
Microservices on AWS
AWS Whitepaper

Microservices on AWS AWS Whitepaper

Microservices on AWS: AWS Whitepaper
Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Microservices on AWS AWS Whitepaper

Table of Contents
Microservices on AWS 1

Abstract ... 1
Introduction 1

Characteristics of Microservices 2
Benefits of Microservices 3

Agility ... 3
Innovation 3
Quality ... 4
Scalability ... 4
Availability ... 4

Challenges of Microservices 5
Architectural Complexity ... 5
Operational Complexity ... 5

Microservices and the Cloud 7
Simple Microservices Architecture on AWS 8

User Interface 8
Microservices 9

Containers ... 9
Data Store 10

Reducing Operational Complexity ... 12
API Implementation 12
Serverless Microservices 13
Deploying Lambda-Based Applications 14

Distributed Systems Components 15
Service Discovery 15

Client-Side Service Discovery 15
Application Load Balancer-Based Service Discovery 15
DNS-Based Service Discovery 16
Service Discovery Using Amazon ECS Event Stream 17
Service Discovery Using Configuration Management 17
Service Discovery Using Key Value Store 18
Third-party software 18

Distributed Data Management 18
Asynchronous Communication and Lightweight Messaging 20

REST-based Communication 20
Asynchronous Messaging 21
Orchestration and State Management 21

Distributed Monitoring 23
Monitoring 23
Centralizing Logs 24
Distributed Tracing 24
Options for Log Analysis on AWS 25

Chattiness 28
Protocols ... 28
Caching 28

Auditing 28
Audit Trail .. 28
Events and Real-Time Actions 29
Resource Inventory and Change Management 30

Conclusion 32
Resources 33
Document Details ... 34

Contributors ... 34
.... 34

iii

Microservices on AWS AWS Whitepaper

AWS Glossary 35

iv

Microservices on AWS AWS Whitepaper
Abstract

Microservices on AWS
Publication date: September 2017 (Document Details (p. 34))

Abstract
Microservices are an architectural and organizational approach to software development designed
to speed up deployment cycles, foster innovation and ownership, and improve maintainability and
scalability of software applications. This approach includes scaling organizations that deliver software
and services. Using a microservices approach, software is composed of small independent services that
communicate over well-defined APIs. These services are owned by small self-contained teams. In this
whitepaper, we summarize the common characteristics of microservices, talk about the main challenges
of building microservices, and describe how product teams can leverage Amazon Web Services (AWS) to
overcome those challenges.

Introduction
For the last several years, microservices have been an important trend in IT architecture. Microservices
architectures are not a completely new approach to software engineering, but rather they are a
collection and combination of successful and proven concepts such as agile software development,
service- oriented architectures, API-first design, and Continuous Delivery (CD). In many cases, design
patterns of the Twelve-Factor App are leveraged for microservices.

1

https://12factor.net/

Microservices on AWS AWS Whitepaper

Characteristics of Microservices
Microservices includes so many concepts that it is challenging to define it precisely. However, all
microservices architectures share some common characteristics, as the following figure illustrates:

• Decentralized – Microservices architectures are distributed systems with decentralized data
management. They don’t rely on a unifying schema in a central database. Each microservice has
its own view on data models. Microservices are also decentralized in the way they are developed,
deployed, managed, and operated.

• Independent – Different components in a microservices architecture can be changed, upgraded, or
replaced independently without affecting the functioning of other components. Similarly, the teams
responsible for different microservices are enabled to act independently from each other.

• Do one thing well – Each microservice component is designed for a set of capabilities and focuses on
a specific domain. If developers contribute so much code to a particular component of a service that
the component reaches a certain level of complexity, then the service could be split into two or more
services.

• Polyglot – Microservices architectures don’t follow a “one size fits all” approach. Teams have the
freedom to choose the best tool for their specific problems. As a consequence, microservices
architectures take a heterogeneous approach to operating systems, programming languages, data
stores, and tools. This approach is called polyglot persistence and programming.

• Black box – Individual microservice components are designed as black boxes, that is, they hide the
details of their complexity from other components. Any communication between services happens via
well- defined APIs to prevent implicit and hidden dependencies.

• You build it; you run it – Typically, the team responsible for building a service is also responsible
for operating and maintaining it in production. This principle is also known as DevOps. DevOps also
helps bring developers into close contact with the actual users of their software and improves their
understanding of the customers’ needs and expectations. The fact that DevOps is a key organizational
principle for microservices shouldn’t be underestimated because according to Conway’s law, system
design is largely influenced by the organizational structure of the teams that build the system.

2

https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/Conway%27s_law

Microservices on AWS AWS Whitepaper
Agility

Benefits of Microservices

Many AWS customers adopt microservices to address limitations and challenges with agility and
scalability that they experience in traditional monolithic deployments. Let’s look at the main drivers for
choosing a microservices architecture.

Agility
Microservices foster an organization of small independent teams that take ownership of their services.
Teams act within a small and well-understood bounded context, and they are empowered to work
independently and quickly, thus shortening cycle times. You benefit significantly from the aggregate
throughput of the organization.

The following figure illustrates two types of deployment structures: many small independent teams
working on many deployments versus a single large team working on a monolithic deployment.

Innovation
The fact that small teams can act autonomously and choose the appropriate technologies, frameworks,
and tools for their domains is an important driver for innovation. Responsibility and accountability foster
a culture of ownership for services.

Establishing a DevOps culture by merging development and operational skills in the same group
eliminates possible frictions and contradicting goals. Agile processes no longer stop when it comes to
deployment. Instead, the complete application life-cycle management processes—from committing to
running code—can be automated as a Continuous Delivery process. It becomes easy to test new ideas
quickly and to roll back in case something doesn’t work. The low cost of failure creates a culture of
change and innovation.

3

Microservices on AWS AWS Whitepaper
Quality

Quality
Organizing software engineering around microservices can also improve the quality of code. The benefits
of dividing software into small and well-defined modules are similar to those of object-oriented software
engineering: improved reusability, composability, and maintainability of code.

Scalability
Fine-grained decoupling of microservices is a best practice for building large- scale systems. It’s a
prerequisite for performance optimization since it allows choosing the appropriate and optimal
technologies for a specific service. Each service can be implemented with the appropriate programming
languages and frameworks, leverage the optimal data persistence solution, and be fine-tuned with the
best performing service configurations.

