

Serverless Applications Lens
AWS Well-Architected Framework

November 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction 1

Definitions 1

Compute Layer 2

Data Layer 2

Messaging and Streaming Layer 3

User Management and Identity Layer 3

Systems Monitoring and Deployment 4

Edge Layer 4

General Design Principles 4

Scenarios 5

RESTful Microservices 6

Mobile Backend 8

Stream Processing 11

Web Application 13

The Pillars of the Well-Architected Framework 16

Operational Excellence Pillar 16

Security Pillar 20

Reliability Pillar 28

Performance Efficiency Pillar 35

Cost Optimization Pillar 41

Conclusion 48

Contributors 49

Further Reading 49

Abstract
This document describes the Serverless Applications Lens for the AWS
Well-Architected Framework. The document covers common serverless
applications scenarios and identifies key elements to ensure your workloads are
architected according to best practices.

https://aws.amazon.com/well-architected
https://aws.amazon.com/well-architected

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 1

Introduction
The AWS Well-Architected Framework helps you understand the pros and cons
of decisions you make while building systems on AWS.1 By using the
Framework you will learn architectural best practices for designing and
operating reliable, secure, efficient, and cost-effective systems in the cloud. It
provides a way for you to consistently measure your architectures against best
practices and identify areas for improvement. We believe that having well-
architected systems greatly increases the likelihood of business success.

In this “Lens” we focus on how to design, deploy, and architect your serverless
application workloads on the AWS Cloud. For brevity, we have only covered
details from the Well-Architected Framework that are specific to serverless
workloads. You should still consider best practices and questions that have not
been included in this document when designing your architecture. We
recommend that you read the AWS Well-Architected Framework whitepaper.2

This document is intended for those in technology roles, such as chief
technology officers (CTOs), architects, developers, and operations team
members. After reading this document, you will understand AWS best practices
and strategies to use when designing architectures for serverless applications.

Definitions
The AWS Well-Architected Framework is based on five pillars: operational
excellence, security, reliability, performance efficiency, and cost optimization.
For serverless workloads AWS provides multiple core components (serverless
and non-serverless) that allow you to design robust architectures for your
serverless applications. In this section, we will present an overview of the
services that will be used throughout this document. There are six areas you
should consider when building a serverless workload:

• Compute layer

• Data layer

• Messaging and streaming layer

• User management and identity layer

• Systems monitoring and deployment

https://aws.amazon.com/well-architected
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 2

• Edge layer

Compute Layer
The compute layer of your workload manages requests from external systems,
controlling access and ensuring requests are appropriately authorized. It
contains the runtime environment that your business logic will be deployed and
executed by.

AWS Lambda lets you run stateless serverless applications on a managed
platform that supports microservices architectures, deployment, and
management of execution at the function layer.

With Amazon API Gateway, you can run a fully managed REST API that
integrates with Lambda to execute your business logic and includes traffic
management, authorization and access control, monitoring, and API versioning.

AWS Step Functions orchestrates serverless workflows including
coordination, state, and function chaining as well as combining long-running
executions not supported within Lambda execution limits by breaking into
multiple steps or by calling workers running on Amazon Elastic Compute Cloud
(Amazon EC2) instances or on-premises.

Data Layer
The data layer of your workload manages persistent storage from within a
system. It provides a secure mechanism to store states that your business logic
will need. It provides a mechanism to trigger events in response to data
changes.

Amazon DynamoDB helps you build serverless applications by providing a
managed NoSQL database for persistent storage. Combined with DynamoDB
Streams you can respond in near real-time to changes in your DynamoDB
table by invoking Lambda functions. DynamoDB Accelerator (DAX) adds a
highly available in-memory cache for DynamoDB that delivers up to 10x
performance improvement from milliseconds to microseconds.

With Amazon Simple Storage Service (Amazon S3), you can build
serverless web applications and websites by providing a highly available key-

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 3

value store, from which static assets can be served via a Content Delivery
Network (CDN), such as Amazon CloudFront.

Amazon Elasticsearch Service (Amazon ES) makes it easy to deploy,
secure, operate, and scale Elasticsearch for log analytics, full-text search,
application monitoring, and more. Amazon ES is a fully managed service that
provides both a search engine and analytics tools.

Messaging and Streaming Layer
The messaging layer of your workload manages communications between
components. The streaming layer manages real-time analysis and processing of
streaming data.

Amazon Simple Notification Service (Amazon SNS) provides a fully
managed messaging service for pub/sub patterns using asynchronous event
notifications and mobile push notifications for microservices, distributed
systems, and serverless applications.

Amazon Kinesis makes it easy to collect, process, and analyze real-time
streaming data. With Amazon Kinesis Analytics, you can run standard SQL
or build entire streaming applications using SQL.

Amazon Kinesis Firehose captures, transforms, and loads streaming data
into Kinesis Analytics, Amazon S3, Amazon Redshift, and Amazon ES, enabling
near real-time analytics with existing business intelligence tools.

User Management and Identity Layer
The user management and identity layer of your workload provides identity,
authentication, and authorization for both external and internal customers of
your workload’s interfaces.

With Amazon Cognito, you can easily add user sign-up, sign-in, and data
synchronization to serverless applications. Amazon Cognito user pools
provide built-in sign-in screens and federation with Facebook, Google, Amazon,
and Security Assertion Markup Language (SAML). Amazon Cognito
Federated Identities lets you securely provide scoped access to AWS resources
that are part of your serverless architecture.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 4

Systems Monitoring and Deployment
The system monitoring layer of your workload manages system visibility
through metrics and creates contextual awareness of how it operates and
behaves over time. The deployment layer defines how your workload changes
are promoted through a release management process.

With Amazon CloudWatch, you can access system metrics on all the AWS
services you use, consolidate system and application level logs, and create
business key performance indicators (KPIs) as custom metrics for your specific
needs. It provides dashboards and alerts that can trigger automated actions on
the platform.

AWS X-Ray lets you analyze and debug serverless applications by providing
distributed tracing and service maps to easily identify performance bottlenecks
by visualizing a request end-to-end.

AWS Serverless Application Model (AWS SAM) is an extension of AWS
CloudFormation that is used to package, test, and deploy serverless
applications. SAM Local can also enable faster debugging cycles when
developing Lambda functions locally.

Edge Layer
The edge layer of your workload manages the presentation layer and
connectivity to external customers. It provides an efficient delivery method to
external customers residing in distinct geographical locations.

CloudFront provides a CDN that securely delivers web application content
and data with low latency and high transfer speeds.

General Design Principles
The Well-Architected Framework identifies a set of general design principles to
facilitate good design in the cloud for serverless applications:

• Speedy, simple, singular: Functions are concise, short, single
purpose and their environment may live up to their request lifecycle.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 5

Transactions are efficiently cost aware and thus faster executions are
preferred.

• Think concurrent requests, not total requests: Serverless
applications take advantage of the concurrency model, and tradeoffs at
the design level are evaluated based on concurrency.

• Share nothing: Function runtime environment and underlying
infrastructure are short-lived, therefore local resources such as
temporary storage are not guaranteed. State can be manipulated within
a state machine execution lifecycle, and persistent storage is preferred
for highly durable requirements.

• Assume no hardware affinity: Underlying infrastructure may
change. Leverage code or dependencies that are hardware-agnostic as
CPU flags, for example, may not be available consistently.

• Orchestrate your application with state machines, not
functions: Chaining Lambda executions within the code to orchestrate
the workflow of your application results in a monolithic and tightly
coupled application. Instead, use a state machine to orchestrate
transactions and communication flows.

• Use events to trigger transactions: Events such as writing a new
Amazon S3 object or an update to a database allow for transaction
execution in response to business functionalities. This asynchronous
event behavior is often consumer agnostic and drives just-in-time
processing to ensure lean service design.

• Design for failures and duplicates: Operations triggered from
requests/events must be idempotent as failures can occur and a given
request/event can be delivered more than once. Include appropriate
retries for downstream calls.

Scenarios
In this section, we cover the four key scenarios that are common in many
serverless applications and how they influence the design and architecture of
your serverless application workloads on AWS. We will present the assumptions
we made for each of these scenarios, the common drivers for the design, and a
reference architecture of how these scenarios should be implemented.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 6

RESTful Microservices
When you’re building a microservice you’re thinking about how a business
context can be delivered as a re-usable service for your consumers. The specific
implementation will be tailored to individual use cases, but there are several
common themes across microservices to ensure that your implementation is
secure, resilient, and constructed to give the best experience for your customers.

Building serverless microservices on AWS enables you to not only take
advantage of the serverless capabilities themselves, but also to use other AWS
services and features, as well as the ecosystem of AWS and AWS Partner
Network (APN) Partner tooling. Serverless technologies are built on top of fault-
tolerant infrastructure, enabling you to build reliable services for your mission-
critical workloads. The ecosystem of tooling enables you to streamline the build,
automate tasks, orchestrate dependencies, and monitor and govern your
microservices. Lastly, AWS serverless tools are pay-as-you-go, enabling you to
grow the service with your business and keep your costs down during entry
phases and non-peak times.

Characteristics:

• You want a secure, easy-to-operate framework that is simple to replicate
and has high levels of resiliency and availability.

