
AWS SDK for Java
Developer Guide

AWS SDK for Java: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS SDK for Java Developer Guide

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

AWS SDK for Java Developer Guide

Table of Contents
AWS SDK for Java Developer Guide 1

AWS SDK for Java 2.0 Developer Preview 1
Additional Documentation and Resources 1
Eclipse IDE Support ... 1
Developing AWS Applications for Android 1
Viewing the SDK's Revision History 2
Building Java Reference Documentation for Earlier SDK versions 2

Getting Started 3
Sign Up for AWS and Create an IAM User 3
Set up the AWS SDK for Java 4

Prerequisites ... 4
Including the SDK in your project ... 4
Downloading and extracting the SDK 4
Installing previous versions of the SDK 5
Installing a Java Development Environment 5

Set up AWS Credentials and Region for Development 6
Setting AWS Credentials ... 6
Setting the AWS Region 7

Using the SDK with Apache Maven 7
Create a new Maven package 7
Configure the SDK as a Maven dependency 8
Build your project ... 9
Build the SDK with Maven 9

Using the SDK with Gradle 9
Using the AWS SDK for Java 11

Best Practices for AWS Development with the AWS SDK for Java 11
Amazon S3 11

Creating Service Clients ... 12
Obtaining a Client Builder ... 12
Creating Async Clients ... 13
Using DefaultClient 13
Client Lifecycle 13

Working with AWS Credentials ... 14
Using the Default Credential Provider Chain 14
Specifying a Credential Provider or Provider Chain 16
Explicitly Specifying Credentials ... 17
More Info 17

AWS Region Selection 17
Checking for Service Availability in an AWS Region 17
Choosing a Region 18
Choosing a Specific Endpoint ... 18
Automatically Determine the AWS Region from the Environment 18

Exception Handling 19
Why Unchecked Exceptions? 19
AmazonServiceException (and Subclasses) ... 20
AmazonClientException 20

Asynchronous Programming 20
Java Futures 21
Asynchronous Callbacks 22
Best Practices 23

Logging AWS SDK for Java Calls ... 23
Download the Log4J JAR 23
Setting the Classpath 24
Service-Specific Errors and Warnings 24

iii

AWS SDK for Java Developer Guide

Request/Response Summary Logging 24
Verbose Wire Logging 25

Client Networking Configuration 25
Proxy Configuration 26
HTTP Transport Configuration 26
TCP Socket Buffer Size Hints ... 27

Access Control Policies ... 27
Amazon S3 Example 28
Amazon SQS Example 28
Amazon SNS Example 28

Setting the JVM TTL for DNS Name Lookups 29
How to Set the JVM TTL 29

Enabling Metrics for the AWS SDK for Java 29
How to Enable SDK Metric Generation 29
Available Metric Types 30
More Information 32

Code Examples 33
SDK Code Samples 33

How to Get the Samples 33
Building and Running the Samples Using the Command Line 33
Building and Running the Samples Using the Eclipse IDE 34

Amazon CloudWatch Examples 35
Getting Metrics from CloudWatch 35
Publishing Custom Metric Data 36
Working with CloudWatch Alarms 37
Using Alarm Actions in CloudWatch 39
Sending Events to CloudWatch 40

Amazon DynamoDB Examples 42
Working with Tables in DynamoDB 43
Working with Items in DynamoDB 47
Managing Tomcat Session State with DynamoDB 50

Amazon EC2 Examples 52
Tutorial: Starting an EC2 Instance 53
Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 56
Tutorial: Amazon EC2 Spot Instances 60
Tutorial: Advanced Amazon EC2 Spot Request Management 68
Managing Amazon EC2 Instances 80
Using Elastic IP Addresses in Amazon EC2 83
Using Regions and Availability Zones 85
Working with Amazon EC2 Key Pairs ... 87
Working with Security Groups in Amazon EC2 88

AWS Identity and Access Management (IAM) Examples 91
Managing IAM Access Keys 91
Managing IAM Users ... 94
Using IAM Account Aliases 96
Working with IAM Policies ... 98
Working with IAM Server Certificates 101

Amazon S3 Examples 104
Creating, Listing, and Deleting Amazon S3 Buckets ... 104
Performing Operations on Amazon S3 Objects ... 108
Managing Amazon S3 Access Permissions for Buckets and Objects ... 112
Managing Access to Amazon S3 Buckets Using Bucket Policies ... 114
Using TransferManager for Amazon S3 Operations 117
Configuring an Amazon S3 Bucket as a Website 124
Using Amazon S3 Client-Side Encryption 126

Amazon SQS Examples 132
Working with Amazon SQS Message Queues 133

iv

AWS SDK for Java Developer Guide

Sending, Receiving, and Deleting Amazon SQS Messages 135
Enabling Long Polling for Amazon SQS Message Queues 137
Setting Visibility Timeout in Amazon SQS 138
Using Dead Letter Queues in Amazon SQS 140

Getting Temporary Credentials with AWS STS 141
(Optional) Activate and use an AWS STS region 142
Retrieve temporary security credentials from AWS STS 142
Use the temporary credentials to access AWS resources 143
For more information 143

Amazon SWF Examples 144
Amazon SWF Basics ... 144
Building a Simple Amazon SWF Application 145
Lambda Tasks 158
Shutting Down Activity and Workflow Workers Gracefully ... 161
Registering Domains 163
Listing Domains 164

Document History 165

v

AWS SDK for Java Developer Guide
AWS SDK for Java 2.0 Developer Preview

AWS SDK for Java Developer Guide
The AWS SDK for Java provides a Java API for Amazon Web Services. Using the SDK, you can easily build
Java applications that work with Amazon S3, Amazon EC2, Amazon SimpleDB, and more. We regularly
add support for new services to the AWS SDK for Java. For a list of the supported services and their API
versions that are included with each release of the SDK, view the release notes for the version that you're
working with.

AWS SDK for Java 2.0 Developer Preview
Take a look at the new AWS SDK for Java 2.0 developer preview at https://github.com/aws/aws-sdk-
java-v2/. It includes much awaited features, such as a way to plug in a HTTP implementation. To get
started, see the AWS SDK for Java 2.0 Developer Guide.

Additional Documentation and Resources
In addition to this guide, the following are valuable online resources for AWS SDK for Java developers:

• AWS SDK for Java API Reference
• Java developer blog
• Java developer forums
• GitHub:

• Documentation source
• Documentation issues
• SDK source
• SDK issues
• SDK samples
• Gitter channel

• @awsforjava (Twitter)
• release notes

Eclipse IDE Support
If you develop code using the Eclipse IDE, you can use the AWS Toolkit for Eclipse to add the AWS SDK
for Java to an existing Eclipse project or to create a new AWS SDK for Java project. The toolkit also
supports creating and uploading Lambda functions, launching and monitoring Amazon EC2 instances,
managing IAM users and security groups, a AWS CloudFormation template editor, and more.

See the AWS Toolkit for Eclipse User Guide for full documentation.

Developing AWS Applications for Android
If you're an Android developer, Amazon Web Services publishes an SDK made specifically for Android
development: the AWS Mobile SDK for Android. See the AWS Mobile SDK for Android Developer Guide
for full documentation.

1

https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-java#release-notes
https://github.com/aws/aws-sdk-java-v2/
https://github.com/aws/aws-sdk-java-v2/
http://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/welcome.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
http://aws.amazon.com/blogs/developer/category/java
https://forums.aws.amazon.com/forum.jspa?forumID=70
https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide/issues
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java/issues
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://gitter.im/aws/aws-sdk-java
https://twitter.com/awsforjava
https://github.com/aws/aws-sdk-java#release-notes
https://aws.amazon.com/eclipse/
http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
https://aws.amazon.com/mobile/sdk/
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/

AWS SDK for Java Developer Guide
Viewing the SDK's Revision History

Viewing the SDK's Revision History
To view the release history of the AWS SDK for Java, including changes and supported services per SDK
version, see the SDK's release notes.

Building Java Reference Documentation for Earlier
SDK versions

The AWS SDK for Java API Reference represents the most recent version of the SDK. If you're using an
earlier SDK version, you might want to access the SDK reference documentation that matches the version
you're using.

The easiest way to build the documentation is using Apache's Maven build tool. Download and install
Maven first if you don't already have it on your system, then use the following instructions to build the
reference documentation.

To build reference documentation for an earlier SDK version

1. Locate and select the SDK version that you're using on the releases page of the SDK repository on
GitHub.

2. Choose either the zip (most platforms, including Windows) or tar.gz (Linux, macOS, or Unix) link
to download the SDK to your computer.

3. Unpack the archive to a local directory.
4. On the command line, navigate to the directory where you unpacked the archive, and type the

following.

mvn javadoc:javadoc

5. After building is complete, you'll find the generated HTML documentation in the aws-java-sdk/
target/site/apidocs/ directory.

2

https://github.com/aws/aws-sdk-java#release-notes
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://maven.apache.org/
https://github.com/aws/aws-sdk-java/releases

AWS SDK for Java Developer Guide
Sign Up for AWS and Create an IAM User

Getting Started
This section provides information about how to install, set up, and use the AWS SDK for Java.

Topics
• Sign Up for AWS and Create an IAM User (p. 3)

• Set up the AWS SDK for Java (p. 4)

• Set up AWS Credentials and Region for Development (p. 6)

• Using the SDK with Apache Maven (p. 7)

• Using the SDK with Gradle (p. 9)

Sign Up for AWS and Create an IAM User
To use the AWS SDK for Java to access Amazon Web Services (AWS), you will need an AWS account and
AWS credentials. To increase the security of your AWS account, we recommend that you use an IAM user
to provide access credentials instead of using your root account credentials.

Note
For an overview of IAM users and why they are important for the security of your account, see
Overview of Identity Management: Users in the IAM User Guide.

To sign up for AWS

1. Open https://aws.amazon.com/ and click Sign Up.

2. Follow the on-screen instructions. Part of the sign-up procedure involves receiving a phone call and
entering a PIN using your phone keypad.

Next, create an IAM user and download (or copy) its secret access key.

To create an IAM user

1. Go to the IAM console (you may need to sign in to AWS first).

2. Click Users in the sidebar to view your IAM users.

3. If you don't have any IAM users set up, click Create New Users to create one.

4. Select the IAM user in the list that you'll use to access AWS.

5. Open the Security Credentials tab, and click Create Access Key.

Note
You can have a maximum of two active access keys for any given IAM user. If your IAM user
has two access keys already, then you'll need to delete one of them before creating a new
key.

6. On the resulting dialog box, click the Download Credentials button to download the credential file
to your computer, or click Show User Security Credentials to view the IAM user's access key ID and
secret access key (which you can copy and paste).

Important
There is no way to obtain the secret access key once you close the dialog box. You can,
however, delete its associated access key ID and create a new one.

3

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_identity-management.html
https://aws.amazon.com/
https://console.aws.amazon.com/iam/home

AWS SDK for Java Developer Guide
Set up the AWS SDK for Java

Next, you should set your credentials (p. 6) in the AWS shared credentials file or in the environment.

Note
If you use the Eclipse IDE, you should consider installing the AWS Toolkit for Eclipse and
providing your credentials as described in Set up AWS Credentials in the AWS Toolkit for Eclipse
User Guide.

Set up the AWS SDK for Java
Describes how to use the AWS SDK for Java in your project.

Prerequisites
To use the AWS SDK for Java, you must have:

• a suitable Java Development Environment (p. 5).
• An AWS account and access keys. For instructions, see Sign Up for AWS and Create an IAM

User (p. 3).
• AWS credentials (access keys) set in your environment or using the shared (by the AWS CLI and

other SDKs) credentials file. For more information, see Set up AWS Credentials and Region for
Development (p. 6).

Including the SDK in your project
To include the SDK your project, use one of the following methods depending on your build system or
IDE:

• Apache Maven– If you use Apache Maven, you can specify the entire SDK (or specific SDK components)
as dependencies in your project. See Using the SDK with Apache Maven (p. 7) for details about
how to set up the SDK when using Maven.

• Gradle– If you use Gradle, you can import the Maven Bill of Materials (BOM) in your Gradle project
to automatically manage SDK dependencies. See Using the SDK with Gradle (p. 9) for more
infomation.

• Eclipse IDE– If you use the Eclipse IDE, you may want to install and use the AWS Toolkit for Eclipse,
which will automatically download, install and update the Java SDK for you. For more information and
setup instructions, see the AWS Toolkit for Eclipse User Guide.

If you intend to build your projects using a different IDE, with Apache Ant or by any other means, then
download and extract the SDK as shown in the next section.

Downloading and extracting the SDK
We recommend that you use the most recent pre-built version of the SDK for new projects, which
provides you with the latest support for all AWS services.

Note
For information about how to download and build previous versions of the SDK, see Installing
previous versions of the SDK (p. 5).

To download and extract the latest version of the SDK

1. Download the SDK from https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip.

4

https://aws.amazon.com/eclipse/
http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-credentials.html
https://maven.apache.org/
https://gradle.com/
https://aws.amazon.com/eclipse/
http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip

AWS SDK for Java Developer Guide
Installing previous versions of the SDK

2. After downloading the SDK, extract the contents into a local directory.

The SDK contains the following directories:

• documentation– contains the API documentation (also available on the web: AWS SDK for Java API
Reference).

• lib– contains the SDK .jar files.
• samples– contains working sample code that demonstrates how to use the SDK.
• third-party– contains third-party libraries that are used by the SDK, such as Apache commons

logging, AspectJ and the Spring framework.

To use the SDK, add the full path to the lib and third-party directories to the dependencies in your
build file, and add them to your java CLASSPATH to run your code.

Installing previous versions of the SDK
Only the latest version of the SDK is provided in pre-built form. However, you can build a previous
version of the SDK using Apache Maven (open source). Maven will download all necessary dependencies,
build and install the SDK in one step. Visit http://maven.apache.org/ for installation instructions and
more information.

To install a previous version of the SDK

1. Go to the SDK's GitHub page at: AWS SDK for Java (GitHub).
2. Choose the tag corresponding to the version number of the SDK that you want. For example,

1.6.10.
3. Click the Download ZIP button to download the version of the SDK you selected.
4. Unzip the file to a directory on your development system. On many systems, you can use your

graphical file manager to do this, or use the unzip utility in a terminal window.
5. In a terminal window, navigate to the directory where you unzipped the SDK source.
6. Build and install the SDK with the following command (Maven required):

mvn clean install

The resulting .jar file is built into the target directory.
7. (Optional) Build the API Reference documentation using the following command:

mvn javadoc:javadoc

The documentation is built into the target/site/apidocs/ directory.

Installing a Java Development Environment
The AWS SDK for Java requires J2SE Development Kit 6.0 or later. You can download the latest Java
software from http://www.oracle.com/technetwork/java/javase/downloads/.

Important
Java version 1.6 (JS2E 6.0) did not have built-in support for SHA256-signed SSL certificates,
which are required for all HTTPS connections with AWS after September 30, 2015.
Java versions 1.7 or newer are packaged with updated certificates and are unaffected by this
issue.

5

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
http://maven.apache.org/
https://github.com/aws/aws-sdk-java
https://maven.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/

AWS SDK for Java Developer Guide
Set up AWS Credentials and Region for Development

Choosing a JVM
For the best performance of your server-based applications with the AWS SDK for Java, we recommend
that you use the 64-bit version of the Java Virtual Machine (JVM). This JVM runs only in server mode,
even if you specify the -Client option at run time.

Using the 32-bit version of the JVM with the -Server option at run time should provide comparable
performance to the 64-bit JVM.

Set up AWS Credentials and Region for
Development

To connect to any of the supported services with the AWS SDK for Java, you must provide AWS
credentials. The AWS SDKs and CLIs use provider chains to look for AWS credentials in a number of
different places, including system/user environment variables and local AWS configuration files.

This topic provides basic information about setting up your AWS credentials for local application
development using the AWS SDK for Java. If you need to set up credentials for use within an EC2
instance or if you're using the Eclipse IDE for development, refer to the following topics instead:

• When using an EC2 instance, create an IAM role and then give your EC2 instance access to that role as
shown in Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 (p. 56).

• Set up AWS credentials within Eclipse using the AWS Toolkit for Eclipse. See Set up AWS Credentials in
the AWS Toolkit for Eclipse User Guide for more information.

Setting AWS Credentials
Setting your credentials for use by the AWS SDK for Java can be done in a number of ways, but here are
the recommended approaches:

• Set credentials in the AWS credentials profile file on your local system, located at:
• ~/.aws/credentials on Linux, macOS, or Unix
• C:\Users\USERNAME \.aws\credentials on Windows

This file should contain lines in the following format:

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

Substitute your own AWS credentials values for the values your_access_key_id and
your_secret_access_key.

• Set the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables.

To set these variables on Linux, macOS, or Unix, use export :

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key

To set these variables on Windows, use set :

set AWS_ACCESS_KEY_ID=your_access_key_id

6

https://aws.amazon.com/eclipse/
http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-credentials.html
http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/

AWS SDK for Java Developer Guide
Setting the AWS Region

set AWS_SECRET_ACCESS_KEY=your_secret_access_key

• For an EC2 instance, specify an IAM role and then give your EC2 instance access to that role. See IAM
Roles for Amazon EC2 in the Amazon EC2 User Guide for Linux Instances for a detailed discussion about
how this works.

Once you have set your AWS credentials using one of these methods, they will be loaded automatically
by the AWS SDK for Java by using the default credential provider chain. For further information about
working with AWS credentials in your Java applications, see Working with AWS Credentials (p. 14).

Setting the AWS Region
You should set a default AWS Region that will be used for accessing AWS services with the AWS SDK for
Java. For the best network performance, you should choose a region that's geographically close to you
(or to your customers).

Note
If you don't select a region, then us-east-1 will be used by default.

You can use similar techniques to setting credentials to set your default AWS region:

• Set the AWS Region in the AWS config file on your local system, located at:
• ~/.aws/config on Linux, macOS, or Unix
• C:\Users\USERNAME\.aws\config on Windows

This file should contain lines in the following format:

[default]
region = your_aws_region

Substitute your desired AWS Region (for example, "us-west-2") for your_aws_region.
• Set the AWS_REGION environment variable.

On Linux, macOS, or Unix, use export :

export AWS_REGION=your_aws_region

On Windows, use set :

set AWS_REGION=your_aws_region

Where your_aws_region is the desired AWS Region name.

Using the SDK with Apache Maven
You can use Apache Maven to configure and build AWS SDK for Java projects, or to build the SDK itself.

Note
You must have Maven installed to use the guidance in this topic. If it isn't already installed, visit
http://maven.apache.org/ to download and install it.

Create a new Maven package
To create a basic Maven package, open a terminal (command-line) window and run:

7

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://maven.apache.org/
http://maven.apache.org/

AWS SDK for Java Developer Guide
Configure the SDK as a Maven dependency

mvn -B archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DgroupId=org.example.basicapp \
 -DartifactId=myapp

Replace org.example.basicapp with the full package namespace of your application, and myapp with the
name of your project (this will become the name of the directory for your project).

By default, Maven creates a project template for you using the quickstart archetype, which is a good
starting place for many projects. There are more archetypes available; visit the Maven archetypes page
for a list of archetypes packaged with Maven. You can choose a particular archetype to use by adding the
-DarchetypeArtifactId argument to the archetype:generate command. For example:

mvn archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-webapp \
 -DgroupId=org.example.webapp \
 -DartifactId=mywebapp

Note
Much more information about creating and configuring Maven projects is provided in the Maven
Getting Started Guide.

Configure the SDK as a Maven dependency
To use the AWS SDK for Java in your project, you'll need to declare it as a dependency in your project's
pom.xml file. Beginning with version 1.9.0, you can import individual components (p. 8) or the entire
SDK (p. 9).

Specifying individual SDK modules
To select individual SDK modules, use the AWS SDK for Java bill of materials (BOM) for Maven, which will
ensure that the modules you specify use the same version of the SDK and that they're compatible with
each other.

To use the BOM, add a <dependencyManagement> section to your application's pom.xml file, adding
aws-java-sdk-bom as a dependency and specifying the version of the SDK you want to use:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.106</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

To view the latest version of the AWS SDK for Java BOM that is available on Maven Central, visit: https://
mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom. You can also use this page to see which
modules (dependencies) are managed by the BOM that you can include within the <dependencies>
section of your project's pom.xml file.

You can now select individual modules from the SDK that you use in your application. Because you
already declared the SDK version in the BOM, you don't need to specify the version number for each
component.

8

http://maven.apache.org/archetypes/maven-archetype-quickstart/
https://maven.apache.org/archetypes/index.html
https://maven.apache.org/guides/getting-started/
https://maven.apache.org/guides/getting-started/
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK for Java Developer Guide
Build your project

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-s3</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-dynamodb</artifactId>
 </dependency>
</dependencies>

Importing all SDK modules
If you would like to pull in the entire SDK as a dependency, don't use the BOM method, but simply
declare it in your pom.xml like this:

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.11.106</version>
 </dependency>
</dependencies>

Build your project
Once you have your project set up, you can build it using Maven's package command:

mvn package

This will create your .jar file in the target directory.

Build the SDK with Maven
You can use Apache Maven to build the SDK from source. To do so, download the SDK code from GitHub,
unpack it locally, and then execute the following Maven command:

mvn clean install

Using the SDK with Gradle
To use the AWS SDK for Java in your Gradle project, use Spring's dependency management plugin
for Gradle, which can be used to import the SDK's Maven Bill of Materials (BOM) to manage SDK
dependencies for your project.

To configure the SDK for Gradle

1. Add the dependency management plugin to your build.gradle file

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.3.RELEASE"

9

https://github.com/aws/aws-sdk-java
https://gradle.com/
https://github.com/spring-gradle-plugins/dependency-management-plugin

AWS SDK for Java Developer Guide
Using the SDK with Gradle

 }
}

apply plugin: "io.spring.dependency-management"

2. Add the BOM to the dependencyManagement section of the file

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.11.228'
 }
}

3. Specify the SDK modules that you'll be using in the dependencies section

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
 testCompile group: 'junit', name: 'junit', version: '4.11'
}

Gradle will automatically resolve the correct version of your SDK dependencies using the information
from the BOM.