Properly decoupled services can be scaled horizontally and independently from each other. Vertical
scaling, which is running the same software on bigger machines, is limited by the capacity of individual
servers and can incur downtime during the scaling process. Horizontal scaling, which is adding more
servers to the existing pool, is highly dynamic and doesn’t run into limitations of individual servers. The
scaling process can be completely automated.

Furthermore, resiliency of the application can be improved because failing components can be easily and
automatically replaced.

Availability
Microservices architectures make it easier to implement failure isolation. Techniques such as health-
checking, caching, bulkheads, or circuit breakers allow you to reduce the blast radius of a failing
component and to improve the overall availability of a given application.

4

Microservices on AWS AWS Whitepaper
Architectural Complexity

Challenges of Microservices
Despite all the advantages that we have discussed, you should be aware that—as with all architectural
styles—a microservices approach is not without its challenges. This section discusses some of the
problems and trade-offs of the microservices approach.

• Distributed Systems – Microservices are effectively a distributed system, which presents a set of
problems often referred to as the Fallacies of Distributed Computing – Programmers new to distributed
systems often assume the network to be reliable, the latency zero, and the bandwidth to be infinite.

• Migration – The migration process from a monolithic architecture to a microservices architecture
requires you to determine the right boundaries for microservices. This process is complex and requires
you to disentangle code dependencies going down to the database layer.

• Versions – Versioning for microservices can be challenging. There are several best practices and
patterns, for example, routing-based versioning, which can be applied at the API level.

• Organization – Microservices architecture and organization architecture go hand in hand.
Organizational problems include how to: build an effective team structure, transform the organization
to follow a DevOps approach, and streamline communication between development and operations.

In this whitepaper, we mainly focus on the architectural and operational challenges of a move to
microservices. To learn more about DevOps and AWS, see https://aws.amazon.com/devops/.

Architectural Complexity
In monolithic architectures, the complexity and the number of dependencies reside inside the code base,
while in microservices architectures complexity moves to the interactions of the individual services that
implement a specific domain, as shown in the following figure.

Architectural challenges like dealing with asynchronous communication, cascading failures, data
consistency problems, discovery, and authentication of services are critical to successful microservices
implementation, and we’ll address them in this paper.

Operational Complexity
With a microservices approach, you no longer run a single service, but dozens or even hundreds of
services. This raises several questions:

5

https://aws.amazon.com/devops/

Microservices on AWS AWS Whitepaper
Operational Complexity

• How to provision resources in a scalable and cost-efficient way?
• How to operate dozens or hundreds of microservice components effectively without multiplying

efforts?
• How to avoid reinventing the wheel across different teams and duplicating tools and processes?
• How to keep track of hundreds of pipelines of code deployments and their interdependencies?
• How to monitor overall system health and identify potential hotspots early on?
• How to track and debug interactions across the whole system?
• How to analyze high amounts of log data in a distributed application that quickly grows and scales

beyond anticipated demand?
• How to deal with a lack of standards and heterogeneous environments that include different

technologies and people with differing skill sets?
• How to value diversity without locking into a multiplicity of different technologies that need to be

maintained and upgraded over time?
• How to deal with versioning?
• How to ensure that services are still in use especially if the usage pattern isn’t consistent?
• How to ensure the proper level of decoupling and communication between services?

6

Microservices on AWS AWS Whitepaper

Microservices and the Cloud
AWS has a number of offerings that address the most important challenges of microservices
architectures:

• On-demand resources – AWS resources are available and rapidly provisioned when needed. Compared
to traditional infrastructures, there is no practical limit on resources. Different environments and
versions of services can temporarily or persistently co-exist. There is no need for difficult forecasting
and guessing capacity. On-demand resources address the challenge of provisioning and scaling
resources in a cost- efficient way.

• Experiment with low cost and risk – The fact that you only pay for what you use dramatically reduces
the cost of experimenting with new ideas. New features or services can be rolled out easily and shut
down again if they aren’t successful. Reducing cost and risk for experimenting with new ideas is a key
element of driving innovation. This perfectly fits with the goal of microservices to achieve high agility.

• Programmability – AWS services come with an API, Command Line Interface (CLI), and an SDK for
different programming languages. Servers or even complete architectures can be programmatically
cloned, shut down, scaled, and monitored. Additionally, in case of failure, they can heal themselves
automatically. Standardization and automation are keys to building speed, consistency, repeatability,
and scalability. You are empowered to summon the resources you need through code and build-
dedicated tools to minimize operational efforts for running microservices.

• Infrastructure as code – In addition to using programmatic scripts to provision and manage an
infrastructure, AWS allows you to describe the whole infrastructure as code and manage it in a version
control system–just as you do for application code. As a consequence, any specific version of an
infrastructure can be redeployed at any time. You can compare the quality and performance of a
specific infrastructure version with a specific application version and ensure that they are in sync.
Rollbacks are no longer limited to the application—they can include the whole infrastructure.

• Continuous Delivery – The programmability of the cloud allows automation of the provisioning and
deployment process. Continuous Integration within the development part of the application lifecycle
can be extended to the operations part of the lifecycle. This enables the adoption of Continuous
Deployment and Delivery. Continuous delivery addresses the challenges of operational complexity
that occur when you manage multiple application life cycles in parallel.

• Managed services – A key benefit of cloud infrastructures is managed services. Managed services
relieve you of the heavy lifting of provisioning virtual servers, installing, configuring and optimizing
software, dealing with scaling and resilience, and doing reliable backups. System characteristics and
features such as monitoring, security, logging, scalability, and availability are already built into those
services. Managed services are a major element you can use to reduce the operational complexity of
running microservices architectures.

• Service orientation – AWS itself follows a service-oriented structure. Each AWS service focuses on
solving a well-defined problem and communicates with other services using clearly defined APIs. You
can put together complex infrastructure solutions by combining those service primitives like LEGO
blocks. This approach prevents reinventing the wheel and the duplication of processes.

• Polyglot – AWS provides a large choice of different storage and database technologies. Many popular
operating systems that run on Amazon Elastic Compute Cloud (Amazon EC2) are available on the AWS
Marketplace. In addition AWS supports a large variety of programming languages with SDKs. This
enables you to use the most appropriate solution for your specific problem.

7

https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/devops/continuous-delivery/

Microservices on AWS AWS Whitepaper
User Interface

Simple Microservices Architecture on
AWS

In the past, typical monolithic applications were built using different layers, for example, a user interface
(UI) layer, a business layer, and a persistence layer. A central idea of a microservices architecture is to
split functionalities into cohesive “verticals”—not by technological layers, but by implementing a specific
domain. The following figure depicts a reference architecture for a typical microservices application on
AWS.

