

Migrating Microsoft Azure
SQL Databases to

Amazon Aurora
Using SQL Server Integration Service

and Amazon S3

August 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Contents

Introduction 1

Why Migrate to Amazon Aurora? 1

Architecture Overview 2

Migration Costs 5

Preparing for Migration to Amazon Aurora 6

Create a VPC 6

Create a Security Group and IAM Role 7

Create an Amazon S3 Bucket 9

Launch an Amazon RDS for SQL Server DB Instance 9

Launch an Amazon Aurora DB Cluster 11

Launch an EC2 Migration Server 13

Schema Conversion 17

AWS Schema Conversion Tool Wizard 18

Mapping Rules 20

Data Migration 21

Set Up the Repository Database 21

Build an SSIS Migration Package 22

After the Migration 39

Conclusion 40

Contributors 40

Further Reading 40

Document Revisions 41

Abstract
As companies migrate their workloads to the cloud, there are many

opportunities to increase database performance, reduce licensing costs, and

decrease administrative overhead. Minimizing downtime is a common challenge

during database migrations, especially for multi-tenant databases with multiple

schemas. In this whitepaper, we describe how to migrate multi-tenant Microsoft

Azure SQL databases to Amazon Aurora using a combination of Microsoft SQL

Server Integration Services (SSIS) and Amazon Simple Storage Service (Amazon

S3), which can scale to thousands of databases simultaneously while keeping

downtime to a minimum when switching to new databases.

The target audience for this paper includes:

 Database and system administrators performing migrations from Azure

SQL Databases into Amazon Aurora, where AWS-managed migration

tools can’t currently be used

 Database developers and administrators with SSIS experience

 IT managers who want to learn about migrating databases and

applications to AWS

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 1

Introduction
Migrations of multi-tenant databases are among the most complex and time-

consuming tasks handled by database administrators (DBAs). Although

managed migration services such as AWS Database Migration Service (AWS

DMS)1 make this task easier, some multi-tenant database migrations require a

custom approach. For example, a custom solution might be required in cases

where the source database is hosted by a third-party provider who limits certain

functionality of the database migration engine used by AWS DMS.

This whitepaper focuses on the mass migration of a multi-tenant Microsoft

Azure SQL Database to Amazon Aurora. Amazon Aurora is a fully managed,

MySQL-compatible, relational database engine. It combines the speed and

reliability of high-end commercial databases with the simplicity and cost-

effectiveness of open-source databases.2

In the scenario covered in this whitepaper, multi-tenancy is defined as the

deployment of numerous databases that have the same schema.3 An example of

multi-tenancy would be a software-as-a-service (SaaS) provider who deploys a

database for each customer.

We discuss how to use the AWS Schema Conversion Tool (AWS SCT)4 to

convert your existing SQL Server schema to Amazon Aurora. We also show you

how to build a SQL Server Integration Services (SSIS) package that you can use

to automate the simultaneous migration of multiple databases.5

The method described in this whitepaper can also be used to migrate to other

types of databases on Amazon Web Services (AWS), including Amazon Redshift,

a fully-managed data warehouse.6

Why Migrate to Amazon Aurora?
Amazon Aurora is built for mission-critical workloads and is highly available by

default. An Aurora database cluster spans multiple Availability Zones in an AWS

Region, providing out-of-the-box durability and fault tolerance to your data

across physical data centers. An Availability Zone is composed of one or more

highly available data centers operated by Amazon.7 Availability Zones are

isolated from each other and are connected through low-latency links. Each

https://aws.amazon.com/dms/
https://aws.amazon.com/rds/aurora/
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://aws.amazon.com/documentation/SchemaConversionTool/
https://docs.microsoft.com/en-us/sql/integration-services/ssis-how-to-create-an-etl-package
https://aws.amazon.com/redshift/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 2

segment of your database volume is replicated six times across these Availability

Zones.

Aurora cluster volumes automatically grow as the amount of data in your

database increases with no performance or availability impact—so there is no

need for estimating and provisioning large amount of database storage ahead of

time. An Aurora cluster volume can grow to a maximum size of 64 terabytes

(TB). You are only charged for the space that you use in an Aurora cluster

volume.

Aurora's automated backup capability supports point-in-time recovery of your

data. This enables you to restore your database to any second during your

retention period, up to the last five minutes. Automated backups are stored in

Amazon Simple Storage Service (Amazon S3), which is designed for

99.999999999% durability. Amazon Aurora backups are automatic,

incremental, and continuous and have no impact on database performance.

For a complete list of Aurora features, see the Amazon Aurora product page.

Given the rich feature set and cost effectiveness of Amazon Aurora, it is

increasingly viewed as the go-to database for mission-critical applications.

Architecture Overview
A diagram of the architecture you can use for migrating a Microsoft Azure SQL

database to Amazon Aurora is shown in Figure 1.

https://aws.amazon.com/rds/aurora/

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 3

Figure 1: Diagram of resources used in a migration solution

The architecture components are explained in more detail as follows.

Amazon EC2 Migration Server: The migration server is an Amazon Elastic

Compute Cloud (EC2) instance that runs all database migration tasks including:

 Installing necessary applications

 Downloading and restoring the source database for schema conversion

purposes

 Converting the schema between source and destination databases using

AWS SCT

 Developing and testing the SSIS data migration package

With a large EC2 instance type, your migration server can run thousands of

migration tasks simultaneously.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 4

If your databases are read and write, you can choose between two migration

approaches:

1. You can disconnect all clients and put your databases into the single

connection mode. In this scenario, the databases won’t be accessible until

the migration is finished. Database downtime is measured in migration

time. The quicker you migrate your databases, the shorter the downtime.

2. You can keep your database open for write connection. In this scenario,

you will have to adjust the update record after migration.

If your databases are read-only, you can keep the connection to them during the

migration process without any impact on the migration process itself.

