AWS SDK for Java

Developer Guide

. ___|
AWS SDK for Java: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS SDK for Java Developer Guide

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

AWS SDK for Java Developer Guide

Table of Contents

AWS SDK for Java 2.0 Developer Guide (DeVELOPEr Pre&VIEW)iviuiiiiiiiiieiieee e eieeeeieeeeie et eieeaeeneeneennans 1
What's NeW in VErsion 2.0couiiniiiiiiiiiiii ittt et e e e e e e e eaaee 1
YU o] o Yo o Al o ot 10 1
AddItionNal RESOUICESovuiiiiiiiiiiii ittt ettt et ettt e e ea e en e e eenaes 1
Contributing to the DeVeloper PreVIEWc..iuiuiiiiiieieie ettt ettt e ee et ea s et s e eanenes 2
[l 1o 1 D] S U] o]0 o o AP 2
Developing AWS Applications for ANAroidceeuuviiniiiiiieiie ettt ei e e e e e e eaes 2

[CT=] A] (o I] =T {1 O T O TP PR PPTPPTORN 3
Sign up for AWS and Create an [AM USEIcuuiiniiiniiiiineie ettt et e e et e ea e et e et e e eansannseanens 3
Y=L A o I 1 LT | PPN 4

[=] =To [BT =T P PPN 4
Including the SDK in YOUF PrOJECLvuiuiiiiiiitie ittt ettt ee e e e e e e eans 4
ComMPIliNG The SDK ..uiiiin et et e et et et et et et e e e e e e e e e e e e e e e e 4
Installing a Java Development ENVIFONMENtcouiiiiiiiiiiiiii e 5
ChooSING @ JVM Lottt et e et e et ete et eb e ea et eaeneaenenanns 5
Set up AWS Credentials and REGIONcvuiiniiiiiniiii ettt et et e e e e e e e e eanes 5
Setting AWS Credentialso.. et a e ans 5
Setting the AWS REGIONeniiniiii ittt et et et et et enenennernennennennas 6
Using the SDK with APache Maven ...t eaae 7
Create @ NeW Maven Packagec.oeuiiuiiiieii et ettt ettt e e et e e e e ene e enes 7
Configure the SDK as @ Maven DePENAENCYc..viuuiiiniiiniiieiieeiieei et e et et et et eaeerneenneanneannes 8
BUILA YOUF PrOJECE «oueiiiiiie ittt ettt et et et et et e e e e e e e aneenas 9
Using the SDK With Gradlecoueiniiniiiiiiie ettt e et e e e ens 9

USING the SDK . eeeiii ettt et et et et et et et et et et et s e e e et e e e e eeaeaneeneens 11

Creating Service CLIENTSuiiuii ittt et et et et s e et e e e e e e e e s e e e e e e enen 11
Obtaining @ Client BUILAercvuiiniii ettt e e e e eans 11
USING DEFAULLCUIENT ..eeniie ittt e e et et e e e aae e e s et s eansennsanneannaes 12
(@ 1= o L I Toy ol LU PPN 12

Working with AWS Credentialsccceuiiuiiniirieie ettt e e e e e e eneeneeneennanns 12
Using the Default Credential Provider Chainc.coiuniiiiiiniiiniiiiei e e 12
Specifying a Credential Provider or Provider Chainccoouviiiviiiiiniiirin e 14
Explicitly Specifying Credentialsco.uviuniiiiiieiir ettt e e et e e e eaneeas 15
MOTE INFO .ottt ettt ettt e e et et e e et e e eb e ea e eaa e eans 15

AWS REGION SELECTION «.uetiiiieiei ettt ettt ettt et et et et et et et et et eaa et eaneaneaaeenannns 15
ChOOSING @ REGION .uiiniiiiii ettt ettt et et st et s eae e s e e e s e en s e ea s e aaseneennan 15
Automatically Determine the AWS Region from the Environmentcccoeieiiiiiiiiiiiiiiinnnennn. 16
Checking for Service Availability in an AWS REGIONc.vivniiiiiiiiiiiiiii e 17

ASYNChronoUS Programimingeueeseneeniin ittt et e et e et e e et et et et et e e et e e e e eaneeneeneeneeneens 17
NON-Streaming OPerationsc..c.iuiiiniiiii ettt e e e e e enes 17
Streaming OPerationsc.ie ittt ettt eeaae 18

ST d o] o W o - T e |11 3 o H PP PP PP PR PPPRRt 19
Why Unchecked EXCEPLIONS?uuiiniiiiiiiiiei ettt ettt et et e e e e e e e e e e eaneaaees 19
AmazonServiceException (aNd SUDCLASSES)vuiiniiniiiiiiie e 19
AMazoNCliENtEXCEPLION ...uiii et et e et et e e e e e 20

Logging AWS SDK fOr JAVa CallS ...cuuiuniiiiiieiiiiieii ettt ei et et et et e et e et e et eaaeaneeaneans 20
Download the LOGAJ JAReeeiiiiiie ettt ettt et et ettt s et e e en s e an e eanan 20
Setting the ClassPath ...ttt ea e 21
Service-Specific Errors and Warningsco.eiureiriiriinieie et eieeie e et et eaieeansennsenneenns 21
Request/Response SUMMAry LOGGING «..cuuueiueiuneinreinieineeieeieeieetieetieetneerneeinetnneenneensennsenneenns 21
Verbose Wire€ LOGGINGeuiuiniiiiiiiieie ettt ettt et et et et et et et e e et e e et e e e e e e ens 22

YY1V T Ul <Ta I Ko o] Lol PP 23
Configure 1AM Roles for AMAzon EC2iiuuiiiiiiieiieeiiei ettt et e e ete et e et e et eatneaaneansennsesnsennaees 23

Default Provider Chain and Amazon EC2 Instance Profilesccccovevviiiiiiiiiniiiniiiniincieeen, 23
Walkthrough: Using IAM roles for Amazon EC2 INSTANCEScuuvivniiieiieiieeineeieeineeieenneenneennnens 24

AWS SDK for Java Developer Guide

AMAZON S3 EXAMPLES ...ttt ettt et et et ettt et e e e eaeeans 25
BUCKET OPEIAtioNS ...c.uieniiiiiieei ettt et et e e et e et e et e et e et e e et et e et e eaeennae 25

(0] o] [=Tai A 0] o 1= =Y o] 3 N TP OP PP OPRPPI 27

AMAZON SQS EXAMPLES ...enniiiiiiie ettt ettt ettt et et et e et et et et et et e ea e e e e eanees 30
QUEUE OPEIALIONS «oeieniniiiieie ittt ettt ettt et et et s et s et e ea e eaeeneeanes 30

MESSAGE OPEIALIONS ..eueniiiiiiii ittt ettt et ettt et et ettt et et et et e e et e e e e eaae 32

DOCUMENT HISTOY nuininii ittt ettt e et et et e et e et e e ea et en et e ea et es e aneaneneaneneaetneneaanes 35

AWS SDK for Java Developer Guide
What's New in Version 2.0

AWS SDK for Java 2.0 Developer
Guide (Developer Preview)

The AWS SDK for Java provides a Java API for Amazon Web Services. Using the SDK, you can easily
build Java applications that work with Amazon S3, Amazon EC2, DynamoDB, and more. We regularly
add support for new services to the AWS SDK for Java. For a list of changes and features in a particular
version, view the change log.

What's New in Version 2.0

The AWS SDK for Java 2.0 is a major rewrite of the version 1.x code base. It's built on top of Java 8 and
adds several frequently requested features. These include support for non-blocking I/0 and the ability to
plug in a different HTTP implementation at run time. For more information see the AWS Blog.

Important
This is a preview release and is not recommended for production environments.

Support for 1.0

We are not dropping support for the 1.x versions of the AWS SDK for Java currently. As we get closer to
the final production release, we will share a detailed plan for continued 1.x support, similar to how we
rolled out major versions of other AWS SDKs.

Additional Resources

In addition to this guide, the following are valuable online resources for AWS SDK for Java developers:

o AWS SDK for Java 2.0 Reference
» Java developer blog
« Java developer forums
o GitHub:
» Documentation source

https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-java-v2/blob/master/CHANGELOG.md
http://aws.amazon.com/blogs/developer/aws-sdk-for-java-2-0-developer-preview/
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/
http://aws.amazon.com/blogs/developer/category/java
https://forums.aws.amazon.com/forum.jspa?forumID=70
https://github.com/awsdocs/aws-java-developer-guide-v2

AWS SDK for Java Developer Guide
Contributing to the Developer Preview

e SDK source
« @awsforjava (Twitter)

Contributing to the Developer Preview

Developers can also contribute feedback through the following channels:

« Submit issues on GitHub:
e Submit documentation issues
o Submit SDK issues
« Join an informal chat about SDK on the AWS SDK for Java 2.0gitter channel

« Submit feedback anonymously to aws-java-sdk-v2-feedback@amazon.com. This email is monitored by
the AWS SDK for Java team.

o Submit pull requests in the documentation or SDK source GitHub repositories to contribute to the SDK
development.

Eclipse IDE Support

The AWS Toolkit for Eclipse doesn't currently support the AWS SDK for Java 2.0. To use the AWS Toolkit
for Eclipse with the AWS SDK for Java 2.0, you should use Maven tools in Eclipse to add a dependency on
the 2.0 SDK.

