

Reliability Pillar
AWS Well-Architected Framework

July 2018

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction 1

Reliability 1

Design Principles 2

Definition 3

Foundation – Limit Management 5

Foundation - Networking 7

Application Design for High Availability 11

Understanding Availability Needs 17

Application Design for Availability 18

Operational Considerations for Availability 26

Example Implementations for Availability Goals 33

Dependency Selection 33

Single Region Scenarios 34

Multi-Region Scenarios 42

Conclusion 49

Contributors 51

Document Revisions 51

Appendix A: Designed-For Availability for Select AWS Services 52

Abstract
The focus of this paper is the reliability pillar of the AWS Well-Architected
Framework. It provides guidance to help you apply best practices in the design,
delivery, and maintenance of Amazon Web Services (AWS) environments.

https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/architecture/well-architected/

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 1

Introduction
The AWS Well-Architected Framework helps you understand the pros and cons
of decisions you make while building systems on AWS. By using the Framework
you will learn architectural best practices for designing and operating reliable,
secure, efficient, and cost-effective systems in the cloud. It provides a way to
consistently measure your architectures against best practices and identify areas
for improvement. We believe that having well-architected systems greatly
increases the likelihood of business success.

The AWS Well-Architected Framework is based on five pillars:

• Operational Excellence

• Security

• Reliability

• Performance Efficiency

• Cost Optimization

This paper focuses on the reliability pillar and how to apply it to your solutions.
Achieving reliability can be challenging in traditional on-premises
environments due to single points of failure, lack of automation, and lack of
elasticity. By adopting the practices in this paper you will build architectures
that have strong foundations, consistent change management, and proven
failure recovery processes.

This paper is intended for those in technology roles, such as chief technology
officers (CTOs), architects, developers, and operations team members. After
reading this paper, you will understand AWS best practices and strategies to use
when designing cloud architectures for reliability. This paper includes high-level
implementation details and architectural patterns, as well as references to
additional resources.

Reliability
The reliability pillar encompasses the ability of a system to recover from
infrastructure or service disruptions, dynamically acquire computing resources
to meet demand, and mitigate disruptions such as misconfigurations or

https://aws.amazon.com/architecture/well-architected/

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 2

transient network issues. This paper provides in-depth, best-practice guidance
for architecting reliable systems on AWS.

Design Principles
In the cloud, there are a number of principles that can help you increase
reliability:

• Test recovery procedures: In an on-premises environment, testing is
often conducted to prove the system works in a particular scenario;
testing is not typically used to validate recovery strategies. In the cloud,
you can test how your system fails, and you can validate your recovery
procedures. You can use automation to simulate different failures or to
recreate scenarios that led to failures before. This exposes failure
pathways that you can test and fix before a real failure scenario, reducing
the risk of components that have not been tested before failing.

• Automatically recover from failure: By monitoring a system for key
performance indicators (KPIs), you can trigger automation when a
threshold is breached. These KPIs should be a measure of business
value, not of the technical aspects of the operation of the service. This
allows for automatic notification and tracking of failures, and for
automated recovery processes that work around or repair the failure.
With more sophisticated automation, it is possible to anticipate and
remediate failures before they occur.

• Scale horizontally to increase aggregate system availability:
Replace one large resource with multiple small resources to reduce the
impact of a single failure on the overall system. Distribute requests across
multiple, smaller resources to ensure that they don’t share a common
point of failure.

• Stop guessing capacity: A common cause of failure in on-premises
systems is resource saturation, when the demands placed on a system
exceed the capacity of that system (this is often the objective of denial of
service attacks). In the cloud, you can monitor demand and system
utilization, and automate the addition or removal of resources to
maintain the optimal level to satisfy demand without over- or under-
provisioning. There are still limits, but some limits can be controlled and
others can be managed (See Foundation-Limit Management).

• Manage change in automation: Changes to you infrastructure should
be via automation. The changes that need to be managed are changes to
the automation.

We will discuss all these design principals when illustrating scenarios.

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 3

Definition
Service availability is commonly defined as the percentage of time that an
application is operating normally. That is, it’s the percentage of time that it’s
correctly performing the operations expected of it. This percentage is calculated
over periods of time, such as a month, year, or trailing 3 years. Applying the
strictest possible interpretation, availability is reduced any time the application
isn’t operating normally, including both scheduled and unscheduled
interruptions. We define availability using the following criteria:

• Availability = Normal Operation Time / Total Time

• A percentage of uptime (such as 99.9%) over a period of time (commonly
a year)

• Common short-hand refers only to the “number of 9’s”; for example, “five
nines” translates to 99.999% available

• Some customers choose to exclude scheduled service downtime (for
example, planned maintenance) from the Total Time in the formula in
the first bullet. However, this is often a false choice because customers
might actually want to use your service during these times.

Here is a table of common application availability design goals and the possible
length of interruptions that can occur within a year while still meeting the goal.
The table contains examples of the types of applications we commonly see at
each availability tier. In this document, we will refer to these values.

Availability Max Disruption (per
year)

Application Categories

99% 3 days 15 hours Batch processing, data extraction, transfer, and load
jobs

99.9% 8 hours 45 minutes Internal tools like knowledge management, project
tracking

99.95% 4 hours 22 minutes Online commerce, point of sale

99.99% 52 minutes Video delivery, broadcast systems

99.999% 5 minutes ATM transactions, telecommunications systems

Calculating availability with hard dependencies. Many systems have
hard dependencies on other systems, where an interruption in a dependent

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 4

system directly translates to an interruption of the invoking system. This is
opposed to a soft dependency, where a failure of the dependent system is
compensated for in the application. Where such hard dependencies occur, the
invoking system availability is the product of the dependent systems’
availabilities. For example, if you have a system designed for 99.99% availability
that has a hard dependency on two other independent systems that each are
designed for 99.99% availability, the system can theoretically achieve 99.97%
availability:

invoking system * dependent 1 * dependent 2 =

99.99% * 99.99% * 99.99% = 99.97%

It’s therefore important to understand your dependencies and their availability
design goals as you calculate your own.

Calculating availability with redundant components. When a system
involves the use of independent, redundant components (for example,
redundant Availability Zones), the theoretical availability is computed as 100%
minus the product of the component failure rates (100% minus availability.) For
example, if a system makes use of two independent components, each with an
availability of 99.9%, the resulting system availability is >99.999%:

maximum availability - ((downtime of dependent 1) * (downtime of dependent
2)) =

100% - (0.1% * 0.1%) = 99.9999%

But what if I don’t know the availability of a dependency?

Calculating dependency availability. Some dependencies provide guidance
on their availability, including availability design goals for many AWS services
(see Appendix A: Designed-For Availability for Select AWS Services). But in
cases where this isn’t available (for example, a component where the
manufacturer does not publish availability information), one simple way to
estimate is to determine the Mean Time Between Failure (MTBF) and Mean
Time to Recover (MTTR). An availability estimate can be established by:

Availability Estimate = MTBF / (MTBF + MTTR)

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 5

For example, if the MTBF is 150 days and the MTTR is 1 hour, the availability
estimate is 99.97%.

For additional details: This document can help you calculate your availability.

Costs for availability. Designing applications for higher levels of availability
typically comes with increased costs, so it’s appropriate to identify the true
availability needs before embarking on application design. High levels of
availability impose stricter requirements for testing and validation under
exhaustive failure scenarios. They require automation for recovery from all
manner of failures, and require that all aspects of system operations be similarly
built and tested to the same standards. For example, the addition or removal of
capacity, the deployment or rollback of updated software or configuration
changes, or the migration of system data must be conducted to the desired
availability goal. Compounding the costs for software development, at very high
levels of availability, innovation suffers because of the need to move more slowly
in deploying systems. The guidance, therefore, is to be thorough in applying the
standards and considering the appropriate availability target for the entire
lifecycle of operating the system.

Another way that costs escalate in systems that operate with higher availability
design goals is in the selection of dependencies. At these higher goals, the set of
software or services that can be chosen as dependencies will diminish based on
which of these services have had the deep investments we previously described.
As the availability design goal increases, it’s typical to find fewer multi-purpose
services (such as a relational database) and more purpose-built services. This is
because the latter are easier to evaluate, test, and automate, and have a reduced
potential for surprise interactions with included but unused functionality.

Foundation – Limit Management
When architecting systems there are physical limits and resource constraints
that need to be taken into account. A common source of failure, and a reason for
a lack of availability, is resource constraint. For example, the rate that you can
push bits down a fiber optic cable, or the amount of storage on a physical disk.
Understanding physical constraints is the first part of designing reliable
systems. Second, with service-based architecture, there are often service limits
that act to protect the service from breaching Service Level Agreements (rate
limits) or design constraints (hard limits). The final piece of limit management

http://www.delaat.net/rp/2013-2014/p17/report.pdf

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 6

is alerting and reporting, which enable you to know when you hit a limit or are
about to hit a limit, and then you can react accordingly.

The default limits for cloud resources created by AWS services are documented
for each service. These limits are tracked per account, so if you use multiple
accounts, you need to know what the limits are in each account. Other limits
may be based on your configuration. Examples of these limits are number of
instances in an Auto Scaling group, provisioned IOPS, RDS storage allocated,
EBS volume allocations, network IO, available IP addresses in a subnet or VPC,
etc.

Limits are enforced per AWS Region and per AWS account. If you are planning
to deploy into multiple regions or AWS accounts, then you should ensure that
you increase limits in the regions and accounts that you using. Additionally,
ensure you have sufficient buffer accounted for, such that an Availability Zone
event will not cause you to exceed your limits when requesting additional
resources while the unhealthy resources are being terminated.

AWS provides a list of some service limits via AWS Trusted Advisor, and others
are available from the AWS Management Console. The default service limits
that are provided are available in the Service Limits documentation; you can
contact AWS Support to provide your current limits for the services you are
using if you have not tracked your limit increase requests. For rate limits on
throttled APIs, the SDKs provide mechanisms (retry, exponential back off) to
handle throttled responses. You should evaluate your use cases to decide which
scheme works better for you. If you have a use case where the throttling limits
impact your application’s performance, then contact AWS Support to see if
there are mitigations or if the limit can be increased.

Ideally, limit tracking is automated. You can store what your current service
limits are in a persistent data store like Amazon DynamoDB. If you integrate
your Configuration Management Database (CMDB) or ticketing system with
AWS Support APIs, you can automate the tracking of limit increase requests
and current limits. If you integrate with a CMDB, then it is likely that you can
store the service limits within that system.

