if not all of them. This is required by Point
3 in Definition 2. We compute the coverage of T2’s entity
set with respect to T1 as follows. We first construct the
unique set of entity identifiers E1 and E2 using Freebase,
and then compute the fraction of T1’s entities covered by

T2: SECover(T1, T2) = |E1∩E2|
|E1|

.

Benefits of additional attributes: T2 should contain ad-
ditional attributes that are not described by T1’s schema.
This is required by Point 2 in Definition 2. To quantify the
benefits of adding the set of additional attributes, we need
to combine the consistency and quantity of T2’s additional
attributes.

The additional attributes in T2 are determined by per-
forming schema matching (described in Section 3.2) between
T1 and T2’s schema. An attribute of T2 is an additional
attribute if it is not mapped to any attribute in T1 with a
score above a threshold. (Obviously, T2’s subject column at-
tribute is never an additional attribute, since a pre-requisite
to schema complement is that T2’s subject column maps to
T1’s subject column.) We use S(Ti) to denote the set of at-
tributes in Ti and S(T2) \ S(T1) to represent the additional
attributes in T2’s schema.

A baseline measure for the benefit of T2 simply counts the
number of additional attributes:

Scount
SB (S(T1), S(T2)) = |S(T2) \ S(T1)|. (10)

However, the Scount
SB measure does not capture the rela-

tive importance of additional attributes. We can obtain a
more meaningful measure by leveraging the AcsDB [10], a
data structure that summarizes the frequencies of all pos-
sible schemas in the Web table corpus. Given a set of at-
tributes S, the AcsDB provides the frequency, freq(S), of
S in the table corpus.

Given the AcsDB, we can measure the contribution of
the schema of T2’s w.r.t. T1 using the schema auto-complete
score [10]. Intuitively, the measure below determines the
likelihood of seeing the new attributes in T2’s schema given
T1’s attributes; the higher the likelihood of seeing these new
attributes, the higher is the score.

Sset
SB(T1, T2) =P (S(T2) \ S(T1)|S(T1))

=
freq(S(T2) ∪ S(T1))

freq(S(T1))
.

(11)

This basic measure has two drawbacks: (1) the score is
monotonically decreasing, so adding more attributes to T2

only hurts the benefit measure; (2) the freq(S) in AcsDB
is not as meaningful for large schemas like S(T2) ∪ S(T1)
because they appear very few times in the web table corpus.

The following measure partially overcomes these draw-
backs by considering the maximal benefit that a subset of
attributes of T2 can provide:

Ssetmax
SB (T1, T2) = max

S⊆(S(T2)\S(T1))∧S 6=∅
P (S|S(T1))

= max
a∈S(T2)\S(T1)

P (a|S(T1))

= max
a∈S(T2)\S(T1)

freq({a} ∪ S(T1))

freq(S(T1))
.

(12)

Although {a} ∪ S(T1) is more likely to appear in AcsDB
than S(T2) ∪ S(T1) as its size is smaller, the number of ap-
pearances are still too small to derive statistical significant

results. A more effective measure is to derive the benefit
measure by considering co-occurrence of pairs of attributes,
rather than the entire schemas. Specifically, we begin by de-
termining the consistency of a new attribute a2 to an existing
attribute a1, denotedy by cs(a1, a2), using AcsDB schema
frequency statistics as follows:

cs(a1, a2) = P (a2|a1) = freq({a1, a2})/freq({a1}). (13)

The consistency of an additional attribute a2 (a2 /∈ S(T1))
to the original schema S(T1) is then computed as:

cs(S(T1), a2) =
1

|S(T1)|
∑

a1∈S(T1)

cs(a1, a2). (14)

We can then compute the benefit of S(T2) to S(T1), de-
noted as SSB(T1, T2), by aggregating the consistencies of
each a2 ∈ S(T2) \ S(T1)) to S(T1). We consider three kinds
of aggregation: sum (giving importance to the amount of
extension), average (normalizing the total extension by the
number of new attributes), and max (considering the most
consistent attribute as representative):

Ssum
SB (T1, T2) =

∑
a∈S(T2)\S(T1)

cs(S(T1), a), (15)

Savg
SB (T1, T2) =

1

|S(T2) \ S(T1)|
∑

a∈S(T2)\S(T1)

cs(S(T1), a), (16)

Smax
SB (T1, T2) = max

a∈S(T2)\S(T1)
cs(S(T1), a). (17)

Putting it all together
We combine the entity coverage score SECover and the at-
tribute benefit measure SSB to obtain the overall schema
complement score. Of course, more complex combinations
can be explored.

