In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph, or set of vertices connected by edges, where the edges have a direction associated with them. In formal terms, a directed graph is an ordered pair G = (V, A) (sometimes G = (V, E)) where
It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called edges, arcs, or lines.
A directed graph is called a simple digraph if it has no multiple arrows (two or more edges that connect the same two vertices in the same direction) and no loops (edges that connect vertices to themselves). A directed graph is called a directed multigraph or multidigraph if it may have multiple arrows (and sometimes loops). In the latter case the arrow set forms a multiset, rather than a set, of ordered pairs of vertices.
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph, or set of vertices connected by edges, where the edges have a direction associated with them. In formal terms, a directed graph is an ordered pair G = (V, A) (sometimes G = (V, E)) where
It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called edges, arcs, or lines.
A directed graph is called a simple digraph if it has no multiple arrows (two or more edges that connect the same two vertices in the same direction) and no loops (edges that connect vertices to themselves). A directed graph is called a directed multigraph or multidigraph if it may have multiple arrows (and sometimes loops). In the latter case the arrow set forms a multiset, rather than a set, of ordered pairs of vertices.