

WordPress:
Best Practices on AWS

Reference Architecture for Scalable WordPress-Powered
Websites

February 2018

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction 1

Simple Deployment 1

Considerations 1

Available Approaches 1

Amazon Lightsail 2

Improving Performance and Cost Efficiency 4

Accelerating Content Delivery 4

Database Caching 7

Bytecode Caching 7

Elastic Deployment 8

Reference Architecture 8

Architecture Components 9

Scaling the Web Tier 9

Stateless Web Tier 11

Conclusion 14

Contributors 14

Document Revisions 14

Appendix A: CloudFront Configuration 14

Origins and Behaviors 14

IAM User Creation 15

S3 Bucket Creation 15

CloudFront Distribution Creation 16

WordPress Plugin Installation and Configuration 18

Static Origin Creation 19

Appendix B: Backup and Recovery 20

Appendix C: Deploying New Plugins and Themes 22

Abstract
This whitepaper provides system administrators with specific guidance on how
to get started with WordPress on AWS and how to improve both the cost
efficiency of the deployment as well as the end user experience. It also outlines a
reference architecture that addresses common scalability and high availability
requirements.

Amazon Web Services – WordPress: Best Practices on AWS

Page 1

Introduction
WordPress is an open-source blogging tool and content management system
(CMS) based on PHP and MySQL that is used to power anything from personal
blogs to high-traffic websites.

The first version of WordPress was released in 2003, and it was not built with
modern elastic and scalable cloud-based infrastructures in mind. Through the
work of the WordPress community and the release of various WordPress
modules, the capabilities of this CMS solution are constantly expanding. Today
it is possible to build a WordPress architecture that takes advantage of many of
the benefits of the AWS Cloud.

Simple Deployment
For low-traffic blogs or websites without strict high availability requirements a
simple deployment of a single server might be suitable. This deployment isn’t
the most resilient or scalable architecture, but it is the quickest and most
economical way to get your website up and running.

Considerations
We will start with a single web server deployment. There may be occasions
when you outgrow it, for example:

• The virtual machine that your WordPress website is deployed on will be
a single point of failure. A problem with this instance will cause a loss of
service for your website.

• Scaling resources to improve performance can only be achieved by
“vertical scaling,” that is, by increasing the size of the virtual machine
running your WordPress website.

Available Approaches
AWS has a number of different options for provisioning virtual machines. There
are three main ways to host your own WordPress website on AWS:

• Amazon Lightsail

Amazon Web Services – WordPress: Best Practices on AWS

Page 2

• Amazon Elastic Compute Cloud (Amazon EC2)

• AWS Marketplace

Amazon Lightsail is a service that allows you to quickly launch a virtual private
server (a Lightsail instance) to host a WordPress website.1 Lightsail is the
easiest way to get started if you don’t need highly configurable instance types or
access to advanced networking features.

Amazon EC2 is a web service that provides resizable compute capacity so you
can launch a virtual server within minutes.2 Amazon EC2 provides more
configuration and management options than Lightsail, which is desirable in
more advanced architectures. You have administrative access to your EC2
instances and can install any software packages you choose, including
WordPress.

AWS Marketplace is an online store where you can find, buy, and quickly deploy
software that runs on AWS. 3 You can use 1-Click deployment to launch
preconfigured WordPress images directly to Amazon EC2 in your own AWS
account in just a few minutes. There are a number of Marketplace vendors
offering ready-to-run WordPress instances.

We will cover the Lightsail option as the recommended implementation for a
single server WordPress website.

Amazon Lightsail
Lightsail is the easiest way to get started on AWS for developers, small
businesses, students, and other users who need a simple virtual private server
(VPS) solution.

The service abstracts many of the more complex elements of infrastructure
management away from the user. It is, therefore, an ideal starting point if you
have less infrastructure experience, or when you need to focus on running your
website and a simplified product is sufficient for your needs.

With Amazon Lightsail you can choose Windows or Linux/Unix operating
systems and popular web applications, including WordPress, and deploy these
with a single click from preconfigured templates.

https://amazonlightsail.com/
https://aws.amazon.com/ec2/
https://aws.amazon.com/marketplace

Amazon Web Services – WordPress: Best Practices on AWS

Page 3

As your needs grow, you will have the ability to smoothly step outside of the
initial boundaries and connect to additional AWS database, object storage,
caching, and content distribution services.

Selecting an Amazon Lightsail Pricing Plan
A Lightsail Plan defines the monthly cost of the Lightsail resources you will use
to host your WordPress website.4 There are a number of plans available to cover
a variety of use cases, with varying levels of CPU resource, memory, solid-state
drive (SSD) storage, and data transfer. If your website is complex you may need
a larger instance with more resources. You can achieve this by migrating your
server to a larger plan using the web console5 or as described in the Amazon
Lightsail CLI documentation.6

Installing WordPress
Lightsail provides templates for commonly used applications such as
WordPress. This template is a great starting point for running your own
WordPress website as it comes pre-installed with most of the software you will
need. You can install additional software or customize the software
configuration by using the in-browser terminal or your own SSH client, or via
the WordPress administration web interface. For more information about
managing WordPress on Lightsail, refer to the Getting started using WordPress
from your Amazon Lightsail instance documentation.7 Once you are finished
customizing your WordPress website, we recommend taking a snapshot of your
instance.

A snapshot is a way to create a backup image of your Lightsail instance.8
It is a copy of the system disk and also stores the original machine
configuration (that is, memory, CPU, disk size, and data transfer rate).
Snapshots can be used to revert to a known good configuration after a
bad deployment or upgrade.