• You want to log utilization and access patterns to continually improve
your backend to support customer usage.

• You are seeking to leverage managed services as much as possible for
your platforms, which reduces the heavy lifting associated with
managing common platforms including security and scalability.

Reference Architecture

Figure 1: Reference architecture for RESTful microservices

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 7

1. Customers leverage your microservices by making API (that is, HTTP)
calls. Ideally, your consumers should have a tightly bound service
contract to your API in order to achieve consistent expectations of
service levels and change control.

2. Amazon API Gateway hosts RESTful HTTP requests and responses to
customers. In this scenario, API Gateway provides built-in
authorization, throttling, security, fault tolerance, request/response
mapping, and performance optimizations.

3. AWS Lambda contains the business logic to process incoming API
calls and leverage DynamoDB as a persistent storage.

4. Amazon DynamoDB persistently stores microservices data and scales
based on demand. Since microservices are often designed to do one
thing really well, a schemaless NoSQL data store is regularly
incorporated.

Configuration notes:

• Leverage API Gateway logging to understand visibility of microservices
consumer access behaviors. This information is visible in Amazon
CloudWatch Logs and can be quickly viewed through Log Pivots or fed
into other searchable engines such as Amazon ES or Amazon S3 (with
Amazon Athena). The information delivered gives key visibility, such as:

o Understanding common customer locations, which may change
geographically based on the proximity of your backend

o Understanding how customer input requests may have an impact on
how you partition your database

o Understanding the semantics of abnormal behavior, which can be a
security flag

o Understanding errors, latency, and cache hits/misses to optimize
configuration

This model provides a framework that is easy to deploy and maintain and a
secure environment that will scale as your needs grow.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 8

Mobile Backend
Mobile application backend infrastructure requires scalability, elasticity, and
low latency to support a dynamic user base. Unpredictable peak usage and a
global footprint of mobile users requires mobile backends to be fast and flexible.

The growing demand from mobile users means applications need a rich set of
mobile services that work together seamlessly without sacrificing control and
flexibility of the backend infrastructure.

With AWS Lambda, you can build applications that automatically scale without
provisioning or managing servers. Since many mobile applications today have a
limited budget for upfront infrastructure, a cost-effective, event-driven mobile
architecture allows you to pay only for what you use.

Characteristics:

• You want to create a complete serverless architecture without managing
any instance and/or server.

• You want your business logic to be decoupled from your mobile
application as much as possible.

• You are looking to provide business functionalities as an API to optimize
development across multiple platforms.

Reference Architecture

Here is a scenario for a common mobile backend, which doesn’t take into
consideration real-time/streaming use cases.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 9

Figure 2: Reference architecture for a mobile backend

1. Mobile users interact with the mobile application backend by
performing API calls against API Gateway and AWS service APIs (for
example, Amazon S3 and Amazon Cognito).

2. API Gateway hosts RESTful HTTP requests and responses to mobile
users. In this scenario, API Gateway provides the exact same feature set
as described in the RESTful microservices scenario.

3. Amazon Cognito is used for user management and as an identity
provider for your mobile application. Additionally, it allows mobile users
to leverage existing social identities such as Facebook, Twitter, Google+,
and Amazon to sign in.

4. API Gateway cache is used to avoid unnecessary Lambda executions
by caching the content or previous calls within the service and delivering
it at a higher performance rate.

5. A Lambda function manages both POST and GET requests to either
retrieve or update the data store.

6. A Lambda function handles search and queries to Amazon ES. These
requests map with specific API methods and resources from the API
Gateway.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 10

7. A Lambda function implements the business logic of deciding when to
send push notifications to the end user.

8. Amazon SNS delivers push notifications requested by the previous
Lambda function.

9. DAX provides in-memory acceleration for DynamoDB tables, and it
significantly improves the overall performance of this application
including the heavy lifting of cache invalidation and cluster
management.

10. DynamoDB provides persistent storage for your mobile application,
including mechanisms to expire unwanted data from inactive mobile
users through a Time To Live (TTL) feature.

11. DynamoDB Streams captures item-level changes and enables a
Lambda function to update additional data sources.

12. A Lambda function acts as a consumer of DynamoDB Streams to
update Amazon ES indexes allowing for analytics and additional richer
queries such as full-text search for our mobile users.

13. Amazon ES acts as a main search engine for your mobile application as
well as analytics.

14. CloudFront provides a CDN that serves content faster to
geographically-distributed mobile users and includes security
mechanisms to static assets in Amazon S3.

15. Amazon S3 stores mobile application static assets including certain
mobile user data such as profile images. Its contents are securely served
via CloudFront.

Configuration notes:

• Validate request payloads by using the API Gateway request validation
feature. Secure coding best practices such as input
validation/sanitization still apply within your serverless application.
This OWASP document3 is a great starting point.

• Performance test4 your Lambda functions with different memory and
timeout settings to ensure that you’re using the most appropriate
resources for the job.

https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://github.com/alexcasalboni/aws-lambda-power-tuning

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 11

• Follow best practices5 when creating your DynamoDB tables. Make
certain to calculate your read/write capacity and table partitioning to
ensure reasonable response times.

• Follow best practices6 when managing Amazon ES Domains.
Additionally, Amazon ES provides an extensive guide7 on designing
concerning sharding and access patterns that also apply here.

• Reduce unnecessary Lambda function invocations by leveraging caching
when possible at the API level.

• Leverage DAX for caching to significantly increase response times and
reduce the number of calls to your DynamoDB table.

• For low-latency requirements where near-to-none business logic is
required, Amazon Cognito Federated Identity can provide scoped
credentials so that your mobile application can talk directly to an AWS
service, for example, when uploading a user’s profile picture, retrieve
metadata files from Amazon S3 scoped to a user, etc.

Stream Processing
Ingesting and processing real-time streaming data requires scalability and low
latency to support a variety of applications such as activity tracking, transaction
order processing, click-stream analysis, data cleansing, metrics generation, log
filtering, indexing, social media analysis, and IoT device data telemetry and
metering. These applications are often spiky and process thousands of events
per second.

Using AWS Lambda and Amazon Kinesis, you can build a serverless stream
process that automatically scales without provisioning or managing servers.
Data processed by AWS Lambda can be stored in DynamoDB and analyzed
later.

Characteristics:

• You want to create a complete serverless architecture without managing
any instance or server for processing streaming data.

• You want to use the Amazon Kinesis Producer Library (KPL) to take care
of data ingestion from a data producer-perspective.

Reference Architecture

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-managedomains.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scale.html

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 12

Here we are presenting a scenario for common stream processing, which is a
reference architecture for analyzing social media data.

Figure 3: Reference architecture for stream processing

1. Data producers use the Amazon Kinesis Producer Library (KPL) to
send social media streaming data to a Kinesis stream. Amazon Kinesis
Agent and custom data producers that leverage the Kinesis API can also
be used.

2. An Amazon Kinesis stream collects, processes, and analyzes real-
time streaming data produced by data producers. Data ingested into the
stream can be processed by a consumer, which, in this case, is Lambda.

3. AWS Lambda acts as a consumer of the stream that receives an array
of the ingested data as a single event/invocation. Further processing is
carried out by the Lambda function. The transformed data is then stored
in a persistent storage, which, in this case, is DynamoDB.

4. Amazon DynamoDB provides a fast and flexible NoSQL database
service including triggers that can integrate with AWS Lambda to make
such data available elsewhere.

5. Business users leverage a reporting interface on top of DynamoDB to
gather insights out of social media trend data.

Configuration notes:

• Follow best practices8 when re-sharding Kinesis streams in order to
accommodate a higher ingestion rate. Concurrency for stream
processing is dictated by the number of shards. Therefore, adjust it
according to your throughput requirements.

http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-scaling.html

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 13

• Consider reviewing the Streaming Data Solutions whitepaper9 for batch
processing, analytics on streams, and other useful patterns.

• When not using KPL, make certain to take into account partial failures
for non-atomic operations such as PutRecords since the Kinesis API
returns both successfully and unsuccessfully processed records10 upon
ingestion time.

• Duplicated records11 may occur, and you must leverage both retries and
idempotency within your application – both consumers and producers.

• Consider using Kinesis Firehose over Lambda when ingested data needs
to be continuously loaded into Amazon S3, Amazon Redshift, or Amazon
ES.

• Consider using Kinesis Analytics over Lambda when standard SQL could
be used to query streaming data, and load only its results into Amazon
S3, Amazon Redshift, Amazon ES, or Kinesis Streams.

• Follow best practices for AWS Lambda stream-based invocation12 since
that covers the effects on batch size, concurrency per shard, and
monitoring stream processing in more detail.

Web Application
Web applications typically have demanding requirements to ensure a
consistent, secure, and reliable user experience. In order to ensure high
availability, global availability, and the ability to scale to thousands or
potentially millions of users, companies often had to reserve substantial excess
capacity to handle web requests at their highest anticipated demand. This often
required managing fleets of servers and additional infrastructure components
which, in turn, led to significant capital expenditures and long lead times for
capacity provisioning.

Using serverless computing on AWS, you can deploy your entire web
application stack without performing the undifferentiated heavy lifting of
managing servers, guessing at provisioning capacity, or paying for idle
resources. Additionally, you do not have to make any compromises on security,
reliability, or performance.