Developing AWS Applications for Android

If you're an Android developer, Amazon Web Services publishes an SDK made specifically for Android
development: the AWS Mobile SDK for Android. See the AWS Mobile SDK for Android Developer Guide
for the complete documentation.

https://github.com/aws/aws-sdk-java-v2
https://twitter.com/awsforjava
https://github.com/awsdocs/aws-java-developer-guide-v2/issues
https://github.com/aws/aws-sdk-java-v2/issues
https://gitter.im/aws/aws-sdk-java-v2
mailto:aws-java-sdk-v2-feedback@amazon.com
https://aws.amazon.com/mobile/sdk/
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/

AWS SDK for Java Developer Guide
Sign up for AWS and Create an IAM User

Getting Started with AWS SDK for
Java 2.0 Developer Preview

This section provides information about how to install, set up, and use the AWS SDK for Java.

Topics

Sign up for AWS and Create an IAM User (p. 3)

Set up the AWS SDK for Java 2.0 Developer Preview (p. 4)
Set Up AWS Credentials and Region for Development (p. 5)
Using the SDK with Apache Maven (p. 7)

Using the SDK with Gradle (p. 9)

Sign up for AWS and Create an IAM User

To use the AWS SDK for Java to access Amazon Web Services (AWS), you need an AWS account and AWS
credentials. To increase the security of your AWS account, we recommend that you use an IAM user to
provide access credentials instead of using your AWS account credentials.

Note
For an overview of IAM user and why they are important for the security of your account, see
AWS Security Credentials in the Amazon Web Services General Reference.

To sign up for AWS

1.
2.

Open https://aws.amazon.com/ and click Sign Up.

Follow the on-screen instructions. Part of the sign-up procedure involves receiving a phone call and
entering a PIN using your phone keypad.

Next, create an IAM user and download (or copy) its secret access key.

To create an IAM user

pUunN =

Go to the IAM console (you may need to sign in to AWS first).

Click Users in the sidebar to view your IAM users.

If you don't have any IAM users set up, click Create New Users to create one.
Select the IAM user in the list that you'll use to access AWS.

http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://aws.amazon.com/
https://console.aws.amazon.com/iam/home

AWS SDK for Java Developer Guide
Set up the SDK

5. Open the Security Credentials tab, and click Create Access Key.

Note
You can have a maximum of two active access keys for any given IAM user. If your IAM user
has two access keys already, then you'll need to delete one of them before creating a new
key.
6. On the resulting dialog box, click the Download Credentials button to download the credential file
to your computer, or click Show User Security Credentials to view the IAM user's access key ID and
secret access key (which you can copy and paste).

Important
There is no way to obtain the secret access key once you close the dialog box. You can,
however, delete its associated access key ID and create a new one.

Next, set your credentials (p. 5) in the AWS shared credentials file or in the environment.

Set up the AWS SDK for Java 2.0 Developer
Preview

This topic describes how to set up and use the AWS SDK for Java in your project.

Prerequisites

To use the AWS SDK for Java, you must have:

« A suitable Java Development Environment (p. 5).
« An AWS account and access keys. For instructions, see Sign up for AWS and Create an IAM
User (p. 3).

« AWS credentials (access keys) set in your environment, or use the shared credentials file used by
the AWS CLI and other SDKs. For more information, see Set Up AWS Credentials and Region for
Development (p. 5).

Including the SDK in Your Project

Depending on your build system or IDE, use one of the following methods:

« Apache Maven- If you use Apache Maven, you can specify only the SDK components you need or
the entire SDK (not recommended) as dependencies in your project. See Using the SDK with Apache
Maven (p. 7).

« Gradle- If you use Gradle, you can import the Maven Bill of Materials (BOM) to your Gradle project to
automatically manage SDK dependencies. See Using the SDK with Gradle (p. 9).

Note
Any build system that supports MavenCentral as an artifact source may be used. However we
will not provide a downloadable zip for the developer preview.

Compiling the SDK

You can build the AWS SDK for Java using Maven. Maven downloads all necessary dependencies, builds
the SDK, and installs the SDK in one step. See http://maven.apache.org/ for installation instructions and
more information.

https://maven.apache.org/
https://gradle.com/
http://maven.apache.org/

AWS SDK for Java Developer Guide
Installing a Java Development Environment

To compile the SDK

1. Open AWS SDK for Java 2.0 (GitHub).

Note
Version 1.0 of the SDK is also available in GitHub at AWS SDK for Java 1.x (GitHub).

2. Click the Clone or download button to choose your download option.

w

In a terminal window, navigate to the directory where you downloaded the SDK source.
4. Build and install the SDK by using the following command (Maven required).

mvn clean install

The resulting . jar file is built into the target directory.
5. (Optional) Build the API Reference documentation using the following command.

mvn javadoc:javadoc

The documentation is built into the target/site/apidocs/ directories of each service.

Installing a Java Development Environment

The AWS SDK for Java requires Java SE Development Kit 8.0 or later. You can download the latest Java
software from http://www.oracle.com/technetwork/java/javase/downloads/.

Choosing a JVM

For the best performance of your server-based applications with the AWS SDK for Java, we recommend
that you use the 64-bit version of the Java Virtual Machine (JVM). This JVM runs only in server mode,
even if you specify the -client option at run time.

Set Up AWS Credentials and Region for
Development

To connect to any of the supported services with the AWS SDK for Java, you must provide AWS
credentials. The AWS SDKs and CLlIs use provider chains to look for AWS credentials in several different
places, including system/user environment variables and local AWS configuration files.

This topic provides basic information about setting up your AWS credentials for local application
development using the AWS SDK for Java. If you need to set up credentials for use within an Amazon
EC2 instance or if you're using the Eclipse IDE for development, see the following topics instead:

« When using an EC2 instance, create an IAM role and then give your EC2 instance access to that role as
shown in Configure IAM Roles for Amazon EC2 (p. 23).

« Set up AWS credentials within Eclipse using the AWS Toolkit for Eclipse. See Set up AWS Credentials in
the AWS Toolkit for Eclipse User Guide.

Setting AWS Credentials

You can set your credentials for use by the AWS SDK for Java in several ways. However, these are the
recommended approaches:

https://github.com/aws/aws-sdk-java-v2
https://github.com/aws/aws-sdk-java
https://maven.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/
https://aws.amazon.com/eclipse/
http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-credentials.html
http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/

AWS SDK for Java Developer Guide
Setting the AWS Region

« Set credentials in the AWS credentials profile file on your local system, located at:
e ~/.aws/credentials on Linux, macQOS, or Unix
e C:\Users\USERNAME \.aws\credentials ONn Windows

This file should contain lines in the following format:

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

Substitute your own AWS credentials values for the values your_access_key_id and
your_secret_access_key.

o Set the Aws_AccESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables.

To set these variables on Linux, macOS, or Unix, use export :

export AWS_ACCESS_KEY_ ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=your_access_key_id
set AWS_SECRET_ACCESS_KEY=your_secret_access_key

« For an EC2 instance, specify an IAM role and then give your EC2 instance access to that role. See IAM
Roles for Amazon EC2 in the Amazon EC2 User Guide for Linux Instances for a detailed discussion about
how this works.

Once you set your AWS credentials using one of these methods, the AWS SDK for Java loads them
automatically by using the default credential provider chain. For more information about working with
AWS credentials in your Java applications, see Working with AWS Credentials (p. 12).

Setting the AWS Region

You should set a default AWS Region to use for accessing AWS services with the AWS SDK for Java. For
the best network performance, choose a region that's geographically close to you (or to your customers).

Note
If you don't select a region, service calls that require a region will fail.

You can use techniques similar to those for setting credentials to set your default AWS Region:

« Set the AWS Region in the AWS config file on your local system, located at:
e ~/.aws/config on Linux, macOS, or Unix
e C:\Users\USERNAME\.aws\config On Windows

This file should contain lines in the following format:

[default]
region = your_aws_region

Substitute your desired AWS Region (for example, "us-west-2") for your_aws_region.
« Set the aws_RrREcION environment variable.

On Linux, macOS, or Unix, use export :

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK for Java Developer Guide
Using the SDK with Apache Maven

export AWS_REGION=your_aws_region

On Windows, use set:

set AWS_REGION=your_aws_region

Where your_aws_region is the desired AWS Region name.

For information about selecting a region, see AWS Region Selection (p. 15).

Using the SDK with Apache Maven

You can use Apache Maven to configure and build AWS SDK for Java projects or to build the SDK itself.

Note
You must have Maven installed to use the guidance in this topic. If it isn't already installed, visit
http://maven.apache.org/ to download and install it.

Create a New Maven Package

To create a basic Maven package, open a terminal (command line) window and run the following.

mvn -B archetype:generate \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DgroupId=org.example.basicapp \
-DartifactId=myapp

Replace org.example.basicapp with the full package namespace of your application. Replace myapp with
your project name (this becomes the name of the directory for your project).

By default, Maven creates a project template for you using the quickstart archetype. This creates a Java
1.5 project. You must update your application to Java 1.8 to be compatible with AWS SDK for Java 2.0.
To update to Java 1.8, add the following to your pom.xm1 file.

<build>
<plugins>
<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1l.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>

You can choose a particular archetype to use by adding the -parchetypeartifactid argument to the
archetype:generate command. To skip step to update the pom.xm1 file, you can use the following
archetype that creates a Java 1.8 project from the start.

mvn archetype:generate -B \
-DarchetypeGroupId=pl.org.miki \

https://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/archetypes/maven-archetype-quickstart/

AWS SDK for Java Developer Guide
Configure the SDK as a Maven Dependency

-DarchetypeArtifactId=java8-quickstart-archetype \
-DarchetypeVersion=1.0.0 \

-DgroupId=com.example \

-DartifactId=sdk-sandbox \

-Dversion=1.0 \

-Dpackage=com.example

There are more archetypes available. See Maven Archetypes for a list of archetypes packaged with
Maven.