This snapshot will allow you to recover your server if needed, but also to launch
new instances with the same customizations.

https://amazonlightsail.com/pricing/
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-create-instance-from-snapshot
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-create-larger-instance-from-snapshot-using-aws-cli
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-create-larger-instance-from-snapshot-using-aws-cli
https://lightsail.aws.amazon.com/ls/docs/getting-started/article/getting-started-with-wordpress-and-lightsail
https://lightsail.aws.amazon.com/ls/docs/getting-started/article/getting-started-with-wordpress-and-lightsail
https://lightsail.aws.amazon.com/ls/docs/overview/article/understanding-instance-snapshots-in-amazon-lightsail

Amazon Web Services – WordPress: Best Practices on AWS

Page 4

Recovering from Failure
A single web server is a single point of failure, so you must ensure that your
website data is backed up. The snapshot mechanism described earlier can also
be used for this purpose. To recover from failure, you can restore a new instance
from your most recent snapshot. To reduce the amount of data that could be
lost during a restore, your snapshots must be as recent as possible.

To minimize the potential for data loss, ensure that snapshots are being taken
on a regular basis. This can be done by automating snapshots using the Lightsail
Auto Snapshots solution.9

We recommend that you use a static IP—a fixed, public IP address that is
dedicated to your Lightsail account. If you need to replace your instance with
another one, you can reassign the static IP to the new instance. In this way, you
don’t have to reconfigure any external systems (such as DNS records) to point to
a new IP address every time you want to replace your instance.

Improving Performance and Cost Efficiency
You may eventually outgrow your single-server deployment. You will need to
consider options for improving your website’s performance. Before migrating to
a multi-server, scalable deployment – as we discuss later in this paper – there
are a number of performance and cost efficiencies you can apply. These are
good practices that you should follow anyway, even if you do move to a multi-
server architecture.

The following sections introduce a number of options that can improve aspects
of your WordPress website’s performance and scalability. Some can be applied
to a single-server deployment, while many take advantage of the scalability of
multiple servers. A lot of those modifications require the use of one or more
WordPress plugins. Although various options are available, W3 Total Cache is a
popular choice that combines many of those modifications in a single plugin.10

Accelerating Content Delivery
Any WordPress website needs to deliver a mix of static and dynamic content.
Static content includes images, JavaScript files, or style sheets. Dynamic content
includes anything generated on the server side using the WordPress PHP code,
for example, elements of your site that are generated from the database or

https://github.com/awslabs/lightsail-auto-snapshots
https://github.com/awslabs/lightsail-auto-snapshots
https://wordpress.org/plugins/w3-total-cache/

Amazon Web Services – WordPress: Best Practices on AWS

Page 5

personalized to each viewer. An important aspect of the end-user experience is
the network latency involved when delivering the previous content to users
around the world. Accelerating the delivery of the previous content will improve
the end-user experience, especially users geographically spread across the globe.
This can be achieved with a Content Delivery Network (CDN) such as Amazon
CloudFront.

Amazon CloudFront is a web service that provides an easy and cost-effective
way to distribute content with low latency and high data transfer speeds
through multiple edge locations across the globe.11 Viewer requests are
automatically routed to a suitable CloudFront edge location in order to lower
the latency.12 If the content can be cached (for a few seconds, minutes, or even
days) and is already stored in a particular edge location, CloudFront delivers it
immediately. If the content should not be cached, has expired, or isn’t currently
in that edge location, CloudFront retrieves content from one or more sources of
truth, referred to as the origin(s) (in this case, the Lightsail instance) in the
CloudFront configuration. This retrieval takes place over optimized network
connections, which work to speed up the delivery of content on your website.
Apart from improving the end-user experience, the model we have discussed
also reduces the load on your origin servers and has the potential to create
significant cost savings.

Static Content Offload
This includes CSS, JavaScript, and image files – either those that are part of
your WordPress themes or those media files uploaded by the content
administrators. All these files can be stored in Amazon Simple Storage Service
(Amazon S3) using a plugin such as W3 Total Cache and served to users in a
scalable and highly available manner. Amazon S3 offers a highly scalable,
reliable, and low-latency data storage infrastructure at very low cost, which is
accessible via REST APIs.13 Amazon S3 redundantly stores your objects, not
only on multiple devices, but also across multiple facilities in an Amazon S3
Region, thus providing exceptionally high levels of durability.

This has the positive side effect of offloading this workload from your Lightsail
instance and letting it focus on dynamic content generation. This reduces the
load on the server. Later in this document we will also see that this is an
important step towards creating a stateless architecture (and why this is a
prerequisite before we can implement Auto Scaling).

https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/details/#edge-locations
https://aws.amazon.com/s3/

Amazon Web Services – WordPress: Best Practices on AWS

Page 6

You can subsequently configure Amazon S3 as an origin for CloudFront to
improve delivery of those static assets to users around the world. Although
WordPress isn’t integrated with Amazon S3 and CloudFront out of the box, a
variety of plugins add support for these services (for example, W3 Total Cache).

Dynamic Content
Dynamic content includes the output of server-side WordPress PHP scripts. It
can also be served via CloudFront by configuring the WordPress website as an
origin. Since this will include personalized content, you need to configure
CloudFront to forward certain HTTP cookies and HTTP headers as part of a
request to your custom origin server. CloudFront uses the forwarded cookie
values as part of the key that identifies a unique object in its cache. To ensure
that you maximize the caching efficiency, you should configure CloudFront to
only forward those HTTP cookies and HTTP headers that really vary the content
(not cookies that are only used on the client side or by third-party applications,
for example, for web analytics).

Figure 1: Whole website delivery via CloudFront

In Figure 1 you can see that we now have two origins: one for static content and
another for dynamic content. For implementation details, see Appendix A.