Characteristics:

https://d0.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-on-aws-with-amazon-kinesis.pdf
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-duplicates.html
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#stream-events

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 14

• You want a scalable web application that can go global in minutes with
high levels of resiliency and availability.

• You want a consistent user experience with adequate response times.

• You are seeking to leverage managed services as much as possible for
your platforms in order to limit the heavy lifting associated with
managing common platforms.

• You want to optimize your costs based upon actual user demand versus
paying for idle resources.

• You want to create a framework that is easy to set up and operate, and
that you can extend with limited impact later.

Reference Architecture

Figure 4: Reference architecture for a web application

1. Consumers of this web application may be geographically concentrated
or worldwide. Leveraging Amazon CloudFront not only provides a better
performance experience for these consumers through caching and
optimal origin routing, but limits redundant calls to your backend.

2. Amazon S3 hosts web application static assets and is securely served
through CloudFront.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 15

3. An Amazon Cognito user pool provides user management and
identity provider feature for your web application.

4. As static content served by Amazon S3 is downloaded by the consumer,
in many scenarios, dynamic content needs to be sent to or received by
your application. For example, when a user submits data through a
form, Amazon API Gateway serves as the secure endpoint to make
these calls and return responses displayed through your web application.

5. An AWS Lambda function provides Create, Read, Update, Delete
(CRUD) operations on top of DynamoDB for your web application.

6. Amazon DynamoDB can provide the backend NoSQL data store to
elastically scale with the traffic of your web application.

Configuration Notes:

• Follow best practices for deploying your serverless web application
frontend on AWS. More information on that can be found in the
operational excellence pillar. Use Amazon S3 for hosting your static web
content, and leverage CloudFront to securely deliver your content with
low latency and high transfer speeds.

• For single-page web applications, make use of S3 object versioning,
CloudFront cache expiration, and fine-tuned content TTL to reflect
changes in deployments.

• Refer to the security pillar for recommendations for authentication and
authorization.

• Refer to the RESTful Microservices scenario for recommendations on
web application backend.

• For web applications that offer personalized services, you can leverage
API Gateway usage plans13 as well as Amazon Cognito user pools in
order to scope what different sets of users have access to. For example, a
Premium user can have higher throughput for API calls, access to
additional APIs, additional storage, etc.

• Refer to the Mobile Back End scenario if your application uses search
capabilities that are not covered in this scenario.

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-usage-plans.html

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 16

The Pillars of the Well-Architected
Framework
This section describes each of the pillars, and includes definitions, best
practices, questions, considerations, and key AWS services that are relevant
when architecting solutions for serverless applications.

For brevity, we have only selected the questions from the Well-Architected
Framework that are specific to serverless workloads. Questions that have not
been included in this document should still be considered when designing your
architecture. We recommend that you read the AWS Well-Architected
Framework whitepaper.

Operational Excellence Pillar
The operational excellence pillar includes the ability to run and monitor
systems to deliver business value and to continually improve supporting
processes and procedures.

Definition
There are three best practice areas for operational excellence in the cloud:

• Prepare

• Operate

• Evolve

In addition to what is covered by the Well-Architected Framework concerning
processes, runbooks, and game days, there are specific areas you should look
into to drive operational excellence within serverless applications.

Best Practices
Prepare
There are no operational practices unique to serverless applications that belong
to this sub-section.

http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 17

Operate

SERVOPS 1: How are you monitoring and responding to anomalies in
your serverless application?

Similar to non-serverless applications, anomalies can happen at larger scale in
distributed systems. Due to the nature of serverless architectures, it is
fundamental to have distributed tracing.

Making changes to your serverless application entails many of the principles of
deployment, change, and release management as traditional workloads.
However, there are subtle changes in how you use existing tools to accomplish
these principles.

Active tracing with AWS X-Ray should be enabled to provide distributed tracing
capabilities as well as to enable visual service maps for faster troubleshooting.
X-Ray helps you identify performance degradation and quickly understand
anomalies including latency distributions.

Alarms should be configured at both individual and aggregated levels.
Aggregate-level examples include alarming on the following metrics:

• Lambda: Throttling, Errors

• Step Functions: ActivitiesTimedOut, ActivitiesFailed,
ActivitiesHeartbeatTimedOut

• API Gateway: 5XXError, 4XXError

An individual-level example is alarming on the Duration metric from Lambda
and/or IntegrationLatency from API Gateway, since different parts of the
application likely have different profiles. A bad deployment that makes a
function execute for much longer than usual could be quickly captured in this
instance.

Nevertheless, CloudWatch custom metrics that capture business as well as
application insights still apply in serverless architectures.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 18

SERVOPS 2: How are you evolving your serverless application while
minimizing the impact of change?

API Gateway stage variables help minimize the number of changes that need to
be made to your API when releasing in the deployment lifecycle. For example,
your stage variables can reference the name of your Lambda live alias, not
$LATEST, and within the Swagger definition leverage stage variables over a
hardcoded value.

Favor separate API Gateway endpoints, Lambda functions, and state machines
for each stage over aliases and versions alone. Leverage Lambda versions and
aliases to determine live from $LATEST. For example, a CI/CD pipeline Beta
stage can create the following resources: OrderAPIBeta, OrderServiceBeta,
OrderStateMachineWorkflowBeta, OrderBucketBeta, OrderTableBeta.

Use AWS SAM to package, deploy, and model serverless applications. SAM
Local can also enable faster debugging cycles when developing Lambda
functions locally. Additionally, there are a number of third-party serverless
frameworks that can be used to package, deploy, and manage serverless
solutions on AWS.

Lambda environment variables help separate source code from configuration.
This can help you streamline deployments. For example, if a resource called
within your Lambda function changes names, only the environment variables
would need to change, not your code.

If you need more fine-grained control over configuration/secrets within
serverless applications that you’re sharing across multiple
applications/functions, consider the Amazon EC2 Systems Manager (SSM)
Parameter Store feature over environment variables. Parameter Store may incur
additional latency, and so you should perform benchmarking when deciding to
use SSM Parameter Store or environment variables.

Note: A/B Testing can be achieved by leveraging Lambda-weighted aliases. It’s
highly recommended to enable zero downtime changes.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 19

SAM Local should not be used as a replacement for performance or regression
testing since compute resources and network latency are substantially different
in the AWS environment.

API Gateway stage variables and Lambda aliases/versions should not be used to
separate stages as they can add additional operational and tooling complexity
including reduced monitoring visibility as a unit of deployment.

It is not recommended to only rely on the CloudWatch metrics provided because
X-Ray provides more insights into service metrics, such as AWS Lambda
initialization and throttling across services used, that can be helpful when
identifying and responding to anomalies.

Evolve
There are no operational practices unique to serverless applications that belong
to this sub-section.

Key AWS Services
Key AWS services for operational excellence include Amazon EC2 Systems
Manager Parameter Store, SAM, CloudWatch, AWS CodePipeline, AWS X-Ray,
Lambda, and API Gateway.

Resources
Refer to the following resources to learn more about our best practices for
operational excellence.

Documentation & Blogs

• API Gateway stage variables14

• Lambda environment variables15

• SAM Local16

• X-Ray latency distribution17

• Troubleshooting Lambda-based applications with X-Ray18

• EC2 System Manager (SSM) Parameter Store19

• Continuous Deployment for Serverless applications blog post20

http://docs.aws.amazon.com/apigateway/latest/developerguide/stage-variables.html
http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html
https://github.com/awslabs/serverless-application-model
https://aws.amazon.com/blogs/aws/latency-distribution-graph-in-aws-x-ray/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://aws.amazon.com/blogs/compute/continuous-deployment-for-serverless-applications/

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 20

• SAM Farm: CI/CD example21

Whitepaper

• Practicing Continuous Integration/Continuous Delivery on AWS22

Third-Party Tools

• Serverless Developer Tools page including third-party
frameworks/tools23

Security Pillar
The security pillar includes the ability to protect information, systems, and
assets while delivering business value through risk assessments and mitigation
strategies.

Definition
There are five best practice areas for security in the cloud:

• Identity and access management

• Detective controls

• Infrastructure protection

• Data protection

• Incident response

Serverless addresses some of today’s biggest security concerns as it takes
infrastructure management tasks away such as operating system patching,
binaries, etc. Although the attack surface is reduced compared to non-serverless
architectures, OWASP and application security best practices still apply.

The questions in this section are designed to help you address specific ways one
attacker could try to gain access to or exploit misconfigured permissions that
could lead to abuse. The practices described in this section strongly influence
the security of your entire cloud platform and so should not only be validated
carefully but also reviewed frequently.

The incident response category will not be described in this document
because the practices from the AWS Well-Architected Framework still apply.

https://github.com/awslabs/aws-serverless-samfarm
https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://aws.amazon.com/serverless/developer-tools/
https://aws.amazon.com/serverless/developer-tools/

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 21

Best Practices
Identity and Access Management

SERVSEC 1: How do you authorize and authenticate access to your
serverless API?