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 7

Key AWS Services
The key AWS feature that supports a way to identify what service limits
currently are is AWS Trusted Advisor which provides a list of what limits it
returns. The following services and features are also important:

• Amazon CloudWatch: You can set alarms to indicate when you are
getting close to limits in Network IO, Provisioned IOPS, EBS and
ephemeral volume capacity (through custom metrics), etc. You can also
set alarms for when you are approaching maximum capacity of auto
scaling groups.

• Amazon CloudWatch–Logs: Metric filters can be used to search and
extract patterns in a log event. Log entries are converted to numeric
metrics, and alarms can be applied.

Resources
Refer to the following resources to learn more about AWS best practices for
identifying limits and managing limits, and see AWS Answers for an example of
automated limit monitoring:

Video
• How do I manage my AWS service limits?

Documentation

• AWS Service Limits

• Service Limit Reports Blog Post

• Trusted Advisor FAQs

• AWS Limit Monitor on AWS Answers

Foundation - Networking
When architecting systems using IP-address-based networks you need to plan
network topology and addressing in anticipation of future growth and
integration with other systems and their networks. You might find that your
infrastructure is limited if you don’t plan for growth, or you might have
difficulties integrating incompatible addressing structures.

https://aws.amazon.com/premiumsupport/knowledge-center/manage-service-limits/
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://aws.amazon.com/about-aws/whats-new/2014/06/19/amazon-ec2-service-limits-report-now-available/
https://aws.amazon.com/premiumsupport/ta-faqs
https://aws.amazon.com/answers/account-management/limit-monitor/

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 8

Amazon Virtual Private Cloud (Amazon VPC) lets you provision a private,
isolated section of the AWS Cloud where you can launch AWS resources in a
virtual network.

When you plan your network topology, the first step is to define the IP address
space itself. Following RFC 1918 guidelines, Classless Inter-Domain Routing
(CIDR) blocks should be allocated for each VPC. Consider doing the following
things as part of this process:

• Allow IP address space for more than one VPC per Region.

• Consider cross-account connections. For example, each line of business
might have a unique account and VPCs. These accounts should be able
to connect back to shared services.

• Within a VPC, allow space for multiple subnets that span multiple
Availability Zones.

• Always leave unused CIDR block space within a VPC.

The second step in planning your network topology is to ensure the resiliency of
connectivity:

• How are you going to be resilient to failures in your topology?

• What happens if you misconfigure something and remove connectivity?

• Will you be able to handle an unexpected increase in traffic/use of your
services?

• Will you be able to absorb an attempted Denial of Service (DoS) attack?

AWS has many features that will influence your design. How many VPCs do you
plan to use? Will you use Amazon VPC peering between your VPCs? Will you
connect virtual private networks (VPNs) to any of these VPCs? Are you going to
use AWS Direct Connect or the internet?

A best practice is to always use private address ranges as identified by RFC 1918
for your VPC CIDR blocks. The range you pick should not overlap your existing
use or anything that you plan to share address space with using VPC peering or
VPN. In general, you need to make sure your allocated range includes sufficient
address space for the number of subnets you need to deploy, the potential size
of Elastic Load Balancing (ELB) load balancers, the number of concurrent

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 9

Lambda invocations within your VPC, and your servers (including machine
learning servers) and containers deployed within your subnets. In general, you
should plan on deploying large VPC CIDR blocks. Note that VPC CIDR blocks
can be changed after they are deployed, but if you allocate large CIDR ranges for
your VPC, it will be easier to manage in the long term. Subnet CIDRs cannot be
changed. Keep in mind that deploying the largest VPC possible results in over
65,000 IP addresses. The base 10.x.x.x address space means that you can use
over 16,000,000 IP addresses. You should err on the side of too large instead of
too small for all these decisions.

The connectivity from a VPC is governed through route table entries. An
internet gateway, NAT Gateway, virtual private gateway, or VPC peering
connection are all exposed to a subnet through an entry in its route table. When
you plan your network. Consider the virtual private gateway and VPC peering
that you want.

An additional option for inter VPC connectivity is VPC Endpoint Services. This
enables you to use a Network Load Balancer as a private entry point from
another VPC.

Another option for setting up networking between VPCs is to use VPN
appliances. Commonly used appliances are available on the AWS Marketplace.

You should consider the resiliency and bandwidth requirements that you need
when you select the vendor and instance size on which you need to run the
appliance. For example, if you choose to connect your VPC to your data center
via an AWS Direct Connect connection, you should have a redundant
connection fallback either through a second Direct Connect connection from
another provider or through the internet. If you use a VPN appliance that is not
resilient in its implementation, then you should have a redundant connection
through a second appliance. For all these scenarios, you need to define
acceptable time to recovery (TTR) and test to ensure you can meet those
requirements.

You should use existing standards for protecting your resources within this
private address space. A subnet or set of subnets (one per Availability Zone)
should be used as a barrier between the internet and your applications. In an
on-premises environment, you often have firewalls with features to deflect
common web attacks, and you often have load balancers or edge routers to

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 10

deflect DoS attacks, such as SYN floods. AWS provides many services that can
provide this functionality, such as AWS Shield and AWS Shield Advanced, an
integrated web application firewall (AWS WAF) deployed on Amazon
CloudFront and on ELB, ELB itself, and features of AWS virtual networking like
VPC security groups and network access control lists (ACLs). You can augment
these features with virtual appliances from AWS Partners and the AWS
Marketplace to meet your needs.

Key AWS Services for Network Topology
The key AWS service that supports your network planning is Amazon Virtual
Private Cloud (Amazon VPC), which allows you to allocate private IP
address ranges to either provide non-internet-accessible resources or to extend
your data center. The following services and features are also important:

• AWS Direct Connect: Can be used to give a private dedicated
connection to AWS for possible lower latency and consistent
performance to and from AWS.

• Amazon EC2: If you choose to implement VPNs between your
networks, this is the service on which you run VPN appliances.

• Amazon Route 53: A Domain Name System (DNS) service that is
integrated directly with ELB and can help provide a layer of defense in
the event of a DoS attack.

• Elastic Load Balancing: Provides load balancing across Availability
Zones, performs Layer 7 routing, integrates with AWS WAF, and
integrates with Auto Scaling to help create a self-healing infrastructure
and absorb increases in traffic while releasing resources when traffic
decreases.

• AWS Shield: Provides automatic protection against Distributed Denial
of Service (DDoS) attacks at no extra cost. Additional protection within
your provisioned infrastructure is available as AWS Shield Advanced
and will protect Elastic Load Balancing load balancers, Amazon
CloudFront distributions, and Amazon Route 53-hosted zones.

Resources for Network Topology
Refer to the following resources to learn more about AWS best practices for
network planning.

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 11

Videos

• Advanced VPC Design and New Capabilities for Amazon VPC (NET305)

• Networking Many VPCs: Transit and Shared Architectures (NET 304)

Documentation

• Amazon Virtual Private Cloud Product Page

• Amazon Virtual Private Cloud Documentation

• Announcement on Amazon VPC allowing customers to expand their
VPCs

• VPC Endpoint Services (AWS PrivateLink)

• AWS Global Transit Network on AWS Answers

• Amazon EC2 Instance Types Product Page

• Amazon EC2 Instance Types Documentation

• AWS Marketplace for Network Infrastructure

• AWS Shield Documentation

• AWS Best Practices for DDoS Resiliency Whitepaper

• Single Region Multi-VPC Connectivity on AWS Answers

• Amazon VPC Connectivity Options Whitepaper

Application Design for High Availability
The purpose of this section is to help you think through building and operating
applications on AWS with the right level of availability to meet your business
needs. Availability goals can vary from those applicable to internal tools (for
example, 99% availability) to those for mission critical workloads (for example,
99.999% or even higher.) Based on the necessary availability, the level of effort
that’s required of engineering and operations, and the services that are
appropriate to use to deliver the application will vary. Costs can be considerable
to achieve the highest levels of availability. We’ll share several practical
techniques for applying AWS services to achieve the availability your workloads
require.

https://www.youtube.com/watch?v=Pj11NFXDbL
https://www.youtube.com/watch?v=KGKrVO9xlqI
https://aws.amazon.com/vpc/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://aws.amazon.com/about-aws/whats-new/2017/08/amazon-virtual-private-cloud-vpc-now-allows-customers-to-expand-their-existing-vpcs/
https://aws.amazon.com/about-aws/whats-new/2017/08/amazon-virtual-private-cloud-vpc-now-allows-customers-to-expand-their-existing-vpcs/
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/endpoint-service.html
https://aws.amazon.com/answers/networking/transit-vpc/
https://aws.amazon.com/ec2/instance-types/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://aws.amazon.com/marketplace/b/2649366011/ref=gtw_navlft_node_2649366011
http://docs.aws.amazon.com/waf/latest/developerguide/shield-chapter.html
https://d0.awsstatic.com/whitepapers/Security/DDoS_White_Paper.pdf
https://aws.amazon.com/answers/networking/aws-single-region-multi-vpc-connectivity/
https://d0.awsstatic.com/whitepapers/aws-amazon-vpc-connectivity-options.pdf

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 12

Note: If the topic of Reliability is new to you, or if you’re new to AWS, check out
the Automate Deployments to Eliminate Impact (Change Management) and
Recovery Oriented Computing (Failure Management) sections later in this
whitepaper. These sections will cover some concepts that will be helpful as you
read this section.

When designing a new application, it’s common to assume that it must be “five
nines” (99.999%) available without appreciating the true cost to build and
operate applications at that level of availability. Doing so requires that every
piece of networking and infrastructure from end customers to the service
application, data stores, and all other components must be built and operated to
achieve 99.999%. As just one example, most internet service providers aren’t
built to achieve five nines of availability. Therefore, multiple service providers
(with no common point of failure) are required for the application to be
99.999% available to a specific end customer.

In addition, the application and all of its dependencies needs to be built and
tested to this level of availability, also avoiding single points of failure. This will
require extensive custom development, because many software libraries and
systems are not built to five nines availability. The whole system will require
exhaustive testing for failure triggers. Because 99.999% availability provides for
less than 5 minutes of downtime per year, every operation performed to the
system in production will need to be automated and tested with the same level
of care. With a 5 minute per year budget, human judgment and action is
completely off the table for failure recovery. The system must automatically
recover under every situation. Therefore, the production environment will by
necessity be slow-moving, with each change tested in a full-scale replica pre-
production environment (itself adding significant cost.)

Applications that truly require 99.999% availability can be built on AWS, as the
following example illustrates.

99.999% available application. Let's create an ATM network to dispense
cash to customers. It consists of custom external devices (ATMs), connected via
a network to the host processor operated by the merchant bank that owns the
ATM. The merchant bank maintains a cash account for the balance of the
machine called a host processor account. The host processor has redundant
connectivity to all the banks and banking networks that are to be provided.