SC(T1, T2) = SECover(T1, T2)× SSB(T1, T2). (18)

5. EXPERIMENTAL RESULTS
We present an initial set of experiments demonstrating

the effectiveness of our techniques for finding related tables
(Section 5.1). We then describe an experiment that sug-
gests that finding related tables has an added potential of
improving search results for tables (Section 5.2).

5.1 Evaluating related tables

Label source Top-1 Top-3 Top-5
WebIsA 1.9 1.8 1.6
Freebase 2.0 2.1 1.9

WebTable 1.5 1.5 1.6
WebIsA + FB 1.9 2.2 1.9
All combined 1.9 2.0 1.9

Table 1: Comparing different sources of labels for
EC. We use SAvgPair

EP to compute the top-k results.

We evaluate the effectiveness of different scoring functions
for entity complement (EC) and schema complement (SC),
based on user judgements. Given a query table T1, a relat-
edness R (R is either EC or SC), and a candidate related

SEP Top-1 Top-3 Top-5
AvgPair 2.0 2.1 1.9
SumPair 1.6 1.8 2.0

Table 2: The impact of entity expansion for EC. Av-
erage ratings of top-k results with and without en-
coding the amount of expansion (SumPair vs. Avg-
Pair) using Freebase labels.

SEP Label source Top-1 Top-3 Top-5
AvgPair WebIsA 1.9 1.8 1.6

Set WebIsA 1.8 1.8 1.7
AvgPair Freebase 2.0 2.1 1.9

Set Freebase 2.1 2.1 2.0
AvgPair WebTable 1.5 1.5 1.6

Set WebTable 2.8 2.3 2.1

Table 3: The impact of entity-set based relatedness
measures for EC. Average ratings of top-k results
for entity pair relatedness aggregation measures vs.
entity-set based related measures. For entity-set
based measures, the parameters (defined in Sec-
tion 3) are set to m1 = n1 = m2 = n2 = 2.0.

table T2, we ask each user to provide a score from 0 to 5
indicating how closely T2 is related to T1 with respect to R
(0 being not related and 5 being most related).

Experimental setup: We evaluated the relatedness algo-
rithms on 18 queries. For each relatedness R and query
table T1, we obtain user ratings as follows: (1) for each R
we consider multiple scoring functions R1, R2, ..., Rn (from
Sections 3 and 4); (2) for each possible scoring function Ri,
we generate top-5 related tables for the query table T1 based
on Ri; (3) we randomly sort the set of all top-5 related tables
from all scoring functions and remove the duplicates; (4) we
show the combined set of related tables to the user, and
they provide ratings for each table. Our results are based
on aggregating the feedback of 8 users.

Metric: We measure the effectiveness of each scoring func-
tion as follows. For each query table, we generate top-k (k =
1 to 5) related tables based on it. We then average ratings
of top-k (k = 1, 3, 5) related tables for any query across
all user judgements obtained as described above. A higher
average means a better scoring function.

Entity Complement Results: Tables 1, 2, and 3 summa-
rize the ratings for entity complement scores obtained using
all approaches described in Section 3. We use the same
algorithm for schema similarity (Section 3.2) across all ex-
periments, hence we are actually comparing the effectiveness
of the different algorithms for entity relatedness score SEP

Algorithm Top-1 Top-3 Top-5
sum 3.5 3.4 3.4
max 3.1 3.1 3.2
avg 2.7 2.9 3.0

setmax 1.8 2.1 2.0
count 3.1 3.1 3.0

Table 4: Average rating for top results, for different
SSB definitions in SC.

and the effectiveness of different sources of labels. We make
the following observations.