Here's the complete build.gradle file:

group 'aws.test'
version '1.0-SNAPSHOT'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.3.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.11.228'
 }
}

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
 testCompile group: 'junit', name: 'junit', version: '4.11'
}

Note
For more detail about specifying SDK dependencies using the BOM, see Using the SDK with
Apache Maven (p. 7).

10

AWS SDK for Java Developer Guide
Best Practices for AWS Development

with the AWS SDK for Java

Using the AWS SDK for Java
This section provides important general information about programming with the AWS SDK for Java that
applies to all services you might use with the SDK.

For service-specific programming information and examples (for Amazon EC2, Amazon S3, Amazon SWF,
etc.), see AWS SDK for Java Code Examples (p. 33).

Topics
• Best Practices for AWS Development with the AWS SDK for Java (p. 11)

• Creating Service Clients (p. 12)

• Working with AWS Credentials (p. 14)

• AWS Region Selection (p. 17)

• Exception Handling (p. 19)

• Asynchronous Programming (p. 20)

• Logging AWS SDK for Java Calls (p. 23)

• Client Networking Configuration (p. 25)

• Access Control Policies (p. 27)

• Setting the JVM TTL for DNS Name Lookups (p. 29)

• Enabling Metrics for the AWS SDK for Java (p. 29)

Best Practices for AWS Development with the AWS
SDK for Java

The following best practices can help you avoid issues or trouble as you develop AWS applications with
the AWS SDK for Java. We've organized best practices by service.

Amazon S3

Avoid ResetExceptions
When you upload objects to Amazon S3 by using streams (either through an AmazonS3 client or
TransferManager), you might encounter network connectivity or timeout issues. By default, the AWS SDK
for Java attempts to retry failed transfers by marking the input stream before the start of a transfer and
then resetting it before retrying.

If the stream doesn't support mark and reset, the SDK throws a ResetException when there are transient
failures and retries are enabled.

Best Practice

We recommend that you use streams that support mark and reset operations.

The most reliable way to avoid a ResetException is to provide data by using a File or FileInputStream,
which the AWS SDK for Java can handle without being constrained by mark and reset limits.

11

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/ResetException.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/ResetException.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html

AWS SDK for Java Developer Guide
Creating Service Clients

If the stream isn't a FileInputStream but does support mark and reset, you can set the mark limit by
using the setReadLimit method of RequestClientOptions. Its default value is 128 KB. Setting the read
limit value to one byte greater than the size of stream will reliably avoid a ResetException.

For example, if the maximum expected size of a stream is 100,000 bytes, set the read limit to 100,001
(100,000 + 1) bytes. The mark and reset will always work for 100,000 bytes or less. Be aware that this
might cause some streams to buffer that number of bytes into memory.

Creating Service Clients
To make requests to Amazon Web Services, you first create a service client object. The recommended
way is to use the service client builder.

Each AWS service has a service interface with methods for each action in the service API. For example,
the service interface for Amazon DynamoDB is named AmazonDynamoDB. Each service interface has a
corresponding client builder you can use to construct an implementation of the service interface. The
client builder class for DynamoDB is named AmazonDynamoDBClientBuilder.

Obtaining a Client Builder
To obtain an instance of the client builder, use the static factory method standard, as shown in the
following example.

AmazonDynamoDBClientBuilder builder = AmazonDynamoDBClientBuilder.standard();

Once you have a builder, you can customize the client's properties by using many fluent setters in the
builder API. For example, you can set a custom region and a custom credentials provider, as follows.

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

Note
The fluent withXXX methods return the builder object so that you can chain the method calls
for convenience and for more readable code. After you configure the properties you want, you
can call the build method to create the client. Once a client is created, it's immutable and any
calls to setRegion or setEndpoint will fail.

A builder can create multiple clients with the same configuration. When you're writing your application,
be aware that the builder is mutable and not thread-safe.

The following code uses the builder as a factory for client instances.

public class DynamoDBClientFactory {
 private final AmazonDynamoDBClientBuilder builder =
 AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"));

 public AmazonDynamoDB createClient() {
 return builder.build();
 }
}

The builder also exposes fluent setters for ClientConfiguration' and RequestMetricCollector, and a
custom list of RequestHandler2.

12

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/RequestClientOptions.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/ResetException.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/AmazonDynamoDBClientBuilder.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/ClientConfiguration.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/metrics/RequestMetricCollector.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/handlers/RequestHandler2.html

AWS SDK for Java Developer Guide
Creating Async Clients

The following is a complete example that overrides all configurable properties.

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .withClientConfiguration(new ClientConfiguration().withRequestTimeout(5000))
 .withMetricsCollector(new MyCustomMetricsCollector())
 .withRequestHandlers(new MyCustomRequestHandler(), new MyOtherCustomRequestHandler)
 .build();

Creating Async Clients
The AWS SDK for Java has asynchronous (or async) clients for every service (except for Amazon S3), and
a corresponding async client builder for every service.

To create an async DynamoDB client with the default
ExecutorService

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

In addition to the configuration options that the synchronous (or sync) client builder supports, the
async client enables you to set a custom ExecutorFactory to change the ExecutorService that the
async client uses. ExecutorFactory is a functional interface, so it interoperates with Java 8 lambda
expressions and method references.

To create an async client with a custom executor

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withExecutorFactory(() -> Executors.newFixedThreadPool(10))
 .build();

Using DefaultClient
Both the sync and async client builders have another factory method named defaultClient.
This method creates a service client with the default configuration, using the default provider chain
to load credentials and the AWS Region. If credentials or the region can't be determined from the
environment that the application is running in, the call to defaultClient fails. See Working with AWS
Credentials (p. 14) and AWS Region Selection (p. 17) for more information about how credentials
and region are determined.

To create a default service client

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

Client Lifecycle
Service clients in the SDK are thread-safe and, for best performance, you should treat them as long-lived
objects. Each client has its own connection pool resource that is shut down when the client is garbage

13

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/client/builder/ExecutorFactory.html

AWS SDK for Java Developer Guide
Working with AWS Credentials

collected. To explicitly shut down a client, call the shutdown method. After calling shutdown, all client
resources are released and the client is unusable.

To shut down a client

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.shutdown();
// Client is now unusable

Working with AWS Credentials
To make requests to Amazon Web Services, you must supply AWS credentials to the AWS SDK for Java.
You can do this in the following ways:

• Use the default credential provider chain (recommended).

• Use a specific credential provider or provider chain (or create your own).

• Supply the credentials yourself. These can be root account credentials, IAM credentials, or temporary
credentials retrieved from AWS STS.

Important
For security, we strongly recommend that you use IAM users instead of the root account for AWS
access. For more information, see IAM Best Practices in the IAM User Guide.

Using the Default Credential Provider Chain
When you initialize a new service client without supplying any arguments, the AWS SDK for Java
attempts to find AWS credentials by using the default credential provider chain implemented by the
DefaultAWSCredentialsProviderChain class. The default credential provider chain looks for credentials in
this order:

1. Environment variables–AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. The AWS SDK for
Java uses the EnvironmentVariableCredentialsProvider class to load these credentials.

2. Java system properties–aws.accessKeyId and aws.secretKey. The AWS SDK for Java uses the
SystemPropertiesCredentialsProvider to load these credentials.

3. The default credential profiles file– typically located at ~/.aws/credentials (location can vary
per platform), and shared by many of the AWS SDKs and by the AWS CLI. The AWS SDK for Java uses
the ProfileCredentialsProvider to load these credentials.

You can create a credentials file by using the aws configure command provided by the AWS CLI,
or you can create it by editing the file with a text editor. For information about the credentials file
format, see AWS Credentials File Format (p. 16).

4. Amazon ECS container credentials– loaded from the Amazon ECS if the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set. The AWS SDK for Java uses the
ContainerCredentialsProvider to load these credentials.

5. Instance profile credentials– used on EC2 instances, and delivered through the Amazon EC2
metadata service. The AWS SDK for Java uses the InstanceProfileCredentialsProvider to load these
credentials.

Note
Instance profile credentials are used only if AWS_CONTAINER_CREDENTIALS_RELATIVE_URI
is not set. See EC2ContainerCredentialsProviderWrapper for more information.

14

http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/EnvironmentVariableCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/SystemPropertiesCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/profile/ProfileCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/ContainerCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/InstanceProfileCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/EC2ContainerCredentialsProviderWrapper.html

AWS SDK for Java Developer Guide
Using the Default Credential Provider Chain

Setting Credentials
To be able to use AWS credentials, they must be set in at least one of the preceding locations. For
information about setting credentials, see the following topics:

• To specify credentials in the environment or in the default credential profiles file, see Set up AWS
Credentials and Region for Development (p. 6).

• To set Java system properties, see the System Properties tutorial on the official Java Tutorials website.

• To set up and use instance profile credentials with your EC2 instances, see Using IAM Roles to Grant
Access to AWS Resources on Amazon EC2 (p. 56).

Setting an Alternate Credentials Profile
The AWS SDK for Java uses the default profile by default, but there are ways to customize which profile
is sourced from the credentials file.

You can use the AWS Profile environment variable to change the profile loaded by the SDK.

For example, on Linux, macOS, or Unix you would run the following command to change the profile to
myProfile.

export AWS_PROFILE="myProfile"

On Windows you would use the following.

set AWS_PROFILE="myProfile"

Setting the AWS_PROFILE environment variable affects credential loading for all officially supported
AWS SDKs and Tools (including the AWS CLI and the AWS CLI for PowerShell). To change only the profile
for a Java application, you can use the system property aws.profile instead.

Note
The environment variable takes precedence over the system property.

Setting an Alternate Credentials File Location
The AWS SDK for Java loads AWS credentials automatically from the default credentials file location.
However, you can also specify the location by setting the AWS_CREDENTIAL_PROFILES_FILE
environment variable with the full path to the credentials file.

You can use this feature to temporarily change the location where the AWS SDK for Java looks for
your credentials file (for example, by setting this variable with the command line). Or you can set the
environment variable in your user or system environment to change it for the user or systemwide.

To override the default credentials file location

• Set the AWS_CREDENTIAL_PROFILES_FILE environment variable to the location of your AWS
credentials file.

• On Linux, macOS, or Unix, use export :

export AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

• On Windows, use set :

15

http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

AWS SDK for Java Developer Guide
Specifying a Credential Provider or Provider Chain

set AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

AWS Credentials File Format
When you use the aws configure command to create an AWS credentials file, the command creates a
file with the following format.

[default]
aws_access_key_id={YOUR_ACCESS_KEY_ID}
aws_secret_access_key={YOUR_SECRET_ACCESS_KEY}

[profile2]
aws_access_key_id={YOUR_ACCESS_KEY_ID}
aws_secret_access_key={YOUR_SECRET_ACCESS_KEY}

The profile name is specified in square brackets (for example, [default]), followed by the configurable
fields in that profile as key-value pairs. You can have multiple profiles in your credentials file, which
can be added or edited using aws configure --profile PROFILE_NAME to select the profile to
configure.

You can specify additional fields, such as aws_session_token, metadata_service_timeout, and
metadata_service_num_attempts. These are not configurable with the CLI—you must edit the file
by hand if you want to use them. For more information about the configuration file and its available
fields, see Configuring the AWS Command Line Interface in the AWS CLI User Guide.

Loading Credentials
After you set credentials, you can load them by using the default credential provider chain.

To do this, you instantiate an AWS Service client without explicitly providing credentials to the builder, as
follows.

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

Specifying a Credential Provider or Provider Chain
You can specify a credential provider that is different from the default credential provider chain by using
the client builder.

You provide an instance of a credentials provider or provider chain to a client builder that takes an
AWSCredentialsProvider interface as input. The following example shows how to use environment
credentials specifically.

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new EnvironmentVariableCredentialsProvider())
 .build();

For the full list of AWS SDK for Java-supplied credential providers and provider chains, see All Known
Implementing Classes in AWSCredentialsProvider.

Note
You can use this technique to supply credential providers or provider chains that you create by
using your own credential provider that implements the AWSCredentialsProvider interface,
or by subclassing the AWSCredentialsProviderChain class.

16

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/AWSCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/AWSCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/AWSCredentialsProviderChain.html

AWS SDK for Java Developer Guide
Explicitly Specifying Credentials

Explicitly Specifying Credentials
If the default credential chain or a specific or custom provider or provider chain doesn't work for your
code, you can set credentials that you supply explicitly. If you've retrieved temporary credentials using
AWS STS, use this method to specify the credentials for AWS access.

To explicitly supply credentials to an AWS client

1. Instantiate a class that provides the AWSCredentials interface, such as BasicAWSCredentials, and
supply it with the AWS access key and secret key you will use for the connection.

2. Create an AWSStaticCredentialsProvider with the AWSCredentials object.
3. Configure the client builder with the AWSStaticCredentialsProvider and build the client.

The following is an example.

BasicAWSCredentials awsCreds = new BasicAWSCredentials("access_key_id", "secret_key_id");
AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new AWSStaticCredentialsProvider(awsCreds))
 .build();

When using temporary credentials obtained from STS (p. 141), create a BasicSessionCredentials object,
passing it the STS-supplied credentials and session token.

BasicSessionCredentials sessionCredentials = new BasicSessionCredentials(
 session_creds.getAccessKeyId(),
 session_creds.getSecretAccessKey(),
 session_creds.getSessionToken());

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withCredentials(new
 AWSStaticCredentialsProvider(sessionCredentials)
 .build();

More Info
• Sign Up for AWS and Create an IAM User (p. 3)
• Set up AWS Credentials and Region for Development (p. 6)
• Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 (p. 56)

AWS Region Selection
Regions enable you to access AWS services that physically reside in a specific geographic area. This can
be useful both for redundancy and to keep your data and applications running close to where you and
your users will access them.

Checking for Service Availability in an AWS Region
To see if a particular AWS service is available in a region, use the isServiceSupported method on the
region that you'd like to use.

Region.getRegion(Regions.US_WEST_2)
 .isServiceSupported(AmazonDynamoDB.ENDPOINT_PREFIX);

17

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/AWSCredentials.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/BasicAWSCredentials.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/AWSStaticCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/BasicSessionCredentials.html

AWS SDK for Java Developer Guide
Choosing a Region

See the Regions class documentation for the regions you can specify, and use the endpoint prefix of
the service to query. Each service's endpoint prefix is defined in the service interface. For example, the
DynamoDB endpoint prefix is defined in AmazonDynamoDB.

Choosing a Region
Beginning with version 1.4 of the AWS SDK for Java, you can specify a region name and the SDK will
automatically choose an appropriate endpoint for you. To choose the endpoint yourself, see Choosing a
Specific Endpoint (p. 18).

To explicitly set a region, we recommend that you use the Regions enum. This is an enumeration of all
publicly available regions. To create a client with a region from the enum, use the following code.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

If the region you are attempting to use isn't in the Regions enum, you can set the region using a string
that represents the name of the region.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion("us-west-2")
 .build();

Note
After you build a client with the builder, it's immutable and the region cannot be changed. If you
are working with multiple AWS Regions for the same service, you should create multiple clients
—one per region.

Choosing a Specific Endpoint
Each AWS client can be configured to use a specific endpoint within a region by calling the setEndpoint
method.

For example, to configure the Amazon EC2 client to use the EU (Ireland) Region, use the following code.

AmazonEC2 ec2 = new AmazonEC2(myCredentials);
ec2.setEndpoint("https://ec2.eu-west-1.amazonaws.com");

See Regions and Endpoints for the current list of regions and their corresponding endpoints for all AWS
services.

Automatically Determine the AWS Region from the
Environment

Important
This section applies only when using a client builder (p. 12) to access AWS services. AWS
clients created by using the client constructor will not automatically determine region from the
environment and will, instead, use the default SDK region (USEast1).

When running on Amazon EC2 or Lambda, you might want to configure clients to use the same region
that your code is running on. This decouples your code from the environment it's running in and makes it
easier to deploy your application to multiple regions for lower latency or redundancy.

You must use client builders to have the SDK automatically detect the region your code is running in.

18

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/regions/Regions.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/regions/Regions.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK for Java Developer Guide
Exception Handling

To use the default credential/region provider chain to determine the region from the environment, use
the client builder's defaultClient method.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

This is the same as using standard followed by build.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .build();

If you don't explicitly set a region using the withRegion methods, the SDK consults the default region
provider chain to try and determine the region to use.

Default Region Provider Chain
The following is the region lookup process:

1. Any explicit region set by using withRegion or setRegion on the builder itself takes precedence
over anything else.

2. The AWS_REGION environment variable is checked. If it's set, that region is used to configure the
client.

Note
This environment variable is set by the Lambda container.

3. The SDK checks the AWS shared configuration file (usually located at ~/.aws/config). If the region
property is present, the SDK uses it.
• The AWS_CONFIG_FILE environment variable can be used to customize the location of the shared

config file.
• The AWS_PROFILE environment variable or the aws.profile system property can be used to

customize the profile that is loaded by the SDK.
4. The SDK attempts to use the Amazon EC2 instance metadata service to determine the region of the

currently running Amazon EC2 instance.
5. If the SDK still hasn't found a region by this point, client creation fails with an exception.

When developing AWS applications, a common approach is to use the shared configuration file (described
in Using the Default Credential Provider Chain (p. 14)) to set the region for local development, and
rely on the default region provider chain to determine the region when running on AWS infrastructure.
This greatly simplifies client creation and keeps your application portable.

Exception Handling
Understanding how and when the AWS SDK for Java throws exceptions is important to building high-
quality applications using the SDK. The following sections describe the different cases of exceptions that
are thrown by the SDK and how to handle them appropriately.

Why Unchecked Exceptions?
The AWS SDK for Java uses runtime (or unchecked) exceptions instead of checked exceptions for these
reasons:

• To allow developers fine-grained control over the errors they want to handle without forcing them to
handle exceptional cases they aren't concerned about (and making their code overly verbose)

19

AWS SDK for Java Developer Guide
AmazonServiceException (and Subclasses)

• To prevent scalability issues inherent with checked exceptions in large applications

In general, checked exceptions work well on small scales, but can become troublesome as applications
grow and become more complex.

For more information about the use of checked and unchecked exceptions, see:

• Unchecked Exceptions—The Controversy
• The Trouble with Checked Exceptions
• Java's checked exceptions were a mistake (and here's what I would like to do about it)

AmazonServiceException (and Subclasses)
AmazonServiceException is the most common exception that you'll experience when using the AWS SDK
for Java. This exception represents an error response from an AWS service. For example, if you try to
terminate an Amazon EC2 instance that doesn't exist, EC2 will return an error response and all the details
of that error response will be included in the AmazonServiceException that's thrown. For some
cases, a subclass of AmazonServiceException is thrown to allow developers fine-grained control over
handling error cases through catch blocks.

When you encounter an AmazonServiceException, you know that your request was successfully sent
to the AWS service but couldn't be successfully processed. This can be because of errors in the request's
parameters or because of issues on the service side.

AmazonServiceException provides you with information such as:

• Returned HTTP status code
• Returned AWS error code
• Detailed error message from the service
• AWS request ID for the failed request

AmazonServiceException also includes information about whether the failed request was the caller's
fault (a request with illegal values) or the AWS service's fault (an internal service error).

AmazonClientException
AmazonClientException indicates that a problem occurred inside the Java client code, either while trying
to send a request to AWS or while trying to parse a response from AWS. An AmazonClientException
is generally more severe than an AmazonServiceException, and indicates a major problem that is
preventing the client from making service calls to AWS services. For example, the AWS SDK for Java
throws an AmazonClientException if no network connection is available when you try to call an
operation on one of the clients.

Asynchronous Programming
You can use either synchronous or asynchronous methods to call operations on AWS services.
Synchronous methods block your thread's execution until the client receives a response from the service.
Asynchronous methods return immediately, giving control back to the calling thread without waiting for
a response.

Because an asynchronous method returns before a response is available, you need a way to get the
response when it's ready. The AWS SDK for Java provides two ways: Future objects and callback methods.

20

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://www.artima.com/intv/handcuffs2.html
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/AmazonServiceException.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/AmazonClientException.html

AWS SDK for Java Developer Guide
Java Futures

Java Futures
Asynchronous methods in the AWS SDK for Java return a Future object that contains the results of the
asynchronous operation in the future.

Call the Future isDone() method to see if the service has provided a response object yet. When the
response is ready, you can get the response object by calling the Future get() method. You can use
this mechanism to periodically poll for the asynchronous operation's results while your application
continues to work on other things.

Here is an example of an asynchronous operation that calls a Lambda function, receiving a Future that
can hold an InvokeResult object. The InvokeResult object is retrieved only after isDone() is true.

import com.amazonaws.services.lambda.AWSLambdaAsyncClient;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;

public class InvokeLambdaFunctionAsync
{
 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"AWS SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req);

 System.out.print("Waiting for future");
 while (future_res.isDone() == false) {
 System.out.print(".");
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("\nThread.sleep() was interrupted!");
 System.exit(1);
 }
 }

 try {
 InvokeResult res = future_res.get();
 if (res.getStatusCode() == 200) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 }
 else {
 System.out.format("Received a non-OK response from AWS: %d\n",
 res.getStatusCode());
 }
 }
 catch (InterruptedException | ExecutionException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

21

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/lambda/model/InvokeResult.html

AWS SDK for Java Developer Guide
Asynchronous Callbacks

 System.exit(0);
 }
}

Asynchronous Callbacks
In addition to using the Java Future object to monitor the status of asynchronous requests, the SDK
also enables you to implement a class that uses the AsyncHandler interface. AsyncHandler provides
two methods that are called depending on how the request completed: onSuccess and onError.