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 13

The devices themselves are not available all of the time, nor is the network
connectivity of any single device, so you deploy a large number of them to
enable a customer to easily use a different device if one is down or lacks
connectivity. In “availability-speak”, they are redundant and fail independently.

The host processor is actually at least two computers and storage that are
deployed across independent AWS Regions, with synchronous replication
between the Regions. The host processors have redundant connections to the
merchant bank and banking networks, and the host processors have standby
copies in an independent location. When cash is required, the host processor
requests an Electronic Funds Transfer to take the money from the customer’s
account and put it in the host processor account. After it has the funds
transferred, it will send a signal to the ATM to dispense the money. It then
initiates an Automated Clearing House (ACH) transfer of those funds to the
merchant bank’s account over the redundant connectivity to the merchant bank.
This will reimburse the merchant bank for the funds dispensed. If a problem
happens to the connectivity between the ATM and the host processor or the
ATM machine itself after the funds have been transferred to the host processor,
it can’t tell the ATM to dispense the cash. It will transfer the funds back to the
customer’s account. The ATM will timeout the transaction and then mark itself
out of service.

Multiple AWS Direct Connect connections will be established from the host
processors on AWS to the merchant bank. The connectivity from the ATM
machines will also be run through redundant Direct Connect providers to the
host processor. If the redundant connectivity to the merchant back is severed
from both host processors, they will durably store the request for the ACH
transfer until the connection is restored, while marking the ATMs that it
operates out of service.

This application can be built and operated on AWS. However as discussed
earlier, the costs will be considerable. For most applications, we recommend
starting by posing a few simple questions:

• What problems are you trying to solve?

• What specific aspects of the application require specific levels of
availability?

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 14

• What amount of cumulative downtime can this workload realistically
accumulate in a year?

• In essence, what’s the real impact of the system being unavailable?

Let’s explore an example where you might initially assume the application needs
to be 99.999% available, but in reality it can be successful despite a lower
availability design goal.

Let’s create a smart home heating product. It consists of a mobile application,
and a wireless thermostat that is electrically connected to the heating system.
The thermostat has a connection to your control endpoint on the internet. Your
app uses your API on the internet to send actions to the thermostat. Of course,
your users will expect that turning the heating on will always work. They need
five nines of availability. How might we deliver that availability? Consider the
required architecture for that level of availability:

What if their internet service provider (ISP) has an interruption? To really be
available to your customers, you would need a redundant internet connection
over mobile. This increases the cost of your thermostat, production costs,
running costs, and the complexity of the code that runs on it. You will also have
to test that this redundancy switches correctly. And then you need to look at
other points of failure in this design. What happens when you need to update
the operating system that the “Service” runs on? Or if you need to deploy a new
version? What if you need to reconfigure your datacenter network? Or if you

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 15

need to add more storage? Alternatively, you could have a physical override
button on the thermostat for when the internet connection is down.

This is an example where expressing a reliability requirement without
considering scope and costs and calculating your return on investment (ROI)
could lead you down the wrong path. For example, the thermostat needs five-
nines of availability, not the whole architecture. In your analysis, you should be
asking questions about unspoken assumptions. Do you have customers at all
hours that will not come back to conduct business at another time if you have an
interruption? Could you use a lower level of availability with a fallback
mechanism to handle failures?

In most applications, there are numerous potential sources of interruption that
need to be considered. At higher levels of availability, the detection and
response to these interruptions must be fully automated.

The following table list common sources of interruption:

Category Description

Hardware failure Failure of any hardware component in the system, including in
hosts, storage, network, or elsewhere.

Deployment failure Failure caused directly as a result of a software, hardware, network,
or configuration deployment. This includes both automated and
manual changes. The rest of the buckets specifically do not meet
this definition.

Load induced Load related failures can be triggered by a change in behavior,
either of a specific caller or in the aggregate, or by the service
reaching a tipping point. Load failures can occur in the network.

Data induced An input or entry is accepted by the system that it can’t process
(“poison pill”)

Credential expiration Failure caused by the expiration of a certificate or credential.

Dependency Failure of a dependent service results in failure of the monitored
service.

Infrastructure Power supply or environmental condition failure has an impact on
hardware availability.

Identifier exhaustion Exceeding available capacity, a throttling limit was hit, an ID ran
out, or a resource that is vended to customers is no longer available

Achieving 99.999% availability means mastering all of the sources of
interruption listed here and automating all human intervention out of

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 16

operational processes. It means testing literally every aspect of your application
including anticipating ways that your customers will use it that most people
could hardly dream of. It means deploying and maintaining canaries that
constantly test your application, and frequently doing automated fail-over
testing to ensure that each part of your network performs properly under these
conditions. It means both unit-level and workflow/transaction monitoring of
both success and failure, and it means alarming and log analysis, auto-rollback,
and automatic system recovery capabilities that include every dependent
service, network connection, and piece of infrastructure between you and your
customers.

Upon deep analysis, the work involved in achieving and maintaining high
availability applications seems daunting. That often leads to a more refined
definition and prioritization of requirements:

• What are the most valuable transactions to your customers and to your
business?

• Can you predict when certain geographies have the greatest demand?

• What times of day, week, month, quarter, or year are your peak times?

The good news is that AWS provides numerous services that abstract the work
required to do many of these things, provided the right services are chosen to
meet your availability design goals. Defining the right design goal for availability
will start you down the path of how to implement your application and identify
what the additional costs are to achieve that availability. The remainder of this
whitepaper will help you think about selecting the right design goal, and then
choosing AWS services, building software, and constructing operational
practices that meet your goals.

The remainder of this section is presented in four parts:

• Understanding Availability Needs

• Application Design for Availability

• Operational Considerations for Availability

• Example Implementations for Availability Goals

We’ll explore how availability needs influence your architecture in
“Understanding availability needs.” In “Application design for availability” we

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 17

look at common techniques we apply to improve availability. We talk about
methods of updating your application that can minimize availability impacts in
“Operational Considerations for Availability.” Finally, in “Example
Implementations for Availability Goals” we illustrate how using different
methods can improve your availability.

Understanding Availability Needs
It’s common to initially think of an application’s availability as a single target for
the application as a whole. However, upon closer inspection we frequently find
that certain aspects of an application or service have different availability
requirements. For example, some systems might prioritize the ability to receive
and store new data ahead of retrieving existing data. Other systems prioritize
real-time operations over operations that change a system’s configuration or
environment. Services might have very high availability requirements during
certain hours of the day, but can tolerate much longer periods of disruption
outside of these hours. These are a few of the ways that you can decompose a
single application into constituent parts, and evaluate the availability
requirements for each. The benefit of doing so is to focus efforts (and expense)
on availability according to specific needs, rather than engineering the whole
system to the strictest requirement.

Recommendation

Critically evaluate the unique aspects to your applications and, where appropriate,
differentiate the availability design goals to reflect the needs of your business.

Within AWS, we commonly divide services into the “data plane” and the
“control plane.” The data plane is responsible for delivering real time service
while control planes are used to configure the environment. For example,
Amazon EC2 instances, Amazon RDS databases, and Amazon DynamoDB table
read/write operations are all data plane operations. In contrast, launching new
EC2 instances or RDS databases, or adding or changing table meta-data in
DynamoDB are all considered control plane operations. While high levels of
availability are important for all of these capabilities, the data planes typically
have higher availability design goals than the control planes.

Many of our customers take a similar approach to critically evaluating their
applications and identifying sub-components with different availability needs.
With this information in hand, availability design goals are then tailored to the

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 18

sub-component, and work is done to meet the specific design goal of each sub-
component. Naturally, components that have higher availability design goals
will necessitate deeper investment in the engineering, testing, and operations
automation.

Availability design goals are then tailored to the different aspects, and the
appropriate work efforts are executed to engineer the system. AWS has
significant experience engineering applications with a range of availability
design goals, including services with 99.999% or greater availability. AWS
Solution Architects (SAs) can help you design appropriately for your availability
goals. Involving AWS early in your design process improves our ability to help
you meet your availability goals. Planning for availability is not only done before
your workload launches. It is done continuously to refine your design as you
gain operational experience, learn from real world events, and endure failures of
different types. You can then apply the appropriate work effort to improve upon
your implementation.

Application Design for Availability
In the years that we’ve operated Amazon.com and AWS, we’ve gathered deep
experience in designing applications for availability. While there are many
lessons to be learned, the five most common practices we apply to improve
availability are following:

• Fault Isolation Zones
• Redundant components
• Micro-service architecture
• Recovery Oriented Computing
• Distributed systems best practices

The following sections dive deep on each practice.

Fault Isolation Zones
As described above, one of the most well-known and widely used techniques for
increasing a system’s availability beyond the availability of individual
components is to make use of multiple independent components in parallel. (A
common example is the use of multiple AWS Availability Zones.) When building
a system that relies on redundant components, it’s important to ensure the
components operate independently, and in the case of AWS Regions,

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 19

autonomously. Theoretical availability calculations are only valid if this holds
true.

AWS has multiple constructs that provide different levels of independent,
redundant components. Starting at the lowest levels, to strengthen data plane
availability, AWS partitions resources and requests via some dimension, such as
a resource ID. These partitions (which we refer to as “cells” but others may call
“shards” or “stripes”) are designed to be independent and further contain faults
to within a single cell. To do so, it’s important to identify the proper partition
key to minimize cross-cell interactions and avoid the need to involve complex
mapping services in each request. Services that require complex mapping end
up merely shifting the problem to the mapping services, while services that
require cross-cell interactions reduce the independence of cells (and thus the
assumed availability improvements of doing so). As one example, Amazon
Route53 uses the concept of shuffle sharding to isolate customer requests into
cells.

AWS also employs the fault isolation construct of Availability Zones (AZs). AWS
Regions are composed of two or more Availability Zones that are designed to be
independent. Each Availability Zone is separated by a large physical distance
from other zones to avoid correlated failure scenarios due to environmental
hazards like fires, floods, and tornadoes. Each Availability Zone has
independent physical infrastructure: dedicated connections to utility power,
standalone backup power sources, independent mechanical services, and
independent network connectivity within and beyond the Availability Zone.
Despite being geographically separated, Availability Zones are located in the
same regional area. This enables synchronous data replication (for example,
between databases) without undue impact on application latency. This allows
customers to use Availability Zones in an active/active or active/standby
configuration. Availability Zones are independent, and therefore application
availability is increased when multiple AZs are used. Some AWS services
(including the EC2 instance data plane) are deployed as strictly zonal services
where they have shared fate with the Availability Zone as a whole. These
services are used to independently operate resources (instances, databases, and
other infrastructure) within the specific Availability Zone. AWS has long offered
multiple Availability Zones in our Regions.