Note
For much more information about creating and configuring Maven projects, see the Maven
Getting Started Guide.

Configure the SDK as a Maven Dependency

To use the AWS SDK for Java in your project, you need to declare it as a dependency in your project's
pom.xml file. You can import individual components (p. 8) or the entire SDK (p. 9). We strongly
recommend that you pull in only the components you need instead of the entire SDK.

Specifying Individual SDK Modules (Recommended)

To select individual SDK modules, use the AWS SDK for Java bill of materials (BOM) for Maven. This
ensures that the modules you specify use the same version of the SDK, and that they're compatible with
each other.

To use the BOM, add a <dependencyManagement> section to your application's pom.xml file. Add bom as a
dependency and specify the version of the SDK to use.

<dependencyManagement>
<dependencies>
<dependency>
<groupIld>software.amazon.awssdk</groupId>
<artifactId>bom</artifactId>
<version>2.0.0-preview-1</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

To view the latest version of the AWS SDK for Java BOM that is available on Maven Central, see
https://mvnrepository.com/artifact/software.amazon.awssdk/bom. This page also shows the modules
(dependencies) that are managed by the BOM that you can include within the <dependencies> section of
your project's pom. xm1 file.

You can now select individual modules from the SDK that you use to your application. Because you
already declared the SDK version in the BOM, you don't need to specify the version number for each
component.

<dependencies>

<dependency>
<groupld>software.amazon.awssdk</groupId>
<artifactId>s3</artifactId>

</dependency>

<dependency>
<groupld>software.amazon.awssdk</groupId>
<artifactId>dynamodb</artifactId>

</dependency>

https://maven.apache.org/archetypes/index.html
https://maven.apache.org/guides/getting-started/
https://maven.apache.org/guides/getting-started/
https://mvnrepository.com/artifact/software.amazon.awssdk/bom

AWS SDK for Java Developer Guide
Build Your Project

</dependencies>

Importing All SDK Modules (Not Recommended)

To pull in the entire SDK as a dependency, don't use the BOM method. Simply declare it in your pom.xml
as follows.

<dependencies>
<dependency>
<groupId>software.amazon.awssdk</groupId>
<artifactId>aws-java-sdk</artifactId>
<version>2.0.0-preview-1</version>
</dependency>
</dependencies>

Build Your Project

Once you set up your project, you can build it using Maven's package command.

mvn package

This creates your . jar file in the target directory.

Using the SDK with Gradle

To use the AWS SDK for Java in your Gradle project, use Spring's dependency management plugin
for Gradle. You can use this plugin to import the SDK's Maven Bill of Materials (BOM) to manage SDK
dependencies for your project.

To configure the SDK for Gradle

1. Add the dependency management plugin to your build.gradle file.

buildscript {
repositories {
mavenCentral()
}
dependencies {
classpath "io.spring.gradle:dependency-management-plugin:1.0.0.RC2"
}
}

apply plugin: "io.spring.dependency-management"

2. Add the BOM to the dependencyManagement section of the file.

dependencyManagement {
imports {
mavenBom 'software.amazon.awssdk:bom:2.0.0-preview-1"
}
}

3. Specify the SDK modules you want to use in the dependencies section.

dependencies {

https://gradle.com/
https://github.com/spring-gradle-plugins/dependency-management-plugin

AWS SDK for Java Developer Guide
Using the SDK with Gradle

compile 'software.amazon.awssdk:s3'
testCompile group: 'junit', name: 'junit', version: '4.11°'

Gradle automatically resolves the correct version of your SDK dependencies using the information from
the BOM.

Note
For more detail about specifying SDK dependencies using the BOM, see Using the SDK with
Apache Maven (p. 7).

10

AWS SDK for Java Developer Guide
Creating Service Clients

Using the AWS SDK for Java 2.0
Developer Preview

This section provides important general information about programming with the AWS SDK for Java that
applies to all services you might use with the SDK.

Topics
« Creating Service Clients (p. 11)
« Working with AWS Credentials (p. 12)
o AWS Region Selection (p. 15)
» Asynchronous Programming (p. 17)
« Exception Handling (p. 19)
« Logging AWS SDK for Java Calls (p. 20)

Creating Service Clients

To make requests to Amazon Web Services, you first create a service client object. In version 2.0 of the
SDK, you can create clients only by using service client builders.

Each AWS service has a service interface with methods for each action in the service API. For example,
the service interface for Amazon DynamoDB is named DynamoDbClient. Each service interface has a
static factory builder method you can use to construct an implementation of the service interface.

Obtaining a Client Builder

To obtain an instance of the client, use the static factory method builder. Then customize it by using the
setters in the builder, as shown in the following example.

In the AWS SDK for Java 2.0, the setters are named without the with prefix.

DynamoDBClient client = DynamoDBClient.builder()
.region(Region.US_WEST_ 2)
.credentialsProvider(ProfileCredentialsProvider.builder()
.profileName("myProfile")
.build())
.build();

11

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/dynamodb/DynamoDBClient.html

AWS SDK for Java Developer Guide
Using DefaultClient

Note

The fluent setter methods return the builder object, so that you can chain the method calls for
convenience and for more readable code. After you configure the properties you want, you can
call the build method to create the client. Once a client is created, it's immutable. The only way
to create a client with different settings is to build a new client.

Using DefaultClient

The client builders have another factory method named create. This method creates a service client with
the default configuration. It uses the default provider chain to load credentials and the AWS Region. If
credentials or the region can't be determined from the environment that the application is running in,
the call to create fails. See Working with AWS Credentials (p. 12) and AWS Region Selection (p. 15)

for more information about how credentials and region are determined.

To create a default client

DynamoDBClient client = DynamoDBClient.create();

Client Lifecycle

Service clients in the SDK are thread-safe. For best performance, treat them as long-lived objects. Each
client has its own connection pool resource that is released when the client is garbage collected. The
clients in the AWS SDK for Java 2.0 now extend the AutoClosable interface. For best practices, explicitly
close a client by calling the c1ose method.

To close a client

DynamoDBClient client = DynamoDBClient.create();
client.close();

Working with AWS Credentials

To make requests to Amazon Web Services, you must supply AWS credentials to the AWS SDK for Java.
You can do this in the following ways:

« Use the default credential provider chain (recommended).
« Use a specific credential provider or provider chain (or create your own).

« Supply the credentials yourself. These can be AWS account credentials, IAM credentials, or temporary
credentials retrieved from AWS STS.

Important

For security, we strongly recommend that you use IAM account credentials instead of the AWS
account credentials for AWS access. For more information, see AWS Security Credentials in the
Amazon Web Services General Reference.

Using the Default Credential Provider Chain

When you initialize a new service client without supplying any arguments, the AWS SDK for Java
attempts to find AWS credentials by using the default credential provider chain implemented by the
DefaultCredentialsProvider class. The default credential provider chain looks for credentials in this order:

12

http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/DefaultCredentialsProvider.html

AWS SDK for Java Developer Guide
Using the Default Credential Provider Chain

1. Java system properties—aws .accessKeyId and aws.secretKey. The AWS SDK for Java uses the
SystemPropertyCredentialsProvider to load these credentials.

2. Environment variables-aws_AccEss_KEY ID and AWS_SECRET ACCESS_KEY. The AWS SDK for Java uses
the EnvironmentVariableCredentialsProvider class to load these credentials.

3. The default credential profiles file- typically located at ~/.aws/credentials (location can vary per
platform), and shared by many of the AWS SDKs and by the AWS CLI. The AWS SDK for Java uses the
ProfileCredentialsProvider to load these credentials.

You can create a credentials file by using the aws configure command provided by the AWS CLI.
Or you can create it by editing the file with a text editor. For information about the credentials file
format, see AWS Credentials File Format (p. 14).

4. Amazon ECS container credentials- loaded from the Amazon ECS if the environment
variable AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set. The AWS SDK for Java uses the
ElasticContainerCredentialsProvider to load these credentials.

5. Instance profile credentials- used on Amazon EC2 instances, and delivered through the Amazon EC2
metadata service. The AWS SDK for Java uses the InstanceProfileCredentialsProvider to load these
credentials.

Setting Credentials

To be able to use AWS credentials, they must be set in at least one of the preceding locations. For
information about setting credentials, see the following topics:

« To specify credentials in the environment or in the default credential profiles file, see Set Up AWS
Credentials and Region for Development (p. 5).

« To set Java system properties, see the System Properties tutorial on the official Java Tutorials website.

« To set up and use instance profile credentials with your EC2 instances, see Configure IAM Roles for
Amazon EC2 (p. 23).

Setting an Alternate Credentials Profile

The AWS SDK for Java uses the default profile by default, but there are ways to customize which profile
is sourced from the credentials file.

You can use the aws_PROFILE environment variable to change the profile loaded by the SDK.

For example, on Linux, macQOS, or Unix, you run the following command to change the profile to
myProfile.

export AWS_PROFILE="myProfile"

On Windows, you use the following.

set AWS_PROFILE="myProfile"

Setting the aws_pRroFILE environment variable affects credential loading for all officially supported AWS
SDKs and Tools (including the AWS CLI and the AWS CLI for PowerShell). To change only the profile for a
Java application, you can use the system property aws.profile instead.