The major advantage of the callback interface approach is that it frees you from having to poll the
Future object to find out when the request has completed. Instead, your code can immediately start its
next activity, and rely on the SDK to call your handler at the right time.

import com.amazonaws.services.lambda.AWSLambdaAsync;
import com.amazonaws.services.lambda.AWSLambdaAsyncClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.handlers.AsyncHandler;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;

public class InvokeLambdaFunctionCallback
{
 private class AsyncLambdaHandler implements AsyncHandler<InvokeRequest, InvokeResult>
 {
 public void onSuccess(InvokeRequest req, InvokeResult res) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 System.exit(0);
 }

 public void onError(Exception e) {
 System.out.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"AWS SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req, new
 AsyncLambdaHandler());

 System.out.print("Waiting for async callback");
 while (!future_res.isDone() && !future_res.isCancelled()) {
 // perform some other tasks...
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("Thread.sleep() was interrupted!");
 System.exit(0);
 }

22

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/handlers/AsyncHandler.html

AWS SDK for Java Developer Guide
Best Practices

 System.out.print(".");
 }
 }
}

Best Practices

Callback Execution
Your implementation of AsyncHandler is executed inside the thread pool owned by the asynchronous
client. Short, quickly executed code is most appropriate inside your AsyncHandler implementation.
Long-running or blocking code inside your handler methods can cause contention for the thread pool
used by the asynchronous client, and can prevent the client from executing requests. If you have a long-
running task that needs to begin from a callback, have the callback run its task in a new thread or in a
thread pool managed by your application.

Thread Pool Configuration
The asynchronous clients in the AWS SDK for Java provide a default thread pool that should work
for most applications. You can implement a custom ExecutorService and pass it to AWS SDK for Java
asynchronous clients for more control over how the thread pools are managed.

For example, you could provide an ExecutorService implementation that uses a custom
ThreadFactory to control how threads in the pool are named, or to log additional information about
thread usage.

Amazon S3 Asynchronous Access
The TransferManager class in the SDK offers asynchronous support for working with the Amazon
S3. TransferManager manages asynchronous uploads and downloads, provides detailed progress
reporting on transfers, and supports callbacks into different events.

Logging AWS SDK for Java Calls
The AWS SDK for Java is instrumented with Apache Commons Logging, which is an abstraction layer that
enables the use of any one of several logging systems at runtime.

Supported logging systems include the Java Logging Framework and Apache Log4j, among others.
This topic shows you how to use Log4j. You can use the SDK's logging functionality without making any
changes to your application code.

To learn more about Log4j, see the Apache website.

Note
This topic focuses on Log4j 1.x. Log4j2 doesn't directly support Apache Commons Logging,
but provides an adapter that directs logging calls automatically to Log4j2 using the Apache
Commons Logging interface. For more information, see Commons Logging Bridge in the Log4j2
documentation.

Download the Log4J JAR
To use Log4j with the SDK, you need to download the Log4j JAR from the Apache website. The SDK
doesn't include the JAR. Copy the JAR file to a location that is on your classpath.

23

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ThreadFactory.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
http://commons.apache.org/proper/commons-logging/guide.html
http://logging.apache.org/log4j/2.x/
http://www.apache.org/
http://logging.apache.org/log4j/2.x/log4j-jcl/index.html

AWS SDK for Java Developer Guide
Setting the Classpath

Log4j uses a configuration file, log4j.properties. Example configuration files are shown below. Copy this
configuration file to a directory on your classpath. The Log4j JAR and the log4j.properties file don't have
to be in the same directory.

The log4j.properties configuration file specifies properties such as logging level, where logging output
is sent (for example, to a file or to the console), and the format of the output. The logging level is
the granularity of output that the logger generates. Log4j supports the concept of multiple logging
hierarchies. The logging level is set independently for each hierarchy. The following two logging
hierarchies are available in the AWS SDK for Java:

• log4j.logger.com.amazonaws

• log4j.logger.org.apache.http.wire

Setting the Classpath
Both the Log4j JAR and the log4j.properties file must be located on your classpath. If you're using
Apache Ant, set the classpath in the path element in your Ant file. The following example shows a path
element from the Ant file for the Amazon S3 example included with the SDK.

<path id="aws.java.sdk.classpath">
 <fileset dir="../../third-party" includes="**/*.jar"/>
 <fileset dir="../../lib" includes="**/*.jar"/>
 <pathelement location="."/>
</path>

If you're using the Eclipse IDE, you can set the classpath by opening the menu and navigating to Project |
Properties | Java Build Path.

Service-Specific Errors and Warnings
We recommend that you always leave the "com.amazonaws" logger hierarchy set to "WARN" to catch
any important messages from the client libraries. For example, if the Amazon S3 client detects that your
application hasn't properly closed an InputStream and could be leaking resources, the S3 client reports
it through a warning message to the logs. This also ensures that messages are logged if the client has
any problems handling requests or responses.

The following log4j.properties file sets the rootLogger to WARN, which causes warning and error
messages from all loggers in the "com.amazonaws" hierarchy to be included. Alternatively, you can
explicitly set the com.amazonaws logger to WARN.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Or you can explicitly enable WARN and ERROR messages for the AWS Java clients
log4j.logger.com.amazonaws=WARN

Request/Response Summary Logging
Every request to an AWS service generates a unique AWS request ID that is useful if you run into an issue
with how an AWS service is handling a request. AWS request IDs are accessible programmatically through
Exception objects in the SDK for any failed service call, and can also be reported through the DEBUG log
level in the "com.amazonaws.request" logger.

24

http://logging.apache.org/log4j/2.x/manual/configuration.html#Loggers
http://logging.apache.org/log4j/2.x/manual/appenders.html
http://logging.apache.org/log4j/2.x/manual/layouts.html
http://ant.apache.org/manual/

AWS SDK for Java Developer Guide
Verbose Wire Logging

The following log4j.properties file enables a summary of requests and responses, including AWS request
IDs.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Turn on DEBUG logging in com.amazonaws.request to log
a summary of requests/responses with AWS request IDs
log4j.logger.com.amazonaws.request=DEBUG

Here is an example of the log output.

2009-12-17 09:53:04,269 [main] DEBUG com.amazonaws.request - Sending
Request: POST https://rds.amazonaws.com / Parameters: (MaxRecords: 20,
Action: DescribeEngineDefaultParameters, SignatureMethod: HmacSHA256,
AWSAccessKeyId: ACCESSKEYID, Version: 2009-10-16, SignatureVersion: 2,
Engine: mysql5.1, Timestamp: 2009-12-17T17:53:04.267Z, Signature:
q963XH63Lcovl5Rr71APlzlye99rmWwT9DfuQaNznkD,) 2009-12-17 09:53:04,464
[main] DEBUG com.amazonaws.request - Received successful response: 200, AWS
Request ID: 694d1242-cee0-c85e-f31f-5dab1ea18bc6 2009-12-17 09:53:04,469
[main] DEBUG com.amazonaws.request - Sending Request: POST
https://rds.amazonaws.com / Parameters: (ResetAllParameters: true, Action:
ResetDBParameterGroup, SignatureMethod: HmacSHA256, DBParameterGroupName:
java-integ-test-param-group-0000000000000, AWSAccessKeyId: ACCESSKEYID,
Version: 2009-10-16, SignatureVersion: 2, Timestamp:
2009-12-17T17:53:04.467Z, Signature:
9WcgfPwTobvLVcpyhbrdN7P7l3uH0oviYQ4yZ+TQjsQ=,)

2009-12-17 09:53:04,646 [main] DEBUG com.amazonaws.request - Received
successful response: 200, AWS Request ID:
694d1242-cee0-c85e-f31f-5dab1ea18bc6

Verbose Wire Logging
In some cases, it can be useful to see the exact requests and responses that the AWS SDK for Java sends
and receives. You shouldn't enable this logging in production systems because writing out large requests
(e.g., a file being uploaded to Amazon S3) or responses can significantly slow down an application. If you
really need access to this information, you can temporarily enable it through the Apache HttpClient 4
logger. Enabling the DEBUG level on the apache.http.wire logger enables logging for all request and
response data.

The following log4j.properties file turns on full wire logging in Apache HttpClient 4 and should only be
turned on temporarily because it can have a significant performance impact on your application.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Log all HTTP content (headers, parameters, content, etc) for
all requests and responses. Use caution with this since it can
be very expensive to log such verbose data!
log4j.logger.org.apache.http.wire=DEBUG

Client Networking Configuration
The AWS SDK for Java enables you to change the default client configuration, which is helpful when you
want to:

25

AWS SDK for Java Developer Guide
Proxy Configuration

• Connect to the Internet through proxy

• Change HTTP transport settings, such as connection timeout and request retries

• Specify TCP socket buffer size hints

Proxy Configuration
When constructing a client object, you can pass in an optional ClientConfiguration object to customize
the client's configuration.

If you connect to the Internet through a proxy server, you'll need to configure your proxy server settings
(proxy host, port, and username/password) through the ClientConfiguration object.

HTTP Transport Configuration
You can configure several HTTP transport options by using the ClientConfiguration object. New options
are occasionally added; to see the full list of options you can retrieve or set, see the AWS SDK for Java API
Reference.

Each of the configurable values has a default value defined by a constant. For a list of the constant
values for ClientConfiguration, see Constant Field Values in the AWS SDK for Java API Reference.

Local Address

To set the local address that the HTTP client will bind to, use ClientConfiguration.setLocalAddress.

Maximum Connections

You can set the maximum allowed number of open HTTP connections by using the
ClientConfiguration.setMaxConnections method.

Proxy Options

If you use a proxy with your HTTP connections, you might need to set certain options related to HTTP
proxies.

Timeouts and Error Handling

You can set options related to timeouts and handling errors with HTTP connections.

• Connection Timeout

The connection timeout is the amount of time (in milliseconds) that the HTTP connection will wait to
establish a connection before giving up. The default is 50,000 ms.

To set this value yourself, use the ClientConfiguration.setConnectionTimeout method.

• Connection Time to Live (TTL)

By default, the SDK will attempt to reuse HTTP connections as long as possible. In failure situations
where a connection is established to a server that has been brought out of service, having a finite TTL
can help with application recovery. For example, setting a 15 minute TTL will ensure that even if you
have a connection established to a server that is experiencing issues, you'll reestablish a connection to
a new server within 15 minutes.

26

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/ClientConfiguration.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/ClientConfiguration.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html#setLocalAddress-java.net.InetAddress-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html#setMaxConnections-int-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html#setConnectionTimeout-int-

AWS SDK for Java Developer Guide
TCP Socket Buffer Size Hints

To set the HTTP connection TTL, use the ClientConfiguration.setConnectionTTL method.

• Maximum Error Retries

The default maximum retry count for retriable errors is 3. You can set a different value by using the
ClientConfiguration.setMaxErrorRetry method.

TCP Socket Buffer Size Hints
Advanced users who want to tune low-level TCP parameters can additionally set TCP buffer size hints
through the ClientConfiguration object. The majority of users will never need to tweak these values, but
they are provided for advanced users.

Optimal TCP buffer sizes for an application are highly dependent on network and operating system
configuration and capabilities. For example, most modern operating systems provide auto-tuning logic
for TCP buffer sizes.This can have a big impact on performance for TCP connections that are held open
long enough for the auto-tuning to optimize buffer sizes.

Large buffer sizes (e.g., 2 MB) allow the operating system to buffer more data in memory without
requiring the remote server to acknowledge receipt of that information, and so can be particularly useful
when the network has high latency.

This is only a hint, and the operating system might not to honor it. When using this option, users should
always check the operating system's configured limits and defaults. Most operating systems have a
maximum TCP buffer size limit configured, and won't let you go beyond that limit unless you explicitly
raise the maximum TCP buffer size limit.

Many resources are available to help with configuring TCP buffer sizes and operating system-specific TCP
settings, including the following:

• TCP Tuning and Network Troubleshooting

• Host Tuning

Access Control Policies
AWS access control policies enable you to specify fine-grained access controls on your AWS resources. An
access control policy consists of a collection of statements, which take the form:

Account A has permission to perform action B on resource C where condition D applies.

Where:

• A is the principal– The AWS account that is making a request to access or modify one of your AWS
resources.

• B is the action– The way in which your AWS resource is being accessed or modified, such as sending a
message to an Amazon SQS queue, or storing an object in an Amazon S3 bucket.

• C is the resource– The AWS entity that the principal wants to access, such as an Amazon SQS queue, or
an object stored in Amazon S3.

• D is a set of conditions– The optional constraints that specify when to allow or deny access for the
principal to access your resource. Many expressive conditions are available, some specific to each
service. For example, you can use date conditions to allow access to your resources only after or before
a specific time.

27

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html#setConnectionTTL-long-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html#setMaxErrorRetry-int-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/ClientConfiguration.html
http://www.onlamp.com/pub/a/onlamp/2005/11/17/tcp_tuning.html
http://fasterdata.es.net/host-tuning/

AWS SDK for Java Developer Guide
Amazon S3 Example

Amazon S3 Example
The following example demonstrates a policy that allows anyone access to read all the objects in a
bucket, but restricts access to uploading objects to that bucket to two specific AWS accounts (in addition
to the bucket owner's account).

Statement allowPublicReadStatement = new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));
Statement allowRestrictedWriteStatement = new Statement(Effect.Allow)
 .withPrincipals(new Principal("123456789"), new Principal("876543210"))
 .withActions(S3Actions.PutObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));

Policy policy = new Policy()
 .withStatements(allowPublicReadStatement, allowRestrictedWriteStatement);

AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
s3.setBucketPolicy(myBucketName, policy.toJson());

Amazon SQS Example
One common use of policies is to authorize an Amazon SQS queue to receive messages from an Amazon
SNS topic.

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SQSActions.SendMessage)
 .withConditions(ConditionFactory.newSourceArnCondition(myTopicArn)));

Map queueAttributes = new HashMap();
queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson());

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.setQueueAttributes(new SetQueueAttributesRequest(myQueueUrl, queueAttributes));

Amazon SNS Example
Some services offer additional conditions that can be used in policies. Amazon SNS provides conditions
for allowing or denying subscriptions to SNS topics based on the protocol (e.g., email, HTTP, HTTPS,
Amazon SQS) and endpoint (e.g., email address, URL, Amazon SQS ARN) of the request to subscribe to a
topic.

Condition endpointCondition =
 SNSConditionFactory.newEndpointCondition("*@mycompany.com");

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SNSActions.Subscribe)
 .withConditions(endpointCondition));

AmazonSNS sns = AmazonSNSClientBuilder.defaultClient();
sns.setTopicAttributes(
 new SetTopicAttributesRequest(myTopicArn, "Policy", policy.toJson()));

28

AWS SDK for Java Developer Guide
Setting the JVM TTL for DNS Name Lookups

Setting the JVM TTL for DNS Name Lookups
The Java virtual machine (JVM) caches DNS name lookups. When the JVM resolves a hostname to an IP
address, it caches the IP address for a specified period of time, known as the time-to-live (TTL).

Because AWS resources use DNS name entries that occasionally change, we recommend that you
configure your JVM with a TTL value of no more than 60 seconds. This ensures that when a resource's
IP address changes, your application will be able to receive and use the resource's new IP address by
requerying the DNS.

On some Java configurations, the JVM default TTL is set so that it will never refresh DNS entries until
the JVM is restarted. Thus, if the IP address for an AWS resource changes while your application is still
running, it won't be able to use that resource until you manually restart the JVM and the cached IP
information is refreshed. In this case, it's crucial to set the JVM's TTL so that it will periodically refresh its
cached IP information.

Note
The default TTL can vary according to the version of your JVM and whether a security manager
is installed. Many JVMs provide a default TTL less than 60 seconds. If you're using such a JVM
and not using a security manager, you can ignore the remainder of this topic.

How to Set the JVM TTL
To modify the JVM's TTL, set the networkaddress.cache.ttl property value. Use one of the following
methods, depending on your needs:

• globally, for all applications that use the JVM. Set networkaddress.cache.ttl in the
$JAVA_HOME/jre/lib/security/java.security file:

networkaddress.cache.ttl=60

• for your application only, set networkaddress.cache.ttl in your application's initialization code:

java.security.Security.setProperty("networkaddress.cache.ttl" , "60");

Enabling Metrics for the AWS SDK for Java
The AWS SDK for Java can generate metrics for visualization and monitoring with CloudWatch that
measure:

• your application’s performance when accessing AWS
• the performance of your JVMs when used with AWS
• runtime environment details such as heap memory, number of threads, and opened file descriptors

How to Enable SDK Metric Generation
SDK metrics are disabled by default. To enable it for your local development environment, include a
system property that points to your AWS security credential file when starting up the JVM. For example:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/aws.properties

You need to specify the path to your credential file so that the SDK can upload the gathered datapoints
to CloudWatch for later analysis.

29

http://docs.oracle.com/javase/tutorial/essential/environment/security.html
http://docs.oracle.com/javase/7/docs/technotes/guides/net/properties.html
https://aws.amazon.com/cloudwatch/

AWS SDK for Java Developer Guide
Available Metric Types

Note
If you are accessing AWS from an Amazon EC2 instance using the Amazon EC2 instance
metadata service, you don’t need to specify a credential file. In this case, you need only specify:

-Dcom.amazonaws.sdk.enableDefaultMetrics

All metrics captured by the SDK for Java are under the namespace AWSSDK/Java, and are uploaded
to the CloudWatch default region (us-east-1). To change the region, specify it by using the
cloudwatchRegion attribute in the system property. For example, to set the CloudWatch region to us-
west-2, use:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,cloudwatchRegion=us-west-2

Once you enable the feature, every time there is a service request to AWS from the AWS SDK for Java,
metric data points will be generated, queued for statistical summary, and uploaded asynchronously
to CloudWatch about once every minute. Once metrics have been uploaded, you can visualize them
using the AWS Management Console and set alarms on potential problems such as memory leakage, file
descriptor leakage, and so on.

Available Metric Types
The default set of metrics is divided into three major categories:

AWS Request Metrics

Covers areas such as the latency of the HTTP request/response, number of requests, exceptions, and
retries.

30

https://console.aws.amazon.com/console/home

AWS SDK for Java Developer Guide
Available Metric Types

AWS Service Metrics

Include AWS service-specific data, such as the throughput and byte count for S3 uploads and
downloads.

Machine Metrics

Cover the runtime environment, including heap memory, number of threads, and open file
descriptors.

31

AWS SDK for Java Developer Guide
More Information

If you want to exclude Machine Metrics, add excludeMachineMetrics to the system property:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,excludeMachineMetrics

More Information
• See the amazonaws/metrics package summary for a full list of the predefined core metric types.
• Learn about working with CloudWatch using the AWS SDK for Java in CloudWatch Examples Using the

AWS SDK for Java (p. 35).

32

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/metrics/package-summary.html

AWS SDK for Java Developer Guide
SDK Code Samples

AWS SDK for Java Code Examples
This section provides tutorials and examples of using the AWS SDK for Java to program AWS services.

Note
See Additional Documentation and Resources (p. 1) for more examples and additional resources
available for AWS SDK for Java developers!

Topics
• AWS SDK for Java Code Samples (p. 33)
• CloudWatch Examples Using the AWS SDK for Java (p. 35)
• DynamoDB Examples Using the AWS SDK for Java (p. 42)
• Amazon EC2 Examples Using the AWS SDK for Java (p. 52)
• IAM Examples Using the AWS SDK for Java (p. 91)
• Amazon S3 Examples Using the AWS SDK for Java (p. 104)
• Amazon SQS Examples Using the AWS SDK for Java (p. 132)
• Getting Temporary Credentials with AWS STS (p. 141)
• Amazon SWF Examples Using the AWS SDK for Java (p. 144)

AWS SDK for Java Code Samples
The AWS SDK for Java comes packaged with code samples that demonstrate many of the features of
the SDK in buildable, runnable programs. You can study or modify these to implement your own AWS
solutions using the AWS SDK for Java.

How to Get the Samples
The AWS SDK for Java code samples are provided in the samples directory of the SDK. If you downloaded
and installed the SDK using the information in Set up the AWS SDK for Java (p. 4), you already have the
samples on your system.

You can also view the latest samples on the AWS SDK for Java GitHub repository, in the src/samples
directory.

Building and Running the Samples Using the
Command Line
The samples include Ant build scripts so that you can easily build and run them from the command line.
Each sample also contains a README file in HTML format that contains information specific to each
sample.

Note
If you're browsing the sample code on GitHub, click the Raw button in the source code display
when viewing the sample's README.html file. In raw mode, the HTML will render as intended in
your browser.

Prerequisites
Before running any of the AWS SDK for Java samples, you need to set your AWS credentials in
the environment or with the AWS CLI, as specified in Set up AWS Credentials and Region for
Development (p. 6). The samples use the default credential provider chain whenever possible. So by

33

https://github.com/aws/aws-sdk-java/tree/master/src/samples
http://ant.apache.org/

AWS SDK for Java Developer Guide
Building and Running the Samples Using the Eclipse IDE

setting your credentials in this way, you can avoid the risky practice of inserting your AWS credentials in
files within the source code directory (where they may inadvertently be checked in and shared publicly).

Running the Samples
To run a sample from the command line

1. Change to the directory containing the sample's code. For example, if you're in the root directory of
the AWS SDK download and want to run the AwsConsoleApp sample, you would type:

cd samples/AwsConsoleApp

2. Build and run the sample with Ant. The default build target performs both actions, so you can just
enter:

ant

The sample prints information to standard output—for example:

===

Welcome to the AWS Java SDK!

===
You have access to 4 Availability Zones.

You have 0 Amazon EC2 instance(s) running.

You have 13 Amazon SimpleDB domain(s) containing a total of 62 items.

You have 23 Amazon S3 bucket(s), containing 44 objects with a total size of 154767691
 bytes.

Building and Running the Samples Using the Eclipse
IDE
If you use the AWS Toolkit for Eclipse, you can also start a new project in Eclipse based on the AWS SDK
for Java or add the SDK to an existing Java project.