User Interface
Modern web applications often use JavaScript frameworks to implement a single-page application that
communicates with a RESTful API. Static web content can be served using Amazon Simple Storage
Service (Amazon S3) and Amazon CloudFront.

Note
CloudFront is a global content delivery network (CDN) service that accelerates delivery of your
websites, APIs, video content, and other web assets.

Since clients of a microservice are served from the closest edge location and get responses either
from a cache or a proxy server with optimized connections to the origin, latencies can be significantly

8

Microservices on AWS AWS Whitepaper
Microservices

reduced. However, microservices running close to each other don’t benefit from a CDN. In some cases,
this approach might even add more latency. It is a best practice to implement other caching mechanisms
to reduce chattiness and minimize latencies.

Microservices
The API of a microservice is the central entry point for all client requests. The application logic hides
behind a set of programmatic interfaces, typically a RESTful web services API. This API accepts and
processes calls from clients and might implement functionality such as traffic management, request
filtering, routing, caching, and authentication and authorization.

Many AWS customers use the Elastic Load Balancing (ELB) Application Load Balancer together with
Amazon EC2 Container Service (Amazon ECS) and Auto Scaling to implement a microservices application.
The Application Load Balancer routes traffic based on advanced application-level information that
includes the content of the request.

Note
ELB automatically distributes incoming application traffic across multiple Amazon EC2 instances.

The Application Load Balancer distributes incoming requests to Amazon ECS container instances running
the API and the business logic.

Note
Amazon EC2 is a web service that provides secure, resizable compute capacity in the cloud. It is
designed to make web-scale cloud computing easier for developers.
Amazon EC2 Container Service (Amazon ECS) is a highly scalable, high performance container
management service that supports Docker containers and allows you to easily run applications
on a managed cluster of Amazon EC2 instances.

Amazon ECS container instances are scaled out and scaled in, depending on the load or the number
of incoming requests. Elastic scaling allows the system to be run in a cost-efficient way and also helps
protect against denial of service attacks.

Note
Auto Scaling helps you maintain application availability and allows you to scale your Amazon
EC2 capacity up or down automatically according to conditions you define.

Containers
A common approach to reducing operational efforts for deployment is container-based deployment.
Container technologies like Docker have increased in popularity in the last few years due to the following
benefits:

• Portability – Container images are consistent and immutable, that is, they behave the same no matter
where they are run (on a developer’s desktop as well as in a production environment).

• Productivity – Containers increase developer productivity by removing cross-service dependencies
and conflicts. Each application component can be broken into different containers running a different
microservice.

• Efficiency – Containers allow the explicit specification of resource requirements (CPU, RAM), which
makes it easy to distribute containers across underlying hosts and significantly improve resource
usage. Containers also have only a light performance overhead compared to virtualized servers and
efficiently share resources on the underlying operating system.

• Control – Containers automatically version your application code and its dependencies. Docker
container images and Amazon ECS task definitions allow you to easily maintain and track versions of a
container, inspect differences between versions, and roll back to previous versions.

9

https://www.docker.com/

Microservices on AWS AWS Whitepaper
Data Store

Amazon ECS eliminates the need to install, operate, and scale your own cluster management
infrastructure. With simple API calls, you can launch and stop Docker-enabled applications, query the
complete state of your cluster, and access many familiar features like security groups, load balancers,
Amazon Elastic Block Store (Amazon EBS) volumes, and AWS Identity and Access Management (IAM)
roles.

After a cluster of EC2 instances is up and running, you can define task definitions and services that
specify which Docker container images to run on the cluster. Container images are stored in and pulled
from container registries, which may exist within or outside your AWS infrastructure. To define how
your applications run on Amazon ECS, you create a task definition in JSON format. This task definition
defines parameters for which container image to run, CPU, memory needed to run the image, how many
containers to run, and strategies for container placement within the cluster. Other parameters include
security, networking, and logging for your containers.

Amazon ECS supports container placement strategies and constraints to customize how Amazon
ECS places and terminates tasks. A task placement constraint is a rule that is considered during task
placement. You can associate attributes, essentially key/value pairs, to your container instances and then
use a constraint to place tasks based on these attributes. For example, you can use constraints to place
certain microservices based on instance type or instance capability, such as GPU-powered instances.

Docker images used in Amazon ECS can be stored in Amazon EC2 Container Registry (Amazon ECR).
Amazon ECR eliminates the need to operate and scale the infrastructure required to power your
container registry.

Note
Amazon EC2 Container Registry (Amazon ECR) is a fully-managed Docker container registry
that makes it easy for developers to store, manage, and deploy Docker container images.
Amazon ECR is integrated with Amazon EC2 Container Service (Amazon ECS), simplifying your
development to production workflow.

Data Store
The data store is used to persist data needed by the microservices. Popular stores for session data are
in-memory caches such as Memcached or Redis. AWS offers both technologies as part of the managed
Amazon ElastiCache service.

Note
Amazon ElastiCache is a web service that makes it easy to deploy, operate, and scale an in-
memory data store or cache in the cloud. The service improves the performance of web
applications by allowing you to retrieve information from fast, managed, in-memory caches,
instead of relying entirely on slower disk-based databases.

Putting a cache between application servers and a database is a common mechanism to alleviate read
load from the database, which, in turn, may allow resources to be used to support more writes. Caches
can also improve latency.

Relational databases are still very popular for storing structured data and business objects. AWS offers
six database engines (Microsoft SQL Server, Oracle, MySQL, MariaDB, PostgreSQL, and Amazon Aurora)
as managed services via Amazon Relational Database Service (Amazon RDS).

Note
Amazon RDS makes it easy to set up, operate, and scale a relational database in the cloud.
It provides cost-efficient and resizable capacity while managing time-consuming database
administration tasks, freeing you to focus on applications and business.

Relational databases, however, are not designed for endless scale, which can make it very hard and time-
intensive to apply techniques to support a high number of queries.

10

Microservices on AWS AWS Whitepaper
Data Store

NoSQL databases have been designed to favor scalability, performance, and availability over the
consistency of relational databases. One important element is that NoSQL databases typically do not
enforce a strict schema. Data is distributed over partitions that can be scaled horizontally and is retrieved
via partition keys.