Amazon RDS for SQL Server DB Instance: Connection strings to the

Azure SQL database and Amazon Aurora database need to be stored in a small

repository database. For this purpose, you’ll use an Amazon RDS for SQL Server

database (DB) instance.

Amazon Relational Database Service (Amazon RDS) is a cloud service that

makes it easier to set up, operate, and scale a relational database in the cloud.8

It provides cost-efficient, resizable capacity for an industry-standard relational

database and manages common database administration tasks.

Note that the repository database is a temporary resource needed only during

the migration. It can be terminated after the migration.

Amazon Aurora DB Cluster: An Amazon Aurora DB cluster is made up of

instances that are compatible with MySQL and a cluster volume that represents

data copied across three Availability Zones as a single, virtual volume. There are

two types of instances in a DB cluster: a primary instance (that is, your

destination database) and Aurora Replicas.

The primary instance performs all of the data modifications to the DB cluster

and also supports read workloads. Each DB cluster has one primary instance.

An Aurora Replica supports only read workloads. Each DB instance can have up

to 15 Aurora Replicas. You can connect to any instance in the DB cluster using

an endpoint address.

Amazon S3 Bucket: Multiple batches of your data are loaded in parallel,

instead of record by record, into temporary storage in an S3 bucket, which

https://aws.amazon.com/rds/

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 5

improves the performance of migration.9 After saving your data to an S3 bucket,

in the last step of building an SSIS package (see the Migrate Multiple Azure SQL

Databases section), you’ll execute an Amazon Aurora SQL command to import

data from the S3 bucket to the database.

Note: You will need to create an Amazon S3 bucket in the same AWS Region

where you launched the Amazon Aurora DB cluster.

Amazon VPC: All migration resources are created inside a virtual private

cloud (VPC). Amazon VPC lets you provision a logically isolated section of the

AWS Cloud where you can launch AWS resources in a virtual network that you

define.10 You have complete control over your virtual networking environment,

including selection of your own IP address range, creation of subnets, and

configuration of route tables and network gateways.

The topology of the VPC is as follows:

 Two private subnets to launch the Amazon RDS DB instance. Each

subnet must reside entirely within one Availability Zone and cannot

span zones.11

 At least two public subnets to launch your migration server and Amazon

Aurora DB cluster. Each subnet must be in a different Availability Zone.

Migration Costs

These factors have an impact on the migration cost:

 Size of the migrated database (S3 storage)

 Size of the Amazon RDS instance

 Size of the Amazon Aurora cluster

 Size of the migration server

Here are a few suggestions to reduce the migration cost:

 Use Amazon S3 Reduce Redundancy Storage (RRS)

https://aws.amazon.com/vpc/

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 6

 For the repository database, use Amazon RDS SQL Server Express

Edition db.t2.micro instance

 For the migration server, start with t2.medium instance type and scale

up, if necessary

Preparing for Migration to Amazon Aurora
This section describes how to set up and configure your AWS environment to

prepare for migrating your Azure SQL database to Amazon Aurora. AWS

CloudFormation scripts are also provided to help you automate deployment of

your AWS resources.12

Note: You must complete these steps before moving on to the schema

conversion and migration tasks.

Create a VPC

This section describes two ways you can create a VPC: manually or from a

CloudFormation template.

Create a VPC (Manual)

For step-by-step guidance on creating a VPC using the Amazon VPC wizard in

the Amazon VPC console see the Amazon VPC Getting Started Guide.13

For step-by-step guidance on creating a VPC for use with Amazon Aurora see

the Amazon RDS User Guide.14

Create a VPC (CloudFormation Template)

Alternatively, you can use this CloudFormation template to quickly set up a VPC

with two public and two private subnets including a network address translation

(NAT) gateway.

To create a VPC using the CloudFormation template, follow these steps:

1. In the AWS Management Console, choose CloudFormation, and then

choose Create New Stack.

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/getting-started-ipv4.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateVPC.html
http://rh-migration-blog.s3.amazonaws.com/CF-VPC.json

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 7

2. Select Specify an Amazon S3 template URL, and then paste the

CloudFormation template URL: http://rh-migration-

blog.s3.amazonaws.com/CF-VPC.json.

3. Choose Next.

4. Enter the Stack name, e.g., VPC. (Note the stack name as you will use

it later.)

5. Modify the subnet CIDR blocks or leave the default subnets.

6. Choose Next.

7. Under Options, leave all the default values, and then choose Next.

8. Under Review, choose Create.

9. Wait for the status to change to CREATE_COMPLETE.

Optional: To improve the performance of uploading data files to the S3 bucket

from within AWS, create an S3 endpoint in your VPC. For more information

visit: https://aws.amazon.com/blogs/aws/new-vpc-endpoint-for-amazon-s3/.

Create a Security Group and IAM Role

Access to AWS requires credentials that AWS can use to authenticate your

requests. Those credentials must have permissions to access AWS resources

(access control), such as an Amazon RDS database. For example, you can

control access to a database by limiting it to certain IP addresses or IP address

ranges and restricting access to your corporate network only, or to a web server

that consumes data from your database server.

Create a Security Group and IAM Role (Manual)

To migrate your Azure SQL database to Amazon Aurora, you need to do the

following:

 Create an Amazon EC2 security group to control access to an EC2

instance15

 Create an AWS Identity and Access Management (IAM) role that grants

the migration server access to both database servers. In addition, the role

grants external access to the migration server.

http://rh-migration-blog.s3.amazonaws.com/CF-VPC.json
http://rh-migration-blog.s3.amazonaws.com/CF-VPC.json
https://aws.amazon.com/blogs/aws/new-vpc-endpoint-for-amazon-s3/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#CreatingSecurityGroups

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 8

Note: When you use an external IP address, you should use the IP address from

which you will remotely access the migration server.