Prerequisites
After installing the AWS Toolkit for Eclipse, we recommend configuring the Toolkit with your security
credentials. You can do this anytime by choosing Preferences from the Window menu in Eclipse, and
then choosing the AWS Toolkit section.

Running the Samples
To run a sample using the AWS Toolkit for Eclipse

1. Open Eclipse.
2. Create a new AWS Java project. In Eclipse, on the File menu, choose New, and then click Project. The

New Project wizard opens.
3. Expand the AWS category, then choose AWS Java Project.
4. Choose Next. The project settings page is displayed.

34

AWS SDK for Java Developer Guide
Amazon CloudWatch Examples

5. Enter a name in the Project Name box. The AWS SDK for Java Samples group displays the samples
available in the SDK, as described previously.

6. Select the samples you want to include in your project by selecting each check box.
7. Enter your AWS credentials. If you've already configured the AWS Toolkit for Eclipse with your

credentials, this is automatically filled in.
8. Choose Finish. The project is created and added to the Project Explorer.

To run the project

1. Choose the sample .java file you want to run. For example, for the Amazon S3 sample, choose
S3Sample.java.

2. Choose Run from the Run menu.

To add the SDK to an existing project

1. Right-click the project in Project Explorer, point to Build Path, and then choose Add Libraries.
2. Choose AWS Java SDK, choose Next, and then follow the remaining on-screen instructions.

CloudWatch Examples Using the AWS SDK for Java
This section provides examples of programming CloudWatch using the AWS SDK for Java.

Amazon CloudWatch monitors your Amazon Web Services (AWS) resources and the applications you run
on AWS in real time. You can use CloudWatch to collect and track metrics, which are variables you can
measure for your resources and applications. CloudWatch alarms send notifications or automatically
make changes to the resources you are monitoring based on rules that you define.

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

Note
The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or clone
the repository locally to get all the examples to build and run.

Topics
• Getting Metrics from CloudWatch (p. 35)
• Publishing Custom Metric Data (p. 36)
• Working with CloudWatch Alarms (p. 37)
• Using Alarm Actions in CloudWatch (p. 39)
• Sending Events to CloudWatch (p. 40)

Getting Metrics from CloudWatch
Listing Metrics
To list CloudWatch metrics, create a ListMetricsRequest and call the AmazonCloudWatchClient's
listMetrics method. You can use the ListMetricsRequest to filter the returned metrics by
namespace, metric name, or dimensions.

Note
A list of metrics and dimensions that are posted by AWS services can be found within the
Amazon CloudWatch Metrics and Dimensions Reference in the Amazon CloudWatch User Guide.

35

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/sdk-for-java/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/ListMetricsRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/AmazonCloudWatchClient.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CW_Support_For_AWS.html

AWS SDK for Java Developer Guide
Publishing Custom Metric Data

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ListMetricsRequest;
import com.amazonaws.services.cloudwatch.model.ListMetricsResult;
import com.amazonaws.services.cloudwatch.model.Metric;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

boolean done = false;

while(!done) {
 ListMetricsRequest request = new ListMetricsRequest()
 .withMetricName(name)
 .withNamespace(namespace);

 ListMetricsResult response = cw.listMetrics(request);

 for(Metric metric : response.getMetrics()) {
 System.out.printf(
 "Retrieved metric %s", metric.getMetricName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

The metrics are returned in a ListMetricsResult by calling its getMetrics method. The results may be
paged. To retrieve the next batch of results, call setNextToken on the original request object with
the return value of the ListMetricsResult object's getNextToken method, and pass the modified
request object back to another call to listMetrics.

More Information
• ListMetrics in the Amazon CloudWatch API Reference.

Publishing Custom Metric Data
A number of AWS services publish their own metrics in namespaces beginning with "AWS/" You can also
publish custom metric data using your own namespace (as long as it doesn't begin with "AWS/").

Publish Custom Metric Data
To publish your own metric data, call the AmazonCloudWatchClient's putMetricData method with a
PutMetricDataRequest. The PutMetricDataRequest must include the custom namespace to use for
the data, and information about the data point itself in a MetricDatum object.

Note
You cannot specify a namespace that begins with "AWS/". Namespaces that begin with "AWS/"
are reserved for use by Amazon Web Services products.

Imports

36

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/ListMetricsResult.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/ListMetrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/AmazonCloudWatchClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/PutMetricDataRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/MetricDatum.html

AWS SDK for Java Developer Guide
Working with CloudWatch Alarms

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.MetricDatum;
import com.amazonaws.services.cloudwatch.model.PutMetricDataRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricDataResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("UNIQUE_PAGES")
 .withValue("URLS");

MetricDatum datum = new MetricDatum()
 .withMetricName("PAGES_VISITED")
 .withUnit(StandardUnit.None)
 .withValue(data_point)
 .withDimensions(dimension);

PutMetricDataRequest request = new PutMetricDataRequest()
 .withNamespace("SITE/TRAFFIC")
 .withMetricData(datum);

PutMetricDataResult response = cw.putMetricData(request);

More Information
• Using Amazon CloudWatch Metrics in the Amazon CloudWatch User Guide.
• AWS Namespaces in the Amazon CloudWatch User Guide.
• PutMetricData in the Amazon CloudWatch API Reference.

Working with CloudWatch Alarms
Create an Alarm
To create an alarm based on a CloudWatch metric, call the AmazonCloudWatchClient's
putMetricAlarm method with a PutMetricAlarmRequest filled with the alarm conditions.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ComparisonOperator;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;
import com.amazonaws.services.cloudwatch.model.Statistic;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

37

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/PutMetricData.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/AmazonCloudWatchClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html

AWS SDK for Java Developer Guide
Working with CloudWatch Alarms

Dimension dimension = new Dimension()
 .withName("InstanceId")
 .withValue(instanceId);

PutMetricAlarmRequest request = new PutMetricAlarmRequest()
 .withAlarmName(alarmName)
 .withComparisonOperator(
 ComparisonOperator.GreaterThanThreshold)
 .withEvaluationPeriods(1)
 .withMetricName("CPUUtilization")
 .withNamespace("AWS/EC2")
 .withPeriod(60)
 .withStatistic(Statistic.Average)
 .withThreshold(70.0)
 .withActionsEnabled(false)
 .withAlarmDescription(
 "Alarm when server CPU utilization exceeds 70%")
 .withUnit(StandardUnit.Seconds)
 .withDimensions(dimension);

PutMetricAlarmResult response = cw.putMetricAlarm(request);

List Alarms
To list the CloudWatch alarms that you have created, call the AmazonCloudWatchClient's
describeAlarms method with a DescribeAlarmsRequest that you can use to set options for the result.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsResult;
import com.amazonaws.services.cloudwatch.model.MetricAlarm;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

boolean done = false;

while(!done) {
 DescribeAlarmsRequest request = new DescribeAlarmsRequest();

 DescribeAlarmsResult response = cw.describeAlarms(request);

 for(MetricAlarm alarm : response.getMetricAlarms()) {
 System.out.printf("Retrieved alarm %s", alarm.getAlarmName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

The list of alarms can be obtained by calling getMetricAlarms on the DescribeAlarmsResult that is
returned by describeAlarms.

38

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/AmazonCloudWatchClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/DescribeAlarmsRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/DescribeAlarmsResult.html

AWS SDK for Java Developer Guide
Using Alarm Actions in CloudWatch

The results may be paged. To retrieve the next batch of results, call setNextToken on the original
request object with the return value of the DescribeAlarmsResult object's getNextToken method,
and pass the modified request object back to another call to describeAlarms.

Note
You can also retrieve alarms for a specific metric by using the AmazonCloudWatchClient's
describeAlarmsForMetric method. Its use is similar to describeAlarms.

Delete Alarms
To delete CloudWatch alarms, call the AmazonCloudWatchClient's deleteAlarms method with a
DeleteAlarmsRequest containing one or more names of alarms that you want to delete.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsResult;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DeleteAlarmsRequest request = new DeleteAlarmsRequest()
 .withAlarmNames(alarm_name);

DeleteAlarmsResult response = cw.deleteAlarms(request);

More Information
• Creating Amazon CloudWatch Alarms in the Amazon CloudWatch User Guide
• PutMetricAlarm in the Amazon CloudWatch API Reference
• DescribeAlarms in the Amazon CloudWatch API Reference
• DeleteAlarms in the Amazon CloudWatch API Reference

Using Alarm Actions in CloudWatch
Using CloudWatch alarm actions, you can create alarms that perform actions such as automatically
stopping, terminating, rebooting, or recovering Amazon EC2 instances.

Note
Alarm actions can be added to an alarm by using the PutMetricAlarmRequest's
setAlarmActions method when creating an alarm (p. 37).

Enable Alarm Actions
To enable alarm actions for a CloudWatch alarm, call the AmazonCloudWatchClient's
enableAlarmActions with a EnableAlarmActionsRequest containing one or more names of alarms
whose actions you want to enable.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;

39

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/AmazonCloudWatchClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/AmazonCloudWatchClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/DeleteAlarmsRequest.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/PutMetricAlarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/DescribeAlarms.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/DeleteAlarms.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/AmazonCloudWatchClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/EnableAlarmActionsRequest.html

AWS SDK for Java Developer Guide
Sending Events to CloudWatch

import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsResult;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

EnableAlarmActionsRequest request = new EnableAlarmActionsRequest()
 .withAlarmNames(alarm);

EnableAlarmActionsResult response = cw.enableAlarmActions(request);

Disable Alarm Actions
To disable alarm actions for a CloudWatch alarm, call the AmazonCloudWatchClient's
disableAlarmActions with a DisableAlarmActionsRequest containing one or more names of alarms
whose actions you want to disable.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsResult;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DisableAlarmActionsRequest request = new DisableAlarmActionsRequest()
 .withAlarmNames(alarmName);

DisableAlarmActionsResult response = cw.disableAlarmActions(request);

More Information
• Create Alarms to Stop, Terminate, Reboot, or Recover an Instance in the Amazon CloudWatch User

Guide
• PutMetricAlarm in the Amazon CloudWatch API Reference
• EnableAlarmActions in the Amazon CloudWatch API Reference
• DisableAlarmActions in the Amazon CloudWatch API Reference

Sending Events to CloudWatch
CloudWatch Events delivers a near real-time stream of system events that describe changes in AWS
resources to Amazon EC2 instances, Lambda functions, Kinesis streams, Amazon ECS tasks, Step
Functions state machines, Amazon SNS topics, Amazon SQS queues, or built-in targets. You can match
events and route them to one or more target functions or streams by using simple rules.

Add Events
To add custom CloudWatch events, call the AmazonCloudWatchEventsClient's putEvents method with
a PutEventsRequest object that contains one or more PutEventsRequestEntry objects that provide details

40

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/AmazonCloudWatchClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatch/model/DisableAlarmActionsRequest.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/PutMetricAlarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/EnableAlarmActions.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/DisableAlarmActions.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatchevents/AmazonCloudWatchEventsClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatchevents/model/PutEventsRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatchevents/model/PutEventsRequestEntry.html

AWS SDK for Java Developer Guide
Sending Events to CloudWatch

about each event. You can specify several parameters for the entry such as the source and type of the
event, resources associated with the event, and so on.

Note
You can specify a maximum of 10 events per call to putEvents.

Imports

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequestEntry;
import com.amazonaws.services.cloudwatchevents.model.PutEventsResult;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

final String EVENT_DETAILS =
 "{ \"key1\": \"value1\", \"key2\": \"value2\" }";

PutEventsRequestEntry request_entry = new PutEventsRequestEntry()
 .withDetail(EVENT_DETAILS)
 .withDetailType("sampleSubmitted")
 .withResources(resource_arn)
 .withSource("aws-sdk-java-cloudwatch-example");

PutEventsRequest request = new PutEventsRequest()
 .withEntries(request_entry);

PutEventsResult response = cwe.putEvents(request);

Add Rules
To create or update a rule, call the AmazonCloudWatchEventsClient's putRule method with a
PutRuleRequest with the name of the rule and optional parameters such as the event pattern, IAM role
to associate with the rule, and a scheduling expression that describes how often the rule is run.

Imports

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutRuleRequest;
import com.amazonaws.services.cloudwatchevents.model.PutRuleResult;
import com.amazonaws.services.cloudwatchevents.model.RuleState;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

PutRuleRequest request = new PutRuleRequest()
 .withName(rule_name)
 .withRoleArn(role_arn)
 .withScheduleExpression("rate(5 minutes)")
 .withState(RuleState.ENABLED);

PutRuleResult response = cwe.putRule(request);

41

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatchevents/AmazonCloudWatchEventsClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatchevents/model/PutRuleRequest.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

AWS SDK for Java Developer Guide
Amazon DynamoDB Examples

Add Targets
Targets are the resources that are invoked when a rule is triggered. Example targets include Amazon EC2
instances, Lambda functions, Kinesis streams, Amazon ECS tasks, Step Functions state machines, and
built-in targets.

To add a target to a rule, call the AmazonCloudWatchEventsClient's putTargets method with a
PutTargetsRequest containing the rule to update and a list of targets to add to the rule.

Imports

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsResult;
import com.amazonaws.services.cloudwatchevents.model.Target;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

Target target = new Target()
 .withArn(function_arn)
 .withId(target_id);

PutTargetsRequest request = new PutTargetsRequest()
 .withTargets(target)
 .withRule(rule_name);

PutTargetsResult response = cwe.putTargets(request);

More Information
• Adding Events with PutEvents in the Amazon CloudWatch Events User Guide
• Schedule Expressions for Rules in the Amazon CloudWatch Events User Guide
• Event Types for CloudWatch Events in the Amazon CloudWatch Events User Guide
• Events and Event Patterns in the Amazon CloudWatch Events User Guide
• PutEvents in the Amazon CloudWatch Events API Reference
• PutTargets in the Amazon CloudWatch Events API Reference
• PutRule in the Amazon CloudWatch Events API Reference

DynamoDB Examples Using the AWS SDK for Java
This section provides examples of programming DynamoDB using the AWS SDK for Java.

Note
The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or clone
the repository locally to get all the examples to build and run.

Topics
• Working with Tables in DynamoDB (p. 43)
• Working with Items in DynamoDB (p. 47)

42

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatchevents/AmazonCloudWatchEventsClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/cloudwatchevents/model/PutTargetsRequest.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/AddEventsPutEvents.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/EventTypes.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/PutEvents.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/PutTargets.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/PutRule.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK for Java Developer Guide
Working with Tables in DynamoDB

• Managing Tomcat Session State with DynamoDB (p. 50)

Working with Tables in DynamoDB
Tables are the containers for all items in a DynamoDB database. Before you can add or remove data from
DynamoDB, you must create a table.

For each table, you must define:

• A table name that is unique for your account and region.
• A primary key for which every value must be unique; no two items in your table can have the same

primary key value.

A primary key can be simple, consisting of a single partition (HASH) key, or composite, consisting of a
partition and a sort (RANGE) key.

Each key value has an associated data type, enumerated by the ScalarAttributeType class. The key
value can be binary (B), numeric (N), or a string (S). For more information, see Naming Rules and Data
Types in the Amazon DynamoDB Developer Guide.

• Provisioned throughput values that define the number of reserved read/write capacity units for the
table.

Note
Amazon DynamoDB pricing is based on the provisioned throughput values that you set on
your tables, so reserve only as much capacity as you think you'll need for your table.
Provisioned throughput for a table can be modified at any time, so you can adjust capacity if
your needs change.

Create a Table
Use the DynamoDB client's createTable method to create a new DynamoDB table. You need to
construct table attributes and a table schema, both of which are used to identify the primary key of your
table. You must also supply initial provisioned throughput values and a table name.

Note
If a table with the name you chose already exists, an AmazonServiceException is thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.CreateTableResult;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.ScalarAttributeType;

Create a Table with a Simple Primary Key

This code creates a table with a simple primary key ("Name").

Code

CreateTableRequest request = new CreateTableRequest()

43

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/ScalarAttributeType.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html
https://aws.amazon.com/dynamodb/pricing/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/AmazonServiceException.html

AWS SDK for Java Developer Guide
Working with Tables in DynamoDB

 .withAttributeDefinitions(new AttributeDefinition(
 "Name", ScalarAttributeType.S))
 .withKeySchema(new KeySchemaElement("Name", KeyType.HASH))
 .withProvisionedThroughput(new ProvisionedThroughput(
 new Long(10), new Long(10)))
 .withTableName(table_name);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 CreateTableResult result = ddb.createTable(request);
 System.out.println(result.getTableDescription().getTableName());
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Create a Table with a Composite Primary Key

Add another AttributeDefinition and KeySchemaElement to CreateTableRequest.

Code

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(
 new AttributeDefinition("Language", ScalarAttributeType.S),
 new AttributeDefinition("Greeting", ScalarAttributeType.S))
 .withKeySchema(
 new KeySchemaElement("Language", KeyType.HASH),
 new KeySchemaElement("Greeting", KeyType.RANGE))
 .withProvisionedThroughput(
 new ProvisionedThroughput(new Long(10), new Long(10)))
 .withTableName(table_name);

See the complete example on GitHub.

List Tables
You can list the tables in a particular region by calling the DynamoDB client's listTables method.

Note
If the named table doesn't exist for your account and region, a ResourceNotFoundException is
thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ListTablesResult;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

boolean more_tables = true;
while(more_tables) {
 String last_name = null;
 try {

44

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTable.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/AttributeDefinition.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/KeySchemaElement.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/dynamodbv2/model/CreateTableRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTableCompositeKey.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java Developer Guide
Working with Tables in DynamoDB

 ListTablesResult table_list = null;
 if (last_name == null) {
 table_list = ddb.listTables();
 }

 List<String> table_names = table_list.getTableNames();

 if (table_names.size() > 0) {
 for (String cur_name : table_names) {
 System.out.format("* %s\n", cur_name);
 }
 } else {
 System.out.println("No tables found!");
 System.exit(0);
 }

 last_name = table_list.getLastEvaluatedTableName();
 if (last_name == null) {
 more_tables = false;
 }
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }
}

By default, up to 100 tables are returned per call—use getLastEvaluatedTableName on the returned
ListTablesResult object to get the last table that was evaluated. You can use this value to start the listing
after the last returned value of the previous listing.

See the complete example on GitHub.

Describe (Get Information about) a Table
Call the DynamoDB client's describeTable method.

Note
If the named table doesn't exist for your account and region, a ResourceNotFoundException is
thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughputDescription;
import com.amazonaws.services.dynamodbv2.model.TableDescription;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 TableDescription table_info =
 ddb.describeTable(table_name).getTable();

 if (table_info != null) {
 System.out.format("Table name : %s\n",
 table_info.getTableName());
 System.out.format("Table ARN : %s\n",
 table_info.getTableArn());

45

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/ListTables.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java Developer Guide
Working with Tables in DynamoDB

 System.out.format("Status : %s\n",
 table_info.getTableStatus());
 System.out.format("Item count : %d\n",
 table_info.getItemCount().longValue());
 System.out.format("Size (bytes): %d\n",
 table_info.getTableSizeBytes().longValue());

 ProvisionedThroughputDescription throughput_info =
 table_info.getProvisionedThroughput();
 System.out.println("Throughput");
 System.out.format(" Read Capacity : %d\n",
 throughput_info.getReadCapacityUnits().longValue());
 System.out.format(" Write Capacity: %d\n",
 throughput_info.getWriteCapacityUnits().longValue());

 List<AttributeDefinition> attributes =
 table_info.getAttributeDefinitions();
 System.out.println("Attributes");
 for (AttributeDefinition a : attributes) {
 System.out.format(" %s (%s)\n",
 a.getAttributeName(), a.getAttributeType());
 }
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Modify (Update) a Table
You can modify your table's provisioned throughput values at any time by calling the DynamoDB client's
updateTable method.

Note
If the named table doesn't exist for your account and region, a ResourceNotFoundException is
thrown.

Imports

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.AmazonServiceException;

Code

ProvisionedThroughput table_throughput = new ProvisionedThroughput(
 read_capacity, write_capacity);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateTable(table_name, table_throughput);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

46

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DescribeTable.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateTable.java

AWS SDK for Java Developer Guide
Working with Items in DynamoDB

Delete a Table
Call the DynamoDB client's deleteTable method and pass it the table's name.

Note
If the named table doesn't exist for your account and region, a ResourceNotFoundException is
thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.deleteTable(table_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

More Info
• Guidelines for Working with Tables in the Amazon DynamoDB Developer Guide
• Working with Tables in DynamoDB in the Amazon DynamoDB Developer Guide

Working with Items in DynamoDB
In DynamoDB, an item is a collection of attributes, each of which has a name and a value. An attribute
value can be a scalar, set, or document type. For more information, see Naming Rules and Data Types in
the Amazon DynamoDB Developer Guide.

Retrieve (Get) an Item from a Table
Call the AmazonDynamoDB's getItem method and pass it a GetItemRequest object with the table name
and primary key value of the item you want. It returns a GetItemResult <services/dynamodbv2/model/
GetItemResult> object.

You can use the returned GetItemResult object's getItem() method to retrieve a Map of key (String)
and value (AttributeValue) pairs that are associated with the item.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.GetItemRequest;
import java.util.HashMap;
import java.util.Map;

47

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DeleteTable.java
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/AmazonDynamoDBClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/GetItemRequest.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/AttributeValue.html

AWS SDK for Java Developer Guide
Working with Items in DynamoDB

Code

HashMap<String,AttributeValue> key_to_get =
 new HashMap<String,AttributeValue>();

key_to_get.put("Name", new AttributeValue(name));

GetItemRequest request = null;
if (projection_expression != null) {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name)
 .withProjectionExpression(projection_expression);
} else {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name);
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 Map<String,AttributeValue> returned_item =
 ddb.getItem(request).getItem();
 if (returned_item != null) {
 Set<String> keys = returned_item.keySet();
 for (String key : keys) {
 System.out.format("%s: %s\n",
 key, returned_item.get(key).toString());
 }
 } else {
 System.out.format("No item found with the key %s!\n", name);
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

See the complete example on GitHub.