Setting an Alternate Credentials File Location

The AWS SDK for Java loads AWS credentials automatically from the default credentials file location.
However, you can also specify the location by setting the Aws_CREDENTIAL_PROFILES_FILE environment
variable with the full path to the credentials file.

13

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/SystemPropertyCredentialsProvider.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/EnvironmentVariableCredentialsProvider.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/profile/ProfileCredentialsProvider.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/ElasticContainerCredentialsProvider.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/InstanceProfileCredentialsProvider.html
http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

AWS SDK for Java Developer Guide
Specifying a Credential Provider or Provider Chain

You can use this feature to temporarily change the location where the AWS SDK for Java looks for
your credentials file (for example, by setting this variable with the command line). Or you can set the
environment variable in your user or system environment to change it for the user or systemwide.

To override the default credentials file location

o Set the AwS_CREDENTIAL_PROFILES_FILE environment variable to the location of your AWS credentials
file.
« On Linux, macOS, or Unix, use export:

export AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

On Windows, use set:

set AWS_CREDENTIAL_ PROFILES_FILE=path/to/credentials_file

AWS Credentials File Format

When you use the aws configure command to create an AWS credentials file, the commmand creates a
file with the following format.

[default]
aws_access_key_id={YOUR_ACCESS_KEY ID}
aws_secret_access_key={YOUR_SECRET_ ACCESS_KEY}

[profile2]
aws_access_key_id={YOUR_ACCESS_KEY_ ID}
aws_secret_access_key={YOUR_SECRET_ ACCESS_KEY}

The profile name is specified in square brackets (for example, [default]), followed by the configurable
fields in that profile as key-value pairs. You can have multiple profiles in your credentials file, which

can be added or edited using aws configure --profile PROFILE_NAME to select the profile to
configure. In addition to the access key and secret access keys, you can specify a session token using the
aws_session_token field.

Loading Credentials

After you set credentials, you can load them by using the default credential provider chain.

To do this, you instantiate an AWS service client without explicitly providing credentials to the builder, as
follows.

S3Client s3 = S3Client.builder()
.region(Regions.US_WEST_2)
.build();

Specifying a Credential Provider or Provider Chain

You can specify a credential provider that is different from the default credential provider chain by using
the client builder.

You provide an instance of a credentials provider or provider chain to a client builder that takes an
AwsCredentialsProvider interface as input. The following example shows how to use environment
credentials specifically.

14

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/AwsCredentialsProvider.html

AWS SDK for Java Developer Guide
Explicitly Specifying Credentials

S3Client s3 = S3Client.builder()
.credentialsProvider(new EnvironmentVariableCredentialsProvider())
.build();

For the full list of AWS SDK for Java-supplied credential providers and provider chains, see All Known
Implementing Classes in AwsCredentialsProvider.

Note
You can use this technique to supply credential providers or provider chains that you create by
using your own credential provider that implements the awscredentialsProvider interface.

Explicitly Specifying Credentials

If the default credential chain or a specific or custom provider or provider chain doesn't work for your
code, you can set credentials that you supply explicitly. If you've retrieved temporary credentials using
AWS STS, use this method to specify the credentials for AWS access.

To explicitly supply credentials to an AWS client

1. Instantiate a class that provides the AwsCredentials interface, such as AwsSessionCredentials. Supply
it with the AWS access key and secret key you will use for the connection.

2. Create an AwsStaticCredentialsProvider with the awscredentials object.
3. Configure the client builder with the awsstaticCredentialsProvider and build the client.

The following is an example.

AwsSessionCredentials awsCreds = new AwsSessionCredentials(
"access_key_id",
"secret_key_id",
"session_token");
S3Client s3 = S3Client.builder()
.credentialsProvider(new AwsStaticCredentialsProvider(awsCreds))
.build();

More Info

« Sign up for AWS and Create an IAM User (p. 3)
« Set Up AWS Credentials and Region for Development (p. 5)
» Configure IAM Roles for Amazon EC2 (p. 23)

AWS Region Selection

Regions enable you to access AWS services that physically reside in a specific geographic area. This can
be useful both for redundancy and to keep your data and applications running close to where you and
your users will access them.

In AWS SDK for Java 2.0, all the different region related classes from version 1.x have been collapsed into
one Region class. You can use this class for all region-related actions such as retrieving metadata about a
region or checking whether a service is available in a region.

Choosing a Region

You can specify a region name and the SDK will automatically choose an appropriate endpoint for you.

15

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/AwsCredentialsProvider.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/AwsCredentials.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/AwsSessionCredentials.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/AwsStaticCredentialsProvider.html

AWS SDK for Java Developer Guide
Automatically Determine the AWS
Region from the Environment

To explicitly set a region, we recommend that you use the constants defined in the Region class. This is
an enumeration of all publicly available regions. To create a client with a region from the class, use the
following code.

EC2Client ec2 = EC2Client.builder()
.region(Region.US_WEST 2)
.build();

If the region you are attempting to use isn't one of the constants in the region class, you can create a
new region using the of method. This feature allows you access to new Regions without upgrading the
SDK.

Region newRegion = Region.of("us-east-42");

EC2Client ec2 = EC2Client.builder()
.region(newRegion)
.build();

Note

After you build a client with the builder, it's immutable and the region cannot be changed. If you
are working with multiple AWS Regions for the same service, you should create multiple clients
—one per region.

Automatically Determine the AWS Region from the
Environment

When running on Amazon EC2 or AWS Lambda, you might want to configure clients to use the same
region that your code is running on. This decouples your code from the environment it's running in and
makes it easier to deploy your application to multiple regions for lower latency or redundancy.

To use the default credential/region provider chain to determine the region from the environment, use
the client builder's create method.

EC2Client ec2 = EC2Client.create();

If you don't explicitly set a region using the region method, the SDK consults the default region provider
chain to try and determine the region to use.

Default Region Provider Chain

The following is the region lookup process:

1. Any explicit region set by using region on the builder itself takes precedence over anything else.

2. The aws_REGION environment variable is checked. If it's set, that region is used to configure the client.
Note
This environment variable is set by the Lambda container.

3. The SDK checks the AWS shared configuration file (usually located at ~/.aws/config). If the region
property is present, the SDK uses it.
« The AWS_CONFIG_FILE environment variable can be used to customize the location of the shared
config file.
« The aws_prROFILE environment variable or the aws.profile system property can be used to customize
the profile that the SDK loads.

4. The SDK attempts to use the Amazon EC2 instance metadata service to determine the region of the
currently running Amazon EC2 instance.

16

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/regions/Region.html

AWS SDK for Java Developer Guide
Checking for Service Availability in an AWS Region

5. If the SDK still hasn't found a region by this point, client creation fails with an exception.

When developing AWS applications, a common approach is to use the shared configuration file (described
in Using the Default Credential Provider Chain (p. 12)) to set the region for local development, and

rely on the default region provider chain to determine the region when running on AWS infrastructure.
This greatly simplifies client creation and keeps your application portable.

Checking for Service Availability in an AWS Region

To see if a particular AWS service is available in a region, use the serviceMetadata and region method
on the service that you'd like to check.

DynamoDBClient.serviceMetadata().regions().forEach(System.out::println);

See the Region class documentation for the regions you can specify, and use the endpoint prefix of the
service to query.

Asynchronous Programming

AWS SDK for Java 2.0 features truly non-blocking asychronous clients that implements high concurrency
across a few threads. AWS SDK for Java 1.11.x has asynchronous clients that are wrappers around a
thread pool and blocking synchronous clients which do not provide the full benefit of non-blocking I/0.

Synchronous methods block your thread's execution until the client receives a response from the service.
Asynchronous methods return immediately, giving control back to the calling thread without waiting for
a response.

Because an asynchronous method returns before a response is available, you need a way to get
the response when it's ready. The AWS SDK for Java 2.0 asynchronous client methods return
CompletableFuture objects that allows you to access the response when it's ready.

Non-streaming Operations

For non-streaming operations, asychronous method calls are similar to synchronous methods except that
the asynchronous methods in the AWS SDK for Java return a CompletableFuture object that contains the
results of the asynchronous operation in the future.

Call the completableFuture whenComplete() method with an action to complete when the result is
available. completableFuture implements the Future interface so you can get the response object by
calling the get() method as well.

Here is an example of an asynchronous operation that calls a DynamoDB function to get a list of tables,
receiving a completableFuture that can hold a ListTablesResponse object. The action defined in the call
to whencomplete() is only done when the asynchronous call is complete.

public class DynamoDBAsync {

public static void main(String[] args) {
// Creates a default async client with credentials and regions loaded from the
environment
DynamoDBAsyncClient client = DynamoDBAsyncClient.create();
CompletableFuture<ListTablesResponse> response =
client.listTables(ListTablesRequest.builder()

17

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/regions/Region.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/CompletableFuture.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/dynamodb/model/ListTablesResponse.html

AWS SDK for Java Developer Guide
Streaming Operations

.1imit(5)

.build());
// Map the response to another CompletableFuture containing just the table names
CompletableFuture<List<String>> tableNames =
response.thenApply(ListTablesResponse: :tableNames);
// When future is complete (either successfully or in error) handle the response
tableNames.whenComplete((tables, err) -> {
if (tables != null) {
tables.forEach(System.out: :println);
} else {
// Handle error
err.printStackTrace();

13K

Streaming Operations

For streaming operations, you must provide an AsyncRequestProvider to provide the content
incrementally or an AsyncResponseHandler to receive and process the response.