While AWS control planes typically provide the ability to manage resources
within the entire Region (multiple Availability Zones), certain control planes

https://aws.amazon.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 20

(including Amazon EC2 and Amazon EBS) have the ability to filter results to a
single Availability Zone. When this is done, the request is processed only in the
specified Availability Zone, reducing exposure to disruption in other Availability
Zones.

Recommendation

When your application relies on the availability of control plane APIs during a disruption of
one Availability Zone, use API filters to request results for a single Availability Zone with
each API request (for example, with DescribeInstances.)

The most pervasive fault isolation construct is that of the AWS Region. Regions
are designed to be autonomous, with dedicated copies of services deployed in
each Region. Regional AWS services internally use multiple Availability Zones
in an active/active configuration to achieve the availability design goals we
establish.

While we provide customers capability to operate services cross-Region (for
example, cross-Region replication for Amazon Simple Storage Service (Amazon
S3) and the ability to copy various snapshots and Amazon Machine Images
(AMIs) to other Regions), we do so in ways that preserves the Region’s
autonomy. There are very few exceptions to this approach, including our
services that provide global edge delivery (such as Amazon CloudFront and
Amazon Route53), along with the control plane for the AWS Identity and Access
Management (IAM) service. The vast majority of services operate entirely
within a single Region. Appendix A provides a table of design goals for
availability of selected services, in both single Availability Zone and Multi-AZ
configurations. You can use this information to guide your design goals for your
applications.

Redundant Components
One of the bedrock principles for service design in AWS is the avoidance of
single points of failure in underlying physical infrastructure. This motivates us
to build software and systems that use multiple Availability Zones and are
resilient to failure of a single zone. Similarly, systems are built to be resilient to
failure of a single compute node, single storage volume, or single instance of a
database.

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 21

Micro-Service Architecture
At AWS, we have built our systems using a concept called micro-services. While
micro-services have several attractive qualities, the most important benefit for
availability is that micro-services are smaller and simpler. They allow you to
differentiate the availability required of different services, and thereby focus
investments more specifically to the micro-services that have the greatest
availability needs. For example, to deliver product information pages on
Amazon.com (“detail pages”), hundreds of micro-services are invoked to build
discrete portions of the page. While there are a few services that must be
available to provide the price and the product details, the vast majority of
content on the page can simply be excluded if the service isn’t available. Even
such things as photos and reviews are actually not required to provide an
experience where a customer can buy a product.

Microservices take the concept of service-oriented architecture to a point of
creating services that have a minimal set of functionality. Each service publishes
an API and design goals, limits, and other considerations for using the service.
This establishes a “contract” with calling applications. This accomplishes three
main benefits:

• The service has a concise business problem to be served and a small team
that owns the business problem. This allows for better organizational
scaling.

• The team can deploy at any time as long as they meet their API and other
“contract” requirements

• The team can use any technology stack they want to as long as they meet
their API and other “contract” requirements.

Recommendation

Isolate discrete functionality into services with a “contract” (API and performance
expectations).

There are effects to consider when deploying a micro-service architecture. One
is that you now have a distributed compute architecture that can make it harder
to achieve end-user latency requirements and there is additional complexity in
debugging and tracing of user interactions. The AWS X-Ray service can be used
to assist you in solving this problem. Another effect to consider is increased

https://martinfowler.com/articles/microservice-trade-offs.html

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 22

operational complexity as you proliferate the number of applications you are
managing.

Recovery-Oriented Computing
Complementing the AWS focus on building fault isolation zones and avoiding
single points of failure, we also work to minimize the disruption time when
failures do occur. Since impact duration is a primary input to calculating
availability, reducing recovery time has a direct impact on improving
availability. Recovery-Oriented Computing (ROC) is the term applied to
systematic approaches to improving recovery.

ROC identifies the characteristics in systems that enhance recovery. These
characteristics are: isolation and redundancy, system wide ability to roll back
changes, ability to monitor and determine health, ability to provide diagnostics,
automated recovery, modular design, and ability to restart. We have addressed
isolation and redundancy and modular design in the previous sections. In the
“Operational Considerations for Availability” section, we will talk about the
ability to roll back changes, monitoring, and diagnostics. In this section, we
discuss monitoring for health, automated recovery and the ability to restart.

ROC acknowledges that many different types of failures occur in systems.
Failures can occur in hardware, software, communications, and operations.
Rather than constructing novel mechanisms to trap, identify, and correct each
of the different types of failures, ROC suggests focusing on having the right
mechanisms to detect failures (such as Elastic Load Balancing or Route53
health checks). After a failure occurs ROC would apply one of a small number of
well-tested recovery paths.

In systems that apply a recovery-oriented approach, many different categories
of failures are mapped to the same recovery strategy. For example, applying
ROC, we would apply the same recovery approach to both a network timeout
and a dependency failure where the dependency returns an error. Both events
have a similar effect on the system, so rather than attempting to make either
event a “special case”, ROC would apply a similar strategy of retrying with
exponential back-off. Another example is the use of Auto Scaling with Amazon
Elastic Compute Cloud (Amazon EC2) to manage fleet capacity. An instance
may fail due to hardware failure, operating system bug, memory leak, or other
causes. Rather than building custom remediation for each, treat any as an

https://en.wikipedia.org/wiki/Recovery-oriented_computing

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 23

instance failure, terminate the instance, and allow Auto Scaling to replace the
instance.

A pattern to avoid is developing recovery paths that are rarely executed. For
example, you might have a secondary data store that is used for read-only
queries. When you write to a data store and the primary fails, you might want to
fail over to the secondary data store. If you don’t frequently test this failover,
you might find that your assumptions about the capabilities of the secondary are
incorrect. The capacity of the secondary data store, which might have been
sufficient when you last tested, may be no longer be able to tolerate the load
under this scenario. Our experience has shown that the only error recovery that
works is the path you test frequently. This is why having a small number of
recovery paths is best. You can establish recovery patterns and regularly test
them. If you have a complex or critical recovery path, you still need to regularly
execute that failure in production to convince yourself that the recovery path
works. In the example we just discussed, you should failover to the standby
regularly, regardless of need.

AWS approaches the design of our services with fault recovery in mind. We
design services to minimize the time to recover from failures and impact on
data. Our services primarily use data stores that acknowledge requests only
after they are durably stored across multiple replicas. These services and
resources include Amazon Aurora, Amazon Relational Database Service
(Amazon RDS) Multi-AZ DB instances, Amazon S3, Amazon DynamoDB,
Amazon Simple Queue Service (Amazon SQS), and Amazon Elastic File System
(Amazon EFS). They are constructed to use cell based isolation and use the
independence of Availability Zones. We use automation extensively in our
operational procedures. We also optimize our replace-and-restart functionality
to recover quickly from interruptions.

Distributed Systems Best Practices
As we apply the approaches we have discussed in these sections, including
micro-service architecture and the use of fault isolation zones, we recognize that
many systems built today are distributed systems. They rely on communications
networks to interconnect components. Particularly when traversing longer
distances or intermediary networks, these systems can have high latency or loss.
Individual services may see spikes of requests that temporarily overwhelm their
ability to respond. There are a number of best practices that can be applied to

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 24

allow these services to continue to operate normally in the presence of these
“normal” issues.

These best-practice patterns include the following:

Throttling: This is a defensive pattern to respond to an unexpected increase in
demand, typically on a web service. Some requests will be honored, but the
rejected requests will return a message indicating they have been throttled, with
the expectation they will try again at a slower rate. Your services should be
designed to a known capacity of requests that each node or cell can process.
This can be established through load testing. You then need to track the arrival
rate of requests and if the temporary arrival rate exceeds this limit, the
appropriate response is to signal that the request has been throttled. This allows
the user to retry, potentially to a different node/cell that might have available
capacity. Amazon API Gateway provides methods for throttling requests.

Retry with exponential fallback: This is the invoking side of the throttling
pattern we just discussed. AWS SDKs implement this by default, and can be
configured. The pattern is to pause and then retry at a later time. If it fails again,
pause longer and retry. This increase in pause time is often called “backing off.”
After a configured number of attempts or elapsed time, it will quit retrying and
return failure.

Fail fast: Simply return an error as soon as possible. This will allow releasing
of resources associated with requests and can often allow a service to recover if
it is running out of resources. It’s preferable to fail fast rather than allowing
requests to be queued. Queues can be created at multiple levels of a system, and
can seriously impede an ability to quickly recover. Be very mindful of places
where queues exist (they often hide in workflows or in work that’s recorded to a
database).

Use of idempotency tokens: In a distributed system, it’s easy to perform an
action at most once, or at least once. But it’s hard to guarantee an action is
performed exactly once. A common approach to do so is the use of idempotency
tokens in APIs. In doing so, services can receive a mutating request one or more
times without creating duplicate records or side effects. Callers issue API
requests with an idempotency token; the same token is used whenever the
request is repeated (for example, due to a timeout and retry.) When receiving a
request that has already been processed, an idempotent API uses the token to

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 25

determine the work has already been completed, and then returns a response
identical to the response that’s returned when the work is completed for the first
time. It is more resilient to build systems with idempotency than to build
systems that assume an action must occur exactly once.

Constant work: Systems can fail when there are rapid changes in load. If you
know your service needs to process 100 units of work done per second at peak,
then you should design and tune your system for 100 units of work. If there is
work to be done, it takes one of the slots. But if not, you put “filler” work in the
slot just so you know you’re always doing 100 units per second. An example is a
video player that plays data in a buffer. If you have no work to perform because
no new data has come in, you may be able to process the same data you last
received again and effectively render the same video frame, performing the
same work.

Circuit breaker: In certain situations, a service has a need to make remote
requests on a best effort basis, but does not want to take a hard dependency,
which would include the dependency’s availability in the computation of the
invoking service’s availability design goal. In these cases, one solution is to use a
monitoring loop and circuit breaker for each remote request. When requests are
being processed normally, the circuit breaker is closed and requests flow
through. When the remote system begins returning errors or exhibits high
latency, the circuit breaker opens to avoid further latency impact or availability
impact. When open, the dependency is ignored or results are replaced with
locally-available data (which might simply be a response cache.) Periodically,
the system attempts to call the dependency to determine if it has recovered.
When that occurs, the circuit breaker is closed.

