
Getting Started with Amazon Aurora

April 2016

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 2 of 25

© 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments, conditions

or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and

this document is not part of, nor does it modify, any agreement between AWS

and its customers.

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 3 of 25

Contents

Abstract 4

Introduction 4

Amazon Aurora: A Primer 5

Amazon Aurora Architecture 6

Self-Healing, Fault-Tolerant Design 7

Automatic, Continuous Backups 8

High Performance 8

Low-Latency Read Replicas 9

Failure Testing 9

Multiple Failover Targets 10

Survivable Caches 10

Security 11

Getting Started 12

Creating an Amazon Aurora Database 12

Connecting to Your Amazon Aurora Database 14

Instance Sizing 15

Scalability 16

Backup and Restore 18

Managing Amazon Aurora 18

Monitoring 19

Amazon CloudWatch Monitoring 19

Enhanced Monitoring 20

Migrating to Amazon Aurora 21

Amazon RDS MySQL to Amazon Aurora 22

MySQL to Amazon Aurora 22

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 4 of 25

Migration with Minimal Downtime 22

Conclusion 23

Contributors 23

Further Reading 24

Abstract
Amazon Aurora is a MySQL-compatible, enterprise-grade relational database

engine built for the cloud.1 In many ways, Amazon Aurora is a game changer and

helps overcome the limitations of traditional relational database engines. The

goal of this whitepaper is to help you understand the benefits of Amazon Aurora

and to walk you through the steps required to create and connect to your first

Amazon Aurora database. This whitepaper will also cover Amazon Aurora

architecture, scalability, performance, and migration paths from other databases.

Introduction
Cloud adoption among enterprises is growing quickly, with many adopting a

cloud-first strategy. Relational databases like MySQL, Oracle, and Microsoft SQL

Server are still a critical part of most enterprise solutions and figure prominently

in the considerations while planning for an enterprise cloud migration. With

respect to database migrations, the focus is changing from a “lift and shift”

approach to migrating (that is, migrating as-is and running databases on virtual

servers in the cloud) to fully managed, cloud-native database services like

Amazon Aurora.

The primary reason for this trend is because traditional databases are not

designed to take full advantage of the key benefits of the cloud like scalability,

reliability, performance, and so on. Most traditional databases have been built

and optimized for on-premises environments, and the fundamentals of their

architecture have not changed much in the last few decades.

One of the key objectives of Amazon Aurora is to overcome the performance,

scalability, and availability limitations of traditional databases in a cost-effective

manner similar to open-source databases. Amazon uses service-oriented

https://aws.amazon.com/rds/aurora/

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 5 of 25

principles and a distributed systems design to overcome many of these

limitations, as detailed in the subsequent sections of this whitepaper.

Amazon Aurora: A Primer
Amazon Aurora is a MySQL 5.6–compatible database designed with the same
service-oriented thinking that created AWS: decoupled architecture accessible
through web services. The logging and storage layer have been moved into a high-
performance, solid state drive (SSD)–based, multitenant, scale-out database-
optimized storage service.

The key features of Amazon Aurora are the following:

 Highly durable – Amazon Aurora database volumes are divided into 10 GB
segments; each segment is replicated six ways across three Availability
Zones.

 Fault-tolerant – Amazon Aurora transparently handles the loss of up to
two out of six data copies without losing write availability or three out of
six copies without losing read availability.

 Self-healing – Amazon Aurora monitors disks and nodes for failures and
automatically replaces or repairs the disks and nodes without the need to
interrupt read or write processing from the database node.

 Storage autoscaling – Amazon Aurora will automatically grow the size of
the database volume as storage needs grow. The volume will grow in
increments of 10 GB up to a maximum of 64 TB.

 Continuous backup – Amazon Aurora backups are automatic, incremental,
and continuous and have no impact on database performance. Automated
backups are stored in Amazon Simple Storage Service (Amazon S3), which
is designed for 99.999999999 percent durability.

 High performance – Amazon Aurora is designed to be compatible with
MySQL 5.6, and it delivers up to five times the throughput of standard
MySQL running on the same hardware.