Since individual microservices are designed to do one thing well, they typically have a simplified data
model that might be well suited to NoSQL persistence. It is important to understand that NoSQL-
databases have different access patterns than relational databases. For example, it is not possible to join
tables. If this is necessary, the logic has to be implemented in the application.

Note
Amazon DynamoDB is a fast and flexible NoSQL database service for all applications that need
consistent, single-digit millisecond latency at any scale.

You can use Amazon DynamoDB to create a database table that can store and retrieve any amount of
data and serve any level of request traffic. DynamoDB automatically spreads the data and traffic for the
table over a sufficient number of servers to handle the request capacity specified by the customer and
the amount of data stored, while maintaining consistent and fast performance.

DynamoDB is designed for scale and performance. In most cases, DynamoDB response times can
be measured in single-digit milliseconds. However, there are certain use cases that require response
times in microseconds. For these use cases, DynamoDB Accelerator (DAX) provides caching capabilities
for accessing eventually consistent data. DAX does all the heavy lifting required to add in- memory
acceleration to your DynamoDB tables, without requiring developers to manage cache invalidation, data
population, or cluster management.

DynamoDB provides an auto scaling feature to dynamically adjust provisioned throughput capacity on
your behalf, in response to actual traffic patterns.

Provisioned throughput is the maximum amount of capacity that an application can consume from a
table or index. When the workload decreases, Application

Auto Scaling decreases the throughput so that you don't pay for unused provisioned capacity.

11

Microservices on AWS AWS Whitepaper
API Implementation

Reducing Operational Complexity

The architecture we have described is already using managed services, but you still have to operate
EC2 instances. We can further reduce the operational efforts needed to run, maintain, and monitor
microservices by using a fully serverless architecture.

API Implementation
Architecting, continuously improving, deploying, monitoring, and maintaining an API can be a time-
consuming task. Sometimes different versions of APIs need to be run to assure backward compatibility of
all APIs for clients. The different stages of the development cycle (development, testing, and production)
further multiply operational efforts.

Access authorization is a critical feature for all APIs, but it is usually complex to build and involves
repetitive work. When an API is published and becomes successful, the next challenge is to manage,
monitor, and monetize the ecosystem of third-party developers utilizing the API.

Other important features and challenges include throttling requests to protect the backend, caching API
responses, request and response transformation, and generating API definitions and documentation with
tools such as Swagger.

Amazon API Gateway addresses those challenges and reduces the operational complexity of creating and
maintaining RESTful APIs.

Note
API Gateway is a fully managed service that makes it easy for developers to create, publish,
maintain, monitor, and secure APIs at any scale.

API Gateway allows you to create your APIs programmatically by importing Swagger definitions by using
the AWS API or by using the AWS Management Console. API Gateway serves as a front door to any web
application running on Amazon EC2, Amazon ECS, AWS Lambda, or on any on-premises environment. In
a nutshell: It allows you to run APIs without managing servers.

The following figure illustrates how API Gateway handles API calls and interacts with other components.
Requests from mobile devices, websites, or other backend services are routed to the closest CloudFront
Point of Presence (PoP) to minimize latency and provide optimum user experience. Additionally,
CloudFront offers Regional Edge Caches. These locations are deployed globally at close proximity
to your viewers. They sit between your origin server and the global edge locations that serve traffic
directly to your viewers. API Gateway first checks if the request is in the cache at either an edge
location or Regional Edge Cache location and, if no cached records are available, then forwards it to the
backend for processing. This only applies to GET requests—all other request methods are automatically
passed through. After the backend has processed the request, API call metrics are logged in Amazon
CloudWatch, and content is returned to the client.

12

Microservices on AWS AWS Whitepaper
Serverless Microservices

Serverless Microservices
“No server is easier to manage than no server”. Getting rid of servers is the ultimate way to eliminate
operational complexity.

Note
AWS Lambda lets you run code without provisioning or managing servers. You pay only for
the compute time you consume – there is no charge when your code is not running. With
Lambda, you can run code for virtually any type of application or backend service—all with zero
administration.

You simply upload your code and let Lambda take care of everything required to run and scale
the execution to meet your actual demand curve with high availability. Lambda supports several
programming languages and can be triggered from other AWS services or be called directly from any
web or mobile application.

Lambda is highly integrated with API Gateway. The possibility of making synchronous calls from API
Gateway to AWS Lambda enables the creation of fully serverless applications and is described in detail in
our documentation.

The following figure shows the architecture of a serverless microservice where the complete service
is built out of managed services. This eliminates the architectural burden of designing for scale and
high availability and eliminates the operational efforts of running and monitoring the microservice’s
underlying infrastructure.

13

Microservices on AWS AWS Whitepaper
Deploying Lambda-Based Applications

Deploying Lambda-Based Applications
You can use AWS CloudFormation to specify, deploy, and configure serverless applications.

Note
CloudFormation is a service that helps you model and set up your AWS resources so that you can
spend less time managing those resources and more time focusing on your applications that run
in AWS.

The AWS Serverless Application Model (AWS SAM) is a convenient way to define serverless applications.
AWS SAM is natively supported by CloudFormation and defines a simplified syntax for expressing
serverless resources. To deploy your application, simply specify the resources you need as part of your
application, along with their associated permissions policies in a CloudFormation template, package your
deployment artifacts, and deploy the template.

14

https://github.com/awslabs/serverless-application-model

Microservices on AWS AWS Whitepaper
Service Discovery

Distributed Systems Components
After looking at how AWS can solve challenges related to individual microservices, we now want to look
at cross-service challenges such as service discovery, data consistency, asynchronous communication, and
distributed monitoring and auditing.

• Service Discovery (p. 15)

• Distributed Data Management (p. 18)

• Asynchronous Communication and Lightweight Messaging (p. 20)

• Distributed Monitoring (p. 23)

• Chattiness (p. 28)

• Auditing (p. 28)

Service Discovery
One of the primary challenges with microservices architectures is allowing services to discover and
interact with each other. The distributed characteristics of microservices architectures not only make
it harder for services to communicate, but they also present challenges, such as checking the health of
those systems and announcing when new applications come online. In addition, you must decide how
and where to store meta-store information, such as configuration data that can be used by applications.
Here we explore several techniques for performing service discovery on AWS for microservices-based
architectures.