Bi-modal behavior and static stability: Distributed systems can be
impacted by negative feedback loops that are triggered by one failure. For
example, a network timeout could cause a system to attempt to refresh the
configuration state of the entire system. This would add unexpected load to
another component, which might then cause it to fail, triggering other
unexpected consequences. We refer to this as “bi-modal” behavior, because the
system has different behavior under normal and failure modes. To counteract,
this behavior, we prefer building systems that are statically stable and operate in
only one mode. They maintain enough internal state to continue operating as
they were before the failure without adding additional load to the system. These
systems may end up performing less work during certain failures (which is

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 26

desirable). Another example of this type of system is one that uses Amazon EC2
for instance capacity. Systems often assume that if an instance or Availability
Zone fails, they will respond by simply launching new instances. However, this
approach means that during failure, the system will be doing much different
work from usual. Instead, we recommend using Elastic Load Balancing or
Amazon Route53 health checks to shift load away from failed instances, and use
Auto Scaling to asynchronously replace them.

Operational Considerations for Availability
Experience and data from many IT workloads highlights the importance of
operations and human processes on application availability. Despite all of the
investments in software and hardware, an erroneous configuration or misstep in
a process can frequently undo these efforts. When designing software to meet
availability design goals, it’s important to plan the automated or human
processes used in the full lifecycle of the application. This includes deployment
of new versions, operation of the service, refreshing the underlying
infrastructure, and replacing failed infrastructure.

Testing is an important part of the delivery pipeline. Aside from common unit
tests and functional tests that are performed at component levels, it is
important to perform sustained load testing. Load tests should discover the
breaking point of your workload, test performance, and perform fault injection
testing. In addition, your monitoring service must be able to add or remove
monitoring of capabilities that are added or deprecated. AWS finds it useful to
perform operational readiness reviews that evaluate the completeness of the
testing, ability to monitor, and importantly, the ability to audit the applications
performance to its SLAs and provide data in the event of an interruption or
other operational anomaly.

Automate Deployments to Eliminate Impact
Making changes to production systems is one of the largest risk areas for many
organizations. We consider deployments a first-class problem to be solved
alongside the business problems our software addresses. Today, this means the
use of automation wherever practical in operations, including testing and
deploying changes, adding or removing capacity, and migrating data.

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 27

Recommendation

Although conventional wisdom suggests that you keep humans in the loop for the most
difficult operational procedures, we suggest that you automate the most difficult procedures
for that very reason.

These are deployment patterns that minimize risk:

• Canary deployment
• Blue-Green deployment
• Feature toggles
• Failure isolation zone deployments

Canary deployment is the practice of directing a small number of your
customers to the new version and scrutinizing deeply any behavior changes or
errors that are generated. You can remove traffic from the canary if you have
critical problems and send the users to the previous version. If the deployment
is successful, you can continue to deploy at a desired velocity, while monitoring
for the same changes and errors, until you are fully deployed. AWS Code Deploy
can be configured with a deployment configuration that will enable a canary
deployment.

Blue-Green deployments are similar to the canary deployment except that a full
fleet of the application is deployed in parallel. You alternate your deployments
across the two stacks (blue and green). Once again, you can send traffic to the
new version, and fail back to the old version if you see problems with the
deployment. You can also use fractions of your traffic to each version to dial up
the adoption of the new version. AWS Code Deploy can be configured with a
deployment configuration that will enable a blue-green deployment.

Feature toggles are configuration options on an application. You can deploy the
software with a feature turned off, so that customers don’t see the feature. You
can then turn the feature on, as you’d do for a canary deployment, or you can set
the change pace to 100% to see the effect. If the deployment has problems, you
can simply turn the feature back off without rolling back.

One of the most important rules AWS has established for its own deployments
is to avoid touching multiple Availability Zones within a Region at the same
time. This is critical to ensuring that Availability Zones are independent for
purposes of our availability calculations. We recommend that you use similar
considerations in your deployments.

https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/articles/feature-toggles.html

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 28

Testing
The testing effort should be commensurate with your availability goals. Your
application’s resiliency to transient failures of dependencies should be tested for
durations that may last from less than a second to hours. Testing to ensure that
you can meet your availability goals is the only way you can have confidence
that you will meet those goals. Our experience is that canary testing that can run
constantly and simulate customer behavior is among the most important testing
processes. You should unit test, load test, performance test, and simulate your
failure modes while under these tests. Don’t forget to test for external
dependency unavailability, and deployment failures. Achieving very high
availability requires implementing fault tolerant software patterns, and testing
that they are effective.

Other modes of degradation may cause reduced functionality and slow
responses, often resulting in a brown out of your services. Common sources of
this degradation are increased latency on critical services and unreliable
network communication (dropped packets). You might want to use the ability to
inject random failures into your system, including component failures,
networking effects such as latency and dropped messages, and DNS failures
such as being unable to resolve a name or not being able to establish
connections to dependent services.

Netflix has provided some example open source software that can be a basis for
this type of testing. You can use their software or develop your own for
simulating failure modes. For simulating conditions that might produce
brownouts, you can use extensions to common proxies to introduce latency,
dropped messages, etc., or you can create your own.

Monitoring and Alarming
Monitoring is critical to ensure that you are meeting your availability
requirements. Your monitoring needs to effectively detect failures. The worst
failure mode is the “silent” failure, where the functionality is no longer working,
but there is no way to detect it except indirectly. Your customer knows before
you do. Alerting when you have problems is one of the primary reasons you
monitor. Your alerting should be decoupled from your systems as much as
possible. If your service interruption removes your ability to alert, you will have
a longer period of interruption.

https://github.com/Netflix/SimianArmy/wiki

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 29

At AWS we instrument our applications at multiple levels. We record latency,
error rates, and availability for each request, for all dependencies, and for key
operations within the process. We record metrics of successful operation as
well. This allows us to see impending problems before they happen. We also
look for outlying data points because this can be another indication of
impending problems. This is commonly known as percentile monitoring. If your
average is acceptable, but one in 100 of your requests causes extreme latency,
when your traffic grows it will eventually become a problem.

In addition, monitor all of your external endpoints from remote locations to
ensure that they are independent of your base implementation. We have seen
improvement in time to detection of problems with use of “user canary”
applications, which execute some number of common tasks performed by
consumers of the application. They can be implemented in both graphic user
interfaces and web services. They all must complete within a very short time,
with a target of 1 second. These must be carefully selected so that they don’t
overload the application during testing. The reason to have only short duration
tasks is so you can run them once per minute, which enables you to detect a
problem before it is visible to users.

While monitoring from within an operating system is well understood,
monitoring in the cloud offers new opportunities. Instead of using old de-facto
standard methods like SNMP, cloud providers have developed customizable
hooks and insights into everything from instance performance to network
layers, down to request APIs themselves.

Monitoring at AWS consists of five distinct phases:

1. Generation

2. Aggregation

3. Real-time processing and alarming

4. Storage

5. Analytics

Generation
First, determine which services and/or applications require monitoring, define
important metrics and how to extract them from log entries if necessary, and
finally create thresholds and corresponding alarm events. AWS makes an

http://bravenewgeek.com/everything-you-know-about-latency-is-wrong/

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 30

abundance of monitoring and log information available for consumption, which
can be used to define change-in-demand processes. The following is just a
partial list of services and features that generate log and metric data.

• Amazon ECS, Amazon EC2, Classic Load Balancers, Application Load
Balancers, Auto Scaling, and Amazon EMR publish metrics for CPU,
network I/O, and disk I/O averages.

• Amazon CloudWatch Logs can be enabled for Amazon Simple Storage
Service (Amazon S3), Classic Load Balancers, and Application Load
Balancers.

• VPC Flow Logs can be enabled on any or all elastic network interfaces
(ENIs) within a VPC.

• AWS CloudTrail logs all API events on an account-by-account basis.

• Amazon CloudWatch Events delivers a real-time stream of system
events that describes changes in AWS services.

• AWS provides tooling to collect operating system-level logs and stream
them into CloudWatch Logs.

• Custom Amazon CloudWatch metrics can be used for metrics of any
dimension.

• Amazon ECS and AWS Lambda stream log data to CloudWatch Logs.

• Amazon Machine Learning (Amazon ML), Amazon Rekognition,
Amazon Lex, and Amazon Polly provide metrics for successful and
unsuccessful requests.

• AWS IoT provides metrics for number of rule executions as well as
specific success and failure metrics around the rules.

• Amazon API Gateway provides metrics for number of requests,
erroneous requests, and latency for your APIs.

Aggregation
Amazon CloudWatch and Amazon S3 serve as the primary aggregation and
storage layers. For some services, like Auto Scaling and ELB, default metrics are
provided “out the box” for CPU load or average request latency across a cluster
or instance. For streaming services, like VPC Flow Logs or AWS CloudTrail,
event data is forwarded to CloudWatch Logs and you need to define and apply

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 31

filters to extract metrics from the event data. This gives you time series data,
and you can define an array of CloudWatch alarms to trigger alerts.

Real-Time Processing and Alarming
Alerts can trigger Auto Scaling events, so that clusters react to changes in
demand. Alerts can also be sent to Amazon Simple Notification Service
(Amazon SNS) topics, and then pushed to any number of subscribers. For
example, Amazon SNS can forward alerts to an email alias so that technical staff
can respond. Alerts can be sent to Amazon Simple Queue Service (Amazon
SQS), which can serve as an integration point for third-party ticket systems.
Finally, AWS Lambda can also subscribe to alerts, providing users an
asynchronous serverless model that reacts to change dynamically.

Storage and Analytics
Amazon CloudWatch Logs also supports subscriptions that allow data to flow
seamlessly to Amazon S3. As CloudWatch logs and other access logs arrive in
Amazon S3, you should consider using Amazon EMR to gain further insight and
value from the data itself. If your data is written in a supported manner,
Amazon S3 Select or Amazon Athena can be used to query the data. Amazon S3
Select supports Comma-Separated Values (CSV) or JavaScript Object Notation
(JSON) documents with or without GZIP compression. Amazon Athena
supports a large array of formats. For more information, see Supported SerDes
and Data Formats in the Amazon Athena User Guide.

There are a number of tools provided by partners and third parties that allow
for aggregation, processing, storage, and analytics. Some of these tools are New
Relic, Splunk, Loggly, Logstash, CloudHealth, and Nagios. However, generation
outside of system and application logs is unique to each cloud provider, and
often unique to each service.

