
Running Containerized
Microservices on AWS

November 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction 1

Componentization Via Services 2

Organized Around Business Capabilities 4

Products Not Projects 6

Smart Endpoints and Dumb Pipes 8

Decentralized Governance 9

Decentralized Data Management 11

Infrastructure Automation 13

Design for Failure 15

Evolutionary Design 18

Conclusion 21

Contributors 21

Abstract
This whitepaper is intended for architects and developers who want to run
containerized applications at scale in production on Amazon Web Services
(AWS). This document provides guidance for application lifecycle management,
security, and architectural software design patterns for container-based
applications on AWS.

We also discuss architectural best practices for adoption of containers on AWS,
and how traditional software design patterns evolve in the context of containers.
We leverage Martin Fowler’s principles of microservices and map them to the
twelve-factor app pattern and real-life considerations. After reading this paper,
you will have a starting point for building microservices using best practices and
software design patterns.

Amazon Web Services – Running Containerized Microservices on AWS

Page 1

Introduction
As modern, microservices-based applications gain popularity, containers are an
attractive building block for creating agile, scalable, and efficient microservices
architectures. Whether you are considering a legacy system or a greenfield
application for containers, there are well-known, proven software design
patterns that you can applied.

Microservices are an architectural and organizational approach to software
development in which software is composed of small, independent services that
communicate over well-defined APIs. These services are owned by small, self-
contained teams. Microservices architectures make applications easier to scale
and faster to develop. This enables innovation and accelerates time-to-market
for new features. Containers provide isolation and packaging for software.
Consider using containers to achieve more deployment velocity and resource
density.

As proposed by Martin Fowler,1 the characteristics of a microservices
architecture include the following:

• Componentization via services

• Organized around business capabilities

• Products not projects

• Smart endpoints and dump pipes

• Decentralized governance

• Decentralized data management

• Infrastructure automation

• Design for failure

• Evolutionary design

These characteristics tell us how a microservices architecture is supposed to
behave. To help achieve these characteristics, many development teams have
adopted the twelve-factor app pattern methodology.2 The twelve factors are a
set of best practices for building modern applications that are optimized for
cloud computing. The twelve factors cover four key areas: deployment, scale,
portability, and architecture:

https://12factor.net/

Amazon Web Services – Running Containerized Microservices on AWS

Page 2

1. Codebase - One codebase tracked in revision control, many deploys

2. Dependencies - Explicitly declare and isolate dependencies

3. Config - Store configurations in the environment

4. Backing services - Treat backing services as attached resources

5. Build, release, run - Strictly separate build and run stages

6. Processes - Execute the app as one or more stateless processes

7. Port binding - Export services via port binding

8. Concurrency - Scale out via the process model

9. Disposability - Maximize robustness with fast startup and graceful
shutdown

10. Dev/prod parity - Keep development, staging, and production as similar
as possible

11. Logs - Treat logs as event streams

12. Admin processes - Run admin/management tasks as one-off processes

After reading this whitepaper, you will know how to map the microservices
design characteristics to twelve-factor app patterns, down to the design pattern
to be implemented.

Componentization Via Services
In a microservices architecture, software is composed of small independent
services that communicate over well-defined APIs. These small components are
divided so that each of them does one thing, and does it well, while cooperating
to deliver a full-featured application. An analogy can be drawn to the Walkman
portable audio cassette players that were popular in the 1980s: batteries bring
power, audio tapes are the medium, headphones deliver output, while the main
tape player takes input through key presses. Using them together plays music.
Similarly, microservices need to be decoupled, and each should focus on one
functionality. Additionally, a microservices architecture allows for replacement
or upgrade. Using the Walkman analogy, if the headphones are worn out, we
can replace them without replacing the tape player. If an order management
service in our store-keeping application is falling behind and performing too
slowly, we can swap it for a more performant, more streamlined component.

Amazon Web Services – Running Containerized Microservices on AWS

Page 3

Such a permutation would not affect or interrupt other microservices in the
system.

Through modularization, microservices offer developers the freedom to design
each feature as a black box. That is, microservices hide the details of their
complexity from other components. Any communication between services
happens by using well-defined APIs to prevent implicit and hidden
dependencies.