The following table shows examples of inbound rules that need to be created in

the new EC2 security group:

Resource Inbound Port Source

Amazon RDS SQL Server

1433 IP of Migration Server

Amazon Aurora DB Cluster

3306 IP of Migration Server

Migration Server 3389 User external IP address

 Create an IAM role for Amazon EC2 to allow migration server access to

the S3 bucket. This role has to be associated with the EC2 migration

instance during the launch.16

 Create an IAM role and associate it with an Amazon Aurora DB cluster

to allow the DB cluster access to the S3 bucket.17

Create a Security Group and IAM Role (CloudFormation Template)

Alternatively, you can create both roles and the security group with all required

inbound rules using a CloudFormation template.

1. In the AWS Management Console, choose CloudFormation, and then

choose Create New Stack.

2. Select Specify an Amazon S3 template URL, and then paste the

CloudFormation template URL: http://rh-migration-

blog.s3.amazonaws.com/CF-SG.json.

3. Choose Next.

4. Enter the Stack name, e.g., SG. (Note the stack name as you will use it

later.)

5. Enter the Network Stack Name, which is the name of the

CloudFormation stack you provided earlier in this whitepaper in step 4

under Create a VPC (e.g., VPC).

6. Choose Next.

7. Under Options, leave all the default values, and then choose Next.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.html
http://rh-migration-blog.s3.amazonaws.com/CF-SG.json
http://rh-migration-blog.s3.amazonaws.com/CF-SG.json
http://rh-migration-blog.s3.amazonaws.com/CF-SG.json

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 9

8. Under Review, check the box:

9. Choose Create.

Create an Amazon S3 Bucket

You can either use an existing S3 bucket or create a new one by following the

steps provided in Create a Bucket18in the Amazon S3 documentation.

Launch an Amazon RDS for SQL Server DB

Instance

This section explains how to launch an Amazon RDS for SQL Server DB

instance. Note that the Amazon RDS DB instance is a temporary resource that’s

only needed during the migration. It should be terminated after the migration to

reduce the AWS cost.

Launch an Amazon RDS for SQL Server DB Instance (Manual)

To launch a new Amazon RDS for SQL Server DB instance for your repository

database follow these steps.

1. In the AWS Management Console, choose RDS.

2. In the navigation pane, choose Instances.

3. Choose Launch DB Instance.

4. Select Microsoft SQL Server, and then select SQL Server Express.

5. Set DB Instance Class to db.t2.micro.

6. Set Time Zone to your local time zone.

7. Set DB Instance Identifier to repo.

8. Set Master Username and Master Password.

9. Leave all the other options as their default values, and choose Next

Step.

10. Select the VPC created in the previous step. If you created a VPC using

the CloudFormation template, then the name of the VPC should be

“Migration VPC”.

http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 10

11. Select the correct VPC Security Group. If you created a security group

from the CloudFormation template, then the name should be “SG-

DBSecurityGroup-XXXXXXX”, where XXXXXX is a string that includes

random letters and numbers.

12. Leave all the other options as their default values, and choose Launch

DB Instance.

Launch an Amazon RDS for SQL Server DB Instance
(CloudFormation Template)

As an alternative method to manually launching an Amazon RDS for SQL DB

instance, you can use this CloudFormation template.

1. In the AWS Management Console, choose CloudFormation, and then

choose Create New Stack.

2. Select Specify an Amazon S3 template URL, and then paste the

CloudFormation template URL: http://rh-migration-

blog.s3.amazonaws.com/CF-RDS-SQL.json.

3. Enter the Stack name, e.g., SQL.

4. Enter the following parameters:

o DBPassword and DBUser

o NetworkStackName, which is the name of the CloudFormation

stack you provided in step 4 under Creating a VPC (e.g., VPC)

o SecurityGroupStackName, which is the name of the

CloudFormation stack you provided earlier in this whitepaper in

step 4 under Create an Amazon EC2 Security Group (e.g., SG).

5. Choose Next.

6. Under Options, leave all the default values, and then choose Next.

7. Choose Create.

8. Wait for the status to change to CREATE_COMPLETE.

9. Go to Outputs and note the value of the SQLServerAddress key. You

will need it later.

http://rh-migration-blog.s3.amazonaws.com/CF-RDS-SQL.json
http://rh-migration-blog.s3.amazonaws.com/CF-RDS-SQL.json
http://rh-migration-blog.s3.amazonaws.com/CF-RDS-SQL.json

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 11

Launch an Amazon Aurora DB Cluster

This section describes two ways you can launch an Amazon Aurora DB cluster:

manually or from a CloudFormation template.

Launch an Amazon Aurora DB Cluster (Manual)

For step-by-step guidance for launching and configuring an Amazon Aurora DB

cluster for your destination database, see the Amazon RDS User Guide.19

In our tests, we migrated 10 databases simultaneously. For this purpose, we

used the db.r3.2xlarge DB instance type. Depending on how many databases

you are planning to migrate, we suggest that you use the biggest DB instance

type for the migration and then scale down to one that is more suitable for daily

(production) workloads.

Read this blog to learn more about how to scale Amazon RDS DB instances:

https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-

vertically-and-horizontally/.

Read Managing an Amazon Aurora DB Cluster in the Amazon RDS User Guide

to learn more about choosing the right DB instance type.

To reduce migration time, we suggest that you launch your Amazon Aurora DB

cluster in a single Availability Zone and then perform a Multi-AZ deployment

later if required for production workloads.

When Multi-AZ is selected, Amazon Aurora will create read replicas in different

Availability Zones. In this scenario, when the primary Amazon Aurora DB

instance becomes unavailable, one of the existing replicas will be promoted to

master status in a matter of seconds. In a case where Multi-AZ is disabled,

launching the new primary instance can take up to 5 minutes.