APIs are often targeted by attackers because of the valuable data they contain
and operations that they can perform. There are various security best practices
to defend against these attacks. From an authentication/authorization
perspective, there are currently three mechanisms to authorize an API call
within API Gateway:

• AWS_IAM authorization

• Amazon Cognito user pools

• API Gateway custom authorizer

Primarily, you want to understand if, and how, any of these mechanisms are
implemented. For consumers who currently are located within your AWS
environment or have the means to retrieve AWS Identity and Access
Management (IAM) temporary credentials to access your environment, you can
leverage AWS_IAM authorization and add least-privileged permissions to the
respective IAM role in order to securely invoke your API.

Below is a diagram illustrating AWS_IAM authorization in this context:

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 22

Figure 5: AWS_IAM authorization

For customers who currently have an existing Identity Provider (IdP), you can
leverage an API Gateway custom authorizer to invoke a Lambda function to
authenticate/validate a given user against your IdP. That is also commonly used
when you want to perform additional logic on top of an existing IdP.

Figure 6: API Gateway custom authorizer

For customers who don’t have an IdP, you can leverage Amazon Cognito user
pools to either provide built-in user management or integrate with external
identity providers such as Facebook, Twitter, Google+, and Amazon.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 23

This is commonly seen in the mobile backend scenario, where users
authenticate by using existing accounts in social media platforms while being
able to register/sign in with their email address/username.

Figure 7: Amazon Cognito user pools

SERVSEC 2: How are you enforcing boundaries as to what AWS services
your Lambda functions can access?

With regards to what a Lambda function can access, it is recommended to
follow least-privileged access and strictly allow only what’s necessary to perform
a given operation. Attaching a role with more permissions than necessary can
open your systems up for abuse.

Therefore, having smaller functions that perform scoped activities contribute to
a more well-architected serverless application within the security context.

The API Gateway API Keys feature is not a security mechanism and should not
be used for authorization. It should be used primarily to track a consumer’s
usage across your API and can be used in addition to the authorizers previously
mentioned in this section.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 24

When using custom authorizers, we strictly advise against passing credentials or
any sort of sensitive data via query string parameters or headers, otherwise you
may open your system up to abuse.

With respect to IAM roles, sharing an IAM role within more than one Lambda
function will likely violate least-privileged access.

Detective Controls

SERVSEC 3: How are you analyzing serverless application logs?

Log management is an important part of a well-architected design for reasons
ranging from security/forensics to regulatory or legal requirements.

It is equally important that you track vulnerabilities in application dependencies
because attackers can exploit known vulnerabilities found in dependencies
regardless of which programming language is used.

Leverage CloudWatch Logs metric filters to transform your serverless
application standard output into custom metrics through regex pattern
matching. In addition, create CloudWatch alarms based on your application
custom metrics to quickly gain insight into how your application is behaving.

Similarly, AWS CloudTrail logs should also be used both for auditing and for
API calls.

Consider enabling API Gateway logging for individual methods when
troubleshooting as opposed to an entire stage because enabling logging at the
stage level will record all API activities. Depending on your serverless
application design it may contain sensitive data.

For this reason, we recommend that you encrypt any sensitive data traversing
your serverless application. For more information on that, see the Data
Protection sub-section.

Lambda functions are designed to do one task and complete it as fast as
possible. Therefore, making API calls to CloudWatch within your code may
cause the observer effect and excessive printing statements may ingest

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 25

unnecessary data into your logs. This will cause both an increase in signal-to-
noise ratio as well as CloudWatch Logs ingestion charges.

API Gateway may log entire request/response payloads and that may violate
your compliance requirements. Make certain to verify with your compliance
team before enabling logging.

SERVSEC 4: How do you monitor dependency vulnerabilities within your
serverless application?

With regard to application dependency vulnerability scans, there are a number
of both commercial and open-source solutions, such as OWASP Dependency
Check that can integrate within your CI/CD pipeline. It is important to include
all your dependencies, including AWS SDKs, as part of your version control
software repository.

Infrastructure Protection
Although there is no infrastructure to manage in serverless applications, there
could be scenarios where your serverless application needs to interact with
other components deployed in a virtual private cloud (VPC) or applications
residing on-premises. Consequently, it is important to ensure networking
boundaries are considered under this assumption.

SERVSEC 5: For VPC access, how are you enforcing networking
boundaries as to what AWS Lambda functions can access?

Lambda functions can be configured to access resources within a VPC including
resources sitting outside of AWS through VPN connections. You should review
security group best practices as covered in the AWS Well-Architected
Framework.

Also, similar to a non-serverless application, a security group and Network
Access Control Lists (NACLs) should be the basis on which networking
boundaries are enforced. For workloads that require outbound traffic filtering
due to compliance reasons, proxies can be used in the exact same manner that
they are placed in non-serverless architectures.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 26

Enforcing networking boundaries solely at code level given instructions as to
what resource one could access is not recommended due to separation of
concerns.

Data Protection

SERVSEC 6: How are you protecting sensitive data within your serverless
application?

API Gateway employs the use of TLS across all communications, client and
integrations. Although HTTP payloads are encrypted in-transit, request path
and query strings that are part of a URL might not be. Also, encrypted HTTP
payloads may be unencrypted when received from API Gateway, AWS Lambda
in this case. Therefore sensitive data can be accidentally exposed via
CloudWatch Logs if sent to standard output.

Additionally, malformed or intercepted input can be used as an attack vector to
either gain access to a system or cause it to malfunction.

Sensitive data should be protected at all times in all layers possible as discussed
in detail in the AWS Well-Architected Framework. The recommendations in
that whitepaper still apply here.

With regard to API Gateway, sensitive data should be either encrypted at the
client-side before making its way as part of an HTTP request or sent as a
payload as part of an HTTP POST request. That also includes encrypting any
headers that might contain sensitive data prior to making a given request.

Concerning Lambda functions or any integrations that API Gateway may be
configured with, sensitive data should be encrypted prior to any processing or
data manipulation. This will prevent data leakage in the event that such data
gets exposed in a persistent storage chosen or via standard output that is
streamed and persisted by CloudWatch Logs. In the scenarios described earlier
in this document, Lambda functions would persist encrypted data in either
DynamoDB, Amazon ES, or Amazon S3 along with encryption at rest.

We strictly advise against sending, logging, and storing unencrypted sensitive
data, be it part of an HTTP request path/query strings or standard output of a
Lambda function.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 27

Enabling logging in API Gateway where sensitive data is unencrypted is also
discouraged. As mentioned in the Detective Controls sub-section, you should
consult about such an operation with your compliance team before enabling API
Gateway logging.

SERVSEC 7: What is your strategy on input validation?

For input validation, make sure to set up API Gateway basic request validation
as a first step to ensure that the request adheres to the configured JSON-
Schema request model as well as any required parameter in the URI, query
string, or headers. Application-specific deep validation should be implemented,
whether that is as a separate Lambda function, library, framework, or service.

Key AWS Services
Key AWS services for security are Amazon Cognito, IAM, Lambda, CloudWatch
Logs, AWS CloudTrail, AWS CodePipeline, Amazon S3, Amazon ES,
DynamoDB, and Amazon Virtual Private Cloud (Amazon VPC.)

Resources
Refer to the following resources to learn more about our best practices for
security.

Documentation & Blogs

• IAM role for Lambda function with Amazon S3 example24

• API Gateway Request Validation25

• API Gateway Custom Authorizers26

• Securing API Access with Amazon Cognito Federated Identities, Amazon
Cognito User Pools, and Amazon API Gateway27

• Configuring VPC Access for AWS Lambda28

• Filtering VPC outbound traffic with Squid Proxies29

Whitepapers

• OWASP Secure Coding Best Practices30

http://docs.aws.amazon.com/lambda/latest/dg/with-s3-example-create-iam-role.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-request-validation.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html
https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-cognito-federated-identities-amazon-cognito-user-pools-and-amazon-api-gateway/
https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-cognito-federated-identities-amazon-cognito-user-pools-and-amazon-api-gateway/
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html
https://aws.amazon.com/pt/articles/using-squid-proxy-instances-for-web-service-access-in-amazon-vpc-another-example-with-aws-codedeploy-and-amazon-cloudwatch/
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 28

• AWS Security Best Practices31

Partner Solutions

• Twistlock Serverless Security32

Third-Party Tools

• OWASP Vulnerability Dependency Check33

• Snyk – Commercial Vulnerability DB and Dependency Check34

Reliability Pillar
The reliability pillar includes the ability of a system to recover from
infrastructure or service disruptions, dynamically acquire computing resources
to meet demand, and mitigate disruptions such as misconfigurations or
transient network issues.

Definition
There are three best practice areas for reliability in the cloud:

• Foundations

• Change management

• Failure management

To achieve reliability, a system must have a well-planned foundation and
monitoring in place, with mechanisms for handling changes in demand,
requirements, or potentially defending an un-authorized denial of service
attack. The system should be designed to detect failure and, ideally,
automatically heal itself.

Best Practices
Foundations

 SERVREL 1: Have you considered serverless limits for peak workloads?

AWS enforces default service limits to protect customers for unauthorized use of
services. Limits that are not properly monitored may result in a degradation or

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://www.twistlock.com/products/serverless-security/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://snyk.io/

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 29

throttling of service. Many limits are soft limits and can be raised if you
anticipate exceeding them.