Decoupling increases agility by removing the need for one development team to
wait for another team to finish work that the first team depends on. When
containers are used, container images can be swapped for other container
images. These can be either different versions of the same image or different
images altogether—as long as the functionality and boundaries are conserved.

Containerization is an operating-system-level virtualization method for
deploying and running distributed applications without launching an entire
virtual machine (VM) for each application. Container images allow for
modularity in services. They are constructed by building functionality onto a
base image. Developers, operations teams, and IT leaders should agree on base
images that have the security and tooling profile that they want. These images
can then be shared throughout the organization as the initial building block.
Replacing or upgrading these base images is as simple as updating the FROM
field in a Dockerfile and rebuilding, usually through a Continuous
Integration/Continuous Delivery (CI/CD) pipeline.

Here are the key factors from the twelve-factor app pattern methodology that
play a role in componentization:

• Dependencies (explicitly declare and isolate dependencies) –
Dependencies are self-contained within the container and not shared
with other services.

• Disposability (maximize robustness with fast startup and graceful
shutdown) – Disposability is leveraged and satisfied by containers that
are easily pulled from a repository and discarded when they stop
running.

Amazon Web Services – Running Containerized Microservices on AWS

Page 4

• Concurrency (scale out via the process model) – Concurrency consists
of tasks or pods (made of containers working together) that can be auto
scaled in a memory- and CPU-efficient manner.

As each business function is implemented as its own service, the number of
containerized services grows. Each service should have its own integration and
its own deployment pipeline. This increases agility. Since containerized services
are subject to frequent deployments, you need to introduce a coordination layer
that that tracks which containers are running on which hosts. Eventually, you
will want a system that provides the state of containers, the resources available
in a cluster, etc.

Container orchestration and scheduling systems allow you to define
applications, by assembling a set of containers that work together. You can
think of the definition as the blueprint for your applications. You can specify
various parameters, such as which containers to use and which repositories they
belong in, which ports should be opened on the container instance for the
application, and what data volumes should be mounted.

Container management systems allow you to run and maintain a specified
number of instances of a container set—containers that are instantiated
together and collaborate using links or volumes. (Amazon ECS refers to these as
Tasks, Kubernetes refers to them as Pods.) Schedulers maintain the desired
count of container sets for the service. Additionally, the service infrastructure
can be run behind a load balancer to distribute traffic across the container set
associated with the service.

Organized Around Business Capabilities
Defining exactly what constitutes a microservice is very important for
development teams to agree on. What are its boundaries? Is an application a
microservice? Is a shared library a microservice?

Before microservices, system architecture would be organized around
technological capabilities such as user interface, database, and server-side logic.
In a microservices-based approach, as a best practice, each development team
owns the lifecycle of its service all the way to the customer. For example, a
recommendations team might own development, deployment, production
support, and collection of customer feedback.

Amazon Web Services – Running Containerized Microservices on AWS

Page 5

In a microservices-driven organization, small teams act autonomously to build,
deploy, and manage code in production. This allows teams to work at their own
pace to deliver features. Responsibility and accountability foster a culture of
ownership, allowing teams to better align to the goals of their organization and
be more productive.

Microservices are as much as an organizational attitude as a technological
approach. This principle is known as the Conway’s Law:

"Organizations which design systems ... are constrained to produce
designs which are copies of the communication structures of these
organizations." — M. Conway3

When architecture and capabilities are organized around atomic business
functions, dependencies between components are loosely coupled. As long as
there is a communication contract between services and teams, each team can
run at its own speed. With this approach, the stack can be polyglot, meaning
that developers are free to use the programming languages that are optimal for
their component. For example, the user interface can be written in JavaScript or
HTML5, the backend in Java, and data processing can be done in Python.

This means that business functions can drive development decisions.
Organizing around capabilities means that each API team owns the function,
data, and performance completely.

Here are the key factors from the twelve-factor app pattern methodology that
play a role in organizing around capabilities:

• Codebase (one codebase tracked in revision control, many deploys) –
Each microservice owns its own codebase in a separate repository and
throughout the lifecycle of the code change.

• Build, release, run (strictly separate build and run stages) – Each
microservice has its own deployment pipeline and deployment
frequency. This allows the development teams to run microservices at
varying speeds so they can be responsive to customer needs.