 Read replicas – Each Amazon Aurora cluster can have up to 15 read
replicas across Availability Zones to scale out read operations or act as
failover targets. The replicas share the same data volume as the primary
instance, and replication lag is very low, typically in the tens of
milliseconds.

http://aws.amazon.com/s3/

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 6 of 25

 Instant crash recovery – Amazon Aurora uses log-structured storage and
doesn’t require crash recovery replay of database redo logs, greatly
reducing restart times.

 Survivable buffer cache – Amazon Aurora also isolates the database buffer
cache from the database process, allowing the cache to survive a database
restart.

 Highly secure – Amazon Aurora runs in a VPC based on the Amazon
Virtual Private Cloud (Amazon VPC) service by default, using Secure
Sockets Layer (SSL) to secure data in transit.2 Amazon Aurora also
supports encryption of data at rest.

Amazon Aurora Architecture
When you create an Amazon Aurora instance, you create a DB cluster. An
Amazon Aurora DB cluster consists of the following:

 A primary instance – An instance that supports read-write workloads and
performs all of the data modifications to the cluster volume. Each Amazon
Aurora DB cluster has one primary instance.

 A cluster volume – An all-SSD virtual database storage volume that spans
multiple Availability Zones, with each Availability Zone having two copies
of the cluster data. The primary instance and any Amazon Aurora Replicas
share the same cluster volume.

Additionally, you can create an Amazon Aurora Replica:

 An Aurora Replica supports only read operations, and each DB cluster can
have up to 15 Aurora Replicas. Multiple Aurora Replicas distribute the
read workload, and by locating Aurora Replicas in separate Availability
Zones you can increase database availability. In case the primary instance
fails, one of the Aurora Replicas is promoted as the primary.

https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 7 of 25

Figure 1: Amazon Aurora Architecture

Self-Healing, Fault-Tolerant Design
An Amazon Aurora DB cluster is fault tolerant by design. The cluster volume
spans multiple Availability Zones in a single region, and each Availability Zone
contains two copies of the cluster volume data. This functionality means that your
DB cluster can tolerate the failure of an entire Availability Zone without any loss
of data and only a brief interruption of service.

Amazon Aurora divides its database volume into 10 GB segments, each spread
widely across the cluster, isolating the blast radius of disk failures. Each segment
is replicated six ways across three Availability Zones. Amazon Aurora can
transparently handle the loss of up to two data copies or an Availability Zone
failure without losing write availability, or the loss of up to three data copies
without losing read availability.

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 8 of 25

Amazon Aurora storage is also self-healing; data blocks and disks are
continuously scanned for errors and replaced automatically. Amazon Aurora
monitors disks and nodes for failures and automatically replaces or repairs the
disks and nodes without the need to interrupt read or write processing from the
database node.

Automatic, Continuous Backups
Amazon Aurora continuously backs up data to Amazon S3, which is designed for
99.999999999 percent durability. Amazon Aurora backups are automatic,
incremental, and continuous and have no impact on database performance.

Amazon Aurora’s backup capability enables point-in-time recovery for your
instance. This functionality allows you to restore your database to any second
during your retention period, up to the last 5 minutes, with only a few clicks. Your
automatic backup retention period can be configured for up to 35 days.
Automated backups are stored in Amazon S3.

High Performance
Amazon Aurora delivers significant increases in performance due to the use of
log-structured storage and database engine modifications. The database engine is
tightly integrating with a SSD-based virtualized storage layer purpose-built for
database workloads, reducing write operations to the storage system, minimizing
lock contention, and eliminating delays created by database process threads.
Tests with SysBench on r3.8xlarge instances show that Amazon Aurora delivers
over 500,000 SELECTs/second and 100,000 updates/second. Detailed
instructions on this benchmark and how to replicate it yourself are provided in
the Amazon Aurora Performance Benchmarking Guide.3

Amazon Aurora storage is organized as many small segments, each with their
own redo logs. Unlike traditional databases, where the compute node must
periodically checkpoint the data and flush dirty blocks from the buffers to the
disk, in Amazon Aurora only the log pages are written to the storage nodes. The
data pages are generated from the log pages at the storage layer, eliminating
unnecessary chatter between the compute and storage nodes, enabling
significantly more efficient use of network I/O.