CloudFront uses standard cache control headers to identify if and for how long
it should cache specific HTTP responses. The same cache control headers are
also used by web browsers to decide when and for how long to cache content
locally for a more optimal end-user experience (for example, a .css file that is
already downloaded will not be re-downloaded every time a returning visitor
views a page). You can configure cache control headers on the web server level
(for example, via .htaccess files or modifications of the httpd.conf file) or

Amazon Web Services – WordPress: Best Practices on AWS

Page 7

install a WordPress plugin (for example, W3 Total Cache) to dictate how those
headers are set for both static and dynamic content.

Database Caching
Database caching can significantly reduce latency and increase throughput for
read-heavy application workloads like WordPress. Application performance is
improved by storing frequently accessed pieces of data in memory for low-
latency access (for example, the results of I/O-intensive database queries).
When a large percentage of the queries are served from the cache, the number
of queries that need to hit the database is reduced, resulting in a lower cost
associated with running the database.

Although WordPress has limited caching capabilities out of the box, a variety of
plugins support integration with Memcached, a widely adopted memory object
caching system. The W3 Total Cache plugin is a good example.14

In the simplest scenarios, you install Memcached on your web server and
capture the result as a new snapshot. In this case, you are responsible for the
administrative tasks associated with running a cache.

Another option is to take advantage of a managed service such as Amazon
ElastiCache15 and avoid that operational burden. ElastiCache makes it easy to
deploy, operate, and scale a distributed in-memory cache in the cloud. You can
find information about how to connect to your ElastiCache cluster nodes in the
Amazon ElastiCache documentation.16

If you are using Lightsail and wish to access an ElastiCache cluster in your AWS
account privately, you can do so by using VPC peering. You can find instructions
to enable VPC peering in the Lightsail documentation.17

Bytecode Caching
Each time a PHP script is executed, it gets parsed and compiled. By using a PHP
bytecode cache, the output of the PHP compilation is stored in RAM so that the
same script doesn’t have to be compiled again and again. This reduces the
overhead related to executing PHP scripts, resulting in better performance and
lower CPU requirements.

https://memcached.org/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/GettingStarted.ConnectToCacheNode.html
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-set-up-vpc-peering-with-aws-resources

Amazon Web Services – WordPress: Best Practices on AWS

Page 8

A bytecode cache can be installed on any Lightsail instance that hosts
WordPress and can greatly reduce its load. For PHP 5.5 and later we
recommend the use of OPcache, a bundled extension with that PHP version.18

Note that OPcache is enabled by default in the Bitnami WordPress Lightsail
template so no further action is required.

Elastic Deployment
There are many scenarios where a single-server deployment may not be
sufficient for your website. In these situations, you will need a multi-server,
scalable architecture.

Reference Architecture
There is a reference architecture available on GitHub that outlines best practices
for deploying WordPress on AWS and includes a set of CloudFormation
templates to get you up and running quickly.19 The following architecture is
based on that reference architecture. The rest of this section will review the
reasons behind the architectural choices.

Figure 2: Reference architecture for hosting WordPress on AWS

http://php.net/manual/en/book.opcache.php
https://github.com/awslabs/aws-refarch-wordpress

Amazon Web Services – WordPress: Best Practices on AWS

Page 9

Architecture Components
The reference architecture in Figure 2 illustrates a complete best practice
deployment for a WordPress website on AWS. It starts with edge caching in
Amazon CloudFront (1) to cache content close to end users for faster
delivery. CloudFront pulls static content from an S3 bucket (2) and dynamic
content from an Application Load Balancer (4) in front of the web
instances. The web instances run in an Auto Scaling group of Amazon EC2
instances (6). An ElastiCache cluster (7) caches frequently queried data to
speed up responses. An Amazon Aurora MySQL instance (8) hosts the
WordPress database. The WordPress EC2 instances access shared WordPress
data on an Amazon EFS file system via an EFS Mount Target (9) in each
Availability Zone. An Internet Gateway (3) allows communication between
resources in your VPC and the internet. NAT Gateways (5) in each Availability
Zone enable EC2 instances in private subnets (App and Data) to access the
internet.

Within the Amazon VPC there exist two types of subnets: public (Public
Subnet) and private (App Subnet and Data Subnet). Resources deployed
into the public subnets will receive a public IP address and will be publically
visible on the internet. The Application Load Balancer (4) and a Bastion
host for administration are deployed here. Resources deployed into the private
subnets receive only a private IP address and hence are not publically visible on
the internet, improving the security of those resources. The WordPress web
server instances (6), ElastiCache cluster instances (7), Aurora MySQL
database instances (8), and EFS Mount Targets (9) are all deployed in
private subnets.

The remainder of this section deals with each of these considerations in more
detail.

Scaling the Web Tier
To evolve your single-server architecture into a multi-server, scalable one there
are five key components you will need to use: EC2 instances, Amazon Machine
Images (AMIs), load balancers, Auto Scaling, and health checks.

AWS provides a wide variety of EC2 instance types so you can choose the best
server configuration for both performance and cost. Generally speaking, the

Amazon Web Services – WordPress: Best Practices on AWS

Page 10

compute-optimized (for example, C4) instance type might be a good choice for a
WordPress web server. You can deploy your instances across multiple
Availability Zones within a Region to increase the reliability of the overall
architecture.

Because you have complete control of your EC2 instance, you can log in with
root access to install and configure all the software components required to run
a WordPress website. After you are done, you can save that configuration as an
AMI, which you can use to launch new instances with all the customizations that
you've made.

To distribute end-user requests to multiple web server nodes, you need a load
balancing solution. AWS provides this capability through Elastic Load
Balancing (ELB), a highly available service that distributes traffic to multiple
EC2 instances.20 Because your website will be serving content to your users via
HTTP or HTTPS, we recommend that you make use of the Application Load
Balancer, an application-layer load balancer with content routing and the ability
to run multiple WordPress websites on different domains if required.