• Processes (execute the app as one or more stateless processes) – Each
microservice does one thing and does that one thing really well. The

https://en.wikipedia.org/wiki/Organizational_structure

Amazon Web Services – Running Containerized Microservices on AWS

Page 6

microservice is designed to solve the problem at hand in the best
possible manner.

• Admin processes (run admin/management tasks as one-off
processes) – Each microservice has its own administrative or
management tasks so that it functions as designed.

To achieve a microservices architecture that is organized around business
capabilities, use popular design patterns:

• Command – This pattern helps encapsulate a request as an object,
thereby letting you parameterize clients with different requests, queue or
log requests, and support undoable operations.

• Adapter – This pattern helps match the impedance of an old
component to a new system.

• Singleton –This pattern is for an application that needs one, and only
one, instance of an object.

• Chain of responsibility – This pattern helps avoid coupling the
sender of a request to its receiver by giving more than one object a
chance to handle the request.

• Composite – This pattern helps an application manipulate a
hierarchical collection of "primitive" and "composite" objects. A service
could be a composite of other smaller functions.

Products Not Projects
Companies that have mature applications with successful software adoption and
who want to maintain and expand their user base will likely be more successful
if they focus on the experience for their customers and end users.

To stay healthy, simplify operations, and increase efficiency, your engineering
organization should treat software components as products that can be
iteratively improved and that are constantly evolving. This is in contrast to the
strategy of treating software as a project, which is completed by a team of
engineers and then handed off to an operations team that is responsible for
running it. When software architecture is broken into small microservices, it
becomes possible for each microservice to be an individual product. For internal
microservices, the end user of the product is another team or service. For an
external microservice, the end user is the customer.

Amazon Web Services – Running Containerized Microservices on AWS

Page 7

The core benefit of treating software as a product is improved end-user
experience. When your organization treats its software as an always-improving
product rather than a one-off project, it will produce code that is better
architected for future work. Rather than taking shortcuts that will cause
problems in the future, engineers will plan software so that they can continue to
maintain it in the long run. Software planned in this way is easier to operate,
maintain, and extend. Your customers appreciate such dependable software
because they can trust it.

Additionally, when engineers are responsible for building, delivering, and
running software they gain more visibility into how their software is performing
in real-world scenarios, which accelerates the feedback loop. This makes it
easier to improve the software or fix issues.

Here are the key factors from the twelve-factor app pattern methodology that
play a role in adopting a product mindset for delivering software:

• Build, release, run – Engineers adopt a “devops” culture that allows
them to optimize all three stages.

• Config – Engineers build better configuration management for software
due to their involvement with how that software is used by the customer.

• Dev/prod parity – Software treated as a product can be iteratively
developed in smaller pieces that take less time to complete and deploy
than long-running projects, which allows development and production
to be closer in parity.

Adopting a product mindset is driven by culture and process—two factors that
drive change. The goal of your organization’s engineering team should be to
break down any walls between the engineers who build the code and the
engineers who run the code in production. The following concepts are crucial:

• Automated provisioning – Operations should be automated rather
than manual. This increases velocity as well as integrates engineering
and operations.

• Self-service – Engineers should be able to configure and provision
their own dependencies. This is enabled by containerized environments
that allow engineers to build their own container that has anything they
require.

Amazon Web Services – Running Containerized Microservices on AWS

Page 8

• Continuous Integration – Engineers should check in code frequently
so that incremental improvements are available for review and testing as
quickly as possible.

• Continuous Build and Delivery – The process of building code
that’s been checked in and delivering it to production should be
automated so that engineers can release code without manual
intervention.

Containerized microservices help engineering organizations implement these
best practice patterns by creating a standardized format for software delivery
that allows automation to be built easily and used across a variety of different
environments, including local, quality assurance, and production.

Smart Endpoints and Dumb Pipes
As your engineering organization transitions from building monolithic
architectures to building microservices architectures, it will need to understand
how to enable communications between microservices. In a monolith, the
various components are all in the same process. In a microservices
environment, components are separated by hard boundaries. At scale, a
microservices environment will often have the various components distributed
across a cluster of servers so that they are not even necessarily collocated on the
same server.