Best Approach: Our method for computing relatedness
based on comparing the entire sets SSet

EP offers best results
when used with labels computed from WebTable, and sig-
nificantly better than baselines that consider relatedness of
all pairs in the two sets S∗Pair

EP . Using WebTable signals,
SSet
EP achieves around 87% rating improvement to S∗Pair

EP ,
its entity-pairs counterpart and around 40% improvement
to the next best algorithm (entity pair relatedness aggrega-
tion with Freebase labels).

Table 1 – Label source comparison for entity pair
based algorithms: When using entity pair based algo-
rithms (e.g., SAvgPair

EP), Freebase labels are most effective if
we consider only one source of labels. Interestingly, adding
WebIsA and WebTable labels does not have an apparent im-
pact.

Table 2 – Impact of expansion quantity: Entity con-
sistency is more important than entity-set expansion. The
measure SAvgPair

EP , which rewards consistency over entity-set
expansion is significantly better (up to 25% improvement)
compared with SSumPair

EP , which rewards expansion of the
entity set over consistency.

Table 3 – Impact of set-based relatedness measure:
As described above, the best result combines set-based re-
latedness with labels from WebTable. When we consider
labels from WebIsA or Freebase, the set-based measure per-
forms only slightly better than comparing entities pairwise.
This can be explained by the fact that WebIsA and Free-
base are good at capturing general concepts, which are less
sensitive to entity set based relatedness. The WebTable cor-
pus captures much richer set of concepts, but also contains
more noisy signals. The set-based relatedness helps distill
the useful concepts (by encouraging labels that are common
to most entities in the set) while disregarding the noise (by
discouraging labels that occur only a few times in the set)
from WebTable corpus.

Schema Complement Results: Table 4 compares effec-
tiveness of different schema complement scoring functions,
varying the scoring functions for measuring the benefits of
additional attributes SSB . Ssum

SB achieves the best results,
while Smax

SB and Scount
SB also perform reasonably well. Note

that Smax
SB focuses on consistency of expansion, Scount

SB fo-
cuses on the amount of expansion, while Ssum

SB focuses on
both. The baseline Sset

SB obtains a score close to 0 (not shown
in the table), since co-occurrence statistics for large schema
are not meaningful. Ssetmax

SB is slightly better, but still sig-
nificantly worse than the best approaches. Finally, Savg

SB is
suboptimal since the amount of expansion is completely ig-
nored. In summary, sum aggregation is the most effective,
and it indicates that when considering schema complement,
users indeed focus on the number of additional attributes,
in addition to the consistency of additional attributes.

5.2 Augmenting table search
The most natural use-case of related table discovery is to

present users with related tables when they are exploring a
particular table. This section demonstrates an unexpected
use of discovering related tables: improving table search [10].
Specifically, we show that tables that are related to tables
that are highly ranked w.r.t. a query are often judged to

Query # Related # Better Related
1 country gdp 26 7
2 country population 21 4
3 dog species 8 6
4 fish species 6 4
5 movie director 10 5
6 national parks 6 4
7 nobel prize winners 1 1
8 school ranking 6 6

Table 5: Queries and Statistics

be equally relevant to the query, even if they appear much
further down in the ranking.

To illustrate this point, we experimented with the follow-
ing very simple re-ranking of search results from [10]. After
the first result T1, we add all tables among the top-100 ta-
bles T 1

1 , T
2
1 , . . . related to it (in order of relatedness), then

add the second result T2 followed by all tables (not already
listed above) related to it T 1

2 , . . ., and so on. In this fashion,
we created a re-ranked list of tables consisting of the original
top-10 tables and all its related tables from the original top-
100 tables. We considered eight keyword queries (listed in
the first column of Table 5), and asked four users to rate all
the resulting tables (by randomly sorting the results) giving
them a score between 0 and 5.