ELB supports distribution of requests across multiple Availability Zones within
an AWS Region. You can also configure a health check so that the Application
Load Balancer automatically stops sending traffic to individual instances that
have failed (for example, due to a hardware problem or software crash). We
recommend using the WordPress admin login page (/wp-login.php) for the
health check because this page will confirm both that the web server is running
and that the web server is configured to serve PHP files correctly. You may
choose to build a custom health check page that checks other dependent
resources, such as database and cache resources. For more information, see
Health Checks for Your Target Groups in the Application Load Balancer
Guide.21

Elasticity is a key characteristic of the AWS Cloud. You can launch more
compute capacity (for example, web servers) when you need it and run less
when you don't. Auto Scaling is an AWS service that helps you automate this
provisioning to scale your Amazon EC2 capacity up or down according to
conditions you define with no need for manual intervention.22 You can
configure Auto Scaling so that the number of EC2 instances you’re using
increases seamlessly during demand spikes to maintain performance and
decreases automatically when traffic diminishes, so as to minimize costs.

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-group-health-checks.html
https://aws.amazon.com/autoscaling/

Amazon Web Services – WordPress: Best Practices on AWS

Page 11

ELB also supports dynamic addition and removal of Amazon EC2 hosts from
the load-balancing rotation. ELB itself will also dynamically grow and shrink the
load-balancing capacity to adjust to traffic demands with no manual
intervention.

Stateless Web Tier
To take advantage of multiple web servers in an Auto Scaling configuration,
your web tier must be stateless. A stateless application is one that needs no
knowledge of previous interactions and stores no session information. In the
case of WordPress, this means that all end users receive the same response,
regardless of which web server processed their request. A stateless application
can scale horizontally since any request can be serviced by any of the available
compute resources (that is, web server instances). When that capacity is no
longer required, any individual resource can be safely terminated (after running
tasks have been drained). Those resources do not need to be aware of the
presence of their peers – all that is required is a way to distribute the workload
to them.

When it comes to user session data storage, the WordPress core is completely
stateless because it relies on cookies that are stored in the client’s web browser.
Session storage isn’t a concern unless you have installed any custom code (for
example, a WordPress plugin) that instead relies on native PHP sessions.

However, WordPress was originally designed to run on a single server. As a
result, it stores some data on the server’s local file system. When running
WordPress in a multi-server configuration, this creates a problem because there
is inconsistency across web servers. For example, if a user uploads a new image,
it is only stored on one of the servers.

This demonstrates why we need to improve the default WordPress running
configuration to move important data to shared storage. The best practice
architecture will, therefore, have a database as a separate layer outside the web
server and will make use of shared storage to store user uploads, themes, and
plugins.

Shared Storage (Amazon S3 and Amazon EFS)
By default, WordPress stores user uploads on the local file system and so isn’t
stateless. Therefore, we need to move the WordPress installation and all user

Amazon Web Services – WordPress: Best Practices on AWS

Page 12

customizations (such as configuration, plugins, themes, and user-generated
uploads) into a shared data platform to help reduce load on the web servers and
to make the web tier stateless.

Amazon Elastic File System (Amazon EFS) provides scalable network file
systems for use with EC2 instances.23 EFS file systems are distributed across an
unconstrained number of storage servers, enabling file systems to grow
elastically and allowing massively parallel access from EC2 instances. The
distributed design of Amazon EFS avoids the bottlenecks and constraints
inherent to traditional file servers.

By moving the entire WordPress installation directory onto an EFS file system
and mounting it into each of your EC2 instances when they boot, your
WordPress site and all its data will automatically be stored on a distributed file
system that isn’t dependent on any one EC2 instance, making your web tier
completely stateless. The benefit of this architecture is that you don’t need to
install plugins and themes on each new instance launch, and you can
significantly speed up the installation and recovery of WordPress instances. It is
also easier to deploy changes to plugins and themes in WordPress, as outlined
in the Deployment Considerations section of this document.

To ensure optimal performance of your website when running from an EFS file
system, check the recommended configuration settings for Amazon EFS and
OPcache on the AWS Reference Architecture for WordPress.24

You also have the option to offload all static assets, such as image, CSS, and
JavaScript files, to an S3 bucket with CloudFront caching in front. The
mechanism for doing this in a multi-server architecture is exactly the same as
for a single-server architecture, as discussed in the Static Content section of this
whitepaper. The benefits are the same as in the single-server architecture—you
can offload the work associated with serving your static assets to Amazon S3
and CloudFront, thereby allowing your web servers to focus on generating
dynamic content only and serve more user requests per web server.

Data Tier (Amazon Aurora and Amazon ElastiCache)
With the WordPress installation stored on a distributed, scalable, shared
network file system, and static assets being served from Amazon S3, we can now
focus our attention on the remaining stateful component: the database. As with
the storage tier, the database should not be reliant on any single server, so we

https://aws.amazon.com/efs/details/
https://github.com/awslabs/aws-refarch-wordpress#opcache

Amazon Web Services – WordPress: Best Practices on AWS

Page 13

can’t host it on one of the web servers. Instead, we will host the WordPress
database on Amazon Aurora.

Amazon Aurora is a MySQL and PostgreSQL compatible relational database
built for the cloud that combines the performance and availability of high-end
commercial databases with the simplicity and cost-effectiveness of open source
databases. Aurora MySQL increases MySQL performance and availability by
tightly integrating the database engine with a purpose-built distributed storage
system, backed by SSD. It is fault-tolerant and self-healing, replicates six copies
of your data across three Availability Zones, is designed for greater than 99.99%
availability, and continuously backs up your data in Amazon S3. Amazon Aurora
is designed to automatically detect database crashes and restart without the
need for crash recovery or to rebuild the database cache.