Client-Side Service Discovery
The most simplistic approach for connecting different tiers or services is to hardcode the IP address of
the target as part of the configuration of the

communication source. This configuration can be stored in Domain Name System (DNS) or application
configuration and leveraged whenever systems need to communicate with each other. Obviously,
this solution doesn’t work well when your application scales. It isn’t recommended for microservices
architectures due to the dynamic nature of target properties. Every time the target system changes its
properties—regardless of whether it’s the IP address or port information—the source system has to
update the configuration.

Application Load Balancer-Based Service Discovery
One of the advantages of Application Load Balancing is that it provides health checks and automatic
registration/de-registration of backend services in failure cases. The Application Load Balancer also

15

Microservices on AWS AWS Whitepaper
DNS-Based Service Discovery

offers path- and host-based routing approaches. Combining these features with DNS capabilities, it’s
possible to build a simple service discovery solution with minimum efforts and low cost.

You can configure a custom domain name for each microservice and associate the domain name with the
Application Load Balancer’s DNS name using a CNAME entry. The DNS names of the service endpoints
are then published across other applications that need access.

DNS-Based Service Discovery
Amazon Route 53 could be another source for holding service discovery information.

Note
Route 53 is a highly available and scalable cloud DNS web service.

Route 53 provides several features that can be leveraged for service discovery. The private hosted zones
feature allows it to hold DNS record sets for a domain or subdomains and restrict access to specific
virtual private clouds (VPCs). You register IP addresses, hostnames, and port information as service
records (SRV records) for a specific microservice and restrict access to the VPCs of the relevant client
microservices. You can also configure health checks that regularly verify the status of the application and
potentially trigger a failover among resource records.

16

Microservices on AWS AWS Whitepaper
Service Discovery Using Amazon ECS Event Stream

Service Discovery Using Amazon ECS Event Stream
A different approach to implementing Route 53-based service discovery is to leverage the capabilities of
the Amazon ECS event stream feature.

You can use Amazon ECS event stream for CloudWatch events to receive near real-time notifications
regarding the current state of both the container instances within an Amazon ECS cluster and the current
state of all tasks running on those container instances. It is possible to use CloudWatch rules to filter
on specific changes within the ECS cluster (e.g., start, stop) and use that information to update the DNS
entries in Route 53.

Service Discovery Using Configuration Management
Using Configuration Management tools (like Chef, Puppet, or Ansible) is another way to implement
service discovery. Agents running on EC2 instances can register configuration information during server
start. This information can be stored either on hosts or a centralized store along with other configuration
management information.

One of the challenges of using configuration management tools is the frequency of updating health
check information. Configuration of clients must be done thoroughly to retrieve the health of the
application and to propagate updates immediately to prevent stale status information.

The following figure shows a service discovery mechanism using the configuration management system
AWS OpsWorks.

Note
OpsWorks is a configuration management service that uses Chef, an automation platform
that treats server configurations as code. OpsWorks uses Chef to automate how servers
are configured, deployed, and managed across your EC2 instances or on-premises compute
environments.

17

Microservices on AWS AWS Whitepaper
Service Discovery Using Key Value Store

Service Discovery Using Key Value Store
You can also use a key-value store for discovery of microservices. Although it takes longer to build
this approach compared to other approaches, it provides more flexibility and extensibility and doesn’t
encounter DNS caching issues. It also works well with client-side load-balancing techniques such as
Netflix Ribbon. Client-side load balancing can help eliminate bottlenecks and simplify management.

The following figure shows an architecture that leverages Amazon DynamoDB as a key- value store and
Amazon DynamoDB Streams to propagate status changes to other microservices.

Third-party software
A different approach to implementing service discovery is using third-party software like HashiCorp
Consul, etcd, or Netflix Eureka. All three examples are distributed, reliable key-value stores. For
HashiCorp Consul, there is an AWS Quick Start that sets up a flexible, scalable AWS Cloud environment
and launches HashiCorp Consul automatically into a configuration of your choice.

Distributed Data Management
Monolithic applications are typically backed by a large relational database, which defines a single data
model common to all application components. In a microservices approach, such a central database
would prevent the goal of building decentralized and independent components. Each microservice
component should have its own data persistence layer.

Distributed data management, however, raises new challenges. As explained by the CAP Theorem,
distributed microservices architectures inherently trade off consistency for performance and need to
embrace eventual consistency.

18

https://www.consul.io/
https://www.consul.io/
https://github.com/coreos/etcd
https://github.com/Netflix/eureka
https://aws.amazon.com/quickstart/architecture/consul/
https://en.wikipedia.org/wiki/CAP_theorem

Microservices on AWS AWS Whitepaper
Distributed Data Management

Building a centralized store of critical reference data that is curated by master data management tools
and procedures provides a means for microservices to synchronize their critical data and possibly roll
back state. Using AWS Lambda with scheduled Amazon CloudWatch Events you can build a simple
cleanup and deduplication mechanism.

It’s very common for state changes to affect more than a single microservice. In those cases, event
sourcing has proven to be a useful pattern. The core idea behind event sourcing is to represent and
persist every application change as an

event record. Instead of persisting application state, data is stored as a stream of events. Database
transaction logging and version control systems are two well- known examples for event sourcing. Event
sourcing has a couple of benefits: state can be determined and reconstructed for any point in time. It
naturally produces a persistent audit trail and also facilitates debugging.

In the context of microservices architectures, event sourcing enables decoupling different parts of an
application by using a publish/subscribe pattern, and it feeds the same event data into different data
models for separate microservices. Event sourcing is frequently used in conjunction with the CQRS
pattern (Command, Query, Responsibility, Segregation) to decouple read from write workloads and
optimize both for performance, scalability, and security. In traditional data management systems,
commands and queries are run against the same data repository.

The following figure shows how the event sourcing pattern can be implemented on AWS. Amazon
Kinesis Streams serves as the main component of the central event store that captures application
changes as events and persists them on Amazon S3.

Note
Kinesis Streams enables you to build custom applications that process or analyze streaming
data for specialized needs. Kinesis Streams can continuously capture and store terabytes of
data per hour from hundreds of thousands of sources, such as website clickstreams, financial
transactions, social media feeds, IT logs, and location-tracking events.

The following figure depicts three different microservices composed of Amazon API Gateway, Amazon
EC2, and Amazon DynamoDB. The blue arrows indicate the flow of the events: when microservice 1
experiences an event state change, it publishes an event by writing a message into Kinesis Streams. All
microservices run their own Kinesis Streams application on a fleet of EC2 instances that read a copy
of the message, filter it based on relevancy for the microservice, and possibly forward it for further
processing.