I/O operations use distributed systems techniques such as quorums to improve
performance consistency and tolerance to outliers. Data write operations are
acknowledged as soon as they are committed by four out of the six storage nodes,
and the individual storage nodes acknowledge the write operations as soon as the
log records are persisted to disk. The storage nodes coalesce the log records into
data blocks in the background asynchronously; any identified gaps are filled in
using peer-to-peer gossip replication with the other storage nodes.

https://d0.awsstatic.com/product-marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1-2.pdf

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 9 of 25

Amazon Aurora “warms” the buffer pool cache when a database starts up after it
has been shut down or restarted after a failure. That is, Amazon Aurora preloads
the buffer pool with the pages for known common queries that are stored in an
in-memory page cache. This approach provides a performance gain by bypassing
the need for the buffer pool to “warm up” from normal database use.

Autoscaling Storage

With Amazon Aurora, unlike with traditional databases, you don’t have to
provision storage space explicitly while creating the database. Amazon Aurora
data is stored in a single SSD-backed virtual volume called the cluster volume
that automatically grows as the amount of data in the database increases. This
process is completely transparent to your application without any impact on
application availability.

Amazon Aurora automatically manages the performance of the storage and can
deliver consistent low-latency I/O. Additionally, Amazon Aurora manages
hotspots and moves data around to ensure consistent performance of the storage
layer.

Low-Latency Read Replicas
You can create up to 15 Aurora Replicas across multiple Availability Zones to
serve high-volume application read traffic, thereby increasing aggregate read
throughput. Aurora Replicas share the same underlying storage as the source
instance, lowering costs and avoiding the need to replay logs at the replica nodes.
This approach frees up more processing power to serve read requests and reduces
the replica lag time—often down to single-digit milliseconds.

Failure Testing

With a traditional database, testing and validating your database cluster’s ability
to handle node, disk, and networking failures can be expensive, tedious, and
time-consuming. However, with Amazon Aurora you can test the fault tolerance
of your Amazon Aurora DB cluster by using simple fault injection queries. Fault
injection queries are issued as SQL commands to an Amazon Aurora instance,
and they enable you to schedule a simulated occurrence of one of the following
events:

 A crash of the master instance or an Aurora Replica

 A failure of an Aurora Replica

 A disk failure

 Disk congestion

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 10 of 25

Here is an example of a fault injection query to simulate a crash:

ALTER SYSTEM CRASH [INSTANCE | DISPATCHER | NODE];

Fault injection queries with the CRASH option, like the one preceding, force a crash
of the Amazon Aurora instance. Other fault injection queries result in simulations
of failure events, but don’t cause the event to occur. When you submit a fault
injection query, you also specify an amount of time for the failure event
simulation to occur. You can also submit a fault injection query to one of your
Aurora Replica instances by connecting to the endpoint for the Aurora Replica.

Multiple Failover Targets
Amazon Aurora uses automated checks to detect failure of the primary database
node in a cluster. Unlike other database engines, Amazon Aurora does not
require a separate standby instance to fail over. If a primary node fails, Amazon
Aurora will automatically fail over to any of up to 15 Aurora Replicas with
minimal downtime and availability impact on applications. These read replicas
can be in any of the three Availability Zones. For high availability, we recommend
placing at least one read replica in an alternate Availability Zone. Failover
happens with no data loss, and log replay is not required, because the replicas
and the primary instance share the same storage.

Instant Crash Recovery
Amazon Aurora is designed to recover from a crash almost instantaneously and
continue to serve your application data. Unlike other databases, after a crash
Amazon Aurora does not need to replay the redo log from the last database
checkpoint before making the database available for operations.