Amazon Aurora provides a number of instances types to suit different
application profiles, including memory-optimized and burstable instances.25 To
improve the performance of your database you can select a large instance type
to provide more CPU and memory resources.

Amazon Aurora automatically handles failover between the primary instance
and Aurora Replicas so that your applications can resume database operations
as quickly as possible without manual administrative intervention. Failover
typically takes less than 30 seconds.

After you have created at least one Aurora Replica, connect to your primary
instance using the cluster endpoint to allow your application to automatically
fail over in the event the primary instance fails. You can create up to 15 low-
latency read replicas across three Availability Zones.

As your database scales, your database cache will also need to scale. As
discussed previously in the Database Caching section, ElastiCache has features
to scale the cache across multiple nodes in an ElastiCache cluster, and across
multiple Availability Zones in a Region for improved availability. As you scale
your ElastiCache cluster, you should ensure that you configure your caching
plugin to connect using the configuration endpoint so that WordPress can use
new cluster nodes as they are added and stop using old cluster nodes as they are
removed. You will also need to set up your web servers to use the ElastiCache
Cluster Client for PHP and update your AMI to store this change.26

https://aws.amazon.com/rds/aurora/details/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Replication.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Appendix.PHPAutoDiscoverySetup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Appendix.PHPAutoDiscoverySetup.html

Amazon Web Services – WordPress: Best Practices on AWS

Page 14

Conclusion
AWS presents many architecture options for running WordPress. The simplest
option is a single server installation for low traffic websites. For more advanced
websites, site administrators can add several other options, each one
representing an incremental improvement in terms of availability and
scalability. Administrators can select the features that most closely match their
requirements and their budget.

Contributors
The following individuals and organizations contributed to this document:

• Paul Lewis, Solutions Architect, Amazon Web Services

• Ronan Guilfoyle, Solutions Architect, Amazon Web Services

• Andreas Chatzakis, Solutions Architect Manager, Amazon Web Services

Document Revisions
Date Description

February 2018 Updated to clarify Amazon Aurora product messaging.

December 2017 Updated to include AWS services launched since first publication.

December 2014 First publication.

Appendix A: CloudFront Configuration
To get optimal performance and efficiency when using Amazon CloudFront with
your WordPress website, it’s important to configure the website correctly for the
different types of content being served.

Origins and Behaviors
An origin is a location where CloudFront sends requests for content that it
distributes through the edge locations.27 You can point CloudFront to the

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/DownloadDistS3AndCustomOrigins.html

Amazon Web Services – WordPress: Best Practices on AWS

Page 15

location where you are storing your static content (in the reference architecture
above this is Amazon S3) using an Amazon S3 origin. You can point CloudFront
to your dynamic content (in the single-server deployment above this is a
Lightsail instance, or in the reference architecture above this is the Application
Load Balancer) using a custom origin. When you use Amazon S3 as an origin for
your distribution, you need to use a bucket policy to make the content publically
accessible.28

Behaviors allow you to set rules that govern how CloudFront caches your
content, and, in turn, determine how effective the cache will be.29 Behaviors
allow you to control the protocol and HTTP methods your website is accessible
by. They also allow you to control whether to pass HTTP headers, cookies, or
query strings to your backend (and, if so, which ones). Behaviors can apply to
specific URL path patterns.

IAM User Creation
You will need to create an AWS Identity and Access Management (IAM) user for
the WordPress plugin to store static assets in Amazon S3. You can follow this
guide for Creating an IAM User in Your AWS Account.30

Note: IAM roles provide a better way of managing access to AWS
resources, but at the time of writing the W3 Total Cache plugin does not
support IAM roles.31

Take a note of the user security credentials and store them in a secure manner –
you will need them later.

S3 Bucket Creation
You will also need to create an Amazon S3 bucket in the Region of your choice.
You can follow this guide for Creating an Amazon S3 Bucket.32 Enable static
website hosting for the bucket by following the guide for Configuring a Bucket
for Website Hosting.33

Create an IAM policy to provide the IAM user created previously to access the
specified S3 bucket, and attach the policy to the IAM user. You can follow this
guide for Managing IAM Policies to create the following policy:34

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/RequestAndResponseBehavior.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon Web Services – WordPress: Best Practices on AWS

Page 16

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1389783689000",
 "Effect": "Allow",
 "Principal": "*",
 "Action": [
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:ListBucket",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::wp-demo",
 "arn:aws:s3:::wp-demo/*"
]
 }
]
}

CloudFront Distribution Creation
Next you will need to create a CloudFront web distribution by following the
Task List for Creating a Web Distribution guide.35 When you create a new
CloudFront distribution you will automatically create a default origin and
behavior, which you will use for dynamic content. We will also create four
additional behaviors to further customize the way both static and dynamic
requests are treated. The table below summarizes the configuration properties
for the five behaviors.

 Static Dynamic (admin) Dynamic (front end)

Paths wp-content/*
wp-includes/*

wp-admin/*
wp-login.php

default (*)

Protocols HTTP and HTTPS Redirect to HTTPS HTTP and HTTPS

HTTP methods GET, HEAD ALL ALL

HTTP headers NONE ALL Host
CloudFront-Forwarded-Proto
CloudFront-Is-Desktop-Viewer

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-creating.html

Amazon Web Services – WordPress: Best Practices on AWS

Page 17

 Static Dynamic (admin) Dynamic (front end)

CloudFront-Is-Mobile-Viewer
CloudFront-Is-Tablet-Viewer

Cookies NONE ALL comment_*
wordpress_*
wp-settings-*

Query strings YES (invalidation) YES YES

Table 1: Summary of configuration property for CloudFront behaviors

For the default behavior we recommend the following configuration:

• Allow the Origin Protocol Policy to Match Viewer, so that if viewers
connect to CloudFront using HTTPS, CloudFront will connect to your
origin using HTTPS as well, achieving end-to-end encryption. Note that
this requires you install a trusted SSL certificate on the load balancer as
explained in the Amazon CloudFront Developer Guide.36

• Allow all HTTP methods since the dynamic portions of the website
require both GET and POST requests (for example, to support POST for
the comment submission forms).