19

Microservices on AWS AWS Whitepaper
Asynchronous Communication and Lightweight Messaging

Amazon S3 durably stores all events across all microservices and is the single source of truth when it
comes to debugging, recovering application state, or auditing application changes.

Asynchronous Communication and Lightweight
Messaging

In traditional, monolithic applications communication is rather simple: parts of the application can
communicate with other parts using method calls or an internal event distribution mechanism. If the
same application is implemented using decoupled microservices, the communication between different
parts of the application has to be implemented using network communication.

REST-based Communication
The HTTP/S protocol is the most popular way to implement synchronous communication between
microservices. In most cases, RESTful APIs use HTTP as a transport layer. The REST architectural style
relies on stateless communication, uniform interfaces, and standard methods.

With API Gateway you can create an API that acts as a “front door” for applications to access data,
business logic, or functionality from your backend services, such as workloads running on Amazon EC2
and Amazon ECS, code running on Lambda, or any web application. An API object defined with the API
Gateway service is a group of resources and methods. A resource is a typed

object within the domain of an API and may have associated a data model or relationships to other
resources. Each resource can be configured to respond to one or more methods, that is, standard HTTP
verbs such as GET, POST, or PUT. REST APIs can be deployed to different stages, versioned as well as
cloned to new versions.

API Gateway handles all the tasks involved in accepting and processing up to hundreds of thousands of
concurrent API calls, including traffic management, authorization and access control, monitoring, and API
version management.

20

Microservices on AWS AWS Whitepaper
Asynchronous Messaging

Asynchronous Messaging
An additional pattern to implement communication between microservices is message passing. Services
communicate by exchanging messages via a queue. One major benefit of this communication style is
that it’s not necessary to have a service discovery. Amazon Simple Queue Service (Amazon SQS) and
Amazon Simple Notification Service (Amazon SNS) make it simple to implement this pattern.

Note
Amazon SQS is a fast, reliable, scalable, fully managed queuing service that makes it simple and
cost effective to decouple the components of a cloud application.
Amazon SNS is fully managed notification service that provides developers with a highly
scalable, flexible, and cost-effective capability to publish messages from an application and
immediately deliver them to subscribers or other applications.

Both services work closely together. Amazon SNS allows applications to send messages to multiple
subscribers through a push mechanism. By using Amazon SNS and Amazon SQS together, one message
can be delivered to multiple consumers. The following figure demonstrates the integration of Amazon
SNS and Amazon SQS.

When you subscribe an SQS queue to an SNS topic, you can publish a message to the topic and Amazon
SNS sends a message to the subscribed SQS queue. The message contains subject and message
published to the topic along with metadata information in JSON format.

Orchestration and State Management
The distributed character of microservices makes it challenging to orchestrate workflows with multiple
microservices involved. Developers might be tempted to add orchestration code into their services
directly. This should be avoided as it introduces tighter coupling and makes it harder to quickly replace
individual services.

Note
AWS Step Functions makes it easy to coordinate the components of distributed applications and
microservices using visual workflows.

You can use Step Functions to build applications from individual components that each perform a
discrete function. Step Functions provides a state machine that hides the complexities of service
orchestration, such as error handling and serialization/parallelization. This lets you scale and change
applications quickly while avoiding additional coordination code inside services.

Step Functions is a reliable way to coordinate components and step through the functions of your
application. Step Functions provides a graphical console to arrange and visualize the components of your
application as a series of steps.

This makes it simple to build and run distributed services. Step Functions automatically triggers and
tracks each step and retries when there are errors, so your application executes in order and as expected.
Step Functions logs the state

21

Microservices on AWS AWS Whitepaper
Orchestration and State Management

of each step so when something goes wrong, you can diagnose and debug problems quickly. You can
change and add steps without even writing code to evolve your application and innovate faster.

Step Functions is part of the AWS Serverless Platform and supports orchestration of Lambda functions
as well as applications based on compute resources such as Amazon EC2 and Amazon ECS. The following
figure illustrates that invocations of Lambda functions are pushed directly from Step Functions to AWS
Lambda, whereas workers on Amazon EC2 or Amazon ECS continuously poll for invocations.

Step Functions manages the operations and underlying infrastructure for you to help ensure your
application is available at any scale.

To build workflows Step Functions uses the Amazon States Language.

Workflows can contain sequential or parallel steps as well as branching steps.

The following figure shows an example workflow for a microservices architecture combining sequential
and parallel steps. Invoking such a workflow can be done either through the Step Functions API or with
API Gateway.

22

Microservices on AWS AWS Whitepaper
Distributed Monitoring

Distributed Monitoring
A microservices architecture consists of many different distributed parts that have to be monitored.

Note
CloudWatch is a monitoring service for AWS Cloud resources and the applications you run on
AWS.

You can use CloudWatch to collect and track metrics, centralize and monitor log files, set alarms, and
automatically react to changes in your AWS environment. CloudWatch can monitor AWS resources such
as EC2 instances, DynamoDB tables, and RDS DB instances, as well as custom metrics generated by your
applications and services, and any log files your applications generate.

Monitoring
You can use CloudWatch to gain system-wide visibility into resource utilization, application performance,
and operational health. CloudWatch provides a reliable, scalable, and flexible monitoring solution
that you can start using within minutes. You no longer need to set up, manage, and scale your own
monitoring systems and infrastructure. In a microservices architecture, the capability of monitoring
custom metrics using CloudWatch is an additional benefit because developers can decide which metrics
should be collected for each service. In addition to that, dynamic scaling can be implemented based on
custom metrics.

23

Microservices on AWS AWS Whitepaper
Centralizing Logs

Centralizing Logs
Consistent logging is critical for troubleshooting and identifying issues. Microservices allow teams to
ship many more releases than ever before and encourage engineering teams to run experiments on new
features in production. Understanding customer impact is crucial to improving an application gradually.

Most AWS services already centralize log files. The primary destinations for log files on AWS are
Amazon S3 and Amazon CloudWatch Logs. For applications running on top of EC2 instances a daemon
is available to ship log files to CloudWatch Logs. Lambda functions natively ship their log output
to CloudWatch Logs and Amazon ECS includes support for the awslogs log driver that allows the
centralization of container logs to CloudWatch Logs.

The following figure illustrates the logging capabilities of some of the services. Teams are then able to
search and analyze these logs using tools like Amazon Elasticsearch Service (Amazon ES) and Kibana.
Amazon Athena can be used to run ad-hoc queries against centralized logfiles in Amazon S3.