You can use AWS Trusted Advisor within the AWS Management Console and
APIs to detect whether a service exceeds 80% of a limit.35

You can also proactively raise limits if you anticipate exceeding them for
workloads. When raising these limits, ensure there is a sufficient gap between
your service limit and your max usage to accommodate scale or absorb a denial
of service attack. You should consider these limits across all relevant accounts
and Regions.

Additionally, the Lambda concurrent execution limit feature should be explicitly
used to isolate non-business-critical to business-critical paths so that an
unexpected event load doesn’t take the remaining concurrency available within
the rest of the resources competing for them. It is also a recommended practice
to separate workloads in different accounts depending on their profile, threat
model, and organizational structure.

Regardless of whether your serverless application is spiky or not, following
asynchronous patterns when designing communications between services and
transactions makes for a more resilient serverless application.

SERVREL 2: How are you regulating access rates to and within your
serverless application?

Throttling
In a microservices architecture, API consumers may be in separate teams or
even outside the organization. This creates a vulnerability due to unknown
access patterns as well as the risk of consumer credentials being compromised.
The service API can potentially be affected if the number of requests exceeds
what the processing logic/backend can handle.

Additionally, events that trigger new transactions such as an update in a
database row or new objects being added to an S3 bucket as part of the API, will
trigger additional executions throughout a serverless application.

https://aws.amazon.com/answers/account-management/limit-monitor/

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 30

Throttling should be enabled at the API level to enforce access patterns
established by a service contract. Defining a request access pattern strategy is
fundamental to establish how a consumer should use a service be that at the
resource level or global level.

Returning the appropriate HTTP status codes within your API (such as a 429 for
throttling) helps consumers plan for throttled access by implementing back-off
and retries accordingly.

For more granular throttling and metering usage, issuing API keys to
consumers with usage plans in addition to global throttling enables API
Gateway to enforce access patterns in unexpected behavior. API keys also
simplifies the process for administrators to cut off access if an individual
consumer is making suspicious requests.

A common way to capture API keys is through a developer portal. This provides
you, as the service provider, with additional metadata associated with the
consumers and requests. You may capture the application, contact information,
and business area/purpose and store this in a durable data store like
DynamoDB. This gives you additional validation of your consumers and
traceability of logging with identities, and can contact consumers for breaking
change upgrades/issues.

As discussed in the security pillar, API keys are not a security mechanism to
authorize requests, and, therefore, should only be used with one of the available
authorization options available within API Gateway.

SERVREL 3: What is your strategy on asynchronous calls and events
within your serverless architecture?

Asynchronous Calls and Events
Asynchronous calls reduce the latency on HTTP responses. Multiple
synchronous calls, as well as long-running wait cycles, may result in timeouts
and “locked” code that prevents retry logic. Event-driven architectures enable
streamlining asynchronous executions of code, thus limiting consumer wait
cycles.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 31

Event-driven architectures that are commonly implemented within serverless
applications are asynchronous. State machines, queues, pub/sub, WebHooks,
events, and other techniques are commonly applied across multiple components
that perform a business functionality.

User experience is decoupled with asynchronous calls. Instead of blocking the
entire experience until the overall execution is completed, frontend systems
receive a reference/job ID as part of their initial request and an additional API
is used to poll its status. This decoupling allows the frontend to be more efficient
by using event loops, parallel, or concurrency techniques while making such
requests and lazily loading parts of the application when a response is partially
or completely available.

Also, frontend becomes a key element in asynchronous calls as it becomes more
robust with custom retries and caching. It can halt an in-flight request if no
response has been received within an acceptable SLA, be it caused by an
anomaly, transient condition, networking, or degraded environments.

Alternatively, when synchronous calls are necessary, it is recommended at
minimum to ensure the entire execution doesn’t exceed API Gateway max
timeout and that coordination is done by an external service (for example, AWS
Step Functions) to control both state and exceptions that can occur along the
request lifecycle.

SERVREL 4: What’s your testing strategy for serverless applications?

Testing
Testing is commonly done through unit, integration, and acceptance tests.
Developing robust testing strategies can emulate your serverless application
under different loads and conditions.

Unit tests shouldn’t be different from non-serverless applications and,
therefore, can run locally without any required changes.

Integration tests shouldn’t mock services you can’t control, since they may
change and may provide unexpected results. These tests are better performed
when using real services because they can provide the exact same environment a
serverless application would use when processing requests in production.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 32

Acceptance or end-to-end tests should be performed without any changes
because the primary goal is to simulate end users’ actions through the external
interface available to them. Therefore, there is no unique recommendation to be
aware of here.

In general, Lambda and third-party tools that are available in the AWS
Marketplace can be used as a test harness in the context of performance testing.

Here are some considerations during performance testing to be aware of:

• Metrics such as invoked max memory are available in CloudWatch Logs.
The metrics may indicate optimal memory and proper timeout value.
For more information, read the performance pillar section.

• If your Lambda function runs inside a VPC, pay attention to available IP
address space inside your subnet. For more information, read the
operational excellence pillar section.

• Creating modularized code into separate functions outside of the
handler enables more unit-testable functions.

• Establishing externalized connection code (such as a connection pool to
a relational database) referenced in the Lambda function’s static
constructor/initialization code (that is, global scope, outside the
handler) will ensure that external connection thresholds aren’t reached
if the Lambda execution environment is reused.

• Adjust the throughput of the DynamoDB read and write tables
accordingly, and make sure to set up Auto Scaling to accommodate
throughput changes throughout the performance testing cycle.

• Take into account any other service limits not listed here that may be
used within your serverless application under performance testing.

SERVREL 5: How are you building resiliency into your serverless
application?

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 33

Change Management
Having the ability to revert back to a previous version in the event of a failed
change ensures service availability.

First, you need to put monitoring metrics in place. Determine what your
environment workload’s “normal” state is and define the appropriate metrics
and threshold parameters in CloudWatch to determine what is “not normal”
based on historical data.

Also monitor deployments and implement automated actions. Features such as
Lambda function versioning and API versions can help you increase the cutover
time back to a previous state if a deployment fails.

Failure Management
Certain parts of a serverless application are dictated by asynchronous calls to
various components in an event-driven fashion, via pub/sub and other patterns.
When asynchronous calls fail they should be captured and retried whenever
possible, or else data loss can occur. In addition, the result can be a degraded
customer experience.

For Lambda functions, build retry logic into your Lambda queries to ensure that
spiky workloads don’t overwhelm your backend. Also, leverage the Lambda
logging library within function code to add errors to CloudWatch Logs, which
can be captured as a custom metric. For more information, read the operational
excellence pillar section.

AWS SDKs provide back-off and retry mechanisms by default when talking to
other AWS services that are sufficient in most cases. However, they should be
reviewed and possibly tuned in order to suit your needs.

AWS X-Ray and third-party Application Performance Monitoring (APM)
solutions can help enable distributed tracing to identify throttling, and how
distribution latency is affected when they occur.

For asynchronous calls that may fail, it is a best practice to enable Dead Letter
Queues (DLQ) and create dedicated DLQ resources (using Amazon SNS and
Amazon Simple Queue Service (Amazon SQS)) for individual Lambda functions.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 34

You also want to develop a plan to poll by a separate mechanism to re-drive
these failed events back to their intended service.

Whenever possible, Step Functions should be used to minimize the amount of
custom try/catch, back-off, and retries within your serverless applications. For
more information, read the cost optimization pillar section.

Moreover, non-atomic operations such as PutRecords (Kinesis) and
BatchWriteItem (DynamoDB) can return successful in the event of a partial
failure. Therefore, the response should be inspected at all times when using
such operations and programmatically dealt with.

For synchronous parts that are transaction-based and depend on certain
guarantees and requirements, rolling back failed transactions as described by
the Saga pattern36 can also be achieved by using Step Functions state machines,
which will decouple and simplify the logic of your application.

Figure 8: Saga pattern in Step Functions by Yan Cui

Key AWS Services
Key AWS services for reliability are AWS Marketplace, Trusted Advisor,
CloudWatch Logs, CloudWatch, API Gateway, Lambda, X-ray, Step Functions,
Amazon SQS, and Amazon SNS.