• Forward only the cookies that vary the WordPress output, for example,
wordpress_*, wp-settings-* and comment_*. You will need to
extend that list if you have installed any plugins that depend on other
cookies not in the list.

• Forward only the HTTP headers that affect the output of WordPress, for
example, Host, CloudFront-Forwarded-Proto, CloudFront-is-
Desktop-Viewer, CloudFront-is-Mobile-Viewer, and
CloudFront-is-Tablet-Viewer. The Host header allows multiple
WordPress websites to be hosted on the same origin; the CloudFront-
Forwarded-Proto header allows different versions of pages to be
cached depending on whether they are accessed via HTTP or HTTPS;
and the CloudFront-is-Desktop-Viewer, CloudFront-is-Mobile-
Viewer, CloudFront-is-Tablet-Viewer headers allow you to
customize the output of your themes based on the end user’s device type.

• Forward and cache based on all query strings because WordPress relies
on these, and they can be used to invalidate cached objects.

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-custom-origin.html

Amazon Web Services – WordPress: Best Practices on AWS

Page 18

If you wish you serve your website under a custom domain name (that is, not
*.cloudfront.net), then you should enter the appropriate URIs under Alternate
Domain Names in the Distribution Settings. In this case you will also need an
SSL certificate for your custom domain name. SSL certificates can be requested
for free via the AWS Certificate Manager and configured against a CloudFront
distribution.37

You will now need to create two more cache behaviors for dynamic content: one
for the login page (path pattern: wp-login.php) and one for the admin
dashboard (path pattern: wp-admin/*). These two behaviors have the exact
same settings, as follows:

• Enforce a Viewer Protocol Policy of HTTPS Only.

• Allow all HTTP methods.

• Cache based on all HTTP headers.

• Forward all cookies.

• Forward and cache based on all query strings.

The reason behind this configuration is that this section of the website is highly
personalized and typically has just a few users, so caching efficiency isn’t a
primary concern here. The aim is to keep the configuration simple to ensure
maximum compatibility with any installed plugins by passing all cookies and
headers to the origin.

At this point, the CloudFront configuration for dynamic content is complete.
However, before adding the configuration for static content the WordPress
website must be configured appropriately, which is covered next.

WordPress Plugin Installation and Configuration
In this example, the W3 Total Cache (W3TC) plugin is used to store static assets
on Amazon S3. However, there are other plugins available with similar
capabilities. If you wish to use an alternative you can adapt the steps below
accordingly. The steps below only refer to features or settings relevant to this
example. A detailed description of all settings is beyond the scope of this
document. Please refer to the W3 Total Cache plugin page at wordpress.org for
more information.

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html

Amazon Web Services – WordPress: Best Practices on AWS

Page 19

Install and activate the W3TC plugin from the WordPress admin panel. Browse
to the General Settings section of the plugin’s configuration, and ensure that
both Browser Cache and CDN are enabled. From the drop-down list in the
CDN configuration, select Origin Push: Amazon CloudFront (this will have
Amazon S3 as its origin).

Browse to the Browser Cache section of the plugin’s configuration and enable
the expires, cache control, and entity tag (ETag) headers. Also activate the
Prevent caching of objects after settings change option so that a new
query string will be generated and appended to objects whenever any settings
are changed.

Browse to the CDN section of the plugin’s configuration and enter the security
credentials of the IAM user you created earlier, as well as the name of the S3
bucket. If you will be serving your website via the CloudFront URL, enter the
distribution domain name in the relevant box. Otherwise, enter one or more
CNAMEs for your custom domain name(s).

Finally, you must export the media library and upload the wp-includes, theme
files, and custom files to Amazon S3 using the W3TC plugin. These upload
functions are available in the General section of the CDN configuration page.

Static Origin Creation
Now that the static files are stored on Amazon S3, go back to the CloudFront
configuration in the CloudFront console, and configure Amazon S3 as the origin
for static content. To do that, add a second origin pointing to the S3 bucket you
created for that purpose. Then create two more cache behaviors, one for each of
the two folders (wp-content and wp-includes) that should use the S3 origin
rather than the default origin for dynamic content. Configure both in the same
manner:

• Serve HTTP GET requests only.

• Amazon S3 does not vary its output based on cookies or HTTP headers,
so you can improve caching efficiency by not forwarding them to the
origin via CloudFront.

• Despite the fact that these behaviors serve only static content (which
accepts no parameters), you will forward query strings to the origin. This

Amazon Web Services – WordPress: Best Practices on AWS

Page 20

is so that you can use query strings as version identifiers to instantly
invalidate, for example, older CSS files when deploying new versions.
For more information, see the Amazon CloudFront Developer Guide.38

Note: After adding the static origin behaviors to your CloudFront
distribution, check the order to ensure the behaviors for wp-admin/*
and wp-login.php have higher precedence than the behaviors for static
content. Otherwise, you may see strange behavior when accessing your
admin panel.

Appendix B: Backup and Recovery
Recovering from failure in AWS is faster and easier to do compared to
traditional hosting environments. For example, you can launch a replacement
instance in minutes in response to a hardware failure, or you can make use of
automated failover in many of our managed services to negate the impact of a
reboot due to routine maintenance.