The second column of Table 5 shows the number of re-
lated tables added by the approach above. The third col-
umn shows the number of related tables that were not in
the original top-10 but had an average user score that was
in the top-10. For example, a value of 4 in the third column
of Table 5 indicates that 4 related tables (not in the origi-
nal top-10 search result list) obtained an average user rating
among the top-10 when all tables are ranked based on the
average user rating. We notice that in all the queries, re-
lated tables constitute a significant (if not majority) portion
of the ideal top-10 results, except the nobel prize winners
query, which only added one related table. This indicates
that related tables can be used as an important feature in
tuning keyword search results.

Figure 5(a) shows that the added tables are distributed
widely within the top 100 rankings for these queries, indicat-
ing that tables throughout the top 100 are “pulled” forward
by our modified algorithm. Finally, Figure 5(b) shows that
in most cases, our modified ranking algorithm gives a higher
average relevance score compared to the original search re-
sult (marked baseline), and very close to the “gold standard”
that takes the top-10 simply based on user ratings. When we
average relevance across all eight queries, the modified algo-
rithm achieves a relevance score of 3.45, beating the baseline
of 3.26, with the gold standard being 3.81.

Our results can be explained by the observation that re-
lated tables are being pulled up based on semantic signals
inferred from the “hidden link structure” across all tables,
where links represent “relatedness” edges; these semantic
signals are sometimes orthogonal to the relatively syntactic
ones used for table ranking, such as in [10] and can be used
to complement other techniques for recovering semantics of
tables [24, 30]. Designing the optimal method to blend in
related tables into search results requires additional study
and will also be greatly influenced by user interface hints.

(a) Distribution of related tables (b) Comparison of three algorithms

Figure 5: Using related table data to improve table search ranking.

6. SCALING UP
Computing the exact relatedness score for every pair of

tables can be very expensive on large table corpora. In this
section we discuss how to scale up the computation of ta-
ble relatedness by considering filters that reduce the number
of computations we need to perform and that enable us to
perform each comparison more efficiently. We describe the
general approach in Section 6.1. In Section 6.2 we describe
a model for choosing among different candidate filtering cri-
teria. In Section 6.3 we describe a set of candidate filtering
criteria and use the model to compute their expected run-
ning time. We run the chosen filtering technique on a corpus
of over 1 million tables extracted from Wikipedia.

6.1 General Approach
We start by presenting a general filtering-based approach

we employ for scaling related tables computation. For each
type of relatedness measure (i.e., entity complement, EC,
and schema complement, SC) R, we devise filtering criterion
F1, F2, . . .: Each Fi is equivalent to a hash function and the
filtering condition imposes Fi(T1) = Fi(T2) for a pair of
tables T1 and T2. As we shall see, each Fi(T) could generate
multiple values, and we would like Fi(T1) ∩ Fi(T2) 6= ∅;
hence we use Fi(T1, T2) as a shorthand for this condition.
Intuitively, we would like a high relatedness score for the
pair T1, T2 to satisfy Fi(T1, T2) (and a low score to falsify
the filter). We shall discuss the desiderata for good filtering
criteria shortly.

Filtering conditions are used in two ways in our algorithm:

Fewer Comparisons: Fewer comparisons are performed
by using the filtering conditions as hash functions to bucke-
tize the set of all tables, and only perform relatedness com-
putations for pairs of tables that appear together in some
bucket. (Note that this is similar to blocking or canopy for-
mation in de-duplication[21].) Since each filtering criterion
may be based on multiple hash values for each table, ev-
ery table may go in more than one bucket. Subsequently,
we perform the set of pairwise comparisons in all buckets
in parallel, as with recent work on parallelizing similarity
joins [6, 31]. The pairwise comparisons for each bucket are
performed on different machines, with the set of all pairs
on large buckets further subdivided into multiple machines.

We used map-reduce in our implementation of parallel com-
putation of relatedness measures.