An often-overlooked part of the monitoring process is data management. You
need to determine retention requirements for monitoring data, and then apply
lifecycle polices accordingly. Amazon S3 supports lifecycle management at the
S3 bucket level. This lifecycle management can be applied differently to
different paths in the bucket. Toward the end of the lifecycle you can transition
data to Amazon Glacier for long-term storage, and then expiration, after the end
of the retention period is reached.

https://docs.aws.amazon.com/athena/latest/ug/supported-format.html
https://docs.aws.amazon.com/athena/latest/ug/supported-format.html

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 32

Key AWS Services
The key AWS service that supports monitoring is Amazon CloudWatch,
which allows for easy creation of alarms that trigger scaling actions. In addition,
AWS X-Ray can be integrated with your applications to provide visibility into
the distributed interaction of requests with your applications.

 The following services and features are also important:

• Amazon S3: Acts as the storage layer, and allows for lifecycle policies
and data management.

• Amazon EMR: Use this service to gain further insight into log and
metric data.

• Amazon Athena: Use this service to gain further insight into data that
is in support formats.

Operational Readiness Reviews
Operational Readiness Reviews (ORRs) are an important exercise to confirm
applications are ready for production operations. Teams often start with an
ORR checklist during early stages of application development. This enables
them to keep in mind the requirements of their operational environment prior
to asking for a production deployment. A formal ORR is conducted prior to
initial production deployment. AWS will repeat ORRs periodically (once per
year, or before critical performance periods) to ensure that there has not been
“drift” from operational expectations. An ORRs for one application should
incorporate lessons learned and best practices from other applications.

Recommendation

Conduct an Operational Readiness Review (ORR) for applications prior to initial production
use, and periodically thereafter.

Auditing
Auditing your monitoring will ensure that you know when an application is
meeting its availability goals. Root Cause Analyses require the ability to discover
what happened when failures occur. AWS provides services that allow you to
track the state of your services during an incident:

• Amazon CloudWatch Logs: You can store your logs in this service
and inspect their contents.

https://docs.aws.amazon.com/athena/latest/ug/supported-format.html

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 33

• AWS Config: You can see what AWS infrastructure were used at points
in time.

• AWS CloudTrail: You can see which AWS APIs were invoked at what
time and by what principal.

At AWS we conduct a weekly meeting to review operational performance and to
share learnings between teams. Establishing a regular cadence for operational
performance reviews and knowledge sharing will enhance your ability to achieve
higher performance from your operational teams.

Example Implementations for Availability
Goals
In this section, we’ll review system designs using the deployment of a typical
web application that consists of a reverse proxy, static content on Amazon S3,
an application server, and a SQL database for persistent storage of data. For
each availability target, we will provide an example implementation. These can
be deployed using containers or virtual machines, but the approaches are the
same. In this section, we will address the remaining topics of the reliability
pillar. Specifically, in each scenario, we will demonstrate how to:

• Adapt to changes in demand

• Use monitoring

• Deploy changes

• Back up data

• Implement resiliency

• Test resiliency

• Recover from disaster

Dependency Selection
We have chosen to use Amazon EC2 for our applications. We will show how
using Amazon RDS and multiple Availability Zones improves the availability of
our applications. We will use Amazon Route 53 for DNS. When we use multiple
Availability Zones, we will use Elastic Load Balancing. Amazon S3 is used for
backups and static content. As we design for higher reliability, we can only

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 34

adopt services with higher availability themselves. See the Appendix for the
design goals for the respective services.

Single Region Scenarios
2 9s (99%) Scenario
We will start our availability and reliability examples with applications that are
helpful to the business, but it is only an inconvenience if the applications are
unavailable. This type of application can vary from internal tooling systems,
internal knowledge management systems, and project tracking systems, to
actual customer-facing features that are served from an experimental service,
with a feature toggle that can hide the service if needed.

These applications can be deployed with one Region and one Availability Zone.
We will deploy the software, including the database, to a single instance. We will
use a vendor or purpose built backup solution to send encrypted backup data to
Amazon S3 using a runbook. We will test that the backups work by restoring
and ensuring the ability to use them on a regular basis using a runbook. We will
configure versioning on our Amazon S3 objects and remove permissions for
deletion of the backups. We will use an Amazon S3 bucket lifecycle policy to
archive or permanently delete according to our requirements. We will use AWS
CloudFormation to define our infrastructure as code, and specifically to speed
up reconstruction in the event of a failure. During failures we will wait for the
failure to finish, optionally routing requests to a static website using DNS
modification via a runbook. The recovery time for this will be determined by the
speed at which the infrastructure can be deployed and the database can be
restored to the most recent backup. This deployment can either be into the same
Availability Zone, or into a different Availability Zone in the event of an
Availability Zone failure using a runbook. The deployment pipeline of new
software is scheduled, with some unit testing, but mostly white-box/black-box
testing of the assembled system. Software updates will be manually performed
using a runbook, with downtime required for the installation and re-start of the
service. If a problem happens during deployment, the runbook describes how to
roll back to the previous version. We will have playbooks for common hardware
failures, urgent software updates, and other disruptive changes. We will have
simple monitoring, indicating whether the service home page is returning an
HTTP 200 OK status. When problems occur, our playbook will indicate that
logging from the instance will be used to establish root cause. The correction of
the error will be done using analysis by the operations and development teams,

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 35

and the correction of the error will be deployed when the fix is prioritized and
completed.

Let’s see what the implications on availability of recovery time are. We take 30
minutes to understand and decide to execute recovery, deploy the whole stack in
AWS CloudFormation in 10 minutes, assume that we deploy to a new
Availability Zone, and assume the database can be restored in 30 minutes. This
implies that it takes about 70 minutes to recover from a failure. Assuming one
failure per quarter, our estimated impact time for the year is 280 minutes, or
four hours and 40 minutes.

This means the upper limit on availability is 99.9%. The actual availability will
also depend on the real rate of failure, duration of failure and how quickly each
factor actually recovers. For this architecture we require the application to be
offline for updates (estimating 24 hours per year: four hours per change, six
times per year), plus actual events. So referring to the table on application
availability earlier in the whitepaper we see that our availability design goal
is 99%.

Here is how we addressed the remaining reliability pillar topics:

Topic Implementation

Adapting to changes in demand Vertical scaling via re-deployment.

Monitoring Site health check only; no alerting.

Deploying changes Runbook for deploy and rollback.

Backups Runbook for taking and restoring.

Implementing resiliency Complete rebuild; restore to backup.

Testing resiliency Complete rebuild; restore to backup.

Disaster recovery Encrypted backups, restore to
different Availability Zone if needed.

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 36

3 9s (99.9%) Scenario
The next availability goal is for applications for which it is important to be
highly available, but they can tolerate short periods of unavailability. This type
of application is typically used for internal operational systems that have an
effect on employees when they are down. This type of application can also be
used for customer-facing systems that are not high revenue for the business and
can tolerate a longer recovery time or recovery point. Such applications include
an administrative system for account or information management.

We can improve availability for applications by using two Availability Zones for
our deployment and by separating the applications to separate tiers. We will use
services that work across multiple Availability Zones, such as Elastic Load
Balancing, Auto Scaling and Amazon RDS Multi-AZ with encrypted storage via
AWS Key Management Service. This will ensure tolerance to failures on the
resource level and on the Availability Zone level. Backup and restore can be
done using Amazon RDS. It will be executed regularly using a runbook to ensure
that we can meet recovery requirements.

The infrastructure deployment technologies remain the same. The load balancer
will only route traffic to healthy application instances. The health check needs to
be at the data plane/application layer indicating the capability of the application
on the instance. This check should not be against the control plane. A health
check URL for the web application will be present and configured for use by the
load balancer and Auto Scaling, so that instances that fail are removed and
replaced. Amazon RDS will manage the active database engine to be available in
the second Availability Zone if the instance fails in the primary Availability
Zone, then repair to restore to the same resiliency.

After we have separated the tiers, we can use software/application resiliency
patterns to increase the reliability of the application so that it can still be
available even when the database is temporarily unavailable during an
Availability Zone failover. Software updates will be automated, not using canary
or blue/green deployment patterns, but rather, using the replace in place. The
decision to rollback will be made using the runbook.

Delivery of new software is on a fixed schedule of every two to four weeks.
Monitoring will be expanded to alert on the availability of the web site over all

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 37

by checking for an HTTP 200 OK status on the home page. In addition, there
will be alerting on every replacement of a web server and when the database
fails over. We will also monitor the static content on Amazon S3 for availability
and alert if it becomes unavailable. Logging will be aggregated for ease of
management and to help in root cause analysis.

Runbooks exist for total system recovery and common reporting. We will have
playbooks for common database problems, security-related incidents, failed
deployments, and establishing root cause of problems. After the root cause has
been identified, the correction for the error will be identified by a combination
of the operations and development teams. The correction will be deployed when
the fix is developed.

Let’s see what the implications on availability of recovery time are. We assume
that at least some failures will require a manual decision to execute recovery.
However with greater automation in this scenario we assume only two events
per year will require this decision. We take 30 minutes to decide to execute
recovery, and assume recovery is completed within 30 minutes. This implies 60
minutes to recover from failure. Assuming two incidents per year, our estimated
impact time for the year is 120 minutes.

This means the upper limit on availability is 99.95%. The actual availability will
also depend on the real rate of failure, duration of failure and how quickly each
factor actually recovers. For this architecture we require the application to be
briefly offline for updates, but these updates are automated. We estimate 150
minutes per year for this: 15 minutes per change, 10 times per year. This adds
up to 270 minutes per year when the service is not available, so our
availability design goal is 99.9%.

Here is how we addressed reliability pillar topics:

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 38

Topic Implementation

Adapting to changes in demand ELB for web and auto scaling
application tier; resizing Multi-AZ
RDS.

Monitoring Site health check only; alerts sent
when down.

Deploying changes Automated deploy in place and
runbook for rollback.

Backups Automated backups via RDS to meet
RPO and runbook for restoring.

Implementing resiliency Auto scaling to provide self-healing
web and application tier; RDS is
Multi-AZ.

Testing resiliency ELB and application are self-healing;
RDS is Multi-AZ; no explicit testing.

Disaster recovery Encrypted backups via RDS to same
AWS Region.

4 9s (99.99%) Scenario
This availability goal for applications requires the application to be highly
available and tolerant to component failures. The application must to be able to
absorb failures without needing to procure additional resources. This
availability goal is for mission critical applications that are main or significant
revenue drivers for a corporation, such as an e-commerce site, a business to
business web service, or a high traffic content/media site.

We can improve availability further by using an architecture that will be
statically stable within the Region. This availability goal doesn’t require a
control plane change in behavior of our workload to tolerate failure. For

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 39

example, there should be enough capacity to withstand the loss of one
Availability Zone. We should not require updates to Amazon Route53 DNS. We
should not need to create any new infrastructure, whether it is
creating/modifying an S3 bucket, creating new IAM policies (or modifications of
policies), or modifying Amazon ECS task configurations.