However, you still need to ensure you are backing up the right data in order to
successfully recover it. In order to re-establish the availability of a WordPress
website, you must be able to recover the following components:

• Operating system (OS) and services installation and configuration
(Apache, MySQL, etc.)

• WordPress application code and configuration

• WordPress themes and plugins

• Uploads (for example, media files for posts)

• Database content (posts, comments, etc.)

As catalogued in the whitepaper Backup and Recovery Approaches Using
Amazon Web Services, AWS provides a variety of methods for backing up and
restoring your web application data and assets.39

We have previously discussed making use of Lightsail snapshots to protect all
data stored on the instance’s local storage. If your WordPress website runs off
the Lightsail instance only, regular Lightsail snapshots should be sufficient for

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ReplacingObjects.html
https://d0.awsstatic.com/whitepapers/Storage/Backup_and_Recovery_Approaches_Using_AWS.pdf
https://d0.awsstatic.com/whitepapers/Storage/Backup_and_Recovery_Approaches_Using_AWS.pdf

Amazon Web Services – WordPress: Best Practices on AWS

Page 21

you to recover your WordPress website in its entirety. However, you will still
lose any changes applied to your website since the last snapshot was taken if you
do restore from a snapshot.

In a multi-server deployment you will need to back up each of the components
discussed earlier using different mechanisms. Each component may have a
different requirement for backup frequency, for example, the OS and WordPress
installation and configuration will change much less frequently than user-
generated content and, therefore, can be backed up less frequently without
losing data in the event of a recovery.

To back up the OS and services installation and configuration, and the
WordPress application code and configuration, you can create an AMI of a
properly configured EC2 instance. AMIs can serve two purposes: to act as a
backup of instance state, and to act as a template when launching new
instances.

To back up the WordPress application code and configuration, you will need to
make use of AMIs and also Aurora backups (more to follow).

To back up the WordPress themes and plugins installed on your website you
need to back up the Amazon S3 bucket or the Amazon EFS file system they are
stored on.

• For themes and plugins stored in an S3 bucket, you can enable Cross-
Region Replication so that all objects uploaded to your primary bucket
are automatically replicated to your backup bucket in another AWS
Region.40 Cross-Region Replication requires that Versioning is enabled
on both your source and destination buckets, which provides you with
an additional layer of protection and allows you to revert to a previous
version of any given object in your bucket.41

• For themes and plugins stored on an EFS file system, you can create an
AWS Data Pipeline to copy data from your production EFS file system to
another EFS file system, as outlined in the documentation page Back Up
an EFS File System.42 You can also back up an EFS file system using any
backup application you are already familiar with.

• To back up user uploads you should follow the steps outlined earlier for
backing up the WordPress themes and plugins.

https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://docs.aws.amazon.com/efs/latest/ug/efs-backup.html
https://docs.aws.amazon.com/efs/latest/ug/efs-backup.html

Amazon Web Services – WordPress: Best Practices on AWS

Page 22

• To back up database content you need to make use of Aurora backup.43
Aurora backs up your cluster volume automatically and retains restore
data for the length of the backup retention period. Aurora backups are
continuous and incremental so you can quickly restore to any point
within the backup retention period. No performance impact or
interruption of database service occurs as backup data is being written.
You can specify a backup retention period from 1 to 35 days. You can
also create manual database snapshots, which will persist until you
delete them. Manual database snapshots are useful for long-term
backups and archiving.44

Appendix C: Deploying New Plugins and
Themes
Few websites remain static. In most cases you will periodically add publicly
available WordPress themes and plugins or upgrade to a newer WordPress
version. In other cases you will develop your own custom themes and plugins
from scratch.

Any time you are making a structural change to your WordPress installation
there is a certain risk of introducing unforeseen problems. At the very least you
should take a backup of your application code, configuration, and database
before applying any significant change (such as installing a new plugin). For
websites of business or other value, you should certainly be testing those
changes in a separate staging environment first. With AWS it is very easy to
replicate the configuration of your production environment and run the whole
deployment process in a safe manner. After you are done with your tests, you
can simply tear down your test environment and stop paying for those
resources. Later we discuss some WordPress-specific considerations. For more
information on development and test best practices on AWS, see the
Development and Test on Amazon Web Services whitepaper.45

Some plugins will write configuration information to the wp_options database
table (or introduce database schema changes), while others will create
configuration files in the WordPress installation directory. Because we have
moved the database and storage to shared platforms, these changes will be
immediately available to all your running instances without any further effort
on your part.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html#Aurora.Managing.Backups
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://d0.awsstatic.com/whitepapers/aws-development-test-environments.pdf

Amazon Web Services – WordPress: Best Practices on AWS

Page 23

When deploying new themes in WordPress, a little more effort may be required.
If you are only making use of Amazon EFS to store all your WordPress
installation files, then new themes will be immediately available to all running
instances. However, if you are offloading static content to Amazon S3, you will
need to process a copy of these to the right bucket location. Plugins like W3
Total Cache provide a way for you to manually initiate that task. Alternatively
you could automate this step as part of a build process.

Because theme assets can be cached on CloudFront and at the browser, you
need a way to invalidate older versions when you deploy changes. The best way
to achieve this is by including some sort of version identifier in your object. This
identifier might be a query string with a date-time stamp or a random string. If
you use the W3 Total Cache plugin, you can update a media query string that is
appended to the URLs of media files.