Amazon Aurora performs crash recovery asynchronously on parallel threads, so
your database is open and available immediately after a crash. Because the
storage is organized in many small segments, each with its own redo log, the
underlying storage can replay redo records on demand in parallel and
asynchronously as part of a disk read after a crash. This approach reduces
database restart times to less than 60 seconds in most cases.

Survivable Caches
In Amazon Aurora, the database buffer cache has been moved out of the database
process. If a database restarts, the cache remains warm, and performance is not
impacted due to a cold cache as is the case with traditional databases. This
approach lets you resume fully loaded operations much faster.

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 11 of 25

Figure 2: Amazon Aurora Cache Architecture

Security
Amazon Aurora DB instances must be created in a VPC based on Amazon VPC.

Amazon VPC lets you provision a logically isolated section of the Amazon Web

Services (AWS) cloud where you can launch AWS resources in a virtual network

that you define. You have complete control over your virtual networking

environment, including selection of your own IP address range, creation of

subnets, and configuration of route tables and network gateways. You can

leverage multiple layers of security, including security groups and network access

control lists, to help control access to your instances in each subnet. This

approach gives you complete control over who can access your Amazon Aurora

database.

Amazon Aurora DB supports Secure Sockets Layer (SSL) connections from

applications, using SSL (AES-256) to secure data in transit. Amazon Aurora also

supports encryption of data at rest. Data is encrypted using AES-256 with

hardware acceleration support. All the blocks on disk and the backups on

Amazon S3 are encrypted. Encryption keys are managed by AWS Key

Management Service (AWS KMS), which is a highly available, durable, and

secure solution for managing sensitive encryption keys.4

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 12 of 25

Getting Started
The first step in getting started with Amazon Aurora is creating a database.

Creating an Amazon Aurora Database
The AWS Management Console is the easiest way to create your first Amazon

Aurora cluster. Log in to the AWS management console, and navigate to the

Amazon Relational Database (Amazon RDS) section. From the top-right corner,

choose the AWS Region in which you want to create the Amazon Aurora cluster,

and then choose Get Started Now. On the next screen, choose Amazon

Aurora, and then choose Select as shown following.

Figure 3: Amazon RDS Engine Selection Wizard in the Console

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 13 of 25

Next, on the DB details page, you select the size for your Amazon Aurora primary
instance and provide other details like the database identifier, master user name,
and password, as shown following. You then choose Next Step.

Figure 4: Specifying DB Details

On the next screen, you can customize additional settings for your Amazon
Aurora database cluster like VPC selection, database name, port number, and so
on. Accept the default settings, and choose Launch DB Instance. Your Amazon
Aurora instance will launch in a few minutes.

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 14 of 25

Figure 5: Advanced Settings

Connecting to Your Amazon Aurora Database

Navigate to the Instances tab in the RDS dashboard, and you will see your
Amazon Aurora instance listed there. You can see the details of your Amazon
Aurora cluster like the cluster endpoint and the port number, as shown following.

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 15 of 25

Figure 6: Amazon Aurora Cluster Details

Use the endpoint and port number in your JDBC and ODBC connection strings to
connect from your application or standard tools. You can use your favorite tools
like MySQL Workbench, Navicat, Webyog, Toad, or Oracle SQL Developer to
connect and work with your Amazon Aurora database.

Instance Sizing
Amazon Aurora instances are available in various sizes, starting from the
db.r3.large instance with 2 vCPUs and 15 GiB RAM, to the db.r3.8xlarge instance
with 32 vCPUs and 244 GiB RAM. The complete list of Amazon Aurora instance
types is available on the Aurora pricing page.5

You choose an appropriate instance type based on the RAM, vCPU, and network
throughput required. You can start with a smaller instance type like db.r3.large
or db.r3.xlarge and upgrade to a larger instance type as your application grows.
With Amazon Aurora, it’s very simple to scale up or down; you just stop the

http://aws.amazon.com/rds/aurora/pricing/

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 16 of 25

instance and restart it on a larger or smaller instance type. Compute scaling
operations typically complete in a few minutes.