We recommend three Availability Zones for this approach. Using a three
Availability Zone deployment, each Availability Zone has static capacity of 50%
of peak. Two AZs could be used, but the cost of the statically stable capacity
would be more because both Availability Zones would have to have 100% of
peak capacity. We will add Amazon CloudFront to provide geographic caching,
as well as request reduction on our application’s data plane.

The application will be built using the software/application resiliency patterns
in all layers. For these applications, engineering for read availability over write
availability of primary content is also a key architecture decision. The
application is also implemented in deployment fault isolation zones. The
deployment pipeline will have a full test suite, including performance, load, and
failure injection testing. We will deploy updates using canary or blue/green
deployments into each isolation zone singularly. The deployments are fully
automated, including a roll back if KPIs indicate a problem. Monitoring will
include success metrics as well as alerting when problems occur. In addition,
there will be alerting on every replacement of a failed web server, when the
database fails over, and when an AZ fails.

Runbooks will exist for rigorous reporting requirements and performance
tracking. If successful operations are trending toward failure to meet
performance or availability goals, a playbook will be used to establish what is
causing the trend. Playbooks will exist for undiscovered failure modes and
security incidents. Playbooks will also exist for establishing the root cause of
failures. We will practice our failure recovery procedures constantly through
game days, using runbooks to ensure that we can perform the tasks and not
deviate from the procedures. The team that builds the website also operates the
website. That team will identify the correction of error of any unexpected failure
and prioritize the fix to be deployed after it is implemented. We will also engage
with AWS Support for Infrastructure Event Management offering.

Let’s see what the implications on availability of recovery time are. We assume
that at least some failures will require a manual decision to execute recovery,

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 40

however with greater automation in this scenario we assume only two events
per year will require this decision and the recovery actions will be rapid. We
take 10 minutes to decide to execute recovery, and assume recovery is
completed within five minutes. This implies 15 minutes to recover from failure.
Assuming two per year, our estimated impact time for the year is 30 minutes.

This means the upper limit on availability is 99.99%. The actual availability will
also depend on the real rate of failure, duration of failure and how quickly each
factor actually recovers. For this architecture we assume the application is
online continuously through updates. Based on this, our availability design
goal is 99.99%.

Here is how we addressed reliability pillar topics:

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 41

Topic Implementation

Adapting to changes in demand ELB for web and auto scaling
application tier; resizing Multi-AZ
RDS.

Monitoring Health checks at all layers and on
KPIs; alerts sent when configured
alarms are tripped; alerting on all
failures. Operational meetings are
rigorous to detect trends and manage
to design goals.

Deploying changes Automated deploy via canary or
blue/green and automated rollback
when KPIs or alerts indicate
undetected problems in application.
Deployments are made by isolation
zone.

Backups Automated backups via RDS to meet
RPO and automated restoration that
is practiced regularly in a game day.

Implementing resiliency Implemented fault isolation zones
for the application; auto scaling to
provide self-healing web and
application tier; RDS is Multi-AZ.

Testing resiliency Component and isolation zone fault
testing is in pipeline and practiced
with operational staff regularly in a
game day; playbooks exist for
diagnosing unknown problems; and
a Root Cause Analysis process exists.

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 42

Disaster recovery Encrypted backups via RDS to same
AWS Region that is practiced in a
game day.

Multi-Region Scenarios
Implementing our application in multiple AWS Regions will increase the cost of
operation, partly because we isolate regions to maintain their independence. It
should be a very thoughtful decision to pursue this path. That said, regions
provide a very strong isolation boundary and we take great pains to avoid
correlated failures across regions. Using multiple regions will give you greater
control over your recovery time in the event of a hard dependency failure on a
regional AWS service. In this section, we’ll discuss various implementation
patterns and their typical availability.

3 ½ 9s (99.95%) with a Recovery Time between 1 and 30 Minutes
This availability goal for applications requires extremely short downtime and
very little data loss for specific times. Applications with this availability goal
include applications in the areas of: banking, investing, emergency services, and
data capture. These applications have very short recovery times and recovery
points.

We can improve recovery time further by using a “Hot Standby” approach
across two AWS Regions. We will deploy the workload to both Regions, with our
passive site scaled (and kept eventually consistent) to receive same traffic load
as our active site. Both Regions will be statically stable. The applications should
be built using the software/application resiliency patterns. We’ll need to create a
lightweight routing component that monitors both our application health and
any regional hard dependencies we have. This component will also handle
automation of failover, and stop replication from the former active Region.
During failover, we will route requests to a static website using DNS failover
until recovery in the second Region. The failover will use a health check of the
web site over all by checking for an HTTP 200 OK status on the home page.
Software updates will be automated using canary or blue/green deployment
patterns.

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 43

Delivery of new software is on a fixed schedule of every two to four weeks. In
addition, there will be alerting on every replacement of a web server, when the
database fails over, and when the Region fails over. We will also monitor the
static content on Amazon S3 for availability and alert if it becomes unavailable.
Logging will be aggregated for ease of management and to help in root cause
analysis in each Region. Runbooks exist for when Region failover occurs, for
common customer issues that occur during those events, and for common
reporting. We will have playbooks for common database problems, security-
related incidents, failed deployments, unexpected customer issues on Region
failover, and establishing root cause of problems. After the root cause has been
identified, the correction of error will be identified by a combination of the
operations and development teams and deployed when the fix is developed. We
will validate the architecture through game days using runbooks. We will also
engage with AWS Support for Infrastructure Event Management.

Let’s see what the implications on availability of recovery time are. We assume
that at least some failures will require a manual decision to execute recovery,
however with good automation in this scenario we assume only 2 events per
year will require this decision. We take 20 minutes to decide to execute
recovery, and assume recovery is completed within 10 minutes. This implies 30
minutes to recover from failure. Assuming 2 per year, our estimated impact
time for the year is 60 minutes.

This means the upper limit on availability is 99.95%. The actual availability will
also depend on the real rate of failure, duration of failure and how quickly each
factor actually recovers. For this architecture we assume the application is
online continuously through updates. Based on this, our availability design
goal is 99.95%.

Here is how we addressed reliability pillar topics:

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 44

Topic Implementation

Adapting to changes in demand ELB for web and auto scaling
application tier; resizing Multi-AZ
RDS; this is synchronized between
AWS Regions for static stability.

Monitoring Health checks at all layers, including
DNS health at AWS Region level, and
on KPIs; alerts sent when configured
alarms are tripped; alerting on all
failures. Operational meetings are
rigorous to detect trends and manage
to design goals.

Deploying changes Automated deploy via canary or
blue/green and automated rollback
when KPIs or alerts indicate
undetected problems in application,
deployments are made to one
isolation zone in one AWS Region at
a time.

Backups Automated backups in each AWS
Region via RDS to meet RPO and
automated restoration that is
practiced regularly in a game day.

Implementing resiliency Auto scaling to provide self-healing
web and application tier; RDS is
Multi-AZ; regional failover is
managed manually with static site
presented while failing over.

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 45

Testing resiliency Component and isolation zone fault
testing is in pipeline and practiced
with operational staff regularly in a
game day; playbooks exist for
diagnosing unknown problems; and
a Root Cause Analysis process exists,
with communication paths for what
the problem was, and how it was
corrected or prevented.

Disaster recovery Encrypted backups via RDS, with
replication between two AWS
Regions. Restoration is to the current
active AWS Region, is practiced in a
game day, and is coordinated with
AWS.

5 9s (99.999%) or Higher Scenario
This availability goal for applications requires almost no downtime or data loss
for specific times. Applications that could have this availability goal include, for
example certain banking, investing, finance, government, and critical business
applications that are the core business of an extremely large-revenue generating
business. The desire is to have almost strongly consistent data stores and
complete redundancy at all layers. We have selected a SQL-based data store.
However, in some scenarios, we will find it difficult to achieve a very small RPO.
If you can partition your data it is possible to have no data loss. This might
require you to add application logic and latency to ensure you have consistent
data between geographic locations, as well as the capability to move or copy
data between partitions. Performing this partitioning may be easier if you use a
NoSQL database.

We can improve availability further by using an “Active/Active” or “Multi-
master” approach across multiple AWS Regions. The workload will be deployed
in all desired Regions that are statically stable with the routing layer directing
traffic to geographic locations that are healthy and automatically changing the
destination when a location is unhealthy, as well as temporarily stopping the

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 46

data replication layers. Amazon Route53 offers 10 second interval health checks
and also offers TTL on your record sets as low as one second.

The applications should be built using the software/application resiliency
patterns. It is possible that many other routing layers may be required to
implement the needed availability. The complexity of this additional
implementation should not be underestimated. The application will be
implemented in deployment fault isolation zones, and partitioned and deployed
such that even a Region wide-event will not affect all customers.

The deployment pipeline will have a full test suite, including performance, load,
and failure injection testing. We will deploy updates using canary or blue/green
deployments to one isolation zone at a time, in one Region before starting at the
other. During the deployment, the old versions will still be kept running
instances to facilitate a faster rollback. These are fully automated, including a
rollback if KPIs indicate a problem. Monitoring will include success metrics as
well as alerting when problems occur.

Runbooks will exist for rigorous reporting requirements and performance
tracking. If successful operations are trending towards failure to meet
performance or availability goals, a playbook will be used to establish what is
causing the trend. Playbooks will exist for undiscovered failure modes and
security incidents. Playbooks will also exist for establishing root cause of
failures. Data stores must be replicated between the Regions in a manner which
can resolve potential conflicts. Tools and automated processes will need to be
created to copy or move data between the partitions for latency reasons and to
balance requests or amounts of data in each partition. Remediation of the data
conflict resolution will also require additional operational runbooks. We will
validate the architecture through game days using runbooks to ensure that we
can perform the tasks and not deviate from the procedures. The team that
builds the website also operates the website. That team will identify the
correction of error of any unexpected failure and prioritize the fix to be deployed
after it is implemented. We will also engage with AWS Support for
Infrastructure Event Management.

Let’s see what the implications on availability of recovery time are. We assume
that heavy investments are made to automate all recovery, and that recovery can
be completed within one minute. We assume no manually-triggered recoveries,
but up to one automated recovery action per quarter. This implies four minutes

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 47

per year to recover. We assume that the application is online continuously
through updates. Based on this, our availability design goal is 99.999%.

Here is how we addressed reliability pillar topics:

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 48

Topic Implementation

Adapting to changes in demand ELB for web and auto scaling
application tier; resizing Multi-AZ
RDS; this is synchronized between
AWS Regions for static stability.