Add a New Item to a Table
Create a Map of key-value pairs that represent the item's attributes. These must include values for the
table's primary key fields. If the item identified by the primary key already exists, its fields are updated by
the request.

Note
If the named table doesn't exist for your account and region, a ResourceNotFoundException is
thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Code

48

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/GetItem.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java Developer Guide
Working with Items in DynamoDB

HashMap<String,AttributeValue> item_values =
 new HashMap<String,AttributeValue>();

item_values.put("Name", new AttributeValue(name));

for (String[] field : extra_fields) {
 item_values.put(field[0], new AttributeValue(field[1]));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.putItem(table_name, item_values);
} catch (ResourceNotFoundException e) {
 System.err.format("Error: The table \"%s\" can't be found.\n", table_name);
 System.err.println("Be sure that it exists and that you've typed its name correctly!");
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

See the complete example on GitHub.

Update an Existing Item in a Table
You can update an attribute for an item that already exists in a table by using the AmazonDynamoDB's
updateItem method, providing a table name, primary key value, and a map of fields to update.

Note
If the named table doesn't exist for your account and region, or if the item identified by the
primary key you passed in doesn't exist, a ResourceNotFoundException is thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeAction;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.AttributeValueUpdate;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Code

HashMap<String,AttributeValue> item_key =
 new HashMap<String,AttributeValue>();

item_key.put("Name", new AttributeValue(name));

HashMap<String,AttributeValueUpdate> updated_values =
 new HashMap<String,AttributeValueUpdate>();

for (String[] field : extra_fields) {
 updated_values.put(field[0], new AttributeValueUpdate(
 new AttributeValue(field[1]), AttributeAction.PUT));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {

49

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/PutItem.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/AmazonDynamoDBClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java Developer Guide
Managing Tomcat Session State with DynamoDB

 ddb.updateItem(table_name, item_key, updated_values);
} catch (ResourceNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

See the complete example on GitHub.

More Info
• Guidelines for Working with Items in the Amazon DynamoDB Developer Guide
• Working with Items in DynamoDB in the Amazon DynamoDB Developer Guide

Managing Tomcat Session State with DynamoDB
Tomcat applications often store session-state data in memory. However, this approach doesn't scale
well because once the application grows beyond a single web server, the session state must be shared
among servers. A common solution is to set up a dedicated session-state server with MySQL. However,
this approach also has drawbacks: you must administer another server, the session-state server is a single
pointer of failure, and the MySQL server itself can cause performance problems.

DynamoDB, which is a NoSQL database store from AWS, avoids these drawbacks by providing an
effective solution for sharing session state across web servers.

Download the Session Manager
You can download the session manager from the aws/aws-dynamodb-session-tomcat project on GitHub.
This project also hosts the session manager source code, so you can contribute to the project by sending
us pull requests or opening issues.

Configure the Session-State Provider
To use the DynamoDB session-state provider, you must do the following:

1. Configure the Tomcat server to use the provider.
2. Set the security credentials of the provider so that it can access AWS.

Configure a Tomcat Server to Use DynamoDB as the Session-State Server

Copy AmazonDynamoDBSessionManagerForTomcat-1.x.x.jar to the lib directory of your Tomcat
installation. AmazonDynamoDBSessionManagerForTomcat-1.x.x.jar is a complete, standalone JAR
that contains all the code and dependencies to run the DynamoDB Tomcat Session Manager.

Edit your server's context.xml file to specify
com.amazonaws.services.dynamodb.sessionmanager.DynamoDBSessionManager as your session manager.

<?xml version="1.0" encoding="UTF-8"?>
 <Context>
 <WatchedResource>WEB-INF/web.xml</WatchedResource>
 <Manager
 className="com.amazonaws.services.dynamodb.sessionmanager.DynamoDBSessionManager"
 createIfNotExist="true" />
 </Context>

50

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateItem.java
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://github.com/aws/aws-dynamodb-session-tomcat

AWS SDK for Java Developer Guide
Managing Tomcat Session State with DynamoDB

Configure Your AWS Security Credentials

You can specify AWS security credentials for the session manager in multiple ways. They are loaded in
the following order of precedence:

1. The AwsAccessKey and AwsSecretKey attributes of the Manager element explicitly provide
credentials.

2. The AwsCredentialsFile attribute on the Manager element specifies a properties file from which
to load credentials.

If you don't specify credentials through the Manager element,
DefaultAWSCredentialsProviderChain continues searching for credentials in the following order:

1. Environment variables –AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
2. Java system properties –aws.accessKeyId and aws.secretKey
3. Instance profile credentials delivered through the Amazon EC2 instance metadata service (IMDS)

Configure with Elastic Beanstalk

If you're using the session manager in Elastic Beanstalk, ensure your project has an .ebextensions
directory at the top level of your output artifact structure. Put the following files in .ebextensions
directory:

• The AmazonDynamoDBSessionManagerForTomcat-1.x.x.jar file
• A context.xml file, described previously, to configure the session manager
• A configuration file that copies the JAR into Tomcat's lib directory and applies the overridden
context.xml file.

For more information about customizing Elastic Beanstalk environments, see AWS Elastic Beanstalk
Environment Configuration in the AWS Elastic Beanstalk Developer Guide.

If you deploy to Elastic Beanstalk with the AWS Toolkit for Eclipse, you can have the toolkit set up
the session manager for you; use the New AWS Java Web Project wizard and choose DynamoDB for
session management. The AWS Toolkit for Eclipse configures the required files and puts them in the
.ebextensions directory in the WebContent directory of your project. If you have problems finding
this directory, be sure you aren't hiding files that begin with a period.

Manage Tomcat Session State with DynamoDB
If the Tomcat server is running on an Amazon EC2 instance that is configured to use IAM roles for EC2
instances, you don't need to specify any credentials in the context.xml file. In this case, the AWS SDK
for Java uses IAM roles credentials obtained through the instance metadata service (IMDS).

When your application starts, it looks for a DynamoDB table named, by default, Tomcat_SessionState.
The table should have a string hash key named "sessionId" (case-sensitive), no range key, and the desired
values for ReadCapacityUnits and WriteCapacityUnits.

We recommend that you create this table before running your application for the first time. If you don't
create the table, however, the extension creates it during initialization. See the context.xml options
in the next section for a list of attributes that configure how the session-state table is created when it
doesn't exist.

Note
For information about working with DynamoDB tables and provisioned throughput, see the
Amazon DynamoDB Developer Guide.

51

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

AWS SDK for Java Developer Guide
Amazon EC2 Examples

After the application is configured and the table is created, you can use sessions with any other session
provider.

Options Specified in context.xml
You can use the following configuration attributes in the Manager element of your context.xml file:

• AwsAccessKey– Access key ID to use.
• AwsSecretKey– Secret key to use.
• AwsCredentialsFile– A properties file containing accessKey and secretKey properties with your AWS

security credentials.
• Table– Optional string attribute. The name of the table used to store session data. The default is

Tomcat_SessionState.
• RegionId– Optional string attribute. The AWS Region in which to use DynamoDB. For a list of available

AWS Regions, see Regions and Endpoints in the Amazon Web Services General Reference.
• Endpoint– Optional string attribute that, if present, overrides any value set for the Region option. This

attribute specifies the regional endpoint of the DynamoDB service to use. For a list of available AWS
Regions, see Regions and Endpoints in Amazon Web Services General Reference.

• ReadCapacityUnits– Optional int attribute. The read capacity units to use if the session manager
creates the table. The default is 10.

• WriteCapacityUnits– Optional int attribute. The write capacity units to use if the session manager
creates the table. The default is 5.

• CreateIfNotExist– Optional Boolean attribute. The CreateIfNotExist attribute controls whether the
session manager autocreates the table if it doesn't exist. The default is true. If this flag is set to false
and the table doesn't exist, an exception is thrown during Tomcat startup.

Troubleshooting
If you encounter issues with the session manager, the first place to look is in catalina.out. If you have
access to the Tomcat installation, you can go directly to this log file and look for any error messages
from the session manager. If you're using Elastic Beanstalk, you can view the environment logs with the
AWS Management Console or the AWS Toolkit for Eclipse.

Limitations
The session manager doesn't support session locking. Therefore, applications that use many concurrent
AJAX calls to manipulate session data may not be appropriate for use with the session manager, due to
race conditions on session data writes and saves back to the data store.

Amazon EC2 Examples Using the AWS SDK for
Java

This section provides examples of programming Amazon EC2 with the AWS SDK for Java.

Topics
• Tutorial: Starting an EC2 Instance (p. 53)
• Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 (p. 56)
• Tutorial: Amazon EC2 Spot Instances (p. 60)
• Tutorial: Advanced Amazon EC2 Spot Request Management (p. 68)

52

http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/ec2/

AWS SDK for Java Developer Guide
Tutorial: Starting an EC2 Instance

• Managing Amazon EC2 Instances (p. 80)
• Using Elastic IP Addresses in Amazon EC2 (p. 83)
• Using Regions and Availability Zones (p. 85)
• Working with Amazon EC2 Key Pairs (p. 87)
• Working with Security Groups in Amazon EC2 (p. 88)

Tutorial: Starting an EC2 Instance
This tutorial demonstrates how to use the AWS SDK for Java to start an EC2 instance.

Topics
• Prerequisites (p. 4)
• Create an Amazon EC2 Security Group (p. 53)
• Create a Key Pair (p. 54)
• Run an Amazon EC2 Instance (p. 55)

Prerequisites
Before you begin, be sure that you have created an AWS account and that you have set up your AWS
credentials. For more information, see Getting Started (p. 3).

Create an Amazon EC2 Security Group
Create a security group, which acts as a virtual firewall that controls the network traffic for one or more
EC2 instances. By default, Amazon EC2 associates your instances with a security group that allows no
inbound traffic. You can create a security group that allows your EC2 instances to accept certain traffic.
For example, if you need to connect to a Linux instance, you must configure the security group to allow
SSH traffic. You can create a security group using the Amazon EC2 console or the AWS SDK for Java.

You create a security group for use in either EC2-Classic or EC2-VPC. For more information about EC2-
Classic and EC2-VPC, see Supported Platforms in the Amazon EC2 User Guide for Linux Instances.

For more information about creating a security group using the Amazon EC2 console, see Amazon EC2
Security Groups in the Amazon EC2 User Guide for Linux Instances.

To create a security group

1. Create and initialize a CreateSecurityGroupRequest instance. Use the withGroupName method to set
the security group name, and the withDescription method to set the security group description, as
follows:

CreateSecurityGroupRequest csgr = new CreateSecurityGroupRequest();
csgr.withGroupName("JavaSecurityGroup").withDescription("My security group");

The security group name must be unique within the AWS region in which you initialize your Amazon
EC2 client. You must use US-ASCII characters for the security group name and description.

2. Pass the request object as a parameter to the createSecurityGroup method. The method returns a
CreateSecurityGroupResult object, as follows:

CreateSecurityGroupResult createSecurityGroupResult =
 amazonEC2Client.createSecurityGroup(csgr);

53

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withGroupName-java.lang.String-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withDescription-java.lang.String-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/AmazonEC2.html#createSecurityGroup-com.amazonaws.services.ec2.model.CreateSecurityGroupRequest-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/CreateSecurityGroupResult.html

AWS SDK for Java Developer Guide
Tutorial: Starting an EC2 Instance

If you attempt to create a security group with the same name as an existing security group,
createSecurityGroup throws an exception.

By default, a new security group does not allow any inbound traffic to your Amazon EC2 instance. To
allow inbound traffic, you must explicitly authorize security group ingress. You can authorize ingress for
individual IP addresses, for a range of IP addresses, for a specific protocol, and for TCP/UDP ports.

To authorize security group ingress

1. Create and initialize an IpPermission instance. Use the withIpv4Ranges method to set the range of IP
addresses to authorize ingress for, and use the withIpProtocol method to set the IP protocol. Use the
withFromPort and withToPort methods to specify range of ports to authorize ingress for, as follows:

IpPermission ipPermission =
 new IpPermission();

IpRange ipRange1 = new IpRange().withCidrIp("111.111.111.111/32");
IpRange ipRange2 = new IpRange().withCidrIp("150.150.150.150/32");

ipPermission.withIpv4Ranges(Arrays.asList(new IpRange[] {ipRange1, ipRange2}))
 .withIpProtocol("tcp")
 .withFromPort(22)
 .withToPort(22);

All the conditions that you specify in the IpPermission object must be met in order for ingress to
be allowed.

Specify the IP address using CIDR notation. If you specify the protocol as TCP/UDP, you must provide
a source port and a destination port. You can authorize ports only if you specify TCP or UDP.

2. Create and initialize an AuthorizeSecurityGroupIngressRequest instance. Use the withGroupName
method to specify the security group name, and pass the IpPermission object you initialized
earlier to the withIpPermissions method, as follows:

AuthorizeSecurityGroupIngressRequest authorizeSecurityGroupIngressRequest =
 new AuthorizeSecurityGroupIngressRequest();

authorizeSecurityGroupIngressRequest.withGroupName("JavaSecurityGroup")
 .withIpPermissions(ipPermission);

3. Pass the request object into the authorizeSecurityGroupIngress method, as follows:

amazonEC2Client.authorizeSecurityGroupIngress(authorizeSecurityGroupIngressRequest);

If you call authorizeSecurityGroupIngress with IP addresses for which ingress
is already authorized, the method throws an exception. Create and initialize a new
IpPermission object to authorize ingress for different IPs, ports, and protocols before calling
AuthorizeSecurityGroupIngress.

Whenever you call the authorizeSecurityGroupIngress or authorizeSecurityGroupEgress methods, a rule
is added to your security group.

Create a Key Pair
You must specify a key pair when you launch an EC2 instance and then specify the private key of the key
pair when you connect to the instance. You can create a key pair or use an existing key pair that you've

54

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/IpPermission.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/IpPermission.html#withIpv4Ranges-java.util.Collection-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/IpPermission.html#withIpProtocol-java.lang.String-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/IpPermission.html#withFromPort-java.lang.Integer-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/IpPermission.html#withToPort-java.lang.Integer-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html#withIpPermissions-com.amazonaws.services.ec2.model.IpPermission...-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupEgress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupEgressRequest-

AWS SDK for Java Developer Guide
Tutorial: Starting an EC2 Instance

used when launching other instances. For more information, see Amazon EC2 Key Pairs in the Amazon
EC2 User Guide for Linux Instances.

To create a key pair and save the private key

1. Create and initialize a CreateKeyPairRequest instance. Use the withKeyName method to set the key
pair name, as follows:

CreateKeyPairRequest createKeyPairRequest = new CreateKeyPairRequest();

createKeyPairRequest.withKeyName(keyName);

Important
Key pair names must be unique. If you attempt to create a key pair with the same key name
as an existing key pair, you'll get an exception.

2. Pass the request object to the createKeyPair method. The method returns a CreateKeyPairResult
instance, as follows:

CreateKeyPairResult createKeyPairResult =
 amazonEC2Client.createKeyPair(createKeyPairRequest);

3. Call the result object's getKeyPair method to obtain a KeyPair object. Call the KeyPair object's
getKeyMaterial method to obtain the unencrypted PEM-encoded private key, as follows:

KeyPair keyPair = new KeyPair();

keyPair = createKeyPairResult.getKeyPair();

String privateKey = keyPair.getKeyMaterial();

Run an Amazon EC2 Instance

Use the following procedure to launch one or more identically configured EC2 instances from the same
Amazon Machine Image (AMI). After you create your EC2 instances, you can check their status. After your
EC2 instances are running, you can connect to them.

To launch an Amazon EC2 instance

1. Create and initialize a RunInstancesRequest instance. Make sure that the AMI, key pair, and security
group that you specify exist in the region that you specified when you created the client object.

RunInstancesRequest runInstancesRequest =
 new RunInstancesRequest();

runInstancesRequest.withImageId("ami-4b814f22")
 .withInstanceType("m1.small")
 .withMinCount(1)
 .withMaxCount(1)
 .withKeyName("my-key-pair")
 .withSecurityGroups("my-security-group");

withImageId

The ID of the AMI. For a list of public AMIs provided by Amazon, see Amazon Machine Images.

55

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html#withKeyName-java.lang.String-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/AmazonEC2.html#createKeyPair-com.amazonaws.services.ec2.model.CreateKeyPairRequest--
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/CreateKeyPairResult.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/CreateKeyPairResult.html#getKeyPair--
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/KeyPair.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/KeyPair.html#getKeyMaterial--
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/RunInstancesRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withImageId-java.lang.String-

AWS SDK for Java Developer Guide
Using IAM Roles to Grant Access

to AWS Resources on Amazon EC2

withInstanceType

An instance type that is compatible with the specified AMI. For more information, see Instance
Types in the Amazon EC2 User Guide for Linux Instances.

withMinCount

The minimum number of EC2 instances to launch. If this is more instances than Amazon EC2 can
launch in the target Availability Zone, Amazon EC2 launches no instances.

withMaxCount

The maximum number of EC2 instances to launch. If this is more instances than Amazon EC2
can launch in the target Availability Zone, Amazon EC2 launches the largest possible number of
instances above MinCount. You can launch between 1 and the maximum number of instances
you're allowed for the instance type. For more information, see How many instances can I run in
Amazon EC2 in the Amazon EC2 General FAQ.

withKeyName

The name of the EC2 key pair. If you launch an instance without specifying a key pair, you can't
connect to it. For more information, see Create a Key Pair (p. 54).

withSecurityGroups

One or more security groups. For more information, see Create an Amazon EC2 Security
Group (p. 53).

2. Launch the instances by passing the request object to the runInstances method. The method returns
a RunInstancesResult object, as follows:

RunInstancesResult result = amazonEC2Client.runInstances(
 runInstancesRequest);

After your instance is running, you can connect to it using your key pair. For more information, see
Connect to Your Linux Instance. in the Amazon EC2 User Guide for Linux Instances.

Using IAM Roles to Grant Access to AWS Resources on
Amazon EC2
All requests to Amazon Web Services (AWS) must be cryptographically signed using credentials issued by
AWS. You can use IAM roles to conveniently grant secure access to AWS resources from your Amazon EC2
instances.

This topic provides information about how to use IAM roles with Java SDK applications running on
Amazon EC2. For more information about IAM instances, see IAM Roles for Amazon EC2 in the Amazon
EC2 User Guide for Linux Instances.

The default provider chain and EC2 instance profiles
If your application creates an AWS client using the default constructor, then the client will search for
credentials using the default credentials provider chain, in the following order:

1. In system environment variables: AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.
2. In the Java system properties: aws.accessKeyId and aws.secretKey.
3. In the default credentials file (the location of this file varies by platform).
4. In the instance profile credentials, which exist within the instance metadata associated with the IAM

role for the EC2 instance.

56

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withInstanceType-java.lang.String-
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMinCount-java.lang.Integer-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMaxCount-java.lang.Integer-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withKeyName-java.lang.String-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withSecurityGroups-java.util.Collection-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/AmazonEC2Client.html#runInstances-com.amazonaws.services.ec2.model.RunInstancesRequest-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/RunInstancesResult.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK for Java Developer Guide
Using IAM Roles to Grant Access

to AWS Resources on Amazon EC2

The final step in the default provider chain is available only when running your application on an
Amazon EC2 instance, but provides the greatest ease of use and best security when working with
Amazon EC2 instances. You can also pass an InstanceProfileCredentialsProvider instance directly to
the client constructor to get instance profile credentials without proceeding through the entire default
provider chain.

For example:

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withCredentials(new InstanceProfileCredentialsProvider(false))
 .build();

When using this approach, the SDK retrieves temporary AWS credentials that have the same
permissions as those associated with the IAM role associated with the Amazon EC2 instance
in its instance profile. Although these credentials are temporary and would eventually expire,
InstanceProfileCredentialsProvider periodically refreshes them for you so that the obtained
credentials continue to allow access to AWS.

Important
The automatic credentials refresh happens only when you use the default client constructor,
which creates its own InstanceProfileCredentialsProvider as part of the default
provider chain, or when you pass an InstanceProfileCredentialsProvider instance
directly to the client constructor. If you use another method to obtain or pass instance profile
credentials, you are responsible for checking for and refreshing expired credentials.

If the client constructor can't find credentials using the credentials provider chain, it will throw an
AmazonClientException.

Walkthrough: Using IAM roles for EC2 instances
The following walkthrough shows you how to retrieve an object from Amazon S3 using an IAM role to
manage access.

Create an IAM Role

Create an IAM role that grants read-only access to Amazon S3.

To create the IAM role

1. Open the IAM console.
2. In the navigation pane, select Roles, then Create New Role.
3. Enter a name for the role, then select Next Step. Remember this name, since you'll need it when you

launch your Amazon EC2 instance.
4. On the Select Role Type page, under AWS Service Roles, select Amazon EC2.
5. On the Set Permissions page, under Select Policy Template, select Amazon S3 Read Only Access,

then Next Step.
6. On the Review page, select Create Role.

Launch an EC2 Instance and Specify Your IAM Role

You can launch an Amazon EC2 instance with an IAM role using the Amazon EC2 console or the AWS SDK
for Java.

• To launch an Amazon EC2 instance using the console, follow the directions in Getting Started with
Amazon EC2 Linux Instances in the Amazon EC2 User Guide for Linux Instances.

57

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/InstanceProfileCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/AmazonClientException.html
https://console.aws.amazon.com/iam/home
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

AWS SDK for Java Developer Guide
Using IAM Roles to Grant Access

to AWS Resources on Amazon EC2

When you reach the Review Instance Launch page, select Edit instance details. In IAM role, choose
the IAM role that you created previously. Complete the procedure as directed.

Note
You'll need to create or use an existing security group and key pair to connect to the instance.

• To launch an Amazon EC2 instance with an IAM role using the AWS SDK for Java, see Run an Amazon
EC2 Instance (p. 55).