Distributed Tracing
In many cases, a set of microservices works together to handle a request. Imagine a complex system
consisting of tens of microservices in which an error occurs in one of the services in the call chain. Even if
every microservice is logging properly and logs are consolidated in a central system, it can be very hard
to find all relevant log messages.

Note
AWS X-Ray provides an end-to-end view of requests as they travel through your application and
shows a map of your application’s underlying components.

The central idea behind X-Ray is the use of correlation IDs, which are unique identifiers attached to
all requests and messages related to a specific event chain. The trace ID is added to HTTP requests in
specific tracing headers named X-Amzn-Trace-Id when the request hits the first X-Ray-integrated service
(for example, an Application Load Balancer or API Gateway) and is included in the response. Via the X-
Ray SDK, any microservice can read but can also add or update this header.

AWS X-Ray works with Amazon EC2, Amazon ECS, AWS Lambda, and AWS Elastic Beanstalk. You can use
X-Ray with applications written in Java, Node.js, and .NET that are deployed on these services.

24

Microservices on AWS AWS Whitepaper
Options for Log Analysis on AWS

Options for Log Analysis on AWS
Searching, analyzing, and visualizing log data is an important aspect of understanding distributed
systems. One popular option for analyzing log files is to use Amazon ES together with Kibana.

Note
Amazon ES makes it easy to deploy, operate, and scale Elasticsearch for log analytics,
application monitoring, interactive search, and more.

Amazon ES can be used for full-text search, structured search, analytics, and all three in combination.
Kibana is an open source data visualization plugin for Amazon ES that seamlessly integrates with it.

The following figure demonstrates log analysis with Amazon ES and Kibana. CloudWatch Logs can
be configured to stream log entries to Amazon ES in near real time through a CloudWatch Logs
subscription. Kibana visualizes the data and exposes a convenient search interface to data stores in
Amazon ES. This solution can be used in combination with software like ElastAlert to implement an
alerting system in order to send SNS notifications, emails, create JIRA tickets, etc., if anomalies, spikes, or
other patterns of interest are detected in the data.

25

https://github.com/Yelp/elastalert

Microservices on AWS AWS Whitepaper
Options for Log Analysis on AWS

Another option for analyzing log files is to use Amazon Redshift together with Amazon QuickSight.

Note
Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse service that makes it
simple and cost-effective to analyze all your data using your existing business intelligence tools.
Amazon QuickSight is a fast, cloud-powered business analytics service to build visualizations,
perform ad-hoc analysis, and quickly get business insights from your data.

Amazon QuickSight can be easily connected to AWS data services, including Amazon Redshift, Amazon
RDS, Amazon Aurora, Amazon EMR, Amazon DynamoDB, Amazon S3, and Amazon Kinesis.

Amazon CloudWatch Logs can act as a centralized store for log data, and, in addition to storing the data,
it is possible to stream log entries to Amazon Kinesis Firehose.

Note
Kinesis Firehose is a fully managed service for delivering real-time streaming data to
destinations such as Amazon S3, Amazon Redshift, or Amazon ES.

The following figure depicts a scenario where log entries are streamed from different sources to Amazon
Redshift using CloudWatch Logs and Kinesis Firehose. Amazon QuickSight uses the data stored in
Amazon Redshift for analysis, reporting, and visualization.

26

Microservices on AWS AWS Whitepaper
Options for Log Analysis on AWS

The following figure depicts a scenario of log analysis on Amazon S3. When the logs are stored in S3
buckets, the log data can be loaded in different AWS data services, for example, Amazon Redshift or
Amazon EMR, to analyze the data stored in the log stream and find anomalies.

27

Microservices on AWS AWS Whitepaper
Chattiness

Chattiness
By breaking monolithic applications into small microservices, the communication overhead increases
because microservices have to talk to each other. In many implementations, REST over HTTP is used as a
communication protocol. It is a light-weight protocol, but high volumes can cause issues. In some cases,
it might make sense to think about consolidating services that send a lot of messages back and forth.
If you find yourself in a situation where you consolidate more and more of your services just to reduce
chattiness, you should review your problem domains and your domain model.

Protocols
Earlier in this whitepaper, in the section Asynchronous Communication and Lightweight
Messaging (p. 20), different possible protocols are discussed. For microservices it is quite common to
use simple protocols like HTTP. Messages exchanged by services can be encoded in different ways, for
example, in a human-readable format like JSON or YAML or in an efficient binary format such as Avro or
Protocol Buffers.

Caching
Caches are a great way to reduce latency and chattiness of microservices architectures. Several caching
layers are possible depending on the actual use

case and bottlenecks. Many microservice applications running on AWS use Amazon ElastiCache to
reduce the amount calls to other microservices by caching results locally. API Gateway provides a built-
in caching layer to reduce the load on the backend servers. In addition, caching is useful to reduce load
from the data persistence layer. The challenge for all caching mechanisms is to find the right balance
between a good cache hit rate and the timeliness/consistency of data.

Auditing
Another challenge to address in microservices architectures with potentially hundreds of distributed
services is to ensure visibility of user actions on all services and to be able to get a good overall view at
an organizational level. To help enforce security policies, it is important to audit both resource access as
well as activities leading to system changes. Changes must be tracked on the level of individual services
and on the wider system across services. It is typical in microservices architectures that changes happen
very often, which means that auditing change becomes even more important. In this section, we look at
the key services and features within AWS that can help audit your microservices architecture.

Audit Trail
AWS CloudTrail is a useful tool for tracking change in microservices because it enables all API calls made
on the AWS Cloud to be logged and passed to either CloudWatch Logs in near real time or to Amazon S3
within several minutes.

Note
CloudTrail is a web service that records AWS API calls for your account and delivers log files to
you. This includes those taken on the AWS Management Console, the AWS CLI, SDKs, and calls
made directly to the AWS API.

All user actions and automated systems become searchable and can be analyzed for unexpected
behavior, company policy violations, or debugging. Information recorded includes user/account
information, a timestamp, the service that was called along with the action requested, the IP address of
the caller, as well as request parameters and response elements.

28

Microservices on AWS AWS Whitepaper
Events and Real-Time Actions

CloudTrail allows the definition of multiple trails for the same account, which allows different
stakeholders, such as security administrators, software developers, or IT auditors, to create and manage
their own trail. If microservice teams have different AWS accounts, it is possible to aggregate trails into a
single S3 bucket.