Resources
Refer to the following resources to learn more about our best practices for
security.

http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 35

Documentation & Blogs

• Limits in Lambda37

• Limits in API Gateway38

• Limits in Kinesis Streams39

• Limits in DynamoDB40

• Limits in Step Functions41

• Error handling patterns42

• Serverless testing with Lambda43

• Monitoring Lambda Functions Logs44

• Versioning Lambda45

• Stages in API Gateway46

• API Retries in AWS47

• Step Functions error handling48

• X-Ray49

• Lambda DLQ50

• Error handling patterns with API Gateway and Lambda51

• Step Functions Wait state52

• Saga pattern53

• Applying Saga pattern via Step Functions54

Whitepapers

• Microservices on AWS55

Performance Efficiency Pillar
The performance efficiency pillar focuses on the efficient use of computing
resources to meet requirements and the maintenance of that efficiency as
demand changes and technologies evolve.

http://docs.aws.amazon.com/lambda/latest/dg/limits.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html#api-gateway-limits
http://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
http://docs.aws.amazon.com/step-functions/latest/dg/limits.html
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/serverless-testing-with-aws-lambda/
http://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/stages.html
http://docs.aws.amazon.com/general/latest/gr/api-retries.html
http://docs.aws.amazon.com/step-functions/latest/dg/tutorial-handling-error-conditions.html#using-state-machine-error-conditions-step-4
http://docs.aws.amazon.com/xray/latest/devguide/xray-services-lambda.html
http://docs.aws.amazon.com/lambda/latest/dg/dlq.html
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
http://microservices.io/patterns/data/saga.html
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
https://d0.awsstatic.com/whitepapers/microservices-on-aws.pdf

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 36

Definition
Performance efficiency in the cloud is composed of four areas:

• Selection

• Review

• Monitoring

• Tradeoffs

Take a data-driven approach to selecting a high-performance architecture.
Gather data on all aspects of the architecture, from the high-level design to the
selection and configuration of resource types. By reviewing your choices on a
cyclical basis, you will ensure that you are taking advantage of the continually
evolving AWS Cloud. Monitoring will ensure that you are aware of any deviance
from expected performance and can take action on it. Finally, you can make
tradeoffs in your architecture to improve performance, such as using
compression or caching, or relaxing consistency requirements.

Selection
In the AWS Lambda resource model, you choose the amount of memory you
want for your function and are allocated proportional CPU power and other
resources such as networking and storage IOPS. For example, choosing 256 MB
of memory allocates approximately twice as much CPU power to your Lambda
function as requesting 128 MB of memory and half as much CPU power as
choosing 512 MB of memory.

In the Kinesis resource model, you choose how many shards you may need
based on ingestion and consumption rate (reads, writes, data size). In the
DynamoDB resource model, you choose how many reads and writes per second
you may need based on your requirements.

Make sure to run performance testing on your Lambda functions prior to
deciding on memory and timeout settings for your serverless application. Fine-
tuning memory and timeout will have a significant impact on performance, cost,
and operational procedures.

It is recommended to set function timeout a few seconds higher than the
average execution to account for any transient issues in downstream services

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 37

used in the communication path. This also applies when working with Step
Functions activities and tasks.

Along with performance testing and data requirements, Kinesis and DynamoDB
capacity units will be more closely aligned with your workload profile.

SERVPER 1: How do you choose the most optimum capacity units
(memory, shards, reads/writes per second) within your serverless
application?

Choosing a default memory setting and timeout in AWS Lambda may have an
undesired effect in performance, cost, and operational procedures.

Setting the timeout much higher than the average execution may cause
functions to execute for longer upon code malfunction, resulting in higher costs
and possibly reaching concurrency limits depending on how such functions are
invoked.

Setting timeout that equals one successful function execution may trigger a
serverless application to abruptly halt an execution should any transient
networking issue or abnormality in downstream services occur.

Setting timeout without performing load testing and, more importantly, without
considering upstream services may result in errors whenever any part reaches
its timeout first.

SERVPER 2: How have you optimized the performance of your serverless
application?

Optimize
As a serverless architecture organically grows, there are certain mechanisms
that are commonly used across a variety of workload profiles. Despite
performance testing, design tradeoffs should be considered in order to increase
your application’s performance, always keeping your SLA and requirements in
mind.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 38

API Gateway caching can be enabled in order to improve performance for
applicable operations. Similarly, DAX can improve read responses significantly
as well as Global and Local Secondary Indexes to prevent DynamoDB full scan
operations. These details and resources were described in the Mobile Backend
scenario.

Also described in Mobile Backend scenario, it is recommended to test the
performance of your Lambda functions by using accurately sized sample
workflows and varying the memory settings and timeout values.

Leverage global scope within your Lambda function code to take advantage of
Lambda container reuse. With that, database connection and AWS services
initial connection and configuration will be executed once if the environment in
which that Lambda function was executed is still available.

Deployment
Lambda functions don’t always need to be deployed in a VPC. Similarly, CPU
and network bandwidth are proportionally allocated based on memory settings
configured for a Lambda function.

Configure VPC access to your Lambda functions only when necessary, as
deploying your function in a VPC will result in additional startup time for your
Lambda function since Elastic Network Interfaces (ENI) must be created
beforehand.

If your Lambda function needs access to the VPC and to the internet, you’ll need
a NAT gateway in order to allow traffic from Lambda to any resource available
publicly on the internet. We recommend that you place a NAT gateway across
multiple Availability Zones for high availability and performance.

SERVPER 3: How do you decide what components of your serverless
application should be deployed in a VPC?

The decision tree below can help you decide whether to deploy your Lambda
function in a VPC.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 39

Figure 9: Decision tree for deploying a Lambda function in a VPC

SERVPER 4: How are you optimizing your Lambda code for
performance?

Code Optimization
Lambda functions are single purpose and execute as fast as possible. However,
there are techniques that can be leveraged to take advantage of the execution
environment, as well as general design principles, since existing application

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 40

dependencies/frameworks in non-serverless applications may not always be the
best choice in this context.

On AWS, follow best practices for working with Lambda functions56 such as
container re-use, minimizing deployment package size to its runtime
necessities, and minimizing the complexity of your dependencies. Tradeoff here
is key when making this decision. 99th percentile (P99) should be always taken
into account, as one may not impact application SLA agreed with other teams.

For Lambda functions in VPC, avoid DNS resolution of public host names for
your VPC. This may take several seconds to resolve, which adds several seconds
of billable time on your request. For example, if your Lambda function accesses
an Amazon RDS DB instance in your VPC, launch the instance with the no-
publicly-accessible option.

SERVPER 5: How are you initializing database connections?

After a Lambda function has executed, AWS Lambda maintains the runtime
container for some time in anticipation of another Lambda function invocation.

Leverage global scope as described previously in the Optimize subsection. For
example, if your Lambda function established a database connection, instead of
reestablishing the connection, the original connection is used in subsequent
invocations. Declare database connections and other objects/variables outside
the Lambda function handler code to provide additional optimization when the
function is invoked again. You can add logic in your code to check if a
connection already exists before creating one.

Review
See the AWS Well-Architected Framework whitepaper for best practices in the
review area for performance efficiency that apply to serverless applications.

Monitoring
See the AWS Well-Architected Framework whitepaper for best practices in the
monitoring area for performance efficiency that apply to serverless
applications.

http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 41

Tradeoffs
See the AWS Well-Architected Framework whitepaper for best practices in the
tradeoffs area for performance efficiency that apply to serverless applications.

Key AWS Services
Key AWS Services for performance efficiency are DynamoDB Accelerator, API
Gateway, Step Functions, NAT gateway, Amazon VPC, and Lambda.

Resources
Refer to the following resources to learn more about our best practices for
security.

Documentation & Blogs

• AWS Lambda FAQs57

• Best Practices for Working with AWS Lambda Functions58

• AWS Lambda: How It Works59

• Understanding Container Reuse in AWS Lambda60

• Configuring a Lambda Function to Access Resources in an Amazon
VPC61

• Enable API Caching to Enhance Responsiveness62

• DynamoDB: Global Secondary Indexes63

• Amazon DynamoDB Accelerator (DAX)64

• Developer Guide: Kinesis Streams65

Cost Optimization Pillar
The cost optimization pillar includes the continual process of refinement and
improvement of a system over its entire lifecycle. From the initial design of your
very first proof of concept to the ongoing operation of production workloads,
adopting the practices in this document will enable you to build and operate
cost-aware systems that achieve business outcomes and minimize costs, thus
allowing your business to maximize its return on investment.

https://aws.amazon.com/lambda/faqs/
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://aws.amazon.com/dynamodb/dax/
http://docs.aws.amazon.com/streams/latest/dev/amazon-kinesis-streams.html

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 42

Definition
There are four best practice areas for cost optimization in the cloud:

• Cost-effective resources

• Matching supply and demand

• Expenditure awareness

• Optimizing over time

As with the other pillars, there are tradeoffs to consider. For example, do you
want to optimize for speed to market or for cost? In some cases, it’s best to
optimize for speed—going to market quickly, shipping new features, or simply
meeting a deadline—rather than investing in upfront cost optimization. Design
decisions are sometimes guided by haste as opposed to empirical data, as the
temptation always exists to overcompensate “just in case” rather than spend
time benchmarking for the most cost-optimal deployment. This often leads to
drastically over-provisioned and under-optimized deployments. The following
sections provide techniques and strategic guidance for the initial and ongoing
cost optimization of your deployment.

Generally, serverless architectures tend to reduce costs due to the fact that some
of the services (like AWS Lambda) don’t cost anything while they’re idle.
However, following certain best practices and making tradeoffs will help you
reduce the cost of these solutions even more.

Best Practices

SERVCOST 1: What is your strategy for deciding the most optimal
Lambda memory allocation?

Cost-Effective Resources
Serverless architectures are easier to manage in terms of correct resource
allocation. The fact that almost no sizing is required with architecting and the
ability to scale based on demand with services such as AWS Lambda reduces the
number of decisions to make, such as cluster or instance sizing, storage, etc.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 43

However, as we mentioned in the performance efficiency and operational
excellence pillar sections, optimal memory allocation based on testing scenarios
is needed to ensure the best cost/performance.