Scalability
With Amazon Aurora, you have the option of scaling up using a larger instance
type or scaling out using Aurora Replicas.

Scaling Up
As demand for your application grows, you can scale up your Amazon Aurora
instances by upgrading to a larger instance type. For example, you can start with
a db.r3.large instance type with 2 vCPUs and 15 GiB RAM and scale up all the
way to a db.r3.8xlarge instance type with 32 vCPUs and 244 GiB RAM.

The following steps illustrate how easy it is to scale up an Amazon Aurora
instance from db.r3.2xlarge to db.r3.4xlarge:

1. Select the instance, and from Instance Actions, choose Modify, as

shown following.

Figure 7: Scaling Up an Amazon Aurora Instance

2. Select the new instance type, for example db.r3.4xlarge. Choose Apply

Immediately if you want to make the changes right now, or else the

changes will be made during the next maintenance window. Now choose

Continue.

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 17 of 25

3. Review the modifications on the next screen, and then choose Modify DB
Instance. The status will change to modifying, and within a few minutes
the instance type will be changed and your Amazon Aurora database will
be available again.

Scaling Out

You can scale out an Amazon Aurora database by adding up to 15 Aurora

Replicas, which are read-only. You can configure your applications to send

read/write traffic to the primary instance and read-only traffic to the Aurora

Replicas.

The following steps illustrate how to scale out an Aurora database by adding

Aurora Replicas:

1. Select your instance, and from Instance Actions, choose Create

Aurora Replica, as shown following.

Figure 8: Creating an Aurora Replica

2. Select the instance type, type a value for DB Instance Identifier, and

choose Create Aurora Replica. The Aurora Replica will be created

within a few minutes.

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 18 of 25

Backup and Restore
Amazon Aurora backs up your cluster volume automatically and retains backup

data for the length of the backup retention period (between 1 to 35 days). Amazon

Aurora’s backup capability enables point-in-time recovery of your instance to any

second during your retention period, up to the last 5 minutes, with just a few

clicks.

If you want to retain a backup beyond the maximum retention period, you can

take a snapshot of the database. DB snapshots are user-initiated backups of your

instance that are kept until you explicitly delete them.

Backups are stored in Amazon S3, which is designed for 99.999999999 percent

durability.6 Backups are automatic, incremental, and continuous and have no

impact on database performance. No interruption of database service occurs as

backup data is being written.

To restore your data, you can create a new instance quickly from the backup

Amazon Aurora maintains or from a DB snapshot. When you request a restore of

your DB cluster, the new cluster volume is immediately available for both read

and write operations. However, as the copy is being created, you might encounter

some latency for read operations. This latency will only occur if a query requests

data that has not yet been restored to the cluster volume. In that case, the data

will be immediately restored to the cluster volume and returned to the query

request.

Managing Amazon Aurora
You can access and manage your Amazon Aurora cluster in several ways. When

you are getting started with Aurora, the easiest and most popular way is to use

the AWS Management Console.

In addition to using the AWS Management Console, you can manage Amazon

Aurora using the RDS Command Line Interface (CLI), or you can

programmatically interact with and manage your Amazon Aurora cluster using

the AWS SDKs and libraries. AWS SDKs and libraries are available for many

popular languages like Java, PHP, Python, Ruby, and .NET.

http://aws.amazon.com/s3/

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 19 of 25

Monitoring
Amazon RDS provides metrics to monitor the health of your DB instances and

DB clusters. These metrics include DB instance metrics and also operating

system (OS) metrics. You can monitor RDS using Amazon CloudWatch and

Enhanced Monitoring. CloudWatch gathers metrics about CPU utilization from

the hypervisor for a DB instance. Enhanced Monitoring gathers its metrics from a

lightweight agent on the instance. Enhanced Monitoring metrics are useful when

you want to see how different processes or threads on a DB instance use the CPU.