Create your Application

Let's build the sample application to run on the EC2 instance. First, create a directory that you can use to
hold your tutorial files (for example, GetS3ObjectApp).

Next, copy the AWS SDK for Java libraries into your newly-created directory. If you downloaded the AWS
SDK for Java to your ~/Downloads directory, you can copy them using the following commands:

cp -r ~/Downloads/aws-java-sdk-{1.7.5}/lib .
cp -r ~/Downloads/aws-java-sdk-{1.7.5}/third-party .

Open a new file, call it GetS3Object.java, and add the following code:

import java.io.*;

import com.amazonaws.auth.*;
import com.amazonaws.services.s3.*;
import com.amazonaws.services.s3.model.*;
import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;

public class GetS3Object {
 private static String bucketName = "text-content";
 private static String key = "text-object.txt";

 public static void main(String[] args) throws IOException
 {
 AmazonS3 s3Client = AmazonS3ClientBuilder.defaultClient();

 try {
 System.out.println("Downloading an object");
 S3Object s3object = s3Client.getObject(
 new GetObjectRequest(bucketName, key));
 displayTextInputStream(s3object.getObjectContent());
 }
 catch(AmazonServiceException ase) {
 System.err.println("Exception was thrown by the service");
 }
 catch(AmazonClientException ace) {
 System.err.println("Exception was thrown by the client");
 }
 }

 private static void displayTextInputStream(InputStream input) throws IOException
 {
 // Read one text line at a time and display.
 BufferedReader reader = new BufferedReader(new InputStreamReader(input));
 while(true)
 {
 String line = reader.readLine();
 if(line == null) break;

58

AWS SDK for Java Developer Guide
Using IAM Roles to Grant Access

to AWS Resources on Amazon EC2

 System.out.println(" " + line);
 }
 System.out.println();
 }
}

Open a new file, call it build.xml, and add the following lines:

<project name="Get Amazon S3 Object" default="run" basedir=".">
 <path id="aws.java.sdk.classpath">
 <fileset dir="./lib" includes="**/*.jar"/>
 <fileset dir="./third-party" includes="**/*.jar"/>
 <pathelement location="lib"/>
 <pathelement location="."/>
 </path>

 <target name="build">
 <javac debug="true"
 includeantruntime="false"
 srcdir="."
 destdir="."
 classpathref="aws.java.sdk.classpath"/>
 </target>

 <target name="run" depends="build">
 <java classname="GetS3Object" classpathref="aws.java.sdk.classpath" fork="true"/>
 </target>
</project>

Build and run the modified program. Note that there are no credentials are stored in the
program. Therefore, unless you have your AWS credentials specified already, the code will throw
AmazonServiceException. For example:

$ ant
Buildfile: /path/to/my/GetS3ObjectApp/build.xml

build:
 [javac] Compiling 1 source file to /path/to/my/GetS3ObjectApp

run:
 [java] Downloading an object
 [java] AmazonServiceException

BUILD SUCCESSFUL

Transfer the Compiled Program to Your EC2 Instance

Transfer the program to your Amazon EC2 instance using secure copy (scp), along with the AWS SDK
for Java libraries. The sequence of commands looks something like the following.

scp -p -i {my-key-pair}.pem GetS3Object.class ec2-user@{public_dns}:GetS3Object.class
scp -p -i {my-key-pair}.pem build.xml ec2-user@{public_dns}:build.xml
scp -r -p -i {my-key-pair}.pem lib ec2-user@{public_dns}:lib
scp -r -p -i {my-key-pair}.pem third-party ec2-user@{public_dns}:third-party

Note
Depending on the Linux distribution that you used, the user name might be "ec2-
user", "root", or "ubuntu". To get the public DNS name of your instance, open the

59

AWS SDK for Java Developer Guide
Tutorial: Amazon EC2 Spot Instances

EC2 console and look for the Public DNS value in the Description tab (for example,
ec2-198-51-100-1.compute-1.amazonaws.com).

In the preceding commands:

• GetS3Object.class is your compiled program

• build.xml is the ant file used to build and run your program

• the lib and third-party directories are the corresponding library folders from the AWS SDK for
Java.

• The -r switch indicates that scp should do a recursive copy of all of the contents of the library and
third-party directories in the AWS SDK for Java distribution.

• The -p switch indicates that scp should preserve the permissions of the source files when it copies
them to the destination.

Note
The -p switch works only on Linux, macOS, or Unix. If you are copying files from Windows,
you may need to fix the file permissions on your instance using the following command:

chmod -R u+rwx GetS3Object.class build.xml lib third-party

Run the Sample Program on the EC2 Instance

To run the program, connect to your Amazon EC2 instance. For more information, see Connect to Your
Linux Instance in the Amazon EC2 User Guide for Linux Instances.

If ant is not available on your instance, install it using the following command:

sudo yum install ant

Then, run the program using ant as follows:

ant run

The program will write the contents of your Amazon S3 object to your command window.

Tutorial: Amazon EC2 Spot Instances

Overview
Spot Instances allow you to bid on unused Amazon Elastic Compute Cloud (Amazon EC2) capacity and
run the acquired instances for as long as your bid exceeds the current Spot Price. Amazon EC2 changes
the Spot Price periodically based on supply and demand, and customers whose bids meet or exceed it
gain access to the available Spot Instances. Like On-Demand Instances and Reserved Instances, Spot
Instances provide you another option for obtaining more compute capacity.

Spot Instances can significantly lower your Amazon EC2 costs for batch processing, scientific research,
image processing, video encoding, data and web crawling, financial analysis, and testing. Additionally,
Spot Instances give you access to large amounts of additional capacity in situations where the need for
that capacity is not urgent.

To use Spot Instances, place a Spot Instance request specifying the maximum price you are willing to pay
per instance hour; this is your bid. If your bid exceeds the current Spot Price, your request is fulfilled and

60

https://console.aws.amazon.com/ec2/home
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

AWS SDK for Java Developer Guide
Tutorial: Amazon EC2 Spot Instances

your instances will run until either you choose to terminate them or the Spot Price increases above your
bid (whichever is sooner).

It's important to note:

• You will often pay less per hour than your bid. Amazon EC2 adjusts the Spot Price periodically as
requests come in and available supply changes. Everyone pays the same Spot Price for that period
regardless of whether their bid was higher. Therefore, you might pay less than your bid, but you will
never pay more than your bid.

• If you're running Spot Instances and your bid no longer meets or exceeds the current Spot Price, your
instances will be terminated. This means that you will want to make sure that your workloads and
applications are flexible enough to take advantage of this opportunistic capacity.

Spot Instances perform exactly like other Amazon EC2 instances while running, and like other Amazon
EC2 instances, Spot Instances can be terminated when you no longer need them. If you terminate
your instance, you pay for any partial hour used (as you would for On-Demand or Reserved Instances).
However, if the Spot Price goes above your bid and your instance is terminated by Amazon EC2, you will
not be charged for any partial hour of usage.

This tutorial shows how to use AWS SDK for Java to do the following.

• Submit a Spot Request

• Determine when the Spot Request becomes fulfilled

• Cancel the Spot Request

• Terminate associated instances

Prerequisites

To use this tutorial you must have the AWS SDK for Java installed, as well as having met its basic
installation prerequisites. See Set up the AWS SDK for Java (p. 4) for more information.

Step 1: Setting Up Your Credentials

To begin using this code sample, you need to add AWS credentials to the
AwsCredentials.properties file as follows:

1. Open the AwsCredentials.properties file.

2. Set your access key / secret key id combination in the AwsCredentials.properties file.

Note
We recommend that you use the credentials of an IAM user to provide these values. For more
information, see Sign Up for AWS and Create an IAM User (p. 3).

Now that you have configured your settings, you can get started using the code in the example.

Step 2: Setting Up a Security Group

A security group acts as a firewall that controls the traffic allowed in and out of a group of instances. By
default, an instance is started without any security group, which means that all incoming IP traffic, on
any TCP port will be denied. So, before submitting our Spot Request, we will set up a security group that
allows the necessary network traffic. For the purposes of this tutorial, we will create a new security group
called "GettingStarted" that allows Secure Shell (SSH) traffic from the IP address where you are running

61

AWS SDK for Java Developer Guide
Tutorial: Amazon EC2 Spot Instances

your application from. To set up a new security group, you need to include or run the following code
sample that sets up the security group programmatically.

After we create an AmazonEC2 client object, we create a CreateSecurityGroupRequest
object with the name, "GettingStarted" and a description for the security group. Then we call the
ec2.createSecurityGroup API to create the group.

To enable access to the group, we create an ipPermission object with the IP address range set to the
CIDR representation of the subnet for the local computer; the "/10" suffix on the IP address indicates the
subnet for the specified IP address. We also configure the ipPermission object with the TCP protocol
and port 22 (SSH). The final step is to call ec2.authorizeSecurityGroupIngress with the name of
our security group and the ipPermission object.

<?dbhtml linenumbering.everyNth="1" ?>
// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest = new
 CreateSecurityGroupRequest("GettingStartedGroup", "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security
// Group by default to the ip range associated with your subnet.
try {
 InetAddress addr = InetAddress.getLocalHost();

 // Get IP Address
 ipAddr = addr.getHostAddress()+"/10";
} catch (UnknownHostException e) {
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP
// from above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest("GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
} catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has
 // already been authorized.
 System.out.println(ase.getMessage());
}

62

AWS SDK for Java Developer Guide
Tutorial: Amazon EC2 Spot Instances

You can view this entire code sample in the CreateSecurityGroupApp.java code sample. Note you
only need to run this application once to create a new security group.

You can also create the security group using the AWS Toolkit for Eclipse. See Managing Security Groups
from AWS Explorer for more information.

Step 3: Submitting Your Spot Request
To submit a Spot request, you first need to determine the instance type, Amazon Machine Image (AMI),
and maximum bid price you want to use. You must also include the security group we configured
previously, so that you can log into the instance if desired.

There are several instance types to choose from; go to Amazon EC2 Instance Types for a complete list.
For this tutorial, we will use t1.micro, the cheapest instance type available. Next, we will determine
the type of AMI we would like to use. We'll use ami-8c1fece5, the most up-to-date Amazon Linux
AMI available when we wrote this tutorial. The latest AMI may change over time, but you can always
determine the latest version AMI by following these steps:

1. Log into the AWS Management Console, click the EC2 tab, and, from the EC2 Console Dashboard,
attempt to launch an instance.

AWS Management Console to launch an instance

2. In the window that displays AMIs, just use the AMI ID as shown in the following screen shot.
Alternatively, you can use the DescribeImages API, but leveraging that command is outside the
scope of this tutorial.

Identifying the most-recent AMI

There are many ways to approach bidding for Spot instances; to get a broad overview of the various
approaches you should view the Bidding for Spot Instances video. However, to get started, we'll describe

63

http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://www.youtube.com/watch?v=WD9N73F3Fao&feature=player_embedded

AWS SDK for Java Developer Guide
Tutorial: Amazon EC2 Spot Instances

three common strategies: bid to ensure cost is less than on-demand pricing; bid based on the value of
the resulting computation; bid so as to acquire computing capacity as quickly as possible.

• Reduce Cost below On-Demand You have a batch processing job that will take a number of hours or
days to run. However, you are flexible with respect to when it starts and when it completes. You want
to see if you can complete it for less cost than with On-Demand Instances. You examine the Spot Price
history for instance types using either the AWS Management Console or the Amazon EC2 API. For
more information, go to Viewing Spot Price History. After you've analyzed the price history for your
desired instance type in a given Availability Zone, you have two alternative approaches for your bid:

• You could bid at the upper end of the range of Spot Prices (which are still below the On-Demand
price), anticipating that your one-time Spot request would most likely be fulfilled and run for
enough consecutive compute time to complete the job.

• Or, you could bid at the lower end of the price range, and plan to combine many instances launched
over time through a persistent request. The instances would run long enough--in aggregate--to
complete the job at an even lower total cost. (We will explain how to automate this task later in this
tutorial.)

• Pay No More than the Value of the Result You have a data processing job to run. You understand the
value of the job's results well enough to know how much they are worth in terms of computing costs.
After you've analyzed the Spot Price history for your instance type, you choose a bid price at which the
cost of the computing time is no more than the value of the job's results. You create a persistent bid
and allow it to run intermittently as the Spot Price fluctuates at or below your bid.

• Acquire Computing Capacity Quickly You have an unanticipated, short-term need for additional
capacity that is not available through On-Demand Instances. After you've analyzed the Spot Price
history for your instance type, you bid above the highest historical price to provide a high likelihood
that your request will be fulfilled quickly and continue computing until it completes.

After you choose your bid price, you are ready to request a Spot Instance. For the purposes of this
tutorial, we will bid the On-Demand price ($0.03) to maximize the chances that the bid will be fulfilled.
You can determine the types of available instances and the On-Demand prices for instances by going
to Amazon EC2 Pricing page. To request a Spot Instance, you simply need to build your request with
the parameters you chose earlier. We start by creating a RequestSpotInstanceRequest object. The
request object requires the number of instances you want to start and the bid price. Additionally, you
need to set the LaunchSpecification for the request, which includes the instance type, AMI ID, and
security group you want to use. Once the request is populated, you call the requestSpotInstances
method on the AmazonEC2Client object. The following example shows how to request a Spot Instance.

// Retrieves the credentials from a AWSCrentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
} catch (IOException e1) {
 System.out.println("Credentials were not properly entered into
 AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

64

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

AWS SDK for Java Developer Guide
Tutorial: Amazon EC2 Spot Instances

// Setup the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-8c1fece5");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specifications to the request.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Running this code will launch a new Spot Instance Request. There are other options you can use to
configure your Spot Requests. To learn more, please visit Tutorial: Advanced Amazon EC2 Spot Request
Management (p. 68) or the RequestSpotInstances class in the AWS SDK for Java API Reference.

Note
You will be charged for any Spot Instances that are actually launched, so make sure that you
cancel any requests and terminate any instances you launch to reduce any associated fees.

Step 4: Determining the State of Your Spot Request
Next, we want to create code to wait until the Spot request reaches the "active" state before proceeding
to the last step. To determine the state of our Spot request, we poll the describeSpotInstanceRequests
method for the state of the Spot request ID we want to monitor.

The request ID created in Step 2 is embedded in the response to our requestSpotInstances request.
The following example code shows how to gather request IDs from the requestSpotInstances
response and use them to populate an ArrayList.

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// Setup an arraylist to collect all of the request ids we want to
// watch hit the running state.
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add all of the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

To monitor your request ID, call the describeSpotInstanceRequests method to determine the state
of the request. Then loop until the request is not in the "open" state. Note that we monitor for a state
of not "open", rather a state of, say, "active", because the request can go straight to "closed" if there is
a problem with your request arguments. The following code example provides the details of how to
accomplish this task.

// Create a variable that will track whether there are any
// requests still in the open state.

65

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/RequestSpotInstancesRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/AmazonEC2Client.html#describeSpotInstanceRequests--

AWS SDK for Java Developer Guide
Tutorial: Amazon EC2 Spot Instances

boolean anyOpen;

do {
 // Create the describeRequest object with all of the request ids
 // to monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false - which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen=false;

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);
 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all in
 // the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we attempted
 // to request it. There is the potential for it to transition
 // almost immediately to closed or cancelled so we compare
 // against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 }
} catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out of
 // the loop. This prevents the scenario where there was
 // blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

After running this code, your Spot Instance Request will have completed or will have failed with an error
that will be output to the screen. In either case, we can proceed to the next step to clean up any active
requests and terminate any running instances.

Step 5: Cleaning Up Your Spot Requests and Instances
Lastly, we need to clean up our requests and instances. It is important to both cancel any outstanding
requests and terminate any instances. Just canceling your requests will not terminate your instances,
which means that you will continue to pay for them. If you terminate your instances, your Spot requests
may be canceled, but there are some scenarios—such as if you use persistent bids|mdash|where
terminating your instances is not sufficient to stop your request from being re-fulfilled. Therefore, it is a
best practice to both cancel any active bids and terminate any running instances.

The following code demonstrates how to cancel your requests.

try {

66

AWS SDK for Java Developer Guide
Tutorial: Amazon EC2 Spot Instances

 // Cancel requests.
 CancelSpotInstanceRequestsRequest cancelRequest =
 new CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

To terminate any outstanding instances, you will need the instance ID associated with the request that
started them. The following code example takes our original code for monitoring the instances and adds
an ArrayList in which we store the instance ID associated with the describeInstance response.

// Create a variable that will track whether there are any requests
// still in the open state.
boolean anyOpen;
// Initialize variables.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 // Create the describeRequest with all of the request ids to
 // monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false, which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen = false;

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all
 // in the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we
 // attempted to request it. There is the potential for
 // it to transition almost immediately to closed or
 // cancelled so we compare against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true; break;
 }
 // Add the instance id to the list we will
 // eventually terminate.
 instanceIds.add(describeResponse.getInstanceId());
 }
 } catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out
 // of the loop. This prevents the scenario where there
 // was blip on the wire.
 anyOpen = true;
 }

 try {

67

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

Using the instance IDs, stored in the ArrayList, terminate any running instances using the following
code snippet.

try {
 // Terminate instances.
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Bringing It All Together
To bring this all together, we provide a more object-oriented approach that combines the preceding
steps we showed: initializing the EC2 Client, submitting the Spot Request, determining when the Spot
Requests are no longer in the open state, and cleaning up any lingering Spot request and associated
instances. We create a class called Requests that performs these actions.

We also create a GettingStartedApp class, which has a main method where we perform the high level
function calls. Specifically, we initialize the Requests object described previously. We submit the Spot
Instance request. Then we wait for the Spot request to reach the "Active" state. Finally, we clean up the
requests and instances.

The complete source code for this example can be viewed or downloaded at GitHub.

Congratulations! You have just completed the getting started tutorial for developing Spot Instance
software with the AWS SDK for Java.

Next Steps
Proceed with Tutorial: Advanced Amazon EC2 Spot Request Management (p. 68).

Tutorial: Advanced Amazon EC2 Spot Request
Management
Amazon EC2 spot instances allow you to bid on unused Amazon EC2 capacity and run those instances for
as long as your bid exceeds the current spot price. Amazon EC2 changes the spot price periodically based
on supply and demand. For more information about spot instances, see Spot Instances in the Amazon
EC2 User Guide for Linux Instances.

Prerequisites
To use this tutorial you must have the AWS SDK for Java installed, as well as having met its basic
installation prerequisites. See Set up the AWS SDK for Java (p. 4) for more information.

68

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-GettingStarted
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

Setting up your credentials
To begin using this code sample, you need to add AWS credentials to the
AwsCredentials.properties file as follows:

1. Open the AwsCredentials.properties file.

2. Set your access key / secret key id combination in the AwsCredentials.properties file.

Note
We recommend that you use the credentials of an IAM user to provide these values. For more
information, see Sign Up for AWS and Create an IAM User (p. 3).

Now that you have configured your settings, you can get started using the code in the example.

Setting up a security group
A security group acts as a firewall that controls the traffic allowed in and out of a group of instances.
By default, an instance is started without any security group, which means that all incoming IP traffic,
on any TCP port will be denied. So, before submitting our Spot Request, we will set up a security group
that allows the necessary network traffic. For the purposes of this tutorial, we will create a new security
group called "GettingStarted" that allows Secure Shell (SSH) traffic from the IP address where you are
running your application from. To set up a new security group, you need to include or run the following
code sample that sets up the security group programmatically.

After we create an AmazonEC2 client object, we create a CreateSecurityGroupRequest
object with the name, "GettingStarted" and a description for the security group. Then we call the
ec2.createSecurityGroup API to create the group.

To enable access to the group, we create an ipPermission object with the IP address range set to the
CIDR representation of the subnet for the local computer; the "/10" suffix on the IP address indicates the
subnet for the specified IP address. We also configure the ipPermission object with the TCP protocol
and port 22 (SSH). The final step is to call ec2.authorizeSecurityGroupIngress with the name of
our security group and the ipPermission object.

(The following code is the same as what we used in the first tutorial.)

// Retrieves the credentials from the shared credentials file
AWSCredentialsProvider credentials = new ProfileCredentialsProvider("my-profile");

// Create the AmazonEC2Client object so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withCredentials(credentials)
 .build();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest =
 new CreateSecurityGroupRequest("GettingStartedGroup",
 "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security Group

69

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

// by default to the ip range associated with your subnet.
try {
 // Get IP Address
 InetAddress addr = InetAddress.getLocalHost();
 ipAddr = addr.getHostAddress()+"/10";
}
catch (UnknownHostException e) {
 // Fail here...
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP from
// above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest(
 "GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
}
catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has already
 // been authorized.
 System.out.println(ase.getMessage());
}

You can view this entire code sample in the advanced.CreateSecurityGroupApp.java code sample.
Note you only need to run this application once to create a new security group.

Note
You can also create the security group using the AWS Toolkit for Eclipse. See Managing Security
Groups from AWS Explorer in the AWS Toolkit for Eclipse User Guide for more information.

Detailed spot instance request creation options
As we explained in Tutorial: Amazon EC2 Spot Instances (p. 60), you need to build your request with
an instance type, an Amazon Machine Image (AMI), and maximum bid price.

Let's start by creating a RequestSpotInstanceRequest object. The request object
requires the number of instances you want and the bid price. Additionally, we need to set the
LaunchSpecification for the request, which includes the instance type, AMI ID, and security group
you want to use. After the request is populated, we call the requestSpotInstances method on the
AmazonEC2Client object. An example of how to request a Spot instance follows.

(The following code is the same as what we used in the first tutorial.)

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

70

http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-8c1fece5");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Persistent vs. one-time requests
When building a Spot request, you can specify several optional parameters. The first is whether your
request is one-time only or persistent. By default, it is a one-time request. A one-time request can
be fulfilled only once, and after the requested instances are terminated, the request will be closed. A
persistent request is considered for fulfillment whenever there is no Spot Instance running for the same
request. To specify the type of request, you simply need to set the Type on the Spot request. This can be
done with the following code.