This means there are two primary forms of communication between services:

• Request/Response – One service explicitly invokes another service by
making a request to either store data in it or retrieve data from it. For
example, when a new user creates an account, the user service makes a
request to the billing service to pass off the billing address from the
user’s profile so that that billing service can store it.

• Publish/Subscribe – Event-based architecture where one service
implicitly invokes another service that was watching for an event. For
example, when a new user creates an account, the user service publishes
this new user signup event and the email service that was watching for it
is triggered to email the user asking them to verify their email.

One architectural pitfall that generally leads to issues later on is attempting to
solve communication requirements by building your own complex enterprise

Amazon Web Services – Running Containerized Microservices on AWS

Page 9

service bus for routing messages between microservices. It is much better to use
a message broker such as Kafka, or Amazon Simple Notification Service
(Amazon SNS) and Amazon Simple Queue Service (Amazon SQS).
Microservices architectures favor these tools because they enable a
decentralized approach in which the endpoints that produce and consume
messages are smart, but the pipe between the endpoints is dumb. In other
words, concentrate the logic in the containers and refrain from leveraging (and
coupling to) sophisticated buses and messaging services.

The core benefit of building smart endpoints and dumb pipes is the ability to
decentralize the architecture, particularly when it comes to how endpoints are
maintained, updated, and extended. One goal of microservices is to enable
parallel work on different edges of the architecture that will not conflict with
each other. Building dumb pipes enables each microservice to encapsulate its
own logic for formatting its outgoing responses or supplementing its incoming
requests.

Here are the key factors from the twelve-factor app pattern methodology that
play a role in building smart endpoints and dumb pipes:

• Port Binding – Services bind to a port to watch for incoming requests
and send requests to the port of another service. The pipe in between is
just a dumb network protocol such as HTTP.

• Backing services – Dumb pipes allow a background microservice to
be attached to another microservice in the same way that you attach a
database.

• Concurrency – A properly designed communication pipeline between
microservices allows multiple microservices to work concurrently. For
example, several observer microservices may respond and begin work in
parallel in response to a single event produced by another microservice.

Decentralized Governance
As your organization grows and establishes more code-driven business
processes, one challenge it could face is the necessity to scale the engineering
team and enable it to work efficiently in parallel on a large and diverse
codebase. Additionally, your engineering organization will want to solve
problems using the best available tools.

Amazon Web Services – Running Containerized Microservices on AWS

Page 10

Decentralized governance is an approach that works well alongside
microservices to enable engineering organizations to tackle this challenge.
Traffic lights are a great example of decentralized governance. City traffic lights
may be timed individually or in small groups, or they may react to sensors in the
pavement. However, for the city as a whole, there is no need for a “master”
traffic control center in order to keep cars moving. Separately implemented
local optimizations work together to provide a city-wide solution. Decentralized
governance helps remove potential bottlenecks that would prevent engineers
from being able to develop the best code to solve business problems.

When a team kicks off its first greenfield project it is generally just a small team
of a few people working together on a common codebase. After the greenfield
project has been completed, the business will quickly discover opportunities to
expand on their first version. Customer feedback generates ideas for new
features to add and ways to expand the functionality of existing features. During
this phase, engineers will start growing the codebase and your organization will
start dividing the engineering organization into service-focused teams.

Decentralized governance means that each team can use its expertise to choose
the best tools to solve their specific problem. Forcing all teams to use the same
database, or the same runtime language, isn’t reasonable because the problems
they’re solving aren’t uniform. However, decentralized governance is not
without boundaries. It is helpful to use standards throughout the organization,
such as a standard build and code review process because this helps each team
continue to function together.

Here are the key factors from the twelve-factor app pattern methodology that
play a role in enabling decentralized governance:

• Dependencies – Decentralized governance allows teams to choose
their own dependencies, so dependency isolation is critical to make this
work properly.

• Build, release, run – Decentralized governance should allow teams
with different build processes to use their own toolchains, yet should
allow releasing and running the code to be seamless, even with differing
underlying build tools.

• Backing services – If each consumed resource is treated as if it was a
third-party service, then decentralized governance allows the

Amazon Web Services – Running Containerized Microservices on AWS

Page 11

microservice resources to be refactored or developed in different ways,
as long as they obey an external contract for communication with other
services.