Faster Comparisons: To make the computation of relat-
edness score on each pair of tables faster, we apply a se-
quence of filters. Only when a specific filtering condition
is satisfied, we apply the next filter. Finally, only when all
filters in the sequence are satisfied, we perform the compu-
tation of the entire relatedness score. This process is benefi-
cial when the filters have a low selectivity and are efficient to
compute (and in particular, much more efficient than the re-
latedness score computation). Such a technique of applying
a sequence of filters has been considered in other contexts
in the past [7, 13, 23, 29].
While the set of filters that can be applied for the two im-
provements above may vary in general, all our filtering con-
ditions can be framed as hashing functions (based on the
non-empty intersection condition: Fi(T1)∩Fi(T2) 6= ∅), and
hence, we explore the same set of filters for both the opti-
mizations.

6.2 Filtering Criteria Selection
Next we describe how to select the best filtering criterion

for a relatedness measure R. Let n denote the total number
of tables in the corpus and tR denote average time to com-
pute the comparison R for a pair of tables. The goodness of
a filtering criterion F depends on the three factors:

• Computation time: We would like filtering criteria
to be very efficiently computable. For the purpose of
fewer comparisons, we need to be able to map each
table to a bucket efficiently, and for faster comparisons,
the filtering predicate should take much less time to
apply than computation of the entire relatedness score.

Let tF denote the average time to compute the filtering
condition F on a table.

• Selectivity: We would like the filtering criterion to
have low selectivity, i.e., few pairs should satisfy each
filtering criterion. Ideally, satisfying the filtering con-
dition should be correlated with high relatedness score.

Selectivity, denoted by mp, is the total number of can-
didate related pairs that pass the filter criterion. We
denote by mup the number of distinct pairs that sat-
isfy the filtering criterion. Note that mup is always less

or equal to n2, but mp can be larger than n2 because
every filter can generate multiple values and therefore
a table can appear in multiple buckets.

• Loss rate: We would like very few table pairs
with high relatedness score to falsify filtering crite-
ria. That is, we would like Fi(T1, T2) =false ⇒
relatedness(T1, T2) < τ , for some threshold τ . The loss
rate of a filtering criteria is defined as the number of
table pairs that don’t satisfy the above, and we would
like to design filtering criteria with low loss rates.

The unit computation times and selectivity of filter crite-
rion decides the total running time for related table discov-
ery. When using bucketization-based optimization, the total
running time for related table discovery can be estimated as:

tbucket = ntF +mptR ≈ mptR.

If a de-duplication step is performed before pairwise relat-
edness comparison, the estimate is:

tbucket−dedup = ntF + tdedup +muptR ≈ tdedup +muptR,

where tdedup is the time to perform de-duplication for all
candidate pairs in different buckets, though the exact run-
ning time for de-duplication (run as a separate round in
map-reduce) can be very data dependent. And if we di-
rectly apply the filter to all pairs of candidate tables, the
total estimated running time is:

tallpair = n2tF +muptR.

Therefore, for a table corpus and a relatedness R, the best
filtering criterion can be decided as follows:

1. Decide a set of candidate filtering criteria for R (de-
noted as F1, F2, ..., Ffn).

2. Compute the loss rate for each candidate filtering cri-
terion Fi and ignore any filtering criterion with loss
rate > τ .

3. For each remaining candidate criterion Fi, estimate the
total running time for related table discover as

test(Fi) = min(tbucket, tbucket−dedup, tallpair)

by computing mptR, muptR and n2tF and an estima-
tion of tdedup if needed. Pick the filter criterion Fi

(and its corresponding optimization algorithm) with
the lowest estimated running time.

6.3 Evaluation on Wikipedia tables
We use the corpus of tables extracted from Wikipedia

(over 1 million tables) to demonstrate how to select filtering
criteria for entity complement EC and schema complement
SC and compute the related tables using the selected fil-
tering conditions. The entity complement algorithm we use
here is SAvgPair

EP score with WebIsA and Freebase labels, and
the schema complement algorithm uses the Smax

SB score. We
then summarize and present some basic statistics of related
Wikipedia tables.