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest =
 new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the type of the bid to persistent.
requestRequest.setType("persistent");

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux

71

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-8c1fece5");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Limiting the duration of a request
You can also optionally specify the length of time that your request will remain valid. You can specify
both a starting and ending time for this period. By default, a Spot request will be considered for
fulfillment from the moment it is created until it is either fulfilled or canceled by you. However you can
constrain the validity period if you need to. An example of how to specify this period is shown in the
following code.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the valid start time to be two minutes from now.
Calendar cal = Calendar.getInstance();
cal.add(Calendar.MINUTE, 2);
requestRequest.setValidFrom(cal.getTime());

// Set the valid end time to be two minutes and two hours from now.
cal.add(Calendar.HOUR, 2);
requestRequest.setValidUntil(cal.getTime());

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro)

// and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon
// Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-8c1fece5");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

72

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Grouping your Amazon EC2 spot instance requests
You have the option of grouping your Spot instance requests in several different ways. We'll look at the
benefits of using launch groups, Availability Zone groups, and placement groups.

If you want to ensure your Spot instances are all launched and terminated together, then you have
the option to leverage a launch group. A launch group is a label that groups a set of bids together. All
instances in a launch group are started and terminated together. Note, if instances in a launch group
have already been fulfilled, there is no guarantee that new instances launched with the same launch
group will also be fulfilled. An example of how to set a Launch Group is shown in the following code
example.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the launch group.
requestRequest.setLaunchGroup("ADVANCED-DEMO-LAUNCH-GROUP");

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-8c1fece5");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

If you want to ensure that all instances within a request are launched in the same Availability Zone, and
you don't care which one, you can leverage Availability Zone groups. An Availability Zone group is a
label that groups a set of instances together in the same Availability Zone. All instances that share an
Availability Zone group and are fulfilled at the same time will start in the same Availability Zone. An
example of how to set an Availability Zone group follows.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.

73

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the availability zone group.
requestRequest.setAvailabilityZoneGroup("ADVANCED-DEMO-AZ-GROUP");

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-8c1fece5");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

You can specify an Availability Zone that you want for your Spot Instances. The following code example
shows you how to set an Availability Zone.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-8c1fece5");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the availability zone to use. Note we could retrieve the
// availability zones using the ec2.describeAvailabilityZones() API. For
// this demo we will just use us-east-1a.
SpotPlacement placement = new SpotPlacement("us-east-1b");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

74

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

Lastly, you can specify a placement group if you are using High Performance Computing (HPC) Spot
instances, such as cluster compute instances or cluster GPU instances. Placement groups provide you
with lower latency and high-bandwidth connectivity between the instances. An example of how to set a
placement group follows.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.

LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-8c1fece5");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the placement group to use with whatever name you desire.
// For this demo we will just use "ADVANCED-DEMO-PLACEMENT-GROUP".
SpotPlacement placement = new SpotPlacement();
placement.setGroupName("ADVANCED-DEMO-PLACEMENT-GROUP");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

All of the parameters shown in this section are optional. It is also important to realize that most of
these parameters—with the exception of whether your bid is one-time or persistent—can reduce the
likelihood of bid fulfillment. So, it is important to leverage these options only if you need them. All
of the preceding code examples are combined into one long code sample, which can be found in the
com.amazonaws.codesamples.advanced.InlineGettingStartedCodeSampleApp.java class.

How to persist a root partition after interruption or termination
One of the easiest ways to manage interruption of your Spot instances is to ensure that your data
is checkpointed to an Amazon Elastic Block Store (Amazon EBS) volume on a regular cadence. By
checkpointing periodically, if there is an interruption you will lose only the data created since the last
checkpoint (assuming no other non-idempotent actions are performed in between). To make this process
easier, you can configure your Spot Request to ensure that your root partition will not be deleted on
interruption or termination. We've inserted new code in the following example that shows how to enable
this scenario.

In the added code, we create a BlockDeviceMapping object and set its associated Elastic Block Storage
(EBS) to an EBS object that we've configured to not be deleted if the Spot Instance is terminated.
We then add this BlockDeviceMapping to the ArrayList of mappings that we include in the launch
specification.

75

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-8c1fece5");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Create the block device mapping to describe the root partition.
BlockDeviceMapping blockDeviceMapping = new BlockDeviceMapping();
blockDeviceMapping.setDeviceName("/dev/sda1");

// Set the delete on termination flag to false.
EbsBlockDevice ebs = new EbsBlockDevice();
ebs.setDeleteOnTermination(Boolean.FALSE);
blockDeviceMapping.setEbs(ebs);

// Add the block device mapping to the block list.
ArrayList<BlockDeviceMapping> blockList = new ArrayList<BlockDeviceMapping>();
blockList.add(blockDeviceMapping);

// Set the block device mapping configuration in the launch specifications.
launchSpecification.setBlockDeviceMappings(blockList);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Assuming you wanted to re-attach this volume to your instance on startup, you can also use the block
device mapping settings. Alternatively, if you attached a non-root partition, you can specify the Amazon
EBS volumes you want to attach to your Spot instance after it resumes. You do this simply by specifying
a snapshot ID in your EbsBlockDevice and alternative device name in your BlockDeviceMapping
objects. By leveraging block device mappings, it can be easier to bootstrap your instance.

76

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

Using the root partition to checkpoint your critical data is a great way to manage the potential for
interruption of your instances. For more methods on managing the potential of interruption, please visit
the Managing Interruption video.

How to tag your spot requests and instances
Adding tags to EC2 resources can simplify the administration of your cloud infrastructure. A form
of metadata, tags can be used to create user-friendly names, enhance searchability, and improve
coordination between multiple users. You can also use tags to automate scripts and portions of your
processes. To read more about tagging Amazon EC2 resources, go to Using Tags in the Amazon EC2 User
Guide for Linux Instances.

Tagging requests

To add tags to your spot requests, you need to tag them after they have been requested. The return
value from requestSpotInstances() provides you with a RequestSpotInstancesResult object that you
can use to get the spot request IDs for tagging:

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// A list of request IDs to tag
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

Once you have the IDs, you can tag the requests by adding their IDs to a CreateTagsRequest and calling
the EC2 client's createTags() method:

// The list of tags to create
ArrayList<Tag> requestTags = new ArrayList<Tag>();
requestTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_requests = new CreateTagsRequest();
createTagsRequest_requests.setResources(spotInstanceRequestIds);
createTagsRequest_requests.setTags(requestTags);

// Tag the spot request
try {
 ec2.createTags(createTagsRequest_requests);
}
catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Tagging instances

Similarly to spot requests themselves, you can only tag an instance once it has been created, which will
happen once the spot request has been met (it is no longer in the open state).

77

https://www.youtube.com/watch?feature=player_embedded&v=wcPNnUo60pc
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/RequestSpotInstancesResult.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/CreateTagsRequest.html

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

You can check the status of your requests by calling the EC2 client's
describeSpotInstanceRequests() method with a DescribeSpotInstanceRequestsRequest object.
The returned DescribeSpotInstanceRequestsResult object contains a list of SpotInstanceRequest objects
that you can use to query the status of your spot requests and obtain their instance IDs once they are no
longer in the open state.

Once the spot request is no longer open, you can retrieve its instance ID from the
SpotInstanceRequest object by calling its getInstanceId() method.

boolean anyOpen; // tracks whether any requests are still open

// a list of instances to tag.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 DescribeSpotInstanceRequestsRequest describeRequest =
 new DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 anyOpen=false; // assume no requests are still open

 try {
 // Get the requests to monitor
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // are any requests open?
 for (SpotInstanceRequest describeResponse : describeResponses) {
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 // get the corresponding instance ID of the spot request
 instanceIds.add(describeResponse.getInstanceId());
 }
 }
 catch (AmazonServiceException e) {
 // Don't break the loop due to an exception (it may be a temporary issue)
 anyOpen = true;
 }

 try {
 Thread.sleep(60*1000); // sleep 60s.
 }
 catch (Exception e) {
 // Do nothing if the thread woke up early.
 }
} while (anyOpen);

Now you can tag the instances that are returned:

// Create a list of tags to create
ArrayList<Tag> instanceTags = new ArrayList<Tag>();
instanceTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_instances = new CreateTagsRequest();
createTagsRequest_instances.setResources(instanceIds);
createTagsRequest_instances.setTags(instanceTags);

78

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsResult.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/SpotInstanceRequest.html

AWS SDK for Java Developer Guide
Tutorial: Advanced Amazon EC2 Spot Request Management

// Tag the instance
try {
 ec2.createTags(createTagsRequest_instances);
}
catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Canceling spot requests and terminating instances

Canceling a spot request

To cancel a spot instance request, call cancelSpotInstanceRequests on the EC2 client with a
CancelSpotInstanceRequestsRequest object.

try {
 CancelSpotInstanceRequestsRequest cancelRequest = new
 CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Terminating spot instances

You can terminate any spot instances that are running by passing their IDs to the EC2 client's
terminateInstances() method.

try {
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Bringing it all together
To bring this all together, we provide a more object-oriented approach that combines the steps we
showed in this tutorial into one easy to use class. We instantiate a class called Requests that performs
these actions. We also create a GettingStartedApp class, which has a main method where we perform
the high level function calls.

The complete source code for this example can be viewed or downloaded at GitHub.

Congratulations! You've completed the Advanced Request Features tutorial for developing Spot Instance
software with the AWS SDK for Java.

79

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/CancelSpotInstanceRequestsRequest.html
https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-Advanced

AWS SDK for Java Developer Guide
Managing Amazon EC2 Instances

Managing Amazon EC2 Instances
Creating an Instance
Create a new Amazon EC2 instance by calling the AmazonEC2Client's runInstances method, providing
it with a RunInstancesRequest containing the Amazon Machine Image (AMI) to use and an instance type.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.InstanceType;
import com.amazonaws.services.ec2.model.RunInstancesRequest;
import com.amazonaws.services.ec2.model.RunInstancesResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

RunInstancesRequest run_request = new RunInstancesRequest()
 .withImageId(ami_id)
 .withInstanceType(InstanceType.T1Micro)
 .withMaxCount(1)
 .withMinCount(1);

RunInstancesResult run_response = ec2.runInstances(run_request);

String instance_id = run_response.getReservation().getReservationId();

See the complete example.

Starting an Instance
To start an Amazon EC2 instance, call the AmazonEC2Client's startInstances method, providing it
with a StartInstancesRequest containing the ID of the instance to start.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StartInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StartInstancesRequest request = new StartInstancesRequest()
 .withInstanceIds(instance_id);

ec2.startInstances(request);

See the complete example.

Stopping an Instance
To stop an Amazon EC2 instance, call the AmazonEC2Client's stopInstances method, providing it with
a StopInstancesRequest containing the ID of the instance to stop.

80

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/RunInstancesRequest.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateInstance.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/StartInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/StopInstancesRequest.html

AWS SDK for Java Developer Guide
Managing Amazon EC2 Instances

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StopInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StopInstancesRequest request = new StopInstancesRequest()
 .withInstanceIds(instance_id);

ec2.stopInstances(request);

See the complete example.

Rebooting an Instance
To reboot an Amazon EC2 instance, call the AmazonEC2Client's rebootInstances method, providing it
with a RebootInstancesRequest containing the ID of the instance to reboot.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.RebootInstancesRequest;
import com.amazonaws.services.ec2.model.RebootInstancesResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

RebootInstancesRequest request = new RebootInstancesRequest()
 .withInstanceIds(instance_id);

RebootInstancesResult response = ec2.rebootInstances(request);

See the complete example.

Describing Instances
To list your instances, create a DescribeInstancesRequest and call the AmazonEC2Client's
describeInstances method. It will return a DescribeInstancesResult object that you can use to list the
Amazon EC2 instances for your account and region.

Instances are grouped by reservation. Each reservation corresponds to the call to startInstances that
launched the instance. To list your instances, you must first call the DescribeInstancesResult class'
getReservations' method, and then call :methodname:`getInstances on each returned
Reservation object.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;

81

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/RebootInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/RebootInstance.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DescribeInstancesRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DescribeInstancesResult.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/Reservation.html

AWS SDK for Java Developer Guide
Managing Amazon EC2 Instances

import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.Reservation;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();
boolean done = false;

while(!done) {
 DescribeInstancesRequest request = new DescribeInstancesRequest();
 DescribeInstancesResult response = ec2.describeInstances(request);

 for(Reservation reservation : response.getReservations()) {
 for(Instance instance : reservation.getInstances()) {
 System.out.printf(
 "Found reservation with id %s, " +
 "AMI %s, " +
 "type %s, " +
 "state %s " +
 "and monitoring state %s",
 instance.getInstanceId(),
 instance.getImageId(),
 instance.getInstanceType(),
 instance.getState().getName(),
 instance.getMonitoring().getState());
 }
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

Results are paged; you can get further results by passing the value returned from the result object's
getNextToken method to your original request object's setNextToken method, then using the same
request object in your next call to describeInstances.

See the complete example.

Monitoring an Instance
You can monitor various aspects of your Amazon EC2 instances, such as CPU and network utilization,
available memory, and disk space remaining. To learn more about instance monitoring, see Monitoring
Amazon EC2 in the Amazon EC2 User Guide for Linux Instances.

To start monitoring an instance, you must create a MonitorInstancesRequest with the ID of the instance
to monitor, and pass it to the AmazonEC2Client's monitorInstances method.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.MonitorInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

82

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeInstances.java
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/MonitorInstancesRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html

AWS SDK for Java Developer Guide
Using Elastic IP Addresses in Amazon EC2

MonitorInstancesRequest request = new MonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.monitorInstances(request);

See the complete example.

Stopping Instance Monitoring
To stop monitoring an instance, create an UnmonitorInstancesRequest with the ID of the instance to stop
monitoring, and pass it to the AmazonEC2Client's unmonitorInstances method.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.UnmonitorInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

UnmonitorInstancesRequest request = new UnmonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.unmonitorInstances(request);

See the complete example.

More Information
• RunInstances in the Amazon EC2 API Reference
• DescribeInstances in the Amazon EC2 API Reference
• StartInstances in the Amazon EC2 API Reference
• StopInstances in the Amazon EC2 API Reference
• RebootInstances in the Amazon EC2 API Reference
• DescribeInstances in the Amazon EC2 API Reference
• MonitorInstances in the Amazon EC2 API Reference
• UnmonitorInstances in the Amazon EC2 API Reference

Using Elastic IP Addresses in Amazon EC2

Allocating an Elastic IP Address
To use an Elastic IP address, you first allocate one to your account, and then associate it with your
instance or a network interface.

To allocate an Elastic IP address, call the AmazonEC2Client's allocateAddress method with an
AllocateAddressRequest object containing the network type (classic EC2 or VPC).

The returned AllocateAddressResult contains an allocation ID that you can use to associate the address
with an instance, by passing the allocation ID and instance ID in a AssociateAddressRequest to the
AmazonEC2Client's associateAddress method.

83

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/UnmonitorInstancesRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StartInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StopInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RebootInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_MonitorInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_UnmonitorInstances.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/AllocateAddressRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/AllocateAddressResult.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/AssociateAddressRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html

AWS SDK for Java Developer Guide
Using Elastic IP Addresses in Amazon EC2

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AllocateAddressRequest;
import com.amazonaws.services.ec2.model.AllocateAddressResult;
import com.amazonaws.services.ec2.model.AssociateAddressRequest;
import com.amazonaws.services.ec2.model.AssociateAddressResult;
import com.amazonaws.services.ec2.model.DomainType;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

AllocateAddressRequest allocate_request = new AllocateAddressRequest()
 .withDomain(DomainType.Vpc);

AllocateAddressResult allocate_response =
 ec2.allocateAddress(allocate_request);

String allocation_id = allocate_response.getAllocationId();

AssociateAddressRequest associate_request =
 new AssociateAddressRequest()
 .withInstanceId(instance_id)
 .withAllocationId(allocation_id);

AssociateAddressResult associate_response =
 ec2.associateAddress(associate_request);

See the complete example.

Describing Elastic IP Addresses
To list the Elastic IP addresses assigned to your account, call the AmazonEC2Client's
describeAddresses method. It returns a DescribeAddressesResult which you can use to get a list of
Address objects that represent the Elastic IP addresses on your account.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.Address;
import com.amazonaws.services.ec2.model.DescribeAddressesResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeAddressesResult response = ec2.describeAddresses();

for(Address address : response.getAddresses()) {
 System.out.printf(
 "Found address with public IP %s, " +
 "domain %s, " +
 "allocation id %s " +
 "and NIC id %s",
 address.getPublicIp(),
 address.getDomain(),
 address.getAllocationId(),

84

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/AllocateAddress.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DescribeAddressesResult.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/Address.html

AWS SDK for Java Developer Guide
Using Regions and Availability Zones

 address.getNetworkInterfaceId());
}

See the complete example.

Releasing an Elastic IP Address
To release an Elastic IP address, call the AmazonEC2Client's releaseAddress method, passing it a
ReleaseAddressRequest containing the allocation ID of the Elastic IP address you want to release.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.ReleaseAddressRequest;
import com.amazonaws.services.ec2.model.ReleaseAddressResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

ReleaseAddressRequest request = new ReleaseAddressRequest()
 .withAllocationId(alloc_id);

ReleaseAddressResult response = ec2.releaseAddress(request);

After you release an Elastic IP address, it is released to the AWS IP address pool and might be unavailable
to you afterward. Be sure to update your DNS records and any servers or devices that communicate
with the address. If you attempt to release an Elastic IP address that you already released, you'll get an
AuthFailure error if the address is already allocated to another AWS account.

If you are using EC2-Classic or a default VPC, then releasing an Elastic IP address automatically
disassociates it from any instance that it's associated with. To disassociate an Elastic IP address without
releasing it, use the AmazonEC2Client's disassociateAddress method.

If you are using a non-default VPC, you must use disassociateAddress to disassociate the Elastic IP
address before you try to release it. Otherwise, Amazon EC2 returns an error (InvalidIPAddress.InUse).

See the complete example.

More Information
• Elastic IP Addresses in the Amazon EC2 User Guide for Linux Instances
• AllocateAddress in the Amazon EC2 API Reference
• DescribeAddresses in the Amazon EC2 API Reference
• ReleaseAddress in the Amazon EC2 API Reference

Using Regions and Availability Zones

Describing Regions
To list the regions available to your account, call the AmazonEC2Client's describeRegions method. It
returns a DescribeRegionsResult. Call the returned object's getRegions method to get a list of Region
objects that represent each region.

85

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAddresses.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/ReleaseAddressRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/ReleaseAddress.java
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AllocateAddress.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAddresses.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ReleaseAddress.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DescribeRegionsResult.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/Region.html

AWS SDK for Java Developer Guide
Using Regions and Availability Zones

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeRegionsResult regions_response = ec2.describeRegions();

for(Region region : regions_response.getRegions()) {
 System.out.printf(
 "Found region %s " +
 "with endpoint %s",
 region.getRegionName(),
 region.getEndpoint());
}

See the complete example.

Describing Availability Zones
To list each availability zone available to your account, call the AmazonEC2Client's
describeAvailabilityZones method. It returns a DescribeAvailabilityZonesResult. Call its
getAvailabilityZones method to get a list of AvailabilityZone objects that represent each
availability zone.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;

Code

DescribeAvailabilityZonesResult zones_response =
 ec2.describeAvailabilityZones();

for(AvailabilityZone zone : zones_response.getAvailabilityZones()) {
 System.out.printf(
 "Found availability zone %s " +
 "with status %s " +
 "in region %s",
 zone.getZoneName(),
 zone.getState(),
 zone.getRegionName());
}

See the complete example.

More Information
• Regions and Availability Zones in the Amazon EC2 User Guide for Linux Instances

86

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DescribeAvailabilityZonesResult.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/AvailabilityZone.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

AWS SDK for Java Developer Guide
Working with Amazon EC2 Key Pairs

• DescribeRegions in the Amazon EC2 API Reference

• DescribeAvailabilityZones in the Amazon EC2 API Reference

Working with Amazon EC2 Key Pairs

Creating a Key Pair
To create a key pair, call the AmazonEC2Client's createKeyPair method with a CreateKeyPairRequest
that contains the key's name.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateKeyPairRequest;
import com.amazonaws.services.ec2.model.CreateKeyPairResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateKeyPairRequest request = new CreateKeyPairRequest()
 .withKeyName(key_name);

CreateKeyPairResult response = ec2.createKeyPair(request);

See the complete example.

Describing Key Pairs
To list your key pairs or to get information about them, call the AmazonEC2Client's describeKeyPairs
method. It returns a DescribeKeyPairsRequest that you can use to access the list of key pairs by calling its
getKeyPairs method, which returns a list of KeyPairInfo objects.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeKeyPairsResult;
import com.amazonaws.services.ec2.model.KeyPairInfo;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeKeyPairsResult response = ec2.describeKeyPairs();

for(KeyPairInfo key_pair : response.getKeyPairs()) {
 System.out.printf(
 "Found key pair with name %s " +
 "and fingerprint %s",
 key_pair.getKeyName(),
 key_pair.getKeyFingerprint());
}

87

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeRegions.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateKeyPair.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DescribeKeyPairsRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/KeyPairInfo.html

AWS SDK for Java Developer Guide
Working with Security Groups in Amazon EC2

See the complete example.

Deleting a Key Pair
To delete a key pair, call the AmazonEC2Client's deleteKeyPair method, passing it a
DeleteKeyPairRequest that contains the name of the key pair to delete.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteKeyPairRequest;
import com.amazonaws.services.ec2.model.DeleteKeyPairResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteKeyPairRequest request = new DeleteKeyPairRequest()
 .withKeyName(key_name);

DeleteKeyPairResult response = ec2.deleteKeyPair(request);

See the complete example.