Also as described in the operational excellence pillar section, fine tuning
memory and timeout will have a significant impact, not only on performance
and operational procedures, but it also might reduce cost.

Better memory allocation of your Lambda functions will reduce the execution
time, therefore the cost will be reduced. Also, CPU allocation is directly related
to the amount of memory you allocate. The more memory you allocate, the more
CPU will be allocated, which will impact performance.

Using the least amount of memory might seem like the perfect strategy for
reducing costs, but using less memory means that each Lambda function will
require more time to execute. Therefore, it can be more expensive due to the
100-ms incremental billing dimension.

Matching Supply and Demand
The AWS serverless architecture is designed to scale based on demand, so you
don’t need to worry about overprovisioning or under provisioning.

Expenditure Awareness
As covered in the AWS Well-Architected Framework, the increased flexibility
and agility that the cloud enables encourages innovation and fast-paced
development and deployment. It eliminates the manual processes and time
associated with provisioning on-premises infrastructure, including identifying
hardware specifications, negotiating price quotations, managing purchase
orders, scheduling shipments, and then deploying the resources.

We recommend reading the AWS Well-Architected Framework whitepaper to
dive deep into the topics discussed there. However, some of the questions
mentioned there might not fully apply to serverless architectures. An example of
this would be the need to decommission resources such as AWS Lambda since it
doesn’t cost anything when idle.

For all other scenarios, such as unused APIs, Kinesis shards, or DynamoDB
tables, existing questions and recommendations still apply and so there is no
unique practice to serverless applications here.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 44

Optimizing Overtime
As AWS releases new services and features, it is a best practice to review your
existing architectural decisions to ensure that they continue to be the most cost
effective. Once your infrastructure is running on a serverless architecture, you
should reiterate in order to optimize costs in topics such as Lambda executions
or logs storage.

SERVCOST 2: What is your strategy for code logging in your Lambda
functions?

AWS Lambda uses CloudWatch Logs to store the output of the executions in
order to identify and troubleshoot problems on executions as well as monitoring
the serverless application. These will impact the cost in the CloudWatch Logs
service in two dimensions: ingestion and storage.

When deploying your functions to AWS Lambda, it is important to remove
unnecessary print statements within the code as this will be ingested into
CloudWatch and increase the cost per ingestion of the same. A good approach to
maintain these prints when needed is the use tools or libraries and best
practices such as logging66 and set the correct logging level whenever it’s needed
through environment variables. This way, unless specifically activated, logs
ingested will be INFO and not DEBUG.

In order to reduce log storage costs, it is recommended to leverage the following
features:

• Use log retention periods for Amazon CloudWatch Logs groups for AWS
Lambda.

• Export logs to a more cost-effective platform such as Amazon S3 or
Amazon ES.

With these two approaches, you will be able to save costs in terms of log storage
and, if needed, explore these logs with different tools directly on Amazon S3
(with, for example, Amazon Athena) or upload them to Amazon ES for
troubleshooting.

https://docs.python.org/2/library/logging.html

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 45

 SERVCOST 3: Is your code architecture running unnecessary Lambda
functions in order to reduce complexity?

When designing the architecture, avoiding unnecessary Lambda executions
might reduce cost as well. Using features such as API Gateway service proxy or
direct integrations between IoT and other AWS services will avoid both cost
increases for these Lambda functions and operational overhead when managing
these resources.

Finally, optimizing your code in order to reduce the execution time will decrease
the cost per execution of your Lambda functions.

With regard to unnecessary invocations, integration of both Kinesis and
DynamoDB with AWS Lambda makes it ideal to batch requests into a single
invocation when latency is an acceptable tradeoff for throughput. This enables
you to reduce overall concurrency, invocations, and cost.

Most serverless architectures use API Gateway as the entry point for final users.
This is due to the fact that a RESTful API, agnostic of the implementation, is
always a good service contract between our infrastructure and the final user. For
more information, see the Microservices scenario.

In some cases, this might impact cost but can be avoided.

Three different approaches are considered here:

Figure 10: Sending data to Amazon S3 using Kinesis Firehose

In this scenario, API Gateway will execute a Lambda function that will pass the
data to Kinesis Firehose and further on to Amazon S3. Here the cost comes from
all of these services.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 46

However, a different approach could be:

Figure 11: Reducing cost of sending data to Amazon S3 by implementing AWS
service proxy

With this approach, we remove the cost of using Lambda and unnecessary
invocations by implementing the AWS Service Proxy Feature within API
Gateway. However, this might introduce some extra complexity when dealing
with other services such as Kinesis since, for example, we need to define shards
for ingestion within each call.

We can also stream data directly from the client using the Kinesis Firehose SDK
into an S3 bucket, thereby removing the costs associated with API Gateway and
AWS Lambda and simplify our architecture altogether.

Figure 12: Reducing cost of sending data to Amazon S3 by streaming directly using
the Kinesis Firehose SDK

Of course, with this last implementation we won’t benefit from using the
RESTful API on our application but will reduce our costs and even the latency of
our streams. Depending on the specific use case, one or another of these
approaches might fit your workload.

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 47

SERVCOST 4: How are you optimizing your code to run in the least
amount of time possible?

Some of the workloads our customers implement in their serverless
architectures require functions to run for a long time. Within these workloads,
some functions might wait for a resource to become available. This wait state
can be implemented within the Lambda code waiting for some specific amount
of time, however, we recommend implementing the waiting state using Step
Functions instead.

With this pattern, instead of having your Lambda function waiting a specific
amount of time for a resource to become available, which will incur charges and
waste resources when sitting idle, you can reduce costs by implementing this
wait with Step Functions. For example, in the image below, we poll an AWS
Batch job and review its state every 30 s to see if it has finished. Instead of
coding this wait within the Lambda function, we implement a poll
(GetJobStatus) + wait (Wait30Seconds) + decider (CheckJobStatus).

Figure 13: Implementing a wait state with AWS Step Functions

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 48

Implementing a wait state with Step Functions won’t incur any further cost as
the pricing model for Step Functions is based on transitions between states and
not on time within a state.

Also, optimizing your code with the use of global variables to maintain
connections to your data stores or other services/resources will increase
performance and reduce execution time, which also reduce the cost. For more
information, see the performance pillar section.

Key AWS Services
Key AWS services for cost optimization are CloudWatch Logs, DynamoDB,
Kinesis, API Gateway, Step Functions, and AWS Batch.

Resources
Refer to the following resources to learn more about our best practices for
security.

Documentation & Blogs

• CloudWatch Logs Retention67

• Exporting CloudWatch Logs to Amazon S368

• Streaming CloudWatch Logs to Amazon ES69

• Defining wait states in Step Functions state machines70

• Coca-Cola Vending Pass State Machine Powered by Step Functions71

• Building high throughput genomics batch workflows on AWS72

Whitepaper

• Optimizing Enterprise Economics with Serverless Architectures73

Conclusion
While serverless applications take the undifferentiated heavy-lifting off
developers, there are still important principles to apply.

For reliability, by regularly testing failure pathways you will be more likely to
catch errors before they reach production. For performance, starting backward

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3ExportTasksConsole.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-workflow-layer-part-4-of-4/
https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 49

from customer expectation will allow you to design for optimal experience.
There are a number of AWS tools to help optimize performance as well. For cost
optimization, you can reduce unnecessary waste within your serverless
application by sizing resources in accordance with traffic demand. For
operations, your architecture should strive toward automation in responding to
events. Finally, a secure application will protect your organization’s sensitive
information assets and meet any compliance requirements at every layer.

The landscape of serverless applications is continuing to evolve with the
ecosystem of tooling and processes growing and maturing. As this occurs, we
will continue to update this paper to help you ensure that your serverless
applications are well-architected.

Contributors
The following individuals and organizations contributed to this document:

• Adam Westrich: Senior Solutions Architect, Amazon Web Services

• Mark Bunch: Enterprise Solutions Architect, Amazon Web Services

• Ignacio Garcia Alonso: Solutions Architect, Amazon Web Services

• Heitor Lessa: Specialist Solutions Architect, Amazon Web Services

• Philip Fitzsimons: Sr. Manager Well-Architected, Amazon Web Services

• Dave Walker: Specialist Solutions Architect, Amazon Web Services

Further Reading
For additional information, see the following:

• AWS Well-Architected Framework74

• Serverless Architectures with AWS Lambda75

1 https://aws.amazon.com/well-architected

Notes

https://aws.amazon.com/well-architected
https://aws.amazon.com/well-architected

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 50

2 http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-

Architected_Framework.pdf

3
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guid
e_v2.pdf

4 https://github.com/alexcasalboni/aws-lambda-power-tuning

5
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestP
ractices.html

6 http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-
managedomains.html

7 https://www.elastic.co/guide/en/elasticsearch/guide/current/scale.html

8 http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-
scaling.html

9 https://d0.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-
on-aws-with-amazon-kinesis.pdf

10
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.h
tml

11 http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-
duplicates.html

12 http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#stream-
events

13 http://docs.aws.amazon.com/apigateway/latest/developerguide/api-
gateway-api-usage-plans.html