Amazon Web Services – WordPress: Best Practices on AWS

Page 24

1 https://amazonlightsail.com/

2 https://aws.amazon.com/ec2/

3 https://aws.amazon.com/marketplace/

4 https://amazonlightsail.com/pricing/

5 https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-
create-instance-from-snapshot

6 https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-
create-larger-instance-from-snapshot-using-aws-cli

7 https://lightsail.aws.amazon.com/ls/docs/getting-started/article/getting-
started-with-wordpress-and-lightsail

8 https://lightsail.aws.amazon.com/ls/docs/overview/article/understanding-
instance-snapshots-in-amazon-lightsail

9 https://github.com/awslabs/lightsail-auto-snapshots

10 https://wordpress.org/plugins/w3-total-cache/

11 https://aws.amazon.com/cloudfront/

12 https://aws.amazon.com/cloudfront/details/#edge-locations

13 https://aws.amazon.com/s3/

14 https://memcached.org/

15 https://aws.amazon.com/elasticache/

16
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Getting
Started.ConnectToCacheNode.html

17 https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-
set-up-vpc-peering-with-aws-resources

18 http://php.net/manual/en/book.opcache.php

19 https://github.com/awslabs/aws-refarch-wordpress

20 https://aws.amazon.com/elasticloadbalancing/

21
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-
group-health-checks.html

Notes

https://amazonlightsail.com/
https://aws.amazon.com/ec2/
https://aws.amazon.com/marketplace/
https://amazonlightsail.com/pricing/
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-create-instance-from-snapshot
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-create-instance-from-snapshot
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-create-larger-instance-from-snapshot-using-aws-cli
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-create-larger-instance-from-snapshot-using-aws-cli
https://lightsail.aws.amazon.com/ls/docs/getting-started/article/getting-started-with-wordpress-and-lightsail
https://lightsail.aws.amazon.com/ls/docs/getting-started/article/getting-started-with-wordpress-and-lightsail
https://lightsail.aws.amazon.com/ls/docs/overview/article/understanding-instance-snapshots-in-amazon-lightsail
https://lightsail.aws.amazon.com/ls/docs/overview/article/understanding-instance-snapshots-in-amazon-lightsail
https://github.com/awslabs/lightsail-auto-snapshots
https://wordpress.org/plugins/w3-total-cache/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/details/#edge-locations
https://aws.amazon.com/s3/
https://memcached.org/
https://aws.amazon.com/elasticache/
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/GettingStarted.ConnectToCacheNode.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/GettingStarted.ConnectToCacheNode.html
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-set-up-vpc-peering-with-aws-resources
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-set-up-vpc-peering-with-aws-resources
http://php.net/manual/en/book.opcache.php
https://github.com/awslabs/aws-refarch-wordpress
https://aws.amazon.com/elasticloadbalancing/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-group-health-checks.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-group-health-checks.html

Amazon Web Services – WordPress: Best Practices on AWS

Page 25

22 https://aws.amazon.com/autoscaling/

23 https://aws.amazon.com/efs/details/

24 https://github.com/awslabs/aws-refarch-wordpress#opcache

25
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBI
nstanceClass.html

26
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Append
ix.PHPAutoDiscoverySetup.html

27
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/D
ownloadDistS3AndCustomOrigins.html

28
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissi
onsReqd.html

29
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/R
equestAndResponseBehavior.html

30 https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

31 http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-
role-ec2.html

32 https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-
bucket.html

33
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfig
uration.html

34
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_mana
ge.html

35
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/di
stribution-web-creating.html

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/efs/details/
https://github.com/awslabs/aws-refarch-wordpress#opcache
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Appendix.PHPAutoDiscoverySetup.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Appendix.PHPAutoDiscoverySetup.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/DownloadDistS3AndCustomOrigins.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/DownloadDistS3AndCustomOrigins.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/RequestAndResponseBehavior.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/RequestAndResponseBehavior.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-creating.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-creating.html

Amazon Web Services – WordPress: Best Practices on AWS

Page 26

36

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/us
ing-https-cloudfront-to-custom-origin.html

37 https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html

38
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/R
eplacingObjects.html

39
https://d0.awsstatic.com/whitepapers/Storage/Backup_and_Recovery_Appr
oaches_Using_AWS.pdf

40 https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html

41 https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

42 https://docs.aws.amazon.com/efs/latest/ug/efs-backup.html

43
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managi
ng.html#Aurora.Managing.Backups

44
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Create
Snapshot.html

45 https://d0.awsstatic.com/whitepapers/aws-development-test-
environments.pdf

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-custom-origin.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-custom-origin.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ReplacingObjects.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ReplacingObjects.html
https://d0.awsstatic.com/whitepapers/Storage/Backup_and_Recovery_Approaches_Using_AWS.pdf
https://d0.awsstatic.com/whitepapers/Storage/Backup_and_Recovery_Approaches_Using_AWS.pdf
https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://docs.aws.amazon.com/efs/latest/ug/efs-backup.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html#Aurora.Managing.Backups
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html#Aurora.Managing.Backups
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://d0.awsstatic.com/whitepapers/aws-development-test-environments.pdf
https://d0.awsstatic.com/whitepapers/aws-development-test-environments.pdf

	Abstract
	Introduction
	Simple Deployment
	Considerations
	Available Approaches
	Amazon Lightsail
	Selecting an Amazon Lightsail Pricing Plan
	Installing WordPress
	Recovering from Failure

	Improving Performance and Cost Efficiency
	Accelerating Content Delivery
	Static Content Offload
	Dynamic Content

	Database Caching
	Bytecode Caching

	Elastic Deployment
	Reference Architecture
	Architecture Components
	Scaling the Web Tier
	Stateless Web Tier
	Shared Storage (Amazon S3 and Amazon EFS)
	Data Tier (Amazon Aurora and Amazon ElastiCache)

	Conclusion
	Contributors
	Document Revisions
	Appendix A: CloudFront Configuration
	Origins and Behaviors
	IAM User Creation
	S3 Bucket Creation
	CloudFront Distribution Creation
	WordPress Plugin Installation and Configuration
	Static Origin Creation

	Appendix B: Backup and Recovery
	Appendix C: Deploying New Plugins and Themes