Amazon CloudWatch Monitoring
You can monitor your Amazon Aurora instance using Amazon

CloudWatch metrics at no additional charge.7 You can use the AWS Management

Console to view over 20 key operational metrics for your DB instances, including

compute, memory, storage, network throughput, and replica lag.8

Figure 9: Amazon Aurora CloudWatch Metrics—System

In addition to these, you also have access to the SQL-related metrics like average

query throughput, latency, logins, transactions, and so on, as shown following.

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html#Aurora.Monitoring.Metrics

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 20 of 25

Figure 10: Amazon Aurora CloudWatch Metrics—SQL Operations

Enhanced Monitoring
Enhanced Monitoring gives you access to over 50 metrics, including CPU,

memory, file system, and disk I/O. You can enable this monitoring for each of

your instances, and you can choose the data granularity, all the way down to 1

second. You can also enable Enhanced Monitoring for an existing instance.

Setting it up doesn’t require your DB instance to restart.

You can view OS metrics reported by Enhanced Monitoring in the RDS console;

two views are available. The Dashboard view shows graphs of the OS metrics, and

the Process List view shows the processes running on the DB instance and their

related metrics, including percentage of CPU usage and memory usage.

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 21 of 25

Figure 11: Amazon Aurora Enhanced Monitoring—Dashboard View

Figure 12: Amazon Aurora Enhanced Monitoring—Process View

Migrating to Amazon Aurora
The following section discusses different migrations and different approaches to

migration to Amazon Aurora.

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 22 of 25

Amazon RDS MySQL to Amazon Aurora
You can migrate a database snapshot of an Amazon RDS MySQL instance to

create an Amazon Aurora DB cluster. The new Aurora cluster will be populated

with the data from the original Amazon RDS MySQL database. The database

snapshot must have been made from an Amazon RDS instance running MySQL

5.6.

You can migrate either a manual or automated database snapshot. After the

Aurora cluster is created, you can optionally create Aurora Replicas.

MySQL to Amazon Aurora
If you want to migrate from a MySQL instance running externally on Amazon

Elastic Compute Cloud (Amazon EC2) or on-premises, and your database size is

small or service interruption on the source MySQL database isn’t an issue, you

can use the mysqldump command-line utility. The mysqldump command-line

utility is commonly used to make backups and transfer data from one MySQL

database to another. In this case, you can copy the database with mysqldump and

pipe it directly into the Amazon Aurora instance.

Amazon Aurora is compatible with MySQL, and you can set up binary log

(binlog) replication between a MySQL database and an Amazon Aurora DB

cluster. You can take this approach to migrate a MySQL database from on-

premises or on EC2 to Amazon Aurora with reduced downtime. You can find

more details on configuring binlog replication in the Aurora documentation.9 You

can also find additional information on migrating to Amazon Aurora in the

documentation topic Migrating Data to an Amazon Aurora DB Cluster.10

Migration with Minimal Downtime
For migration with minimal downtime or service interruption, AWS Database

Migration Service (AWS DMS) is the most appropriate choice.11 With AWS DMS,

the source database remains fully operational during the migration, minimizing

downtime to applications that rely on the database. The change data capture

capability of AWS DMS can continuously capture and apply all data changes from

the source database to the target, after the migration process begins. AWS

manages all the complexities of the migration process like compression and

parallel transfer for faster data transfer.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Replication.html#Aurora.Overview.Replication.MySQLReplication
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.html
https://aws.amazon.com/dms/
https://aws.amazon.com/dms/

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 23 of 25

AWS DMS is low-cost and simple to use. You only pay for the compute resources

used during the migration process; you can migrate a terabyte-sized database for

as little as $3.

The service supports homogenous migrations such as Oracle to Oracle, and also

heterogeneous migrations between different database platforms, such as Oracle

to Aurora or Microsoft SQL Server to MySQL. To help make heterogeneous

migrations easier, AWS DMS includes the AWS Schema Conversion Tool. This

tool converts the source database schema and objects, including views, stored

procedures, and functions, to a format compatible with the target database. Any

code that cannot be automatically converted gets clearly marked to help you

identify where manual recoding is required.