Storing CloudTrail log files in S3 buckets has a few advantages: trail data is stored durably, new files
can trigger an SNS notification or start a Lambda function to parse the log file, and data can be
automatically archived into Amazon Glacier via lifecycle policies. In addition (and as described earlier in
the performance monitoring section (p. 25)), services like Amazon EMR or Amazon Redshift can be
leveraged to further analyze the data.

The advantages of storing the audit trails in CloudWatch are that trail data is generated in real time and
rerouting information to Amazon ES for search and visualization becomes very easy. It is possible to
configure CloudTrail to log into both Amazon S3 and CloudWatch Logs.

Events and Real-Time Actions
There are certain changes in systems architectures that must be responded to quickly, and an action to
remediate must be performed, or specific governance procedures to authorize must be followed.

Note
CloudWatch Events delivers a near real-time stream of system events that describe changes
in AWS resources. Declarative rules associate events of interest with automated actions to be
taken.

The integration of CloudWatch Events with CloudTrail allows CloudWatch Events to generate events
for all mutating API calls across all AWS services. It’s also possible to define custom events or generate
events based on a fixed schedule.

When an event is fired and matches a rule that you defined in your system, the right people in your
organization can be immediately notified. This allows them to take the appropriate action. Even better,
it’s possible to automatically trigger built-in workflows or invoke a Lambda function.

The following figure shows a setup where CloudTrail and CloudWatch Events work together to address
auditing and remediation requirements within a microservices architecture. All microservices are being
tracked by CloudTrail and the audit trail is stored in an Amazon S3 bucket. CloudWatch Events sits on top
of CloudTrail and triggers alerts when a specific change is made to your architecture.

29

Microservices on AWS AWS Whitepaper
Resource Inventory and Change Management

Resource Inventory and Change Management
To maintain control over fast-changing infrastructure configurations in agile development teams, a more
automated, managed approach to auditing and control of your architecture is beneficial.

Note
AWS Config is a fully managed service that provides you with an AWS resource inventory,
configuration history, and configuration change notifications to enable security and governance.
The AWS Config rules feature enables you to create rules that automatically check the
configuration of AWS resources recorded by AWS Config.

While CloudTrail and CloudWatch Events track and respond to infrastructure changes across
microservices, AWS Config rules allow a company to define security policies using specific rules and
automatically detect, track, and alert violations to these policies.

In the example that follows, a developer team made a change to the API Gateway for his microservice to
open up the endpoint to inbound HTTP traffic rather than allowing only HTTPS requests. Because this
is a security compliance concern for the organization, an AWS Config rule is watching for this type of
noncompliance, identifies the change as a security violation, and performs two actions: it creates a log of
the detected change in an S3 bucket (for auditing) and creates an SNS notification.

30

Microservices on AWS AWS Whitepaper
Resource Inventory and Change Management

Amazon SNS is used for two purposes in our scenario: 1) to send an email to a specified group to inform
them about the security violation, and 2) to add a message into an SQS queue. The message is picked
up from the SQS queue, and the compliant state is restored by changing the API Gateway configuration.
This example demonstrates how it’s possible to detect, inform, and automatically react to noncompliant
configuration changes within your microservices architecture.

31

Microservices on AWS AWS Whitepaper

Conclusion
Microservices architecture is a distributed approach designed to overcome the limitations of traditional
monolithic architectures. Microservices help to scale applications and organizations while improving
cycle times. However, they also come with challenges that might cause additional architectural
complexity and operational burden.

AWS offers a large portfolio of managed services that help product teams build microservices
architectures and minimize architectural and operational complexity. This whitepaper guides you
through the relevant AWS services and how to implement typical patterns such as service discovery or
event sourcing natively with AWS services.

32

Microservices on AWS AWS Whitepaper

Resources
• AWS Architecture Center
• AWS Whitepapers
• AWS Architecture Monthly
• AWS Architecture Blog
• This Is My Architecture videos
• AWS Answers
• AWS Documentation

33

https://aws.amazon.com/architecture/?icmpid=link_from_docs_website
https://aws.amazon.com/whitepapers/?icmpid=link_from_docs_website
https://aws.amazon.com/whitepapers/kindle/?icmpid=link_from_docs_website
https://aws.amazon.com/blogs/architecture/?icmpid=link_from_docs_website
https://aws.amazon.com/this-is-my-architecture/?icmpid=link_from_docs_website
https://aws.amazon.com/answers/?icmpid=link_from_docs_website
https://aws.amazon.com/documentation/

Microservices on AWS AWS Whitepaper
Contributors

Document Details

Contributors
The following individuals and organizations contributed to this document:

• Matthias Jung, Solutions Architecture, AWS
• Sascha Möllering, Solutions Architecture, AWS
• Peter Dalbhanjan, Solutions Architecture, AWS
• Peter Chapman, Solutions Architecture, AWS
• Christoph Kassen, Solutions Architecture, AWS

Date Description

September 2017 Integration of AWS Step Functions, AWS X-Ray,
and ECS event streams.

December 2016 First publication

34

Microservices on AWS AWS Whitepaper

AWS Glossary
For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

35

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Microservices on AWS
	Table of Contents
	Microservices on AWS
	Abstract
	Introduction

	Characteristics of Microservices
	Benefits of Microservices
	Agility
	Innovation
	Quality
	Scalability
	Availability

	Challenges of Microservices
	Architectural Complexity
	Operational Complexity

	Microservices and the Cloud
	Simple Microservices Architecture on AWS
	User Interface
	Microservices
	Containers

	Data Store

	Reducing Operational Complexity
	API Implementation
	Serverless Microservices
	Deploying Lambda-Based Applications

	Distributed Systems Components
	Service Discovery
	Client-Side Service Discovery
	Application Load Balancer-Based Service Discovery
	DNS-Based Service Discovery
	Service Discovery Using Amazon ECS Event Stream
	Service Discovery Using Configuration Management
	Service Discovery Using Key Value Store
	Third-party software

	Distributed Data Management
	Asynchronous Communication and Lightweight Messaging
	REST-based Communication
	Asynchronous Messaging
	Orchestration and State Management

	Distributed Monitoring
	Monitoring
	Centralizing Logs
	Distributed Tracing
	Options for Log Analysis on AWS

	Chattiness
	Protocols
	Caching

	Auditing
	Audit Trail
	Events and Real-Time Actions
	Resource Inventory and Change Management

	Conclusion
	Resources
	Document Details
	Contributors
	

	AWS Glossary