Finally, load your data to the Aurora DB instance from the S3 bucket. To allow

Amazon Aurora access to the S3 bucket, you need to grant the necessary

permission. You can do this by following the steps described in the Allowing

Amazon Aurora to Access Amazon S3 Resources article.20

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.S3CreatePolicy.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.S3CreatePolicy.html

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 12

Launch an Amazon Aurora DB Cluster (CloudFormation Template)

As an alternative method to launching an Amazon Aurora DB cluster, instead of

launching manually you can use this CloudFormation template.

1. In the AWS Management Console, choose CloudFormation, and then

choose Create New Stack.

2. Select Specify an Amazon S3 template URL, and then paste the

CloudFormation template URL: http://rh-migration-

blog.s3.amazonaws.com/CF-RDS-Aurora.json.

3. Enter the Stack name, e.g., Aurora.

4. Enter the following parameters:

o DBPassword and DBUser

o NetworkStackName, which is the name of the CloudFormation

stack you provided in step 4 under Creating a VPC (e.g., VPC).

o SecurityGroupStackName, which is the name of the

CloudFormation stack you provided earlier in this whitepaper in

step 4 under Create an Amazon EC2 Security Group (e.g., SG).

5. Choose Next.

6. Under Options, leave all the default values, and then choose Next.

7. Choose Create.

8. Wait for the status to change to CREATE_COMPLETE.

9. Go to Outputs and note the value of the AuroraClusterAddress key. You

will need it later.

10. After you launch the cluster, assign an IAM role to the cluster. To do

this, follow steps 1-6 in this topic in the Amazon RDS documentation:

Authorizing Amazon Aurora to Access Other AWS Services on Your

Behalf.21

Note: The name of the role created by the CloudFormation template is

RDSAccessS3.

http://rh-migration-blog.s3.amazonaws.com/CF-RDS-Aurora.json
http://rh-migration-blog.s3.amazonaws.com/CF-RDS-Aurora.json
http://rh-migration-blog.s3.amazonaws.com/CF-RDS-Aurora.json
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.AddRoleToDBCluster.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.AddRoleToDBCluster.html

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 13

Launch an EC2 Migration Server

This section describes two ways to launch an EC2 Migration Server: manually

and using a CloudFormation template.

Launch an EC2 Migration Server (Manual)

To launch the EC2 Migration instance please follow the documentation.22

Choose these options when launching a new EC2 instance:

 Amazon Machine Image (AMI): Microsoft Windows Server 2012 R2

Base

 Instance Type: t2.large

 VPC: select the one you created in “Create a VPC”

 IAM Role: select the EC2 role you created in “Create a Security Group

and IAM Role”

 Add Storage: add two Amazon Elastic Block Store (EBS) volumes

o The first volume should be large enough to store all data from the

Azure SQL database.

o The second volume should be 10 GB in size. Under the snapshot

column, depending on the Region where you are launching the

Migration Server, enter:

Region Snapshot ID

us-east-1 snap-0882e0679e0edbc9d

us-east-2 snap-0f8e882e50e145512

us-west-1 snap-0be3d0aa0c7fd6058

us-west-2 snap-044e09795b0af042d

ca-central-1 snap-034a9e106a335e83e

eu-west-1 snap-0c4f59af047f8c680

eu-central-1 snap-0b96dab9f8716b8a3

eu-west-2 snap-0da47a13ca2333917

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 14

Region Snapshot ID

ap-southeast-1 snap-09e64c82ad0252691

ap-southeast-2 snap-0116831d4532fa8f0

ap-northeast-1 snap-06efa146310714fda

ap-northeast-2 snap-0dc5415e1c5c58021

ap-south-1 snap-063223b238340215d

sa-east-1 snap-002492e97e9a54b8b

o The second volume will contain all the software necessary to

accomplish the migration tasks.

 Security Group: select the security group you created in “Create a

Security Group and IAM Role.”

Launch an EC2 Migration Server (CloudFormation Template)

As an alternative method to launching an EC2 Migration Server, instead of

creating all resources manually you can use this CloudFormation template.

Server Configuration

After launching the server either manually or from a CloudFormation template,

follow these steps.

1. Retrieve your Windows Administrator user password. The steps for

doing this can be found in the article How do I retrieve my Windows

administrator password after launching an instance?23 on the AWS

Premium Support Center.

2. Log in to the Migration Server using the RDP client. If you used the

CloudFormation template, you can get the IP address of the Migration

Server from the Output tab under IPAddress key.

3. After logging in, open File Explorer and check whether you see the

DBTools volume. If you see the DBTools volume, go to step 5; otherwise,

follow step 4.

4. If you do not see DBTools, follow these steps:

a. Run the diskmgmt.msc command to open Disk Management.

http://rh-migration-blog.s3.amazonaws.com/CF-EC2-Migration.json
https://aws.amazon.com/premiumsupport/knowledge-center/retrieve-windows-admin-password/
https://aws.amazon.com/premiumsupport/knowledge-center/retrieve-windows-admin-password/

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 15

b. Under the Disk Management window, scroll down until you find a

disk that is offline.

c. Right click on the disk, and from the context menu select Online (as

shown in the following screen shot).

5. Open the command line, and from the DBTools volume run Install.bat.

This will install all the necessary applications. All applications to be

installed (including the link to download) are listed in Application List,

as shown in the next screen shot. Wait until all the applications are

installed. This might take up to 30 minutes.

6. Open CreateRepositoryDB.bat in Notepad and edit the following values:

o serverName – This is the address of the SQL Server that you set

under “Launch an Amazon RDS for SQL Server DB Instance”. If you

used a CloudFormation template to launch Amazon RDS, you can

find this value on the CloudFormation -> Output tab under

SQLServerAddress key.

o userName – This is the SQL username.

o userPass – This is the SQL user password.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 16

7. Save the file and execute it. This script will create a repository database,

including the table and stored procedure on Amazon RDS for SQL

Server DB instance that was created in the previous section.

Note: The external IP address associated with Migration Server has to be

added to Azure SQL database firewall.