Conclusion
Amazon Aurora is a high performance, highly available, enterprise-grade

database built for the cloud. Amazon Aurora is offered as a managed service

without the common and time-consuming administrative tasks associated with

managing a database on your own, freeing you to focus on your applications and

business. An Amazon Aurora cluster can be created in just a few clicks and is

extremely easy to use, manage, and scale.

With Amazon Aurora, there are no license fees or up-front commitment. You

simply pay an hourly charge for each Amazon Aurora cluster that you create, and

when you’re finished you simply delete the cluster and stop paying. You can scale

your Amazon Aurora cluster up or down as required with just a few clicks. Your

Amazon Aurora primary instance can scale up to 32 vCPUs and 244 GiB memory,

and you can add up to 15 Amazon Aurora Replicas each, with up to 32 vCPUs and

244 GiB memory to further scale read capacity. Amazon Aurora storage

automatically grows as needed from 10 GB to 64 TB; there is no need to provision

or manage storage.

Contributors
The following individuals and organizations contributed to this document:

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 24 of 25

 Tom Laszewski, Senior Manager—Solutions Architects, Amazon Web

Services

 Kamal Arora, Solutions Architect, Amazon Web Services

 Ashok Sundaram, Solutions Architect, Amazon Web Services

Further Reading
For additional help, consult the following sources:

 Amazon Aurora Product Details

 Amazon Aurora FAQ

 Amazon Aurora Documentation

 Amazon Aurora Performance Benchmarking Guide

Notes

1 https://aws.amazon.com/rds/aurora/

2 https://aws.amazon.com/vpc/

3 https://d0.awsstatic.com/product-

marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1

-2.pdf

4 https://aws.amazon.com/kms/

5 http://aws.amazon.com/rds/aurora/pricing/

6 http://aws.amazon.com/s3/

7 https://aws.amazon.com/cloudwatch/

8

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitori

ng.html#Aurora.Monitoring.Metrics

http://aws.amazon.com/rds/aurora/details/
http://aws.amazon.com/rds/aurora/details/
http://aws.amazon.com/rds/aurora/faqs/
http://aws.amazon.com/rds/aurora/faqs/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html
https://d0.awsstatic.com/product-marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1-2.pdf
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/vpc/
https://d0.awsstatic.com/product-marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1-2.pdf
https://d0.awsstatic.com/product-marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1-2.pdf
https://d0.awsstatic.com/product-marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1-2.pdf
https://aws.amazon.com/kms/
http://aws.amazon.com/rds/aurora/pricing/
http://aws.amazon.com/s3/
https://aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html#Aurora.Monitoring.Metrics
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html#Aurora.Monitoring.Metrics

Amazon Web Services – Getting Started with Amazon Aurora March 2016

Page 25 of 25

9

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Replicati

on.html#Aurora.Overview.Replication.MySQLReplication

10

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.h

tml

11 https://aws.amazon.com/dms/

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Replication.html#Aurora.Overview.Replication.MySQLReplication
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Replication.html#Aurora.Overview.Replication.MySQLReplication
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.html
https://aws.amazon.com/dms/

	Abstract
	Introduction
	Amazon Aurora: A Primer
	Amazon Aurora Architecture
	Self-Healing, Fault-Tolerant Design
	Automatic, Continuous Backups
	High Performance
	Low-Latency Read Replicas
	Failure Testing
	Multiple Failover Targets
	Instant Crash Recovery
	Survivable Caches
	Security

	Getting Started
	Creating an Amazon Aurora Database
	Connecting to Your Amazon Aurora Database
	Instance Sizing
	Scalability
	Scaling Up
	Scaling Out

	Backup and Restore
	Managing Amazon Aurora
	Monitoring
	Amazon CloudWatch Monitoring
	Enhanced Monitoring

	Migrating to Amazon Aurora
	Amazon RDS MySQL to Amazon Aurora
	MySQL to Amazon Aurora
	Migration with Minimal Downtime

	Conclusion
	Contributors
	Further Reading
	Notes