Centralized governance was favored in the past because it was hard to efficiently
deploy a polyglot application. Polyglot applications need different build
mechanisms for each language and an underlying infrastructure that can run
multiple languages and frameworks. Polyglot architectures had varying
dependencies, which could sometimes have conflicts.

Containers solve these problems by allowing the deliverable for each individual
team to be a common format: a Docker image that contains their component.
The contents of the container can be any type of runtime written in any
language. However, the build process will be uniform because all containers are
built using the common Dockerfile format. In addition, all containers can be
deployed the same way and launched on any instance since they carry their own
runtime and dependencies with them.

An engineering organization that chooses to employ decentralized governance
and to use containers to ship and deploy this polyglot architecture will see that
their engineering team is able to build performant code and iterate more
quickly.

Decentralized Data Management
Monolithic architectures often use a shared database, which can be a single data
store for the whole application or many applications. This leads to complexities
in changing schemas, upgrades, downtime, and dealing with backward
compatibility risks. A service-based approach mandates that each service get its
own data storage and doesn’t share that data directly with anybody else.

All data-bound communication should be enabled via services that encompass
the data. As a result, each service team chooses the most optimal data store type
and schema for their application. The choice of the database type is the
responsibility of the service teams. It is an example of decentralized decision-
making with no central group enforcing standards apart from minimal guidance
on connectivity. AWS offers many fully managed storage services, such as object
store, key-value store, file store, block store, or traditional database. You have
many options, including Amazon Simple Storage Service (Amazon S3), Amazon

Amazon Web Services – Running Containerized Microservices on AWS

Page 12

DynamoDB, Amazon Relational Database Service (Amazon RDS), and Amazon
Elastic Block Store (Amazon EBS).

Decentralized data management enhances application design by allowing the
best data store for the job to be used. This also removes the arduous task of a
shared database upgrade, which could be weekends-worth of downtime and
work, if all goes well. Since each service team owns its own data, its decision
making becomes more independent. The teams can be self-composed and
follow their own development paradigm.

A secondary benefit of decentralized data management is the disposability and
fault tolerance of the stack. If a particular data store is unavailable, the complete
application stack does not become unresponsive. Instead, the application goes
into a degraded state, losing some capabilities while still servicing requests. This
enables the application to be fault tolerant by design.

Here are the key factors from the twelve-factor app pattern methodology that
play a role in organizing around capabilities:

• Disposability (maximize robustness with fast startup and graceful
shutdown) – The services should be robust and not dependent on
externalities. This principle further allows for the services to run in a
limited capacity if one or more components fail.

• Backing services (treat backing services as attached resources) – A
backing service is any service that the app consumes over the network
such as data stores, messaging systems, etc. Typically, backing services
are managed by operations. The app should make no distinction
between a local and an external service.

• Admin processes (run admin/management tasks as one-off
processes) – The processes required to do the app’s regular business, for
example, running database migrations. Admin processes should be run
in a similar manner, irrespective of environments.

To achieve a microservices architecture with decoupled data management,
popular design patterns can be used:

• Controller – Helps direct the request to the appropriate data store
using the appropriate mechanism.

Amazon Web Services – Running Containerized Microservices on AWS

Page 13

• Proxy – Helps provide a surrogate or placeholder for another object to
control access to it.

• Visitor – Helps represent an operation to be performed on the
elements of an object structure.

• Interpreter – Helps map a service to data store semantics.

• Observer – Helps define a one-to-many dependency between objects
so that when one object changes state, all of its dependents are notified
and updated automatically.

• Decorator – Helps attach additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to sub-classing for
extending functionality.

• Memento – Helps capture and externalize an object's internal state so
that the object can be returned to this state later.

Infrastructure Automation
Contemporary architectures, whether monolithic or based on microservices,
greatly benefit from infrastructure-level automation. With the introduction of
virtual machines, IT teams were able to easily replicate environments and create
templates of operating system states that they wanted. The host operating
system became immutable and disposable. With cloud technology, the idea
bloomed and scale was added to the mix. There is no need to predict the future
when you can simply provision on demand for what you need and pay for what
you use. If an environment isn’t needed anymore, you can shut down the
resources.

One useful mental image for infrastructure-as-code is to picture an architect’s
drawing come to life. Just as a blueprint with walls, windows, and doors can be
transformed into an actual building, so load balancers, databases, or network
equipment can be written in source code and then instantiated.