Applications List

Here is a list of the applications installed on the Migration Server by the script

described in Step 5 in the previous procedure:

 SQL Server – https://www.microsoft.com/en-sa/sql-server/sql-server-

downloads with minimum selected services

 SQL Server Management Studio – https://docs.microsoft.com/en-

us/sql/ssms/download-sql-server-management-studio-ssms

https://www.microsoft.com/en-sa/sql-server/sql-server-downloads
https://www.microsoft.com/en-sa/sql-server/sql-server-downloads
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 17

 SQL Server Data Tools – https://docs.microsoft.com/en-

us/sql/ssdt/download-sql-server-data-tools-ssdt

 AWS CLI (64bit) – https://aws.amazon.com/cli/

 MySQL ODBC Driver (32 bit) –

https://dev.mysql.com/downloads/connector/odbc/

 Azure PowerShell – https://azure.microsoft.com/en-us/downloads/

 AWS Schema Conversion Tool –

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/

CHAP_SchemaConversionTool.Installing.html

 Microsoft JDBC Driver 6.0 for SQL Server –

https://www.microsoft.com/en-

us/download/details.aspx?displaylang=en&id=11774

 MySQL JDBC Driver – https://www.mysql.com/products/connector/

 Optional: MySQL Workbench –

https://dev.mysql.com/downloads/workbench/

Schema Conversion
Before running the AWS Schema Conversion Tool, the Azure SQL database

schema needs to be restored on the Migration Server. This can be done either by

recreating the database from a script/backup or by restoring it from a BACPAC

file. For information on how to export an Azure SQL database to a BACPAC file

see this article on the Microsoft Azure website24

Alternatively, you can execute a PowerShell script to export the Azure SQL

database to a BACPAC file as follows:

1. Use Remote Desktop Protocol (RDP) to connect to the Migration Server.

2. Locate the AzureExport.ps1 PowerShell script on the DBTools volume

and open it in Notepad for editing.

3. Modify the values at the top of the script. When you are done, save the

changes you made.

4. Open PowerShell and execute the script by entering

e:\ AzureExport.ps1.

https://docs.microsoft.com/en-us/sql/ssdt/download-sql-server-data-tools-ssdt
https://docs.microsoft.com/en-us/sql/ssdt/download-sql-server-data-tools-ssdt
https://aws.amazon.com/cli/
https://dev.mysql.com/downloads/connector/odbc/
https://azure.microsoft.com/en-us/downloads/
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html
https://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774
https://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774
https://www.mysql.com/products/connector/
https://dev.mysql.com/downloads/workbench/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-export

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 18

5. When the script has executed, you should see the xxxx.bacpacfile in your

local folder.

6. To restore the database from .bacpac file, open the SQL Server

Management Studio, connect to the Migration Server (which is the local

server), right-click on the database name, and from the menu select

Import Data-tier Application. Then follow the wizard.

For more information on how to import a PACPAC file to create a new user

database, see: https://docs.microsoft.com/en-us/sql/relational-databases/data-

tier-applications/import-a-bacpac-file-to-create-a-new-user-database.

AWS Schema Conversion Tool Wizard

Before migrating the SQL Server database to Amazon Aurora, you have to

convert the existing SQL schema to the new format supported by Amazon

Aurora.

The AWS Schema Conversion Tool helps convert the source database schema

and a majority of the custom code to a format that is compatible with the target

database. This is a desktop application that we installed on the desktop of the

Migration Server.

The custom code includes views, stored procedures, and functions. Any code

that the tool cannot automatically convert is clearly marked so that you can

convert it yourself.

To start with AWS SCT follow these steps:

1. After restoring the database, open the AWS Schema Conversion Tool.

2. Close the AWS SCT Wizard if it opens automatically.

3. From Settings, select Global Settings.

4. Under Drivers, select the paths to the Microsoft Sql Server and MySql

drivers.

You can find both drivers on the DBTools volume in following locations:

SQL Server: E:\Drivers\Microsoft JDBC Driver 6.0 for SQL

Server\sqljdbc_6.0\enu\jre7\sqljdbc41.jar

https://docs.microsoft.com/en-us/sql/relational-databases/data-tier-applications/import-a-bacpac-file-to-create-a-new-user-database
https://docs.microsoft.com/en-us/sql/relational-databases/data-tier-applications/import-a-bacpac-file-to-create-a-new-user-database

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 19

MySQL: E:\Drivers\mysql-connector-java-5.1.41\ mysql-connector-

java-5.1.41-bin

5. Choose OK.

6. From File, select New Project Wizard.

7. In Step 1: Select Source, for Source Database Engine, select

Microsoft SQL Server.

8. Set the following connection parameters to the EC2 Migration SQL

Server (local server):

o Server name: the name of the EC2 Migration Server. If you didn’t

change it, it will be something like: WIN-ITKVVM7QQ08.

o Server port: 1433

o User name: sa

o Password: sa password – if you installed everything from the

Install.bat script, the password will be Password1.

9. Choose Test Connection.

10. If the connection is successful, choose Next. Otherwise, verify the

connection parameters.

11. In Step 2: Select Schema, select the database that was restored from

the .bacpac file and choose Next.

12. In Step 3: Run Database Migration Assessment, choose Next.

13. In Step 4: Select Target, set the following parameters:

o Target Database Engine: Amazon Aurora (MySQL compatible)

o Server name: The Amazon Aurora Cluster Endpoint. If you

launched the Amazon Aurora DB cluster from the CloudFormation

template, you can find the cluster endpoint on the CloudFormation

output tab under AuroraConnection value.

o Server port: 3306

o User name: The Aurora master user name.

o Password: The Aurora master password.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 20

14. Choose Test Connection.

15. If the connection test is successful, choose Finish. Otherwise, check the

connection parameters.