Here is an example that uploads a file to Amazon S3 asynchronously with the putobject operation.

public class S3AsyncOps {

private static final String BUCKET = "sample-bucket";
private static final String KEY = "testfile.in";

public static void main(String[] args) {
S3AsyncClient client = S3AsyncClient.create();
CompletableFuture<PutObjectResponse> future = client.putObject(
PutObjectRequest.builder()
.bucket (BUCKET)
.key(KEY)
.build(),
AsyncRequestProvider.fromFile(Paths.get("myfile.in"))
)i

future.whenComplete((resp, err) -> {

try {
if (resp != null) {
System.out.println("my response: " + resp);
} else {
// Handle error
err.printStackTrace();
¥
} finally {

// Lets the application shut down. Only close the client when you are
completely done with it.
FunctionalUtils.invokeSafely(client::close);
}
i

Here is an example that gets a file from Amazon S3 asynchronously with the cetobject operation.

public class S3AsyncStreamOps {

private static final String BUCKET = "sample-bucket";

18

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/async/AsyncRequestProvider.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/async/AsyncResponseHandler.html

AWS SDK for Java Developer Guide
Exception Handling

private static final String KEY = "testfile.out";

public static void main(String[] args) {
S3AsyncClient client = S3AsyncClient.create();
final CompletableFuture<Void> futureGet = client.getObject(
GetObjectRequest.builder()
.bucket (BUCKET)
.key(KEY)
.build(),
AsyncResponseHandler.toFile(Paths.get("myfile.out")));
futureGet.whenComplete((resp, err) -> {
try {
if (resp != null) {
System.out.println(resp);
} else {
// Handle error
err.printStackTrace();
}
} finally {
// Lets the application shut down. Only close the client when you are
completely done with it
FunctionalUtils.invokeSafely(client::close);
}
i

Exception Handling

Understanding how and when the AWS SDK for Java throws exceptions is important to building high-
quality applications using the SDK. The following sections describe the different cases of exceptions that
are thrown by the SDK and how to handle them appropriately.

Why Unchecked Exceptions?

The AWS SDK for Java uses runtime (or unchecked) exceptions instead of checked exceptions for these
reasons:

« To allow developers fine-grained control over the errors they want to handle without forcing them to
handle exceptional cases they aren't concerned about (and making their code overly verbose)

« To prevent scalability issues inherent with checked exceptions in large applications

In general, checked exceptions work well on small scales, but can become troublesome as applications
grow and become more complex.

AmazonServiceException (and Subclasses)

AmazonServiceException is the most common exception that you'll experience when using the AWS SDK
for Java. This exception represents an error response from an AWS service. For example, if you try to
terminate an Amazon EC2 instance that doesn't exist, EC2 will return an error response and all the details
of that error response will be included in the AmazonserviceException that's thrown. For some cases, a
subclass of amazonserviceException is thrown to allow developers fine-grained control over handling
error cases through catch blocks.

When you encounter an amazonServiceException, you know that your request was successfully sent to
the AWS service but couldn't be successfully processed. This can be because of errors in the request's
parameters or because of issues on the service side.

19

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/AmazonServiceException.html

AWS SDK for Java Developer Guide
AmazonClientException

AmazonServiceException provides you with information such as:

« Returned HTTP status code

« Returned AWS error code

» Detailed error message from the service
o AWS request ID for the failed request

AmazonServiceException also includes information about whether the failed request was the caller's
fault (a request with illegal values) or the AWS service's fault (an internal service error).

AmazonClientException

AmazonClientException indicates that a problem occurred inside the Java client code, either while trying
to send a request to AWS or while trying to parse a response from AWS. An AmazonClientException

is generally more severe than an AmazonserviceException, and indicates a major problem that is
preventing the client from making service calls to AWS services. For example, the AWS SDK for Java
throws an amazonclientException if no network connection is available when you try to call an
operation on one of the clients.

Logging AWS SDK for Java Calls

The AWS SDK for Java is instrumented with Apache Commons Logging, which is an abstraction layer that
enables the use of any one of several logging systems at runtime.

Supported logging systems include the Java Logging Framework and Apache Log4j, among others.
This topic shows you how to use Log4j. You can use the SDK's logging functionality without making any
changes to your application code.

To learn more about Log4j, see the Apache website.

Note

This topic focuses on Log4j 1.x. Log4j2 doesn't directly support Apache Commons Logging,

but provides an adapter that directs logging calls automatically to Log4j2 using the Apache
Commons Logging interface. For more information, see Commons Logging Bridge in the Log4j2
documentation.

Download the Log4J JAR

To use Log4j with the SDK, you need to download the Log4j JAR from the Apache website. The SDK
doesn't include the JAR. Copy the JAR file to a location that is on your classpath.

Log4j uses a configuration file, log4j.properties. Example configuration files are shown below. Copy this
configuration file to a directory on your classpath. The Log4j JAR and the log4j.properties file don't have
to be in the same directory.

The log4j.properties configuration file specifies properties such as logging level, where logging output
is sent (for example, to a file or to the console), and the format of the output. The logging level is

the granularity of output that the logger generates. Log4j supports the concept of multiple logging
hierarchies. The logging level is set independently for each hierarchy. The following two logging
hierarchies are available in the AWS SDK for Java:

« log4j.logger.software.amazon.awssdk
« log4j.logger.org.apache.http.wire

20

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/AmazonClientException.html
http://commons.apache.org/proper/commons-logging/guide.html
http://logging.apache.org/log4j/2.x/
http://www.apache.org/
http://logging.apache.org/log4j/2.x/log4j-jcl/index.html
http://logging.apache.org/log4j/2.x/manual/configuration.html#Loggers
http://logging.apache.org/log4j/2.x/manual/appenders.html
http://logging.apache.org/log4j/2.x/manual/layouts.html

AWS SDK for Java Developer Guide
Setting the Classpath

Setting the Classpath

Both the Log4j JAR and the log4j.properties file must be located on your classpath. If you're using
Apache Ant, set the classpath in the path element in your Ant file. The following example shows a path
element from the Ant file for the Amazon S3 example included with the SDK.

<path id="aws.java.sdk.classpath">

<fileset dir="../../third-party" includes="**/*_ jar"/>
<fileset dir="../../lib" includes="**/* jar"/>
<pathelement location="."/>

</path>

If you're using the Eclipse IDE, you can set the classpath by opening the menu and navigating to Project |
Properties | Java Build Path.

Service-Specific Errors and Warnings

We recommend that you always leave the "software.amazon.awssdk" logger hierarchy set to "WARN"

to catch any important messages from the client libraries. For example, if the Amazon S3 client detects
that your application hasn't properly closed an 1nputstream and could be leaking resources, the S3 client
reports it through a warning message to the logs. This also ensures that messages are logged if the client
has any problems handling requests or responses.

The following log4j.properties file sets the rootLogger to WARN, which causes warning and error
messages from all loggers in the "software.amazon.awssdk" hierarchy to be included. Alternatively, you
can explicitly set the software.amazon.awssdk logger to WARN.

log4j.rootLogger=WARN, Al

log4j.appender.Al=org.apache.log4j.ConsoleAppender
log4j.appender.Al.layout=org.apache.log4j.PatternLayout
log4j.appender.Al.layout.ConversionPattern=%d [%t] %-5p %c - %m%n

Or you can explicitly enable WARN and ERROR messages for the AWS Java clients
log4j.logger.software.amazon.awssdk=WARN

Request/Response Summary Logging

Every request to an AWS service generates a unique AWS request ID that is useful if you run into an issue
with how an AWS service is handling a request. AWS request IDs are accessible programmatically through
Exception objects in the SDK for any failed service call, and can also be reported through the DEBUG log

level in the "software.amazon.awssdk.request" logger.

The following log4j.properties file enables a summary of requests and responses, including AWS request
IDs.

log4j.rootLogger=WARN, Al
log4j.appender.Al=org.apache.log4j.ConsoleAppender
log4j.appender.Al.layout=org.apache.log4j.PatternLayout
log4j.appender.Al.layout.ConversionPattern=%d [%t] %-5p %Cc - %m%n
Turn on DEBUG logging in software.amazon.awssdk.request to log
a summary of requests/responses with AWS request IDs
log4j.logger.software.amazon.awssdk.request=DEBUG

Here is an example of the log output.

2009-12-17 09:53:04,269 [main] DEBUG software.amazon.awssdk.request - Sending
Request: POST https://rds.amazonaws.com / Parameters: (MaxRecords: 20,

21

http://ant.apache.org/manual/

AWS SDK for Java Developer Guide
Verbose Wire Logging

Action: DescribeEngineDefaultParameters, SignatureMethod: HmacSHA256,
AWSAccessKeyId: ACCESSKEYID, Version: 2009-10-16, SignatureVersion: 2,
Engine: mysqgl5.1, Timestamp: 2009-12-17T17:53:04.267%Z, Signature:
q963XH63Lcov15Rr71AP1z1ye99rmWwT9DfuQaNznkD,) 2009-12-17 09:53:04,464
[main] DEBUG software.amazon.awssdk.request - Received successful response: 200, AWS
Request ID: 694d1242-cee0-c85e-f31f-5dableal8bc6é 2009-12-17 09:53:04,469
[main] DEBUG software.amazon.awssdk.request - Sending Request: POST
https://rds.amazonaws.com / Parameters: (ResetAllParameters: true, Action:
ResetDBParameterGroup, SignatureMethod: HmacSHA256, DBParameterGroupName:
java-integ-test-param-group-0000000000000, AWSAccessKeyId: ACCESSKEYID,
Version: 2009-10-16, SignatureVersion: 2, Timestamp:
2009-12-17T17:53:04.467Z, Signature:
IWcgfPwTobvLVcpyhbrdN7P713uHOOvViYQ4yZ+TQjsQ=,)

2009-12-17 09:53:04,646 [main] DEBUG software.amazon.awssdk.request - Received
successful response: 200, AWS Request ID:
694d1242-cee0-c85e-f31f-5dableal8bcé

Verbose Wire Logging

In some cases, it can be useful to see the exact requests and responses that the AWS SDK for Java sends
and receives. If you really need access to this information, you can temporarily enable it through the
Apache HttpClient 4 logger. Enabling the DEBUG level on the apache.http.wire logger enables logging
for all request and response data.