Microservices not only need disposable infrastructure-as-code, they also need to
be built, tested, and deployed automatically. Continuous integration and
continuous delivery are important for monoliths, but they are indispensable for
microservices. Each service needs its own pipeline, one that can accommodate
the various and diverse technology choices made by the team.

Amazon Web Services – Running Containerized Microservices on AWS

Page 14

An automated infrastructure provides repeatability for quickly setting up
environments. These environments can each be dedicated to a single purpose:
development, integration, user acceptance testing (UAT) or performance
testing, and production. Infrastructure that is described as code and then
instantiated can easy be rolled back. This drastically reduces the risk of change
and, in turn, promotes innovation and experiments.

Here are the key factors from the twelve-factor app pattern methodology that
play a role in infrastructure automation:

• Codebase (one codebase tracked in revision control, many deploys) –
Because the infrastructure can be described as code, treat all code
similarly and keep it in the service repository.

• Config (store configurations in the environment) – The environment
should hold and share its own specificities.

• Build, release, run (strictly separate build and run stages) – One
environment for each purpose.

• Disposability (maximize robustness with fast startup and graceful
shutdown) – This factor transcends the process layer and bleeds into
such downstream layers as containers, virtual machines, and virtual
private cloud.

• Dev/prod parity – Keep development, staging, and production as
similar as possible.

Successful applications use some form of infrastructure-as-code. Resources
such as databases, container clusters, and load balancers can be instantiated
from description.

To wrap the application with a CI/CD pipeline, you should choose a code
repository, an integration pipeline, an artifact-building solution, and a
mechanism for deploying these artifacts. A microservice should do one thing
and do it well. This implies that when you build a full application, there will
potentially be a large number of services. Each of these need their own
integration and deployment pipeline. Keeping infrastructure automation in
mind, architects who face this challenge of proliferating services will be able to
find common solutions and replicate pipelines that have made a particular
service successful.

Amazon Web Services – Running Containerized Microservices on AWS

Page 15

Ultimately, the goal is to allow developers to push code updates and have the
updated application sent to multiple environments in minutes. There are many
ways to successfully deploy in phases, including the blue/green and canary
methods. With the blue/green deployment, two environments live side by side,
with one of them running a newer version of the application. Traffic is sent to
the older version until a switch happens that routes all traffic to the new
environment. You can see an example of this happening in this reference
architecture:4

Figure 1: Blue/green deployment

In this case, we use a switch of target groups behind a load balancer in order to
redirect traffic from the old to the new resources. Another way to achieve this is
to use services fronted by two load balancers and operate the switch at the DNS
level.

Design for Failure
“Everything fails all the time.” – Werner Vogels

This adage is not any less true in the container world than it is for the cloud.
Achieving high availability is a top priority for workloads, but remains an
arduous undertaking for development teams. Modern applications running in
containers should not be tasked with managing the underlying layers, from
physical infrastructure like electricity sources or environmental controls all the

https://github.com/awslabs/ecs-blue-green-deployment
https://github.com/awslabs/ecs-blue-green-deployment

Amazon Web Services – Running Containerized Microservices on AWS

Page 16

way to the stability of the underlying operating system. If a set of containers
fails while tasked with delivering a service, these containers should be re-
instantiated automatically and with no delay. Similarly, as microservices
interact with each other over the network more than they do locally and
synchronously, connections need to be monitored and managed. Latency and
timeouts should be assumed and gracefully handled. More generally,
microservices need to apply the same error retries and exponential backoff as
advised with applications running in a networked environment.5

Designing for failure also means testing the design and watching services cope
with deteriorating conditions. Not all technology departments need to apply this
principle to the extent that Netflix does,6, 7 but we encourage you to test these
mechanisms often.

Designing for failure yields a self-healing infrastructure that acts with the
maturity that is expected of recent workloads. Preventing emergency calls
guarantees a base level of satisfaction for the service-owning team. This also
removes a level of stress that can otherwise grow into accelerated attrition.
Designing for failure will deliver greater uptime for your products. It can shield
a company from outages that could erode customer trust.

Here are the key factors from the twelve-factor app pattern methodology that
play a role in designing for failure:

• Disposability (maximize robustness with fast startup and graceful
shutdown) – Produce lean container images and strive for processes that
can start and stop in a matter of seconds.