We describe 9 candidate filtering criteria. The first set
of criteria apply to both entity and schema complement:
Subject-Name (SN)–two tables should have the same
subject column name; Subject-Name-Label (SNL)–two
tables must share the subject column name or at least

EC loss rate SC loss rate
SN 63.6% 55.7%

SNL 0.0% 0.0%
SNLPr 0.0% 0.0%
NPair 66.3% N/A

NLPair 25.0% N/A
NLPrPair 25.5% N/A
Entity1 N/A 0.0%
Entity2 N/A 3.2%
Entity3 N/A 5.1%

Table 6: Estimated loss rates of different filtering
criteria.

one subject column label; Subject-Name-PrunedLabel
(SNLPr)–two tables must share the subject column name
or at least one subject column label not on a predefined
prune list. Some labels are very general therefore mean-
ingless (e.g., thing, factor). We manually identified 20 such
labels and put them in a prune list.

The second set of criteria apply only to entity comple-
ment. Name-Pair (NPair)–two tables should share both
of: (1) a subject column name, and (2) at least one non-
subject column name; Name-Label-Pair (NLPair)–two
tables should share both of: (1) a subject column name
or label, and (2) at least one non-subject column name or
label; Name-PrunedLabel-Pair (NLPrPair)–two tables
should share both of: (1) a subject column name or label not
on the prune list, and (2) at least one non-subject column
name or label not on the prune list.

The third set of filters apply only to schema complement.
Entity-n requires that the two tables share at least n entities.
Our experiments consider n = 1, 2, 3.

For each filtering criterion, we estimate its loss rate for
entity complement and schema complement (if applicable)
based on the user ratings obtained in Section 5.1. Any pair
of tables with average rating larger than 0 are considered
related. The results are show in Table 6. We noticed that
SN has high estimated loss rate for both entity and schema
complement; NPair, NLPair, NLPrPair has high estimated
loss rate for entity complement. It is interesting to observe
that pruning the most general and meaningless labels almost
have no effect on the loss rate (e.g., SNL and SNLPr have
the same loss rate of 0).

Next we estimate the total related table discovery time for
both entity and schema complement under different filtering
conditions. (For illustration purposes we show the time esti-
mation even for the high loss rate filtering criteria.) Follow-
ing the estimation method discussed in Section 6.2, we first
compute the following basic numbers: total number of tables
n = 1015496, unit computation time for entity complement
tEC = 1.6ms, unit computation time for schema comple-
ment tSC = 0.4ms, unit computation time for all filtering
conditions are less than 0.01ms: {tSN = 0.0005ms, tSNL =
0.0017ms, tSNLPr = 0.0019ms, tNPair = 0.0009ms, tNLPair

= 0.0065ms, tNLPrPair = 0.0072ms, tEntity1 = 0.0014ms,
tEntity2 = 0.0014ms, tEntity3 = 0.0008ms}, and the number
of total pair comparisons mp and unique pair comparisons
mup for different filtering criteria are shown in Figure 6.

We aggregate these numbers to compute muptEC ,
muptSC , mptEC , mptSC , n2tF (Table 7). In almost all cases,
all pair filtering comparison (n2tF) is rather cheap com-
pared to relatedness computing. Therefore we can safely

Figure 6: Table pair comparison counts (mup and
mp) for different filtering conditions. The dashed
horizontal line are total number (n) of table pairs in
the corpus.

muptEC mptEC muptSC mptSC n2tF
SN 17(X) 17(X) 4(X) 4(X) 0.1
SNL 186 697 48 178 0.5
SNLPr 25 39 6 10 0.4
NPair 6(X) 33(X) / / 0.3
NLPair 76(X) 1116(X) / / 1.8
NLPrPair 14(X) 55(X) / / 2.1
Entity1 / / 0.7 1.5 0.4
Entity2 / / 0.2 1.2 0.3
Entity3 / / 0.2 0.9 0.3

Table 7: Estimated total running time (thousand
hours) breakdown. Annotated with (X) if it comes
with high loss rate.

use tallpair = n2tF + muptR as the estimated running time
and no need to worry about de-duplication for bucketiza-
tion. For entity complement, SNLPr has the lowest muptR
among all those low loss rate filter criteria. The estimated
total running time is 4000 (n2tF) + 25000 (muptEC) = 29000
hours. Schema complement computations are much cheaper.
Using Entity1 as the filtering criterion, the estimated run-
ning time is 400 (n2tF) + 700 (muptSC) = 1100 hours; it is
even cheaper when using Entity3, although it comes with
the price of a bit higher loss rate.