Warning

We recommend you only use wire logging for debugging purposes. Disable it in your production
environments because it can log sensitive data. It logs the full request or response without
encryption, even for an HTTPS call. For large requests (e.g., to upload a file to Amazon S3) or
responses, verbose wire logging can also significantly impact your application's performance.

The following log4j.properties file turns on full wire logging in Apache HttpClient 4.

log4j.rootLogger=WARN, Al
log4j.appender.Al=org.apache.log4j.ConsoleAppender
log4j.appender.Al.layout=org.apache.log4j.PatternLayout
log4j.appender.Al.layout.ConversionPattern=%d [%t] %-5p %Cc - %m%n
Log all HTTP content (headers, parameters, content, etc) for

all requests and responses. Use caution with this since it can

be very expensive to log such verbose data!
log4j.logger.org.apache.http.wire=DEBUG

22

AWS SDK for Java Developer Guide
Configure IAM Roles for Amazon EC2

Advanced Topics for AWS SDK for
Java 2.0

This section provides more advanced topics about programming with the AWS SDK for Java 2.0 that
applies to specific use cases.

Topics
« Configure IAM Roles for Amazon EC2 (p. 23)
o Amazon S3 Examples (p. 25)
o Amazon SQS Examples (p. 30)

Configure IAM Roles for Amazon EC2

All requests to AWS services must be cryptographically signed using credentials issued by AWS. You can
use IAM roles to conveniently grant secure access to AWS resources from your Amazon EC2 instances.

This topic provides information about how to use IAM roles with AWS SDK for Java applications running
on Amazon EC2. For more information about IAM instances, see IAM Roles for Amazon EC2 in the
Amazon EC2 User Guide for Linux Instances.

Default Provider Chain and Amazon EC2 Instance
Profiles

If your application creates an AWS client using the create method, the client searches for credentials
using the default credentials provider chain, in the following order:

. In the Java system properties: aws .accessKeyId and aws.secretKey.

. In system environment variables: aws_AccEss_KEY_ID and AWS_SECRET_ACCESS_KEY.

. In the default credentials file (the location of this file varies by platform).

. In the Amazon ECS environment variable: AWS_CONTAINER CREDENTIALS_RELATIVE URI.

o b NN =

. In the instance profile credentials, which exist within the instance metadata associated with the IAM
role for the EC2 instance.

23

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK for Java Developer Guide
Walkthrough: Using 1AM roles for Amazon EC2 Instances

The final step in the default provider chain is available only when running your application on an
Amazon EC2 instance. However, it provides the greatest ease of use and best security when working
with Amazon EC2 instances. You can also pass an InstanceProfileCredentialsProvider instance directly to
the client constructor to get instance profile credentials without proceeding through the entire default
provider chain.

For example:

S3Client s3 = S3Client.builder()
.credentialsProvider(InstanceProfileCredentialsProvider.builder().build())
.build();

When you use this approach, the SDK retrieves temporary AWS credentials that have the same
permissions as those associated with the IAM role that is associated with the Amazon EC2 instance
in its instance profile. Although these credentials are temporary and would eventually expire,
InstanceProfileCredentialsProvider periodically refreshes them for you so that the obtained
credentials continue to allow access to AWS.

Walkthrough: Using IAM roles for Amazon EC2
Instances

This walkthrough shows you how to retrieve an object from Amazon S3 using an IAM role to manage
access.

Create an IAM Role

Create an IAM role that grants read-only access to Amazon S3.
To create the IAM role

Open the IAM console.
In the navigation pane, choose Roles, then Create New Role.
On the Select Role Type page, under AWS Service Roles, choose Amazon EC2.

PUunN =

On the Attach Policy page, choose Amazon S3 Read Only Access from the policy list, then choose
Next Step.

5. Enter a name for the role, then select Next Step. Remember this name

because you'll need it when you launch your Amazon EC2 instance.
6. On the Review page, choose Create Role.

Launch an EC2 Instance and Specify Your IAM Role

You can launch an Amazon EC2 instance with an IAM role using the Amazon EC2 console.

To launch an Amazon EC2 instance using the console, follow the directions in Getting Started with
Amazon EC2 Linux Instances in the Amazon EC2 User Guide for Linux Instances.

When you reach the Review Instance Launch page, select Edit instance details. In IAM role, choose the
IAM role that you created previously. Complete the procedure as directed.

Note
You need to create or use an existing security group and key pair to connect to the instance.

With this IAM and Amazon EC2 setup, you can deploy your application to the EC2 instance and it will
have read access to the Amazon S3 service.

24

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/auth/InstanceProfileCredentialsProvider.html
https://console.aws.amazon.com/iam/home
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

AWS SDK for Java Developer Guide
Amazon S3 Examples

Amazon S3 Examples

This section provides examples of programming Amazon S3 using the AWS SDK for Java 2.0.

Note

The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or clone
the repository locally to get all the examples to build and run.

Topics
« Creating, Listing, and Deleting Amazon S3 Buckets (p. 25)
» Performing Operations on an Amazon S3 Object (p. 27)

Creating, Listing, and Deleting Amazon S3 Buckets

Every object (file) in Amazon S3 must reside within a bucket. A bucket represents a collection (container)
of objects. Each bucket must have a unique key (name). For detailed information about buckets and their
configuration, see Working with Amazon S3 Buckets in the Amazon S3 Developer Guide.

<admonition>

<title>Best Practice</title>

We recommend that you enable the AbortincompleteMultipartUpload lifecycle rule on your Amazon S3
buckets.

This rule directs Amazon S3 to abort multipart uploads that don't complete within a specified number of
days after being initiated. When the set time limit is exceeded, Amazon S3 aborts the upload and then
deletes the incomplete upload data.

For more information, see Lifecycle Configuration for a Bucket with Versioning in the Amazon S3 User
Guide.
</admonition>

Note

These code snippets assume that you understand the material in Using the AWS SDK for
Java 2.0 Developer Preview (p. 11), and have configured default AWS credentials using the
information in Set Up AWS Credentials and Region for Development (p. 5).

Create a Bucket

Build a CreateBucketRequest and provide a bucket name. Pass it to the S3ClientcreateBucket method.
Use the S3Client to do additional operations such as listing or deleting buckets as shown in later
examples.

Imports

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.s3.S3Client;

import software.amazon.awssdk.services.s3.model.CreateBucketConfiguration;
import software.amazon.awssdk.services.s3.model.CreateBucketRequest;

Code

// Create bucket

CreateBucketRequest createBucketRequest = CreateBucketRequest
.builder()
.bucket(bucket)

25

https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/lifecycle-configuration-bucket-with-versioning.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/CreateBucketRequest.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/S3Client.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/S3Client.html

AWS SDK for Java Developer Guide
Bucket Operations

.createBucketConfiguration(CreateBucketConfiguration.builder()

.locationConstraint(region.value())
.build())
.build();
s3.createBucket(createBucketRequest);

See the complete example.

List the Buckets

Build a ListBucketRequest. Use the S3Client1istBuckets method to retrieve the list of buckets. If the
request succeeds a ListBucketsResponse is returned. Use this response object to retrieve the list of
buckets.

Imports

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.s3.S3Client;

import software.amazon.awssdk.services.s3.model.CreateBucketConfiguration;
import software.amazon.awssdk.services.s3.model.CreateBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteBucketRequest;
import software.amazon.awssdk.services.s3.model.ListBucketsRequest;

import software.amazon.awssdk.services.s3.model.ListBucketsResponse;

Code

ListBucketsRequest listBucketsRequest = ListBucketsRequest.builder().build();
ListBucketsResponse listBucketsResponse = s3.listBuckets(listBucketsRequest);
System.out.println(listBucketsResponse.buckets());

See the complete example.

Delete a Bucket

Before you can delete an Amazon S3 bucket, you must ensure that the bucket is empty or the service will
return an error. If you have a versioned bucket, you must also delete any versioned objects that are in the
bucket.

Topics
o Delete Objects in a Bucket (p. 26)
o Delete an Empty Bucket (p. 27)

Delete Objects in a Bucket

Build a ListObjectsV2Request and use the S3Clientlistobjects method to retrieve the list of objects in
the bucket. Then use the deleteobject method on each object to delete it.