• Logs (treat logs as event streams) – If part of a system fails,
troubleshooting is necessary. Ensure that material for forensics exists.

• Dev/prod parity – Keep development, staging, and production as
similar as possible.

We recommend that container hosts be part of a self-healing group. Ideally,
container management systems are aware of different data centers and the
microservices that span across them, mitigating possible events at the physical
level.

Amazon Web Services – Running Containerized Microservices on AWS

Page 17

Containers offer an abstraction from operating system management. You can
treat container instances as immutable servers. Containers will behave
identically on a developer’s laptop or on a fleet of virtual machines in the cloud.

One very useful container pattern for hardening an application’s resiliency is the
circuit breaker. In this approach, an application container is proxied by a
container in charge of monitoring connection attempts from the application
container. If connections are successful, the circuit breaker container remains in
closed status, letting communication happen. When connections start failing,
the circuit breaker logic triggers. If a pre-defined threshold for failure/success
ratio is breached, the container enters an open status that prevents more
connections. This mechanism offers a predictable and clean breaking point, a
departure from partially failing situations that can render recovery difficult. The
application container can move on and switch to a backup service or enter a
degraded state.

Modern container management services allow developers to retrieve near real-
time, event-driven updates on the state of containers. Docker supports multiple
logging drivers (list as of Docker v17.06): 8

Driver Description

none No logs will be available for the container and Docker logs will not return any
output.

json-file The logs are formatted as JSON. The default logging driver for Docker.

syslog Writes logging messages to the syslog facility. The syslog daemon must be
running on the host machine.

journald Writes log messages to journald. The journald daemon must be running on the
host machine.

gelf Writes log messages to a Graylog Extended Log Format (GELF) endpoint such as
Graylog or Logstash.

fluentd Writes log messages to fluentd (forward input). The fluentd daemon must be
running on the host machine.

awslogs Writes log messages to Amazon CloudWatch Logs.

splunk Writes log messages to splunk using the HTTP Event Collector.

etwlogs Writes log messages as Event Tracing for Windows (ETW) events. Only available
on Windows platforms.

gcplogs Writes log messages to Google Cloud Platform (GCP) Logging.

Amazon Web Services – Running Containerized Microservices on AWS

Page 18

Sending these logs to the appropriate destination becomes as easy as specifying
it in a key/value manner. You can then define appropriate metrics and alarms in
your monitoring solution. Another way to collect telemetry and troubleshooting
material from containers is to link a logging container to the application
container in a pattern generically referred to as sidecar. More specifically, in the
case of a container working to standardize and normalize the output, the pattern
is known as an adapter.

Containers can also be leveraged to ensure that various environments are as
similar as possible. Infrastructure-as-code can be used to turn infrastructure
into templates and easily replicate one footprint.

Evolutionary Design
In modern systems architecture design, you need to assume that you don’t have
all the requirements up-front. As a result, having a detailed design phase at the
beginning of a project becomes impractical. The services have to evolve through
various iterations of the software. As services are consumed there are learnings
from real-world usage that help evolve their functionality.

An example of this could be a silent, in-place software update on a device. While
the feature is rolled out, an alpha/beta testing strategy can be used to
understand the behavior in real-time. The feature can be then rolled out more
broadly or rolled back and worked on using the feedback gained.

Using deployment techniques such as a canary release,9 a new feature can be
tested in an accelerated fashion against its target audience. This provides early
feedback to the development team.

As a result of the evolutionary design principle, a service team can build the
minimum viable set of features needed to stand up the stack and roll it out to
users. The development team doesn’t need to cover edge cases to roll out
features. Instead, the team can focus on the needed pieces and evolve the design
as customer feedback comes in. At a later stage, the team can decide to refactor
after they feel confident that they have enough feedback.

Here are the key factors from the twelve-factor app pattern methodology that
play a role in infrastructure automation:

Amazon Web Services – Running Containerized Microservices on AWS

Page 19

• Codebase (one codebase tracked in revision control, many deploys) –
Helps evolve features faster since new feedback can be quickly
incorporated.

• Dependencies (explicitly declare and isolate dependencies) – Enables
quick iterations of the design since features are tightly coupled with
externalities.