We ran our system to compute related table pairs on the
entire Wikipedia corpus of tables consisting of around 1 mil-
lion tables. We ran our system using 10000 machines, and
it took about 3 hours to finish the computation. This is
consistent with our estimation. Figure 7 shows some basic
statistics on this Wikipedia dataset. We can see that the
number of related tables roughly follows a power-low dis-
tribution. We also notice that there is a large variance in
the number of related tables, with some tables having many
related tables (for this experiment we applied a very small
relatedness threshold to obtain a maximum number of re-
lated tables).

7. RELATED WORK
We are not aware of any prior work that addresses the

problem of identifying related tables on the Web. However,
the algorithms we describe touch on a few bodies of related
work which we discuss below.

Extracting Web tables
There have been several pieces of work that extract tables
from the Web: [18] extract tables from arbitrary Web pages
relying on positional information of visualized DOM ele-
ment nodes in a browser. Cafarella et al. [11] developed
the WebTables system for web-scale table extraction, im-
plementing a mix of hand-written detectors and statistical
classifiers that identified 154 million high-quality relational-
style tables from a raw collection of 14.1 billion tables on
the Web. Elmeleegy et al. [16] split lists on Web pages into
multi-column tables in a domain-independent and unsuper-
vised manner. The Octopus System [9] includes a context
operator that tries to identify additional information about
the table on a Web page. For example, the operator would
identify the year of the page listing the program commit-
tee members of VLDB, even if the year is not explicit on
the page. Using this recovered information, it is easier to
union tables found on different Web pages. This technique
is orthogonal to the algorithms we described and can be in-
corporated as another method for detecting related tables.

Our table corpus is obtained from an enhanced WebTables
system that expands upon [11] by incorporating the all state-
of-art table extraction described above.

List expansion
The problem of entity complement is related to the task
of list expansion, which is to generate lists of named entities
starting from a small set of seed entities. Several approaches
to this general problem have been proposed, including super-
vised entity extraction targeted at a limited set of classes [8,
25], and systems such as KnowItAll [17] and [14], generat-
ing lists of queries for each target predicate and applying
a set of extraction rules over the returned documents to
get named entities. Other approaches include applying isA
Hearst patterns to generate instances and classes, automatic
set expansion using a similarity matrix between words [27],
systems such as SEAL that identify lists of items on web-
pages [32, 33]. All these works focus on adding more named
entities to a small set of seed entities. Entity complement
computes the value of the additional set of rows that any
table adds to the input table, which is obtained by a com-
bination of the relatedness of the set of additional entities,
and their attribute values.

Keyword search on tables
There have been numerous recent papers describing ranking
algorithms for keyword search queries over table corpora,
including treating tables as pseudo-documents that include
table’s surrounding text and page titles [10], leveraging a
database class labels and relationships extracted from the
Web [30], and using the YAGO ontology to annotate tables
with column and relationship labels [24]. In other work, [20]
considered how to answer fact queries with lists on the Web
and there is a large body of work for ranking tuples within
a single database in response to keyword queries [22]. All
the above works take keyword queries as input, and the goal
is to find or construct tables most relevant to the keywords.

(a) Entity complement table count dis-
tribution.

(b) Schema complement table count
distribution.

Figure 7: Related table count distribution in Wikipedia corpus.

In contrast, our input is a table in itself, and our goal is to
find other tables that may be combined with the input table
such as by a join or union.

8. CONCLUSIONS AND FUTURE WORK
We introduced the problem of finding related tables from

a large heterogenous corpus that are related to an input ta-
ble. We presented a framework that captures a multitude
of relatedness types, and described algorithms for ranking
tables based on entity complement and schema complement.
We described user studies that evaluated the quality of our
related tables detection algorithms, and showed how related
tables discovery may enhance table search results. Finally,
we showed how to scale the computation of related tables.
In future work, we plan to devise algorithms for other relat-
edness types such as temporal snapshots, and explore relat-
edness of tables in the context of a given query on the table
corpus.