Imports

import software.amazon.awssdk.services.s3.S3Client;

import software.amazon.awssdk.services.s3.model.CreateBucketConfiguration;
import software.amazon.awssdk.services.s3.model.CreateBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteObjectRequest;
import software.amazon.awssdk.services.s3.model.ListObjectsV2Request;

26

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/s3/src/main/java/com/example/s3/S3BucketOps.java
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/ListBucketRequest.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/S3Client.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/model/ListBucketsResponse.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/s3/src/main/java/com/example/s3/S3BucketOps.java
http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/ListObjectsV2Request.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/S3Client.html

AWS SDK for Java Developer Guide
Object Operations

import software.amazon.awssdk.services.s3.model.ListObjectsV2Response;

Code

ListObjectsV2Response listObjectsV2Response;

do {
listObjectsV2Response = s3.listObjectsV2(listObjectsV2Request);
for (S30bject s30bject : listObjectsV2Response.contents()) {

s3.deleteObject(DeleteObjectRequest.builder().bucket(bucket2).key(s30bject.key()).build());
¥

listObjectsV2Request = ListObjectsV2Request.builder().bucket(bucket2)

.continuationToken(listObjectsV2Response.nextContinuationToken())
.build();

} while (listObjectsV2Response.isTruncated());

See the complete example.
Delete an Empty Bucket
Build a DeleteBucketRequest with a bucket name and pass it to the S3ClientdeleteBucket method.

Imports

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.s3.S3Client;

import software.amazon.awssdk.services.s3.model.CreateBucketConfiguration;
import software.amazon.awssdk.services.s3.model.CreateBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteBucketRequest;

Code

DeleteBucketRequest deleteBucketRequest =
DeleteBucketRequest.builder().bucket(bucket).build();
s3.deleteBucket(deleteBucketRequest);

See the complete example.

Performing Operations on an Amazon S3 Object

An Amazon S3 object represents a file or collection of data. Every object must be contained in a
bucket (p. 25).

Note

These code snippets assume that you understand the material in Using the AWS SDK for
Java 2.0 Developer Preview (p. 11), and have configured default AWS credentials using the
information in Set Up AWS Credentials and Region for Development (p. 5).

Topics
« Upload an Object (p. 28)
« Upload Objects in Multiple Parts (p. 28)
« Download an Object (p. 29)
« Delete an Object (p. 29)

27

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/s3/src/main/java/com/example/s3/S3BucketDeletion.java
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/DeleteBucketRequest.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/S3Client.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/s3/src/main/java/com/example/s3/S3BucketOps.java

AWS SDK for Java Developer Guide
Object Operations

Upload an Object

Build a PutObjectRequest and supply a bucket name and key name. Then use the S3Clientputobject
method with a RequestBody RequestBody that contains the object content and the putobjectRequest
object. The bucket must exist, or the service will return an error.

Imports

import software.amazon.awssdk.services.s3.model.PutObjectRequest;
import software.amazon.awssdk.services.s3.model.UploadPartRequest;
import software.amazon.awssdk.sync.RequestBody;

Code

// Put Object
s3.putObject(PutObjectRequest.builder().bucket(bucket).key(key)
.build(),
RequestBody.of (getRandomByteBuffer(10_000)));

See the complete example.

Upload Objects in Multiple Parts

Use the S3ClientcreateMultipartUpload method to get an upload ID. Then use the uploadrart method
to upload each part. Finally, use the S3ClientcompleteMultipartUpload method to tell Amazon S3 to
merge all the uploaded parts and finish the upload operation.

Imports

import software.amazon.awssdk.services.s3.model.CompleteMultipartUploadRequest;
import software.amazon.awssdk.services.s3.model.CompletedMultipartUpload;
import software.amazon.awssdk.services.s3.model.CompletedPart;

import software.amazon.awssdk.services.s3.model.CreateBucketConfiguration;
import software.amazon.awssdk.services.s3.model.CreateBucketRequest;

import software.amazon.awssdk.services.s3.model.CreateMultipartUploadRequest;
import software.amazon.awssdk.services.s3.model.CreateMultipartUploadResponse;
import software.amazon.awssdk.services.s3.model.DeleteBucketRequest;

import software.amazon.awssdk.services.s3.model.DeleteObjectRequest;

import software.amazon.awssdk.services.s3.model.GetObjectRequest;

import software.amazon.awssdk.services.s3.model.PutObjectRequest;

import software.amazon.awssdk.services.s3.model.UploadPartRequest;

Code

// First create a multipart upload and get upload id
CreateMultipartUploadRequest createMultipartUploadRequest =
CreateMultipartUploadRequest.builder()

.bucket(bucketName) .key(key)

.build();
CreateMultipartUploadResponse response =
s3.createMultipartUpload(createMultipartUploadRequest);
String uploadId = response.uploadId();
System.out.println(uploadId);

// Upload all the different parts of the object
UploadPartRequest uploadPartRequestl =
UploadPartRequest.builder().bucket(bucketName).key(key)

28

http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/PutObjectRequest.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/S3Client.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/sync/RequestBody.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/s3/src/main/java/com/example/s3/S3ObjectOperations.java
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/S3Client.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/S3Client.html

AWS SDK for Java Developer Guide
Object Operations

.uploadId(uploadId)
.partNumber(1l).build();
String etagl = s3.uploadPart(uploadPartRequestl, RequestBody.of(getRandomByteBuffer(5 *
MB))).eTag();
CompletedPart partl = CompletedPart.builder().partNumber(l).eTag(etagl).build();

UploadPartRequest uploadPartRequest2 =
UploadPartRequest.builder().bucket(bucketName).key(key)
.uploadId(uploadId)
.partNumber(2).build();
String etag2 = s3.uploadPart(uploadPartRequest2, RequestBody.of(getRandomByteBuffer(3 *
MB))).eTag();
CompletedPart part2 = CompletedPart.builder().partNumber(2).eTag(etag2).build();

// Finally call completeMultipartUpload operation to tell S3 to merge all uploaded
// parts and finish the multipart operation.

CompletedMultipartUpload completedMultipartUpload =
CompletedMultipartUpload.builder().parts(partl, part2).build();
CompleteMultipartUploadRequest completeMultipartUploadRequest =

CompleteMultipartUploadRequest.builder().bucket(bucketName).key(key).uploadId(uploadId)
.multipartUpload(completedMultipartUpload).build();
s3.completeMultipartUpload(completeMultipartUploadRequest);

See the complete example.

Download an Object

Build a GetObjectRequest and supply a bucket name and key name. Use the S3Clientgetobject
method, passing it the cetobjectRequest object and a streamingResponseHandler object. The
StreamingResponseHandler creates a response handler that writes the response content to the specified
file or stream.

The following example specifies a file name to write the object content to.

Imports

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.file.Paths;

import java.util.Random;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.s3.S3Client;

import software.amazon.awssdk.services.s3.model.CompleteMultipartUploadRequest;

Code

// Get Object
s3.getObject(GetObjectRequest.builder().bucket(bucket).key(key).build(),
StreamingResponseHandler.toFile(Paths.get("myfile.out")));

See the complete example.

Delete an Object

Build a DeleteObjectRequest and supply a bucket name and key name. Use the S3Clientdeleteobject
method, and pass it the name of a bucket and object to delete. The specified bucket and object key must
exist, or the service will return an error.

29

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/s3/src/main/java/com/example/s3/S3ObjectOperations.java
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/GetObjectRequest.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/S3Client.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/s3/src/main/java/com/example/s3/S3ObjectOperations.java
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/DeleteObjectRequest.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/s3/S3Client.html

AWS SDK for Java Developer Guide
Amazon SQS Examples

Imports

import software.amazon.awssdk.services.s3.model.DeleteObjectRequest;
import software.amazon.awssdk.services.s3.model.GetObjectRequest;

Code

// Delete Object

DeleteObjectRequest deleteObjectRequest =
DeleteObjectRequest.builder().bucket(bucket).key(key).build();
s3.deleteObject(deleteObjectRequest);

See the complete example.

Amazon SQS Examples

This section provides examples of programming Amazon SQS using the AWS SDK for Java 2.0.

Note

The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or clone
the repository locally to get all the examples to build and run.

Topics
« Working with Amazon SQS Message Queues (p. 30)
« Sending, Receiving, and Deleting Amazon SQS Messages (p. 32)

Working with Amazon SQS Message Queues

A message queue is the logical container used for sending messages reliably in Amazon SQS. There
are two types of queues: standard and first-in, first-out (FIFO). To learn more about queues and the
differences between these types, see the Amazon SQS Developer Guide.

This topic describes how to create, list, delete, and get the URL of an Amazon SQS queue by using the
AWS SDK for Java.

Create a Queue

Use the SQSClientcreategueue method, and provide a CreateQueueRequest object that describes the
queue parameters.

Imports

import software.amazon.awssdk.services.sqgs.SQSClient;
import software.amazon.awssdk.services.sqgs.model.CreateQueueRequest;

Code

System.out.println("\nCreate Queue");

CreateQueueRequest createQueueRequest =
CreateQueueRequest.builder().queueName(queueName).build();
sgsClient.createQueue(createQueueRequest);

30

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/s3/src/main/java/com/example/s3/S3ObjectOperations.java
https://aws.amazon.com/sqs/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/SQSClient.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/CreateQueueRequest.html

AWS SDK for Java Developer Guide
Queue Operations

See the complete sample.

List Queues

To list the Amazon SQS queues for your account, call the SQSClientlistoueues method with a
ListQueuesRequest object.

Using the 1istoueues overload without any parameters returns all queues, up to 1,000 queues. You can
supply a queue name prefix to the ListQueuesRequest object to limit the results to queues that match
that prefix.

Imports

import software.amazon.awssdk.services.sqgs.model.ListQueuesRequest;
import software.amazon.awssdk.services.sgs.model.ListQueuesResponse;

Code

System.out.println("\nList Queues");
String prefix = "que";
ListQueuesRequest listQueuesRequest =
ListQueuesRequest.builder().queueNamePrefix(prefix).build();
ListQueuesResponse listQueuesResponse = sqgsClient.listQueues(listQueuesRequest);
for (String url : listQueuesResponse.queueUrls()) {
System.out.println(url);
}

See the complete sample.