Mapping Rules

In some cases, you might need to set up rules that change the data type of the

columns, move objects from one schema to another, and change the names of

objects. For example, if you have a set of tables in your source schema named

test_TABLE_NAME, you can set up a rule that changes the prefix test_ to

the prefix demo_ in the target schema.

To add mapping rules, perform the following steps:

1. From Actions menu of AWS SCT, choose Convert Schema.

2. The converted schema appears in the right-hand side of AWS SCT. The

schema name will be in the following format:

{SQL Server database name}_{database schema}

For example, tc_dbo.

3. To rename the output schema, from Settings, choose Mapping Rules.

4. Choose Add new rule to create a rule for renaming the database.

5. Choose Edit rule.

6. From the For list, select database. For Actions, select rename, and

then type a new database name.

7. Choose Add new rule to create a rule for renaming the database

schema.

8. From the For list, select schema. For Actions, select rename, and

then type a new schema name.

9. Choose Save All and close the window.

10. Run Convert Schema.

The schema should now be updated with the new settings. In this example, the

new schema name is TimeCard_Customer1. By right-clicking on the new

schema name, you can either save the schema as an SQL script by selecting

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 21

Save as SQL or apply it directly to the Amazon Aurora database by selecting

Apply to database.

Depending on the complexity of the SQL Server schema, the new schema might

not be optimal or correctly convert all objects.

Note: As a rule of thumb, you should always look at the new schema and make

necessary adjustments and optimization.

If you have a small number of databases on Azure SQL (~10 or fewer) you can

apply the schema for each database by modifying the rule for the schema name,

running Convert Schema, and then applying it to the destination database. If

you are hosting hundreds or thousands of databases, a more efficient way to

apply the new schema would be to save it as an SQL script and then create a

script using Bash (Linux) or PowerShell (Windows) to read an exported schema

file, modify the schema name, and save it as a new file; then use a tool such as

MySQL Workbench25 or a command line tool such as mysql to apply the script

to the Amazon Aurora database.

You can find mysql here: C:\Program Files\MySQL\MySQL Workbench 6.3 CE.

Data Migration
You are now ready to migrate the data. First you need to set up the repository

database and then you need to build an SSIS migration package.

Set Up the Repository Database

From the Migration Server connect to the Amazon RDS repository

(MigrationCfg) database using SQL Server Management Studio. Populate the

ConnectionsCfg table with the following values:

 MSSQLConnectionStr: The Azure SQL connection string, which has

the following format:

DataSource=youraureserver.database.windows.net;User

ID=user_name;Password=db_password;Initial

Catalog=TimeCard1;Provider=SQLNCLI11.1;Persist Security

Info=True;Auto Translate=False;

https://dev.mysql.com/downloads/workbench/

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 22

 MySQLConnectionStr: The Amazon Aurora connection string, which

has the following format: DRIVER={MySQL ODBC 5.3 ANSI

Driver};SERVER=your_aurora_closter_endpoint;DATABASE=TimeCar

d_Customer1;UID=user_name;Pwd=db_password;

 StartExecution: Indicates if the migration for the given database has

already started. This value should initially be set to 0.

 Status: Upon completion of the database migration the status will

either be Success or Failed, depending on the migration outcome.

 StartTime and EndTime: These are the statistics columns that show

the database migration start and end times.

 DBName: Can be any string, unique across all records. This string will

be used as the prefix in the file name of the file containing exported data.

Build an SSIS Migration Package

To build an SSIS Migration Package, perform the following steps.

Create a New Project

1. On the D:\ drive, create a new folder called Output.

2. Open the SQL Server Data Tool 2015 application.

3. Select File, then New, and then Project.

4. From Templates, select Integration Services, and then select

Integration Services Project.

5. Name your project.

6. Choose OK.

7. Under Solution Explorer, right-click on the project name and select

Convert to Package Deployment Model.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 23

8. Rename your package from Package.dtsx to something more

meaningful, e.g., SQL-Migration.dtsx.

9. In Properties, under Security, change ProtectionLevel to

EncryptSensitiveWithPassword.

10. Choose PackagePassword and set the password.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 24

Set the SSIS Variables

1. From the SSIS menu, select Variables.

2. Add the following variables:

Variable Name Variable Type

ConfigID Int32

DBName String

MSConnectionString String

MyConnectionString String

S3Input_LT1 String

3. For S3Input_LT1, add the following expression:

LOAD DATA FROM S3 's3-us-east-1://your-s3-bucket/"+

@[User::DBName]+"_TL1.txt' INTO TABLE [Your_First_Table_Name]

FIELDS TERMINATED BY ',' LINES TERMINATED BY '\\n' (Col1, Col2,

Col3, Col4);

4. Adjust the table name and column names to reflect your database

schema.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 25

5. Repeat the last step to create multiple S3Input_LTx variables—one for

each table. For example, if you have 10 tables then you should have:

S3Input_LT1

…

S3Input_LT10

6. Modify the expression for each variable accordingly. For example, the

last variable will have this expression:

LOAD DATA FROM S3 's3-us-east-1://your-s3-bucket/"+

@[User::DBName]+"_TL10.txt' INTO TABLE [Your_Last_Table_Name]

FIELDS TERMINATED BY ',' LINES TERMINATED BY '\\n' (Col1, Col2,

Col3, Col4);

Notice that in each variable expression the table name as well as file name

should be different.

When you are done, you should have following variables:

Retrieve Configurations from Repository Database

1. From the SSIS Toolbox, drag and drop Execute SQL Task on

Control Flow.

2. Double-click Execute SQL Task.

3. Under General, change ResultSet to Single row.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 26

4. Under SQL Statement, expand the list and select New connection.

Set up a new connection to your Amazon RDS SQL Server repository

database.

5. Set SQLStatement to EXEC [sp_GetConnectionStr].

6. Under Result Set, add the following four rows:

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 27

Create Data Migration Flow

Follow the steps below to create a data flow from Azure SQL Server to Amazon

Aurora.