14 http://docs.aws.amazon.com/apigateway/latest/developerguide/stage-
variables.html

15 http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html

16 https://github.com/awslabs/serverless-application-model

17 https://aws.amazon.com/blogs/aws/latency-distribution-graph-in-aws-x-
ray/

18 http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html

http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://github.com/alexcasalboni/aws-lambda-power-tuning
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-managedomains.html
http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-managedomains.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scale.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-scaling.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-scaling.html
https://d0.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-on-aws-with-amazon-kinesis.pdf
https://d0.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-on-aws-with-amazon-kinesis.pdf
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-duplicates.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-duplicates.html
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#stream-events
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#stream-events
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-usage-plans.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-usage-plans.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/stage-variables.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/stage-variables.html
http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html
https://github.com/awslabs/serverless-application-model
https://aws.amazon.com/blogs/aws/latency-distribution-graph-in-aws-x-ray/
https://aws.amazon.com/blogs/aws/latency-distribution-graph-in-aws-x-ray/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 51

19 http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-

manager-paramstore.html

20 https://aws.amazon.com/blogs/compute/continuous-deployment-for-
serverless-applications/

21 https://github.com/awslabs/aws-serverless-samfarm

22 https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-
integration-continuous-delivery-on-AWS.pdf

23 https://aws.amazon.com/serverless/developer-tools/

24 http://docs.aws.amazon.com/lambda/latest/dg/with-s3-example-create-
iam-role.html

25 http://docs.aws.amazon.com/apigateway/latest/developerguide/api-
gateway-method-request-validation.html

26 http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-
authorizer.html

27 https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-
cognito-federated-identities-amazon-cognito-user-pools-and-amazon-api-
gateway/

28 http://docs.aws.amazon.com/lambda/latest/dg/vpc.html

29 https://aws.amazon.com/pt/articles/using-squid-proxy-instances-for-web-
service-access-in-amazon-vpc-another-example-with-aws-codedeploy-and-
amazon-cloudwatch/

30
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guid
e_v2.pdf

31
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practic
es.pdf

32 https://www.twistlock.com/products/serverless-security/

33 https://www.owasp.org/index.php/OWASP_Dependency_Check

34 https://snyk.io/

35 https://aws.amazon.com/answers/account-management/limit-monitor/

36 http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-
lambda-and-step-functions/

http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://aws.amazon.com/blogs/compute/continuous-deployment-for-serverless-applications/
https://aws.amazon.com/blogs/compute/continuous-deployment-for-serverless-applications/
https://github.com/awslabs/aws-serverless-samfarm
https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://aws.amazon.com/serverless/developer-tools/
http://docs.aws.amazon.com/lambda/latest/dg/with-s3-example-create-iam-role.html
http://docs.aws.amazon.com/lambda/latest/dg/with-s3-example-create-iam-role.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-request-validation.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-request-validation.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html
https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-cognito-federated-identities-amazon-cognito-user-pools-and-amazon-api-gateway/
https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-cognito-federated-identities-amazon-cognito-user-pools-and-amazon-api-gateway/
https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-cognito-federated-identities-amazon-cognito-user-pools-and-amazon-api-gateway/
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html
https://aws.amazon.com/pt/articles/using-squid-proxy-instances-for-web-service-access-in-amazon-vpc-another-example-with-aws-codedeploy-and-amazon-cloudwatch/
https://aws.amazon.com/pt/articles/using-squid-proxy-instances-for-web-service-access-in-amazon-vpc-another-example-with-aws-codedeploy-and-amazon-cloudwatch/
https://aws.amazon.com/pt/articles/using-squid-proxy-instances-for-web-service-access-in-amazon-vpc-another-example-with-aws-codedeploy-and-amazon-cloudwatch/
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://www.twistlock.com/products/serverless-security/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://snyk.io/
https://aws.amazon.com/answers/account-management/limit-monitor/
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 52

37 http://docs.aws.amazon.com/lambda/latest/dg/limits.html

38
http://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html#
api-gateway-limits

39 http://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-
limits.html

40
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limit
s.html

41 http://docs.aws.amazon.com/step-functions/latest/dg/limits.html

42 https://aws.amazon.com/blogs/compute/error-handling-patterns-in-
amazon-api-gateway-and-aws-lambda/

43 https://aws.amazon.com/blogs/compute/serverless-testing-with-aws-
lambda/

44 http://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-
logs.html

45 http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

46 http://docs.aws.amazon.com/apigateway/latest/developerguide/stages.html

47 http://docs.aws.amazon.com/general/latest/gr/api-retries.html

48 http://docs.aws.amazon.com/step-functions/latest/dg/tutorial-handling-
error-conditions.html#using-state-machine-error-conditions-step-4

49 http://docs.aws.amazon.com/xray/latest/devguide/xray-services-
lambda.html

50 http://docs.aws.amazon.com/lambda/latest/dg/dlq.html

51 https://aws.amazon.com/blogs/compute/error-handling-patterns-in-
amazon-api-gateway-and-aws-lambda/

52 http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-
language-wait-state.html

53 http://microservices.io/patterns/data/saga.html

54 http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-
lambda-and-step-functions/

55 https://d0.awsstatic.com/whitepapers/microservices-on-aws.pdf

http://docs.aws.amazon.com/lambda/latest/dg/limits.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html#api-gateway-limits
http://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html#api-gateway-limits
http://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
http://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
http://docs.aws.amazon.com/step-functions/latest/dg/limits.html
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/serverless-testing-with-aws-lambda/
https://aws.amazon.com/blogs/compute/serverless-testing-with-aws-lambda/
http://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html
http://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/stages.html
http://docs.aws.amazon.com/general/latest/gr/api-retries.html
http://docs.aws.amazon.com/step-functions/latest/dg/tutorial-handling-error-conditions.html#using-state-machine-error-conditions-step-4
http://docs.aws.amazon.com/step-functions/latest/dg/tutorial-handling-error-conditions.html#using-state-machine-error-conditions-step-4
http://docs.aws.amazon.com/xray/latest/devguide/xray-services-lambda.html
http://docs.aws.amazon.com/xray/latest/devguide/xray-services-lambda.html
http://docs.aws.amazon.com/lambda/latest/dg/dlq.html
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
http://microservices.io/patterns/data/saga.html
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
https://d0.awsstatic.com/whitepapers/microservices-on-aws.pdf

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 53

56 http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

57 https://aws.amazon.com/lambda/faqs/

58 http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

59 http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

60 https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/

61 http://docs.aws.amazon.com/lambda/latest/dg/vpc.html

62 http://docs.aws.amazon.com/apigateway/latest/developerguide/api-
gateway-caching.html

63
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.h
tml

64 https://aws.amazon.com/dynamodb/dax/

65 http://docs.aws.amazon.com/streams/latest/dev/amazon-kinesis-
streams.html

66 https://docs.python.org/2/library/logging.html

67
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRet
ention.html

68
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3ExportTask
sConsole.html

69
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stre
am.html

70 http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-
language-wait-state.html

71 https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/

72 https://aws.amazon.com/blogs/compute/building-high-throughput-
genomics-batch-workflows-on-aws-workflow-layer-part-4-of-4/

73 https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-
serverless-architectures.pdf

74 https://aws.amazon.com/well-architected

http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://aws.amazon.com/lambda/faqs/
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://aws.amazon.com/dynamodb/dax/
http://docs.aws.amazon.com/streams/latest/dev/amazon-kinesis-streams.html
http://docs.aws.amazon.com/streams/latest/dev/amazon-kinesis-streams.html
https://docs.python.org/2/library/logging.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3ExportTasksConsole.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3ExportTasksConsole.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-workflow-layer-part-4-of-4/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-workflow-layer-part-4-of-4/
https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf
https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf
https://aws.amazon.com/well-architected

Amazon Web Services – AWS Well-Architected Lens – Serverless Applications

Page 54

75 https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-

lambda.pdf

https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf
https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf

	Abstract
	Introduction
	Definitions
	Compute Layer
	Data Layer
	Messaging and Streaming Layer
	User Management and Identity Layer
	Systems Monitoring and Deployment
	Edge Layer

	General Design Principles
	Scenarios
	RESTful Microservices
	Mobile Backend
	Stream Processing
	Web Application

	The Pillars of the Well-Architected Framework
	Operational Excellence Pillar
	Definition
	Best Practices
	Prepare
	Operate
	Evolve

	Key AWS Services
	Resources

	Security Pillar
	Definition
	Best Practices
	Identity and Access Management
	Detective Controls
	Infrastructure Protection
	Data Protection

	Key AWS Services
	Resources

	Reliability Pillar
	Definition
	Best Practices
	Foundations
	Throttling
	Asynchronous Calls and Events
	Testing

	Change Management
	Failure Management

	Key AWS Services
	Resources

	Performance Efficiency Pillar
	Definition
	Selection
	Optimize
	Deployment
	Code Optimization

	Review
	Monitoring
	Tradeoffs
	Key AWS Services
	Resources

	Cost Optimization Pillar
	Definition
	Best Practices
	Cost-Effective Resources
	Matching Supply and Demand
	Expenditure Awareness
	Optimizing Overtime

	Key AWS Services
	Resources

	Conclusion
	Contributors
	Further Reading