Get the URL for a Queue

Call the SQSClientgetoueuetrl method. with a GetQueueUrlRequest object.

Imports

import software.amazon.awssdk.services.sgs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqgs.model.GetQueueUrlResponse;

Code

System.out.println("\nGet queue url");

GetQueueUrlResponse getQueueUrlResponse =
sgsClient.getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());

String queueUrl = getQueueUrlResponse.queueUrl();

System.out.println(queueUrl);

See the complete sample.

Delete a Queue

Provide the queue's URL (p. 31) to the DeleteMessageRequest object. Then call the
SQSClientdeletegueue method.

Imports

import software.amazon.awssdk.services.sgs.model.DeleteMessageRequest;

31

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/sqs/src/main/java/com/example/sqs/SQSExample.java
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/SQSClient.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/ListQueuesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/sqs/src/main/java/com/example/sqs/SQSExample.java
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/SQSClient.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/GetQueueUrlRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/sqs/src/main/java/com/example/sqs/SQSExample.java
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/DeleteMessageRequest.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/SQSClient.html

AWS SDK for Java Developer Guide
Message Operations

import software.amazon.awssdk.services.sgs.model.DeleteQueueRequest;

Code

System.out.println("\nDelete Queue");

DeleteQueueRequest deleteQueueRequest =
DeleteQueueRequest.builder().queueUrl(queueUrl).build();
sgsClient.deleteQueue(deleteQueueRequest);

See the complete sample.

More Info

o How Amazon SQS Queues Work in the Amazon SQS Developer Guide
o CreateQueue in the Amazon SQS API Reference

« GetQueueUrl in the Amazon SQS API Reference

 ListQueues in the Amazon SQS API Reference

« DeleteQueues in the Amazon SQS API Reference

Sending, Receiving, and Deleting Amazon SQS
Messages

A message is a piece of data that can be sent and recieved by distributed components. Messages are
always delivered using an SQS Queue (p. 30).

Send a Message

Add a single message to an Amazon SQS queue by calling the SQSClient client sendMessage method.
Provide a SendMessageRequest object that contains the queue's URL (p. 31), message body, and
optional delay value (in seconds).

Imports

import software.amazon.awssdk.services.sqgs.SQSClient;
import software.amazon.awssdk.services.sgs.model.SendMessageRequest;

Code

System.out.println("\nSend message");
sgsClient.sendMessage(SendMessageRequest.builder()
.queueUrl(queueUrl)
.messageBody("Hello world!")
.delaySeconds(10)
.build());

Send Multiple Messages in a Request

Send more than one message in a single request by using the SQSClientsendMessageBatch method. This
method takes a SendMessageBatchRequest that contains the queue URL and a list of messages to send.
(Each message is a SendMessageBatchRequestEntry.) You can also delay sending a specific message by
setting a delay value on the message.

Imports

32

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/sqs/src/main/java/com/example/sqs/SQSExample.java
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueues.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/SQSClient.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/SendMessageRequest.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/SQSClient.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/SendMessageBatchRequest.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/SendMessageBatchRequestEntry.html

AWS SDK for Java Developer Guide
Message Operations

import software.amazon.awssdk.services.sqgs.SQSClient;
import software.amazon.awssdk.services.sqgs.model.SendMessageBatchRequest;
import software.amazon.awssdk.services.sqgs.model.SendMessageBatchRequestEntry;

Code

System.out.println("\nSend multiple messages");

SendMessageBatchRequest sendMessageBatchRequest = SendMessageBatchRequest.builder()
.queueUrl(queueUrl)
.entries(SendMessageBatchRequestEntry.builder().id("id1").messageBody("Hello from

msg 1").build(),
SendMessageBatchRequestEntry.builder().id("id2").messageBody("msg
2").delaySeconds(10).build())
.build();
sgsClient.sendMessageBatch(sendMessageBatchRequest);

See the complete sample.

Retrieve Messages

Retrieve any messages that are currently in the queue by calling the SQSClientreceiveMessage method.
This method takes a ReceiveMessageRequest that contains the queue URL. You can also specify the
maximum number of messages to return. Messages are returned as a list of Message objects.

Imports

import software.amazon.awssdk.services.sqgs.SQSClient;
import software.amazon.awssdk.services.sqgs.model.ReceiveMessageRequest;

Code

System.out.println("\nReceive messages");

ReceiveMessageRequest receiveMessageRequest = ReceiveMessageRequest.builder()
.queueUrl(queueUrl)
.maxNumberOfMessages(5)
build();

List<Message> messages= sgsClient.receiveMessage(receiveMessageRequest).messages();

Delete a Message After Receipt

After receiving a message and processing its contents, delete the message from the queue by sending
the message's receipt handle and queue URL to the SQSClientdeleteMessage method.

Imports

import software.amazon.awssdk.services.sqgs.SQSClient;
import software.amazon.awssdk.services.sgs.model.DeleteQueueRequest;

Code

System.out.println("\nDelete Messages");
for (Message message : messages) {
DeleteMessageRequest deleteMessageRequest = DeleteMessageRequest.builder()
.queueUrl(queueUrl)
.receiptHandle(message.receiptHandle())
.build();

33

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/sqs/src/main/java/com/example/sqs/SQSExample.java
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/SQSClient.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/ReceiveMessageRequest.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/model/Message.html
http://aws-java-sdk-javadoc.s3-website-us-west-2.amazonaws.com/latest/index.html?software/amazon/awssdk/services/sqs/SQSClient.html

AWS SDK for Java Developer Guide
Message Operations

sgsClient.deleteMessage(deleteMessageRequest);

See the complete sample.

More Info

o How Amazon SQS Queues Work in the Amazon SQS Developer Guide
« SendMessage in the Amazon SQS API Reference

« SendMessageBatch in the Amazon SQS API Reference

« ReceiveMessage in the Amazon SQS API Reference

« DeleteMessage in the Amazon SQS API Reference

34

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/sqs/src/main/java/com/example/sqs/SQSExample.java
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

AWS SDK for Java Developer Guide

Document History

This topic describes important changes to the AWS SDK for Java Developer Guide over the course of its
history.

This documentation was built on: Sep 19, 2017
Jun 28, 2017

New SDK version, 2.0 released.

35

	AWS SDK for Java
	Table of Contents
	AWS SDK for Java 2.0 Developer Guide (Developer Preview)
	What's New in Version 2.0
	Support for 1.0
	Additional Resources
	Contributing to the Developer Preview
	Eclipse IDE Support
	Developing AWS Applications for Android

	Getting Started with AWS SDK for Java 2.0 Developer Preview
	Sign up for AWS and Create an IAM User
	Set up the AWS SDK for Java 2.0 Developer Preview
	Prerequisites
	Including the SDK in Your Project
	Compiling the SDK
	Installing a Java Development Environment
	Choosing a JVM

	Set Up AWS Credentials and Region for Development
	Setting AWS Credentials
	Setting the AWS Region

	Using the SDK with Apache Maven
	Create a New Maven Package
	Configure the SDK as a Maven Dependency
	Specifying Individual SDK Modules (Recommended)
	Importing All SDK Modules (Not Recommended)

	Build Your Project

	Using the SDK with Gradle

	Using the AWS SDK for Java 2.0 Developer Preview
	Creating Service Clients
	Obtaining a Client Builder
	Using DefaultClient
	To create a default client

	Client Lifecycle
	To close a client

	Working with AWS Credentials
	Using the Default Credential Provider Chain
	Setting Credentials
	Setting an Alternate Credentials Profile
	Setting an Alternate Credentials File Location
	To override the default credentials file location

	AWS Credentials File Format
	Loading Credentials

	Specifying a Credential Provider or Provider Chain
	Explicitly Specifying Credentials
	More Info

	AWS Region Selection
	Choosing a Region
	Automatically Determine the AWS Region from the Environment
	Default Region Provider Chain

	Checking for Service Availability in an AWS Region

	Asynchronous Programming
	Non-streaming Operations
	Streaming Operations

	Exception Handling
	Why Unchecked Exceptions?
	AmazonServiceException (and Subclasses)
	AmazonClientException

	Logging AWS SDK for Java Calls
	Download the Log4J JAR
	Setting the Classpath
	Service-Specific Errors and Warnings
	Request/Response Summary Logging
	Verbose Wire Logging

	Advanced Topics for AWS SDK for Java 2.0
	Configure IAM Roles for Amazon EC2
	Default Provider Chain and Amazon EC2 Instance Profiles
	Walkthrough: Using IAM roles for Amazon EC2 Instances
	Create an IAM Role
	Launch an EC2 Instance and Specify Your IAM Role

	Amazon S3 Examples
	Creating, Listing, and Deleting Amazon S3 Buckets
	Create a Bucket
	List the Buckets
	Delete a Bucket
	Delete Objects in a Bucket
	Delete an Empty Bucket

	Performing Operations on an Amazon S3 Object
	Upload an Object
	Upload Objects in Multiple Parts
	Download an Object
	Delete an Object

	Amazon SQS Examples
	Working with Amazon SQS Message Queues
	Create a Queue
	List Queues
	Get the URL for a Queue
	Delete a Queue
	More Info

	Sending, Receiving, and Deleting Amazon SQS Messages
	Send a Message
	Send Multiple Messages in a Request
	Retrieve Messages
	Delete a Message After Receipt
	More Info

	Document History