To migrate multiple database tables simultaneously, put all data flows inside

Sequence Container by following these steps:

1. From the SSIS Toolbox, drag and drop Sequence Container onto the

Control Flow panel.

2. Select Get Connection Strings, and connect the green arrow to

Sequence Container.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 28

Output Data to Temporary File

1. From the SSIS Toolbox, drag and drop Data Flow Task into

Sequence Container.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 29

2. Double-click Data Flow Task.

3. From the SSIS Toolbox, drag and drop Source Assistance onto the

new Data Flow Task panel.

4. Under Source Type, select SQL Server. Under Connection

Managers, select new.

5. Choose OK.

6. Set up a connection to one of your Azure SQL databases.

7. When done, you should see OLE DB Source on the Data Flow Task

panel. Double-click it.

8. From the Name of table or the view menu, select the first table that

you want to migrate and choose OK.

9. From the SSIS Toolbox, expand Other Destinations, and drag and

drop Flat File Destination onto Data Flow panel.

10. Select OLE DB Source, and connect the green arrow to Flat File

Destination.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 30

11. Double-click on Flat File Destination. Under Flat File connection

manager, choose New.

12. Select Delimiter and choose OK.

13. Under File name, enter D:\Output\temp.txt and choose OK.

14. Choose Mapping.

You should see the following:

15. Choose OK.

The Data Flow Task panel should look like this:

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 31

16. Under Connection Managers, select the newly created connection to

the Azure SQL database.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 32

17. Under Properties:

a. Change DelayValidation to False. Choose OK.

a. Choose Expressions. Under Property, select Connection String.

Under Expression, enter: @[User::MSConnectionString].

18. Repeat steps 16-17 for Flat File Connection but set the Connection

String expression to: D:\\Output\\"+@[User::DBName]+"_TL1.txt.

19. Change DelayValidation to False.

20. Under Control Flow, select Data Flow Task. Under Properties,

change DelayValidation to True.

Copy Temporary Data File to Amazon S3 Bucket

1. From the SSIS Toolbox, drag and drop Execute Process Task into

Sequence Container.

2. Select Data Flow Task, and connect the green arrow to Execute

Process Task.

The new flow should look like this:

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 33

3. Double-click Execute Process Task and make following changes:

 Under Process:

o Executable: C:\Program Files\Amazon\AWSCLI\aws.exe

o Working Directory: C:\Program Files\Amazon\AWSCLI

 Under Expressions:

o Property: Arguments

o Expression: "s3 cp D:\\Output\\"+ @[User::DBName]+"_TL1.txt

s3://your-s3-bucket"

4. Choose OK.

5. Select Execute Process Task. Under Properties, change

DelayValidation to False.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 34

Import Data from Temporary File to Amazon Aurora

1. From the SSIS Toolbox, drag and drop Execute SQL Task into

Sequence Container.

2. Select Execute Process Task, and connect the green arrow to

Execute SQL Task.

The new flow should look like this:

3. Double-click Execute SQL Task.

4. Change ConnectionType to ADO.NET.

5. Under Connection, select New connection. Choose New.

6. Under Provider, select .Net Providers, Odbc Data Provider.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 35

7. Check Use connection string and enter the following connection

string:

Driver={MySQL ODBC 5.3 ANSI

Driver};server=aurora_endpoint;database=TimeCard_ Customer1

;UID=aurora_user;Pwd=aurora_password;

8. Under General, set SQLSourceType to Variable and set

SourceVariable to User:S3Input_LT1. Choose OK.

9. Under Connection Managers, select your Aurora connection.

10. Under Properties, change DelayValidation to True.

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 36

11. Choose Expressions. Under Property, select Connection String.

Under Expression, enter: @[User::MyConnectionString].

For each table that you want to migrate, repeat all steps defined in the following

sections:

Output Data to Temporary File,

Copy Temporary Data File to Amazon S3 Bucket,

Import Data from Temporary File to Amazon Aurora

Reuse connection managers for Azure SQL and Amazon Aurora cluster. The Flat

File connection needs to be set up for each table separately.

In addition, for each table:

 Change the Connection String expression as follows:

o For the second table: D:\\Output\\"+@[User::DBName]+"_TL2.txt

o For the third table: D:\\Output\\"+@[User::DBName]+"_TL3.txt

o and so on.

 Under Expression, change the file name as follows:

o s3 cp D:\\Output\\"+ @[User::DBName]+"_TL2.txt s3://your-s3-

bucket

o s3 cp D:\\Output\\"+ @[User::DBName]+"_TL3.txt s3://your-s3-

bucket

o and so on.

 Change SourceVariable as follows:

o For the second table: to S3Input_LT2

o For the third table: to S3Input_LT3

o and so on.

Tracking Migration Status

The database migration completion status, either success or failed, is stored in

the repository database. To track the status follow these steps:

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 37

1. Drag and drop Execute SQL Task below Sequence Container.

2. Select Sequence Container, and connect the green arrow to Execute

SQL Task.

3. Double-click Execute SQL Task.

4. Under Connection, select the connection to your Amazon RDS SQL

Server Express repository database.

5. Under SQLStatement, enter:

UPDATE [ConnectionsCfg] SET [Status] = 'Success' , EndTime =

GETDATE() WHERE [CfgID] = ?

6. Under Parameter Mapping, add a new record with the following

variable name:

7. Choose OK.

8. Repeat steps 1-6. Modify the SQL Statement as follows:

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 38

UPDATE [ConnectionsCfg] SET [Status] = 'Failed' , EndTime =

GETDATE() WHERE [CfgID] = ?

9. Select the green arrow connecting Sequence Container with Execute

SQL Task.

10. Under Properties, change Value to Failure.

The final flow should look like this:

11. Save and build the package.

You can test the package by executing it directly from Visual Studio.