• Configuration (store configurations in the environment) – Everything
that is likely to vary between deploys (staging, production, developer
environments, etc.). Config varies substantially across deploys, code
does not. With configurations stored outside code, the design can evolve
irrespective of the environment.

• Build, release, run (strictly separate build and run stages) – Help roll
out new features using various deployment techniques. Each release has
a specific ID and can be used to gain design efficiency and user feedback.

The following software design patterns can be used to achieve an evolutionary
design:

• Sidecar extends and enhances the main service.

• Ambassador creates helper services that send network requests on
behalf of a consumer service or application.

• Chain provides a defined order of starting and stopping containers.

• Proxy provides a surrogate or placeholder for another object to control
access to it.

• Strategy defines a family of algorithms, encapsulates each one, and
makes them interchangeable. Strategy lets the algorithm vary
independently from the clients that use it.

• Iterator provides a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

Containers provide additional tools to evolve design at a faster rater with image
layers.

As the design evolves, each image layer can be added, keeping the integrity of
the unaffected layers. Using Docker, an image layer is a change to an image, or
an intermediate image. Every command (FROM, RUN, COPY, etc.) in the

https://12factor.net/codebase

Amazon Web Services – Running Containerized Microservices on AWS

Page 20

Dockerfile causes the previous image to change, thus creating a new layer.
Docker will build only the layer that was changed and the ones after that. This is
called layer caching. Using layer caching deployment times can be reduced.

Deployment strategies such as a Canary release provide added agility to evolve
design based on user feedback. Canary release is a technique that’s used to
reduce the risk inherent in a new software version release. In a canary release,
the new software is slowly rolled out to a small subset of users before it’s rolled
out to the entire infrastructure and made available to everybody. In the diagram
that follows, a canary release can easily be implemented with containers using
AWS primitives. As a container announces its health via a health check API, the
canary directs more traffic to it. The state of the canary and the execution is
maintained -using Amazon DynamoDB, Amazon Route 53, Amazon
CloudWatch, Amazon EC2 Container Service (Amazon ECS), and AWS Step
Functions.

Figure 2: Canary deployment with containers

Finally, usage monitoring mechanisms ensure that development teams can
evolve the design as the usage patterns change with variables.

Amazon Web Services – Running Containerized Microservices on AWS

Page 21

Conclusion
Microservices can be designed using the twelve-factor app pattern methodology
and software design patterns enable you to achieve this easily. These software
design patterns are well known. If applied in the right context, they can enable
the design benefits of microservices. AWS provides a wide range of primitives
that can be used to enable containerized microservices.

Contributors
The following individuals contributed to this document:

• Asif Khan, Technical Business Development Manager, Amazon Web
Services

• Pierre Steckmeyer, Solutions Architect, Amazon Web Service

• Nathan Peck, Developer Advocate, Amazon Web Services

1 https://martinfowler.com/articles/microservices.html

2 https://12factor.net/

3 https://en.wikipedia.org/wiki/Conway's_law

4 https://github.com/awslabs/ecs-blue-green-deployment

5 https://docs.aws.amazon.com/general/latest/gr/api-retries.html

6 https://github.com/netflix/chaosmonkey

7 https://github.com/Netflix/SimianArmy

8 https://docs.docker.com/engine/admin/logging/overview/

9 Canary deployment is a technique to reduce the risk of introducing a new
software version in production by slowly rolling out the change to a small
subset of users before rolling it out to the entire infrastructure and making it
available to everybody. See
https://martinfowler.com/bliki/CanaryRelease.html

Notes

https://martinfowler.com/articles/microservices.html
https://12factor.net/
https://en.wikipedia.org/wiki/Conway's_law
https://github.com/awslabs/ecs-blue-green-deployment
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://github.com/netflix/chaosmonkey
https://github.com/Netflix/SimianArmy
https://docs.docker.com/engine/admin/logging/overview/
https://martinfowler.com/bliki/CanaryRelease.html

	Abstract
	Introduction
	Componentization Via Services
	Organized Around Business Capabilities
	Products Not Projects
	Smart Endpoints and Dumb Pipes
	Decentralized Governance
	Decentralized Data Management
	Infrastructure Automation
	Design for Failure
	Evolutionary Design
	Conclusion
	Contributors