9. REFERENCES
[1] http://secondstring.sourceforge.net/.

[2] http://www.factual.com/.

[3] http://www.freebase.com/.

[4] http://www.socrata.com/.

[5] http://www.tableausoftware.com/public.

[6] F. Afrati, A. D. Sarma, D. Menestrina, A. Parameswaran, and
J. D. Ullman. Fuzzy joins using mapreduce. In ICDE, 2012.

[7] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream filters. In
SIGMOD, 2004.

[8] R. Bunescu and R. J. Mooney. Collective information
extraction with relational markov networks. In ACL, 2004.

[9] M. Cafarella, A. Halevy, and N. Khoussainova. Data Integration
for the Relational Web. PVLDB, 2(1):1090–1101, 2009.

[10] M. Cafarella, A. Halevy, D. Wang, E. Wu, and Y. Zhang.
WebTables: Exploring the Power of Tables on the Web.
PVLDB, 1(1):538–549, 2008.

[11] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang.
Uncovering the Relational Web. In WebDB, 2008.

[12] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for name-matching tasks.
In IIWeb, 2003.

[13] A. Condon, A. Deshpande, L. Hellerstein, and N. Wu. Flow
algorithms for two pipelined filter ordering problems. In PODS,
2006.

[14] D. Davidov. Fully unsupervised discovery of concept-specific
relationships by web mining. In ACL, 2007.

[15] Z. (Eds.) Bellahsene, A. Bonifati, and E. Rahm. Schema
Matching and Mapping. Springer, 2011.

[16] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting
Relational Tables from Lists on the Web. PVLDB,
2:1078–1089, 2009.

[17] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates. nsupervised
named-entity extraction from the Web: An experimental study.
AIJ, 2005.

[18] W. Gatterbauer and P. Bohunsky. Table extraction using
spatial reasoning on the CSS2 visual box model. In AAAI,
2006.

[19] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen,
J. Madhavan, R. Shapley, W. Shen, and J. Goldberg-Kidon.
Google fusion tables: web-centered data management and
collaboration. In SIGMOD, 2010.

[20] R. Gupta and S. Sarawagi. Answering Table Augmentation
Queries from Unstructured Lists on the Web. PVLDB,
2(1):289–300, 2009.

[21] M. A. Hernandez and S. J. Stolfo. The merge/purge problem
for large databases. In SIGMOD, 1995.

[22] P. Ipeirotis and A. Marian, editors. DBRank, 2010.

[23] M. Kodialam. The throughput of sequential testing. In In
Integer Programming and Combinatorial Optimization, 2001.

[24] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and
Searching Web Tables Using Entities, Types and Relationships.
In VLDB, pages 1338–1347, 2010.

[25] A. McCallum and W. Li. Early results for named entity
recognition with conditional random fields, feature induction
and web-enhanced lexicons. In CONLL, 2003.

[26] M. Paşca and B. Van Durme. Weakly-Supervised Acquisition of
Open-Domain Classes and Class Attributes from Web
Documents and Query Logs. In ACL, 2008.

[27] P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, and
V. Vyas. Web-scale distributional similarity and entity set
expansion. In EMNLP, 2009.

[28] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. VLDB J., 10(4), 2001.

[29] U. Srivastava, K. Munagal, J. Widom, and R. Motwani. Query
optimization over web services. In VLDB, 2006.

[30] P. Venetis, A. Halevy, J. Madhavan, M. Pasca, W. Shen,
F. Wu, G. Miao, and C. Wu. Recovering semantics of tables on
the web. In PVLDB, 2011.

[31] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In SIGMOD, 2010.

[32] R. Wang and W. Cohen. Language-Independent Set Expansion
of Named Entities Using the Web. In ICDM, 2007.

[33] R. Wang and W. Cohen. Iterative Set Expansion of Named
Entities Using the Web. In ICDM, pages 1091–1096, 2008.