Monitoring Health checks at all layers, including
DNS health at AWS Region level, and
on KPIs; alerts sent when configured
alarms are tripped; alerting on all
failures. Operational meetings are
rigorous to detect trends and manage
to design goals.

Deploying changes Automated deploy via canary or
blue/green and automated rollback
when KPIs or alerts indicate
undetected problems in application,
deployments are made to one
isolation zone in one AWS Region at
a time.

Backups Automated backups in each AWS
Region via RDS to meet RPO and
automated restoration that is
practiced regularly in a game day.

Implementing resiliency Implemented fault isolation zones
for the application; auto scaling to
provide self-healing web and
application tier; RDS is Multi-AZ;
regional failover automated.

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 49

Testing resiliency Component and isolation zone fault
testing is in pipeline and practiced
with operational staff regularly in a
game day; playbooks exist for
diagnosing unknown problems; and
a Root Cause Analysis process exists
with communication paths for what
the problem was, and how it was
corrected or prevented. RCA
correction is prioritized above
feature releases for immediate
implementation and deployment.

Disaster recovery Encrypted backups via RDS, with
replication between two AWS
Regions. Restoration is to the current
active AWS Region, is practiced in a
game day, and is coordinated with
AWS.

Conclusion
Whether you are new to the topics of availability and reliability or a seasoned
veteran seeking insights to maximize your mission critical service’s availability,
we hope this section has triggered your thinking, offered a new idea, or
introduced a new line of questioning. We hope this leads to a deeper
understanding of the right level of availability based on the needs of your
business. We encourage you to take advantage of the design, operational, and
recovery-oriented recommendations offered here as well as the knowledge and
experience of our AWS Solution Architects. We’d love to hear from you –
especially about your success stories achieving high levels of availability on
AWS. Contact your account team or use Contact Us via our website.

Resources
Refer to the following resources to learn more about AWS best practices in this
area.

https://aws.amazon.com/contact-us/

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 50

Documentation:

• DynamoDB: Global Tables

• DynamoDB: On-Demand Backup and Restore

• DynamoDB: Point-in-Time Recovery

• RDS: Replicating a Read Replica Across Regions

• S3: Cross-Region Replication

• Route 53: Configuring DNS Failover

• Amazon EBS Snapshot Copies

• AMI Copies

• Amazon RDS: Cross-region backup copy

• Using AWS for Disaster Recovery

• AWS Architecture Center

• AWS X-Ray Documentation

• Using API Gateway to Throttle Requests

• Working with Deployment Groups (CodeDeploy)

• Blue/Green Deployments on AWS

• Canary Blue/Green Deployment on ECS

• Blue/Green Deployment on ECS

• Shuffle Sharding: Massive and Magical Fault Isolation

• Add Scaling to Services You Build on AWS

Books and External Links:

• Michael Nygard “Release It! Design and Deploy Production-Ready
Software”

• Robert S. Hammer “Patterns for Fault Tolerant Software”

• Andrew Tanenbaum and Marten van Steen “Distributed Systems:
Principles and Paradigms”

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BackupRestore.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html#USER_ReadRepl.XRgn
http://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-failover-configuring.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-copy-snapshot.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/CopyingAMIs.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://d0.awsstatic.com/whitepapers/aws-disaster-recovery.pdf
https://aws.amazon.com/architecture/
http://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
http://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-groups.html
https://d0.awsstatic.com/whitepapers/AWS_Blue_Green_Deployments.pdf
https://github.com/awslabs/ecs-canary-blue-green-deployment
https://github.com/awslabs/ecs-blue-green-deployment
https://aws.amazon.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/
https://aws.amazon.com/about-aws/whats-new/2018/07/add-scaling-to-services-you-build-on-aws/
https://www.amazon.com/Release-Production-Ready-Software-Pragmatic-Programmers-ebook/dp/B00A32NXZO/
https://www.amazon.com/Release-Production-Ready-Software-Pragmatic-Programmers-ebook/dp/B00A32NXZO/
https://www.amazon.com/Patterns-Fault-Tolerant-Software-Wiley-ebook/dp/B00DXK33SK/
https://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/
https://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 51

• Adaptive Queuing Pattern: Fail at Scale

• Blue Green Deployment

• Canary Release

• Feature Toggles

• Microservice Trade-Offs

• Recovery Oriented Computing

• Calculating Total System Availability

• Netflix Simian Army

• Percentile Monitoring (An example on latency monitoring)

Contributors
The following individuals and organizations contributed to this document:

• Philip Fitzsimons, Sr Manager Well-Architected, Amazon Web Services

• Rodney Lester, Reliability Lead, Well Architected Amazon Web Services

• Michael Wallman, Sr. Professional Services Consultant, Amazon Web
Services

• Kevin Miller, Director Software Development, Amazon Web Services

• Shannon Richards, Sr. Technical Program Manager, Amazon Web
Services

Document Revisions
Date Description

June 2018 Added Design Principles and Limit Management sections. Updated links, removed
ambiguity of upstream/downstream terminology, and added explicit references to
the remaining Reliability Pillar topics in the availability scenarios.

March 2018 Changed DynamoDB Cross Region solution to DynamoDB Global Tables
Added service design goals

December 2017 Minor correction to availability calculation to include application availability

http://queue.acm.org/detail.cfm?id=2839461
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://en.wikipedia.org/wiki/Recovery-oriented_computing
http://www.delaat.net/rp/2013-2014/p17/report.pdf
https://github.com/Netflix/SimianArmy/wiki
http://bravenewgeek.com/everything-you-know-about-latency-is-wrong/

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 52

Date Description

November 2017 Updated to provide guidance on high availability designs, including concepts, best-
practices and example implementations.

November 2016 First publication

Appendix A: Designed-For Availability for
Select AWS Services
Below, we provide the availability that select AWS services were designed to
achieve. These values do not represent a Service Level Agreement or guarantee,
but rather provide insight to the design goals of each service. In certain cases,
we differentiate portions of the service where there’s a meaningful difference in
the availability design goal. This list is not comprehensive for all AWS services,
and we expect to periodically update with information about additional services.
Amazon CloudFront, Amazon Route53, and the Identity & Access Management
Control Plane provide global service, and the component availability goal is
stated accordingly. Other services provide services within an AWS Region and
the availability goal is stated accordingly. Many services provide independence
between Availability Zones (AZs); in these cases we provide the availability
design goal for a single AZ, and when any two (or more) AZs are used.

NOTE: The numbers in the table below do not refer to durability (long term
retention of data); they are availability numbers (access to data or functions.)

Service Component Availability
Design Goal

Amazon API Gateway Control Plane 99.950%

 Data Plane 99.990%

Amazon Aurora Control Plane 99.950%

Single AZ Data Plane 99.950%

Multi AZ Data Plane 99.990%

AWS CloudFormation Service 99.950%

Amazon CloudFront Control Plane 99.900%

Data Plane (content delivery) 99.990%

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 53

Service Component Availability
Design Goal

Amazon CloudSearch Control Plane 99.950%

Data Plane 99.950%

Amazon CloudWatch CW Metrics (service) 99.990%

CW Events (service) 99.990%

CW Logs (service) 99.950%

AWS Data Pipeline Service 99.990%

Amazon DynamoDB Service (standard) 99.990%

Service (Global Tables) 99.999%

Amazon EC2 Control Plane 99.950%

Single AZ Data Plane 99.950%

Multi AZ Data Plane 99.990%

Amazon ElastiCache Service 99.990%

Amazon Elastic Block Store Control Plane 99.950%

Data Plane (volume availability) 99.999%

Amazon Elasticsearch Control Plane 99.950%

Data Plane 99.950%

Amazon EMR Control Plane 99.950%

Amazon Glacier Service 99.900%

AWS Glue Service 99.990%

Amazon Kinesis Streams Service 99.990%

Amazon RDS Control Plane 99.950%

Single AZ Data Plane 99.950%

Multi AZ Data Plane 99.990%

Amazon Redshift Control Plane 99.950%

Data Plane 99.950%

Amazon Route53 Control Plane 99.950%

Data Plane (query resolution) 100.000%

Amazon S3 Service (Standard) 99.990%

AWS Auto Scaling Control Plane 99.900%

Data Plane 99.990%

AWS Batch Control Plane 99.900%

Amazon Web Services – Reliability Pillar AWS Well-Architected Framework

Page 54

Service Component Availability
Design Goal

Data Plane 99.950%

AWS CloudHSM Control Plane 99.900%

Single AZ Data Plane 99.900%

Multi AZ Data Plane 99.990%

AWS CloudTrail Control Plane (config) 99.900%

Data Plane (data events) 99.990%

Data Plane (management events) 99.999%

AWS Config Service 99.950%

AWS Direct Connect Control Plane 99.900%

Single Location Data Plane 99.900%

Multi Location Data Plane 99.990%

AWS Elastic File Store Control Plane 99.950%

Data Plane 99.990%

AWS Identity & Access
Management

Control Plane 99.900%

Data Plane (authentication) 99.995%

AWS Lambda Function Invocation 99.950%

AWS Storage Gateway Control Plane 99.950%

Data Plane 99.950%

AWS X-Ray Control Plane (console) 99.900%

Data Plane 99.950%

EC2 Container Service Control Plane 99.900%

EC2 Container Registry 99.990%

EC2 Container Service 99.990%

Elastic Load Balancing Control Plane 99.950%

Data Plane 99.990%

Key Management System (KMS) Control Plane 99.990%

Data Plane 99.995%

	Introduction
	Reliability
	Design Principles
	Definition

	Foundation – Limit Management
	Key AWS Services
	Resources

	Foundation - Networking
	Key AWS Services for Network Topology
	Resources for Network Topology

	Application Design for High Availability
	Understanding Availability Needs
	Application Design for Availability
	Fault Isolation Zones
	Redundant Components
	Micro-Service Architecture
	Recovery-Oriented Computing
	Distributed Systems Best Practices

	Operational Considerations for Availability
	Automate Deployments to Eliminate Impact
	Testing
	Monitoring and Alarming
	Generation
	Aggregation
	Real-Time Processing and Alarming
	Storage and Analytics
	Key AWS Services

	Operational Readiness Reviews
	Auditing

	Example Implementations for Availability Goals
	Dependency Selection
	Single Region Scenarios
	2 9s (99%) Scenario
	3 9s (99.9%) Scenario
	4 9s (99.99%) Scenario

	Multi-Region Scenarios
	3 ½ 9s (99.95%) with a Recovery Time between 1 and 30 Minutes
	5 9s (99.999%) or Higher Scenario

	Conclusion
	Resources

	Contributors
	Document Revisions
	Appendix A: Designed-For Availability for Select AWS Services