Migrate Multiple Azure SQL Databases

Packages will migrate a single database. To migrate multiple databases

simultaneously, create a Windows batch file that will call the SSIS package. You

can use the following command to call the SSIS package:

cd C:\Program Files\Microsoft SQL Server\130\DTS\Binn

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 39

dtexec /F "C:\SSIS\SQL-Migration.dtsx" /De your_package_password

Now you can execute the batch file simultaneously as many times and for as

many databases as you set up in the Repository database. In case of hundreds or

thousands of databases, the migration process should be split across multiple

EC2 instances.

Here is one approach for setting up multiple instances:

1. Determine the optimal number of databases that can be migrated by a

single EC2 instance (Migration Server). For instance, you can start test

migrating 20 databases using a single instance. By monitoring the CPU

and memory usage of the Migration Server, you can either increase or

decrease the count of databases. You could also change to a larger EC2

instance type.

2. In Windows startup, set up execution of multiple migration scripts – up

to maximum determined in the previous step.

3. Create an AMI of the instance.26

4. Create an Auto Scaling group based on the AMI with the total EC2

instances required to migrate all databases.27

Note: You can find an example of an SSIS package on the Migration Server on

the DBTools volume in /Apps/ SQL-Migration-S3.dtsx or you can download it

from http://rh-migration-blog.s3.amazonaws.com/SQL-Migration-S3.dtsx

After the Migration
When your databases are running on Amazon Aurora, here are a few

suggestions for next steps:

 Review the best practices for Amazon Aurora

 Review and optimize indexes and queries

 Monitor your Amazon Aurora DB cluster

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html
http://rh-migration-blog.s3.amazonaws.com/SQL-Migration-S3.dtsx
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.BestPractices.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 40

 Consider Amazon Aurora with PostgreSQL as an alternative option to

Amazon Aurora with MySQL

Conclusion
This whitepaper described one method for migrating multi-tenant Microsoft

Azure SQL databases to Amazon Aurora. Other methods exist.

We tested our solution a few times using the following configurations:

 Source databases

o 10 databases, each with 10 tables

o Each table had 500K records

o Size of a single database was ~450 MB

 Destination database

o Single Amazon Aurora Cluster running on a db.r3.8xlarge instance

class

o 10 packages were executed simultaneously on an EC2 m4.4xlarge

instance type

 Total migration time of all 10 databases: ~3 minutes

We found that across the tests that we did all of the results were consistent.

Contributors

The following individuals and organizations contributed to this document:

 Remek Hetman, Senior Cloud Infrastructure Architect, Amazon Web

Services

 Yoav Eilat, Senior Product Marketing Manager, Amazon Web Services

Further Reading

For additional information, see the following:

 https://aws.amazon.com/rds/aurora/

https://aws.amazon.com/rds/aurora/

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 41

 https://aws.amazon.com/documentation/SchemaConversionTool/

 https://aws.amazon.com/cloudformation/

 https://aws.amazon.com/vpc/

Document Revisions

Date Description

August 2017 First publication

1 https://aws.amazon.com/dms/

2 https://aws.amazon.com/rds/aurora/

3 https://msdn.microsoft.com/en-us/library/aa479086.aspx

4 https://aws.amazon.com/documentation/SchemaConversionTool/

5 https://docs.microsoft.com/en-us/sql/integration-services/ssis-how-to-

create-an-etl-package

6 https://aws.amazon.com/redshift/

7 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-

availability-zones.html

8 https://aws.amazon.com/rds/

9 https://aws.amazon.com/s3

10 https://aws.amazon.com/vpc/

11 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-

availability-zones.html

12 https://aws.amazon.com/cloudformation/

13

http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/gettin

g-started-ipv4.html

Notes

https://aws.amazon.com/documentation/SchemaConversionTool/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/vpc/
https://aws.amazon.com/dms/
https://aws.amazon.com/rds/aurora/
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://aws.amazon.com/documentation/SchemaConversionTool/
https://docs.microsoft.com/en-us/sql/integration-services/ssis-how-to-create-an-etl-package
https://docs.microsoft.com/en-us/sql/integration-services/ssis-how-to-create-an-etl-package
https://aws.amazon.com/redshift/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/rds/
https://aws.amazon.com/s3
https://aws.amazon.com/vpc/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/cloudformation/
http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/getting-started-ipv4.html
http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/getting-started-ipv4.html

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 42

14

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateV

PC.html

15

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityG

roups.html#CreatingSecurityGroups

16 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-

amazon-ec2.html

17

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authori

zing.AWSServices.html

18 http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

19

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateI

nstance.html

20

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authori

zing.AWSServices.html

21

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authori

zing.AWSServices.html#Aurora.Authorizing.AWSServices.AddRoleToDBClust

er

22

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStart

ed.html

23 https://aws.amazon.com/premiumsupport/knowledge-center/retrieve-

windows-admin-password/

24 https://docs.microsoft.com/en-us/azure/sql-database/sql-database-export

25 https://dev.mysql.com/downloads/workbench/

26

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBS

backed_WinAMI.html

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateVPC.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateVPC.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html%23CreatingSecurityGroups
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html%23CreatingSecurityGroups
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.html%23Aurora.Authorizing.AWSServices.AddRoleToDBCluster
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.html%23Aurora.Authorizing.AWSServices.AddRoleToDBCluster
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Authorizing.AWSServices.html%23Aurora.Authorizing.AWSServices.AddRoleToDBCluster
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html
https://aws.amazon.com/premiumsupport/knowledge-center/retrieve-windows-admin-password/
https://aws.amazon.com/premiumsupport/knowledge-center/retrieve-windows-admin-password/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-export
https://dev.mysql.com/downloads/workbench/
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html

Amazon Web Services – Migrating Microsoft Azure SQL Databases to Amazon Aurora

Page 43

27

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBS

backed_WinAMI.html

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html