More Information
• Amazon EC2 Key Pairs in the Amazon EC2 User Guide for Linux Instances
• CreateKeyPair in the Amazon EC2 API Reference
• DescribeKeyPairs in the Amazon EC2 API Reference
• DeleteKeyPair in the Amazon EC2 API Reference

Working with Security Groups in Amazon EC2

Creating a Security Group
To create a security group, call the AmazonEC2Client's createSecurityGroup method with a
CreateSecurityGroupRequest that contains the key's name.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateSecurityGroupRequest create_request = new
 CreateSecurityGroupRequest()
 .withGroupName(group_name)
 .withDescription(group_desc)

88

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeKeyPairs.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DeleteKeyPairRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteKeyPair.java
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateKeyPair.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeKeyPairs.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteKeyPair.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html

AWS SDK for Java Developer Guide
Working with Security Groups in Amazon EC2

 .withVpcId(vpc_id);

CreateSecurityGroupResult create_response =
 ec2.createSecurityGroup(create_request);

See the complete example.

Configuring a Security Group
A security group can control both inbound (ingress) and outbound (egress) traffic to your Amazon EC2
instances.

To add ingress rules to your security group, use the AmazonEC2Client's
authorizeSecurityGroupIngress method, providing the name of the security group and the access
rules (IpPermission) you want to assign to it within an AuthorizeSecurityGroupIngressRequest object. The
following example shows how to add IP permissions to a security group.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

Code

IpRange ip_range = new IpRange()
 .withCidrIp("0.0.0.0/0");

IpPermission ip_perm = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(80)
 .withFromPort(80)
 .withIpv4Ranges(ip_range);

IpPermission ip_perm2 = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(22)
 .withFromPort(22)
 .withIpv4Ranges(ip_range);

AuthorizeSecurityGroupIngressRequest auth_request = new
 AuthorizeSecurityGroupIngressRequest()
 .withGroupName(group_name)
 .withIpPermissions(ip_perm, ip_perm2);

AuthorizeSecurityGroupIngressResult auth_response =
 ec2.authorizeSecurityGroupIngress(auth_request);

To add an egress rule to the security group, provide similar data in an
AuthorizeSecurityGroupEgressRequest to the AmazonEC2Client's authorizeSecurityGroupEgress
method.

See the complete example.

Describing Security Groups
To describe your security groups or get information about them, call the AmazonEC2Client's
describeSecurityGroups method. It returns a DescribeSecurityGroupsResult that you can use to

89

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/IpPermission.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/AuthorizeSecurityGroupIngressRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DescribeSecurityGroupsResult.html

AWS SDK for Java Developer Guide
Working with Security Groups in Amazon EC2

access the list of security groups by calling its getSecurityGroups method, which returns a list of
SecurityGroupInfo objects.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsRequest;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsResult;

Code

final String USAGE =
 "To run this example, supply a group id\n" +
 "Ex: DescribeSecurityGroups <group-id>\n";

if (args.length != 1) {
 System.out.println(USAGE);
 System.exit(1);
}

String group_id = args[0];

See the complete example.

Deleting a Security Group
To delete a security group, call the AmazonEC2Client's deleteSecurityGroup method, passing it a
DeleteSecurityGroupRequest that contains the ID of the security group to delete.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteSecurityGroupRequest request = new DeleteSecurityGroupRequest()
 .withGroupId(group_id);

DeleteSecurityGroupResult response = ec2.deleteSecurityGroup(request);

See the complete example.

More Information
• Amazon EC2 Security Groups in the Amazon EC2 User Guide for Linux Instances
• Authorizing Inbound Traffic for Your Linux Instances in the Amazon EC2 User Guide for Linux Instances
• CreateSecurityGroup in the Amazon EC2 API Reference
• DescribeSecurityGroups in the Amazon EC2 API Reference
• DeleteSecurityGroup in the Amazon EC2 API Reference

90

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/SecurityGroupInfo.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeSecurityGroups.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/AmazonEC2Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/ec2/model/DeleteSecurityGroupRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteSecurityGroup.java
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateSecurityGroup.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteSecurityGroup.html

AWS SDK for Java Developer Guide
AWS Identity and Access Management (IAM) Examples

• AuthorizeSecurityGroupIngress in the Amazon EC2 API Reference

IAM Examples Using the AWS SDK for Java
This section provides examples of programming IAM using the AWS SDK for Java.

AWS Identity and Access Management (IAM) enables you to securely control access to AWS services
and resources for your users. Using IAM, you can create and manage AWS users and groups, and use
permissions to allow and deny their access to AWS resources. For a complete guide to IAM, visit the IAM
User Guide.

Note
The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or clone
the repository locally to get all the examples to build and run.

Topics

• Managing IAM Access Keys (p. 91)

• Managing IAM Users (p. 94)

• Using IAM Account Aliases (p. 96)

• Working with IAM Policies (p. 98)

• Working with IAM Server Certificates (p. 101)

Managing IAM Access Keys

Creating an Access Key
To create an IAM access key, call the AmazonIdentityManagementClientcreateAccessKey method with
an CreateAccessKeyRequest object.

CreateAccessKeyRequest has two constructors — one that takes a user name and another with
no parameters. If you use the version that takes no parameters, you must set the user name using the
withUserName setter method before passing it to the createAccessKey method.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccessKeyRequest request = new CreateAccessKeyRequest()
 .withUserName(user);

CreateAccessKeyResult response = iam.createAccessKey(request);

See the complete example on GitHub.

91

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AuthorizeSecurityGroupIngress.html
https://aws.amazon.com/iam/
https://aws.amazon.com/sdk-for-java/
http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/CreateAccessKeyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccessKey.java

AWS SDK for Java Developer Guide
Managing IAM Access Keys

Listing Access Keys
To list the access keys for a given user, create a ListAccessKeysRequest object that contains the user name
to list keys for, and pass it to the AmazonIdentityManagementClient's listAccessKeys method.

Note
If you do not supply a user name to listAccessKeys, it will attempt to list access keys
associated with the AWS account that signed the request.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AccessKeyMetadata;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysRequest;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;

while (!done) {
 ListAccessKeysRequest request = new ListAccessKeysRequest()
 .withUserName(username);

 ListAccessKeysResult response = iam.listAccessKeys(request);

 for (AccessKeyMetadata metadata :
 response.getAccessKeyMetadata()) {
 System.out.format("Retrieved access key %s",
 metadata.getAccessKeyId());
 }

 request.setMarker(response.getMarker());

 if (!response.getIsTruncated()) {
 done = true;
 }
}

The results of listAccessKeys are paged (with a default maximum of 100 records per call). You can
call getIsTruncated on the returned ListAccessKeysResult object to see if the query returned fewer
results then are available. If so, then call setMarker on the ListAccessKeysRequest and pass it back
to the next invocation of listAccessKeys.

See the complete example on GitHub.

Retrieving an Access Key's Last Used Time
To get the time an access key was last used, call the AmazonIdentityManagementClient's
getAccessKeyLastUsed method with the access key's ID (which can be passed in using a
GetAccessKeyLastUsedRequest object, or directly to the overload that takes the access key ID directly.

You can then use the returned GetAccessKeyLastUsedResult object to retrieve the key's last used time.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;

92

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/ListAccessKeysRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/ListAccessKeysResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccessKeys.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedResult.html

AWS SDK for Java Developer Guide
Managing IAM Access Keys

import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedRequest;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetAccessKeyLastUsedRequest request = new GetAccessKeyLastUsedRequest()
 .withAccessKeyId(access_id);

GetAccessKeyLastUsedResult response = iam.getAccessKeyLastUsed(request);

System.out.println("Access key was last used at: " +
 response.getAccessKeyLastUsed().getLastUsedDate());

See the complete example on GitHub.

Activating or Deactivating Access Keys
You can activate or deactivate an access key by creating an UpdateAccessKeyRequest object, providing
the access key ID, optionally the user name, and the desired Status, then passing the request object to
the AmazonIdentityManagementClient's updateAccessKey method.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateAccessKeyRequest request = new UpdateAccessKeyRequest()
 .withAccessKeyId(access_id)
 .withUserName(username)
 .withStatus(status);

UpdateAccessKeyResult response = iam.updateAccessKey(request);

See the complete example on GitHub.

Deleting an Access Key
To permanently delete an access key, call the AmazonIdentityManagementClient's deleteKey method,
providing it with a DeleteAccessKeyRequest containing the access key's ID and username.

Note
Once deleted, a key can no longer be retrieved or used. To temporarily deactivate a key so that it
can be activated again later, use updateAccessKey (p. 93) method instead.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;

93

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AccessKeyLastUsed.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/UpdateAccessKeyRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/StatusType.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateAccessKey.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/DeleteAccessKeyRequest.html

AWS SDK for Java Developer Guide
Managing IAM Users

import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccessKeyRequest request = new DeleteAccessKeyRequest()
 .withAccessKeyId(access_key)
 .withUserName(username);

DeleteAccessKeyResult response = iam.deleteAccessKey(request);

See the complete example on GitHub.

More Information
• CreateAccessKey in the IAM API Reference
• ListAccessKeys in the IAM API Reference
• GetAccessKeyLastUsed in the IAM API Reference
• UpdateAccessKey in the IAM API Reference
• DeleteAccessKey in the IAM API Reference

Managing IAM Users
Creating a User
Create a new IAM user by providing the user name to the AmazonIdentityManagementClient's
createUser method, either directly or using a CreateUserRequest object containing the user name.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateUserRequest;
import com.amazonaws.services.identitymanagement.model.CreateUserResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateUserRequest request = new CreateUserRequest()
 .withUserName(username);

CreateUserResult response = iam.createUser(request);

See the complete example on GitHub.

Listing Users
To list the IAM users for your account, create a new ListUsersRequest and pass it to the
AmazonIdentityManagementClient's listUsers method. You can retrieve the list of users by calling
getUsers on the returned ListUsersResponse object.

94

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccessKey.java
http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/CreateUserRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateUser.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/ListUsersRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/ListUsersResponse.html

AWS SDK for Java Developer Guide
Managing IAM Users

The list of users returned by listUsers is paged. You can check to see there are more results to retrieve
by calling the response object's getIsTruncated method. If it returns true, then call the request
object's setMarker() method, passing it the return value of the response object's getMarker()
method.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListUsersRequest;
import com.amazonaws.services.identitymanagement.model.ListUsersResult;
import com.amazonaws.services.identitymanagement.model.User;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;

while(!done) {
 ListUsersRequest request = new ListUsersRequest();
 ListUsersResult response = iam.listUsers(request);

 for(User user : response.getUsers()) {
 System.out.format("Retrieved user %s", user.getUserName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

See the complete example on GitHub.

Updating a User
To update a user, call the AmazonIdentityManagementClient object's updateUser method, which takes
a UpdateUserRequest object that you can use to change the user's name or path.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateUserRequest;
import com.amazonaws.services.identitymanagement.model.UpdateUserResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateUserRequest request = new UpdateUserRequest()
 .withUserName(cur_name)
 .withNewUserName(new_name);

UpdateUserResult response = iam.updateUser(request);

95

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListUsers.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html

AWS SDK for Java Developer Guide
Using IAM Account Aliases

See the complete example on GitHub.

Deleting a User
To delete a user, call the AmazonIdentityManagementClient's deleteUser request with a
UpdateUserRequest object set with the user name to delete.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteConflictException;
import com.amazonaws.services.identitymanagement.model.DeleteUserRequest;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteUserRequest request = new DeleteUserRequest()
 .withUserName(username);

try {
 iam.deleteUser(request);
} catch (DeleteConflictException e) {
 System.out.println("Unable to delete user. Verify user is not" +
 " associated with any resources");
 throw e;
}

See the complete example on GitHub.

More Information
• IAM Users in the IAM User Guide
• Managing IAM Users in the IAM User Guide
• CreateUser in the IAM API Reference
• ListUsers in the IAM API Reference
• UpdateUser in the IAM API Reference
• DeleteUser in the IAM API Reference

Using IAM Account Aliases
If you want the URL for your sign-in page to contain your company name or other friendly identifier
instead of your AWS account ID, you can create an alias for your AWS account.

Note
AWS supports exactly one account alias per account.

Creating an Account Alias
To create an account alias, call the AmazonIdentityManagementClient's createAccountAlias method
with a CreateAccountAliasRequest object that contains the alias name.

Imports

96

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateUser.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteUser.java
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUser.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/CreateAccountAliasRequest.html

AWS SDK for Java Developer Guide
Using IAM Account Aliases

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccountAliasRequest request = new CreateAccountAliasRequest()
 .withAccountAlias(alias);

CreateAccountAliasResult response = iam.createAccountAlias(request);

See the complete example on GitHub.

Listing Account Aliases
To list your account's alias, if any, call the AmazonIdentityManagementClient's listAccountAliases
method.

Note
The returned ListAccountAliasesResponse supports the same getIsTruncated and getMarker
methods as other AWS SDK for Javalist methods, but an AWS account can have only one account
alias.

imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAccountAliasesResult;

code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAccountAliasesResult response = iam.listAccountAliases();

for (String alias : response.getAccountAliases()) {
 System.out.printf("Retrieved account alias %s", alias);
}

see the complete example on GitHub.

Deleting an account alias
To delete your account's alias, call the AmazonIdentityManagementClient's deleteAccountAlias
method. When deleting an account alias, you must supply its name using a DeleteAccountAliasRequest
object.

imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasRequest;

97

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccountAlias.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/ListAccountAliasesResponse.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccountAliases.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/DeleteAccountAliasRequest.html

AWS SDK for Java Developer Guide
Working with IAM Policies

import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccountAliasRequest request = new DeleteAccountAliasRequest()
 .withAccountAlias(alias);

DeleteAccountAliasResult response = iam.deleteAccountAlias(request);

See the complete example on GitHub.

More Information
• Your AWS Account ID and Its Alias in the IAM User Guide

• CreateAccountAlias in the IAM API Reference

• ListAccountAliases in the IAM API Reference

• DeleteAccountAlias in the IAM API Reference

Working with IAM Policies

Creating a Policy
To create a new policy, provide the policy's name and a JSON-formatted policy document in a
CreatePolicyRequest to the AmazonIdentityManagementClient's createPolicy method.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreatePolicyRequest;
import com.amazonaws.services.identitymanagement.model.CreatePolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreatePolicyRequest request = new CreatePolicyRequest()
 .withPolicyName(policy_name)
 .withPolicyDocument(POLICY_DOCUMENT);

CreatePolicyResult response = iam.createPolicy(request);

IAM policy documents are JSON strings with a well-documented syntax. Here is an example that provides
access to make particular requests to DynamoDB.

public static final String POLICY_DOCUMENT =
 "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [" +
 " {" +

98

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccountAlias.java
http://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccountAlias.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccountAliases.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccountAlias.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/CreatePolicyRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html

AWS SDK for Java Developer Guide
Working with IAM Policies

 " \"Effect\": \"Allow\"," +
 " \"Action\": \"logs:CreateLogGroup\"," +
 " \"Resource\": \"%s\"" +
 " }," +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"dynamodb:DeleteItem\"," +
 " \"dynamodb:GetItem\"," +
 " \"dynamodb:PutItem\"," +
 " \"dynamodb:Scan\"," +
 " \"dynamodb:UpdateItem\"" +
 "]," +
 " \"Resource\": \"RESOURCE_ARN\"" +
 " }" +
 "]" +
 "}";

See the complete example on GitHub.

Getting a Policy
To retrieve an existing policy, call the AmazonIdentityManagementClient's getPolicy method,
providing the policy's ARN within a GetPolicyRequest object.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetPolicyRequest;
import com.amazonaws.services.identitymanagement.model.GetPolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetPolicyRequest request = new GetPolicyRequest()
 .withPolicyArn(policy_arn);

GetPolicyResult response = iam.getPolicy(request);

See the complete example on GitHub.

Attaching a Role Policy
You can attach a policy to an IAMrole by calling the AmazonIdentityManagementClient's
attachRolePolicy method, providing it with the role name and policy ARN in an
AttachRolePolicyRequest.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AttachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.AttachedPolicy;

Code

99

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreatePolicy.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/GetPolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetPolicy.java
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/AttachRolePolicyRequest.html

AWS SDK for Java Developer Guide
Working with IAM Policies

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

AttachRolePolicyRequest attach_request =
 new AttachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(POLICY_ARN);

iam.attachRolePolicy(attach_request);

See the complete example on GitHub.

Listing Attached Role Policies
List attached policies on a role by calling the AmazonIdentityManagementClient's
listAttachedRolePolicies method. It takes a ListAttachedRolePoliciesRequest object that contains
the role name to list the policies for.

Call getAttachedPolicies on the returned ListAttachedRolePoliciesResult object to get the list of
attached policies. Results may be truncated; if the ListAttachedRolePoliciesResult object's
getIsTruncated method returns true, call the ListAttachedRolePoliciesRequest object's
setMarker method and use it to call listAttachedRolePolicies again to get the next batch of
results.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesRequest;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesResult;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAttachedRolePoliciesRequest request =
 new ListAttachedRolePoliciesRequest()
 .withRoleName(role_name);

List<AttachedPolicy> matching_policies = new ArrayList<>();

boolean done = false;

while(!done) {
 ListAttachedRolePoliciesResult response =
 iam.listAttachedRolePolicies(request);

 matching_policies.addAll(
 response.getAttachedPolicies()
 .stream()
 .filter(p -> p.getPolicyName().equals(role_name))
 .collect(Collectors.toList()));

 if(!response.getIsTruncated()) {
 done = true;
 }
 request.setMarker(response.getMarker());

100

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesResult.html

AWS SDK for Java Developer Guide
Working with IAM Server Certificates

}

See the complete example on GitHub.

Detaching a Role Policy
To detach a policy from a role, call the AmazonIdentityManagementClient's detachRolePolicy
method, providing it with the role name and policy ARN in a DetachRolePolicyRequest.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DetachRolePolicyRequest request = new DetachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(policy_arn);

DetachRolePolicyResult response = iam.detachRolePolicy(request);

See the complete example on GitHub.

More Information
• Overview of IAM Policies in the IAM User Guide.
• AWS IAM Policy Reference in the IAM User Guide.
• CreatePolicy in the IAM API Reference
• GetPolicy in the IAM API Reference
• AttachRolePolicy in the IAM API Reference
• ListAttachedRolePolicies in the IAM API Reference
• DetachRolePolicy in the IAM API Reference

Working with IAM Server Certificates
To enable HTTPS connections to your website or application on AWS, you need an SSL/TLS server
certificate. You can use a server certificate provided by AWS Certificate Manager or one that you obtained
from an external provider.

We recommend that you use ACM to provision, manage, and deploy your server certificates. With ACM
you can request a certificate, deploy it to your AWS resources, and let ACM handle certificate renewals
for you. Certificates provided by ACM are free. For more information about ACM , see the ACM User
Guide.

Getting a Server Certificate
You can retrieve a server certificate by calling the AmazonIdentityManagementClient's
getServerCertificate method, passing it a GetServerCertificateRequest with the certificate's name.

101

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/DetachRolePolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DetachRolePolicy.java
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html
http://docs.aws.amazon.com/acm/latest/userguide/
http://docs.aws.amazon.com/acm/latest/userguide/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/GetServerCertificateRequest.html

AWS SDK for Java Developer Guide
Working with IAM Server Certificates

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetServerCertificateRequest request = new GetServerCertificateRequest()
 .withServerCertificateName(cert_name);

GetServerCertificateResult response = iam.getServerCertificate(request);

See the complete example on GitHub.

Listing Server Certificates
To list your server certificates, call the AmazonIdentityManagementClient's listServerCertificates
method with a ListServerCertificatesRequest. It returns a ListServerCertificatesResult.

Call the returned ListServerCertificateResult object's getServerCertificateMetadataList
method to get a list of ServerCertificateMetadata objects that you can use to get information about each
certificate.

Results may be truncated; if the ListServerCertificateResult object's getIsTruncated method
returns true, call the ListServerCertificatesRequest object's setMarker method and use it to
call listServerCertificates again to get the next batch of results.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesRequest;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesResult;
import com.amazonaws.services.identitymanagement.model.ServerCertificateMetadata;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;

while(!done) {
 ListServerCertificatesRequest request =
 new ListServerCertificatesRequest();

 ListServerCertificatesResult response =
 iam.listServerCertificates(request);

 for(ServerCertificateMetadata metadata :
 response.getServerCertificateMetadataList()) {
 System.out.printf("Retrieved server certificate %s",
 metadata.getServerCertificateName());
 }

102

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetServerCertificate.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/ListServerCertificatesRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/ListServerCertificatesResult.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/ServerCertificateMetadata.html

AWS SDK for Java Developer Guide
Working with IAM Server Certificates

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

See the complete example on GitHub.

Updating a Server Certificate
You can update a server certificate's name or path by calling the AmazonIdentityManagementClient's
updateServerCertificate method. It takes a UpdateServerCertificateRequest object set with the
server certificate's current name and either a new name or new path to use.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateServerCertificateRequest request =
 new UpdateServerCertificateRequest()
 .withServerCertificateName(cur_name)
 .withNewServerCertificateName(new_name);

UpdateServerCertificateResult response =
 iam.updateServerCertificate(request);

See the complete example on GitHub.

Deleting a Server Certificate
To delete a server certificate, call the AmazonIdentityManagementClient's deleteServerCertificate
method with a DeleteServerCertificateRequest containing the certificate's name.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteServerCertificateRequest request =
 new DeleteServerCertificateRequest()
 .withServerCertificateName(cert_name);

103

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListServerCertificates.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/UpdateServerCertificateRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateServerCertificate.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/AmazonIdentityManagementClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/identitymanagement/model/DeleteServerCertificateRequest.html

AWS SDK for Java Developer Guide
Amazon S3 Examples

DeleteServerCertificateResult response =
 iam.deleteServerCertificate(request);

See the complete example on GitHub.

More Information
• Working with Server Certificates in the IAM User Guide
• GetServerCertificate in the IAM API Reference
• ListServerCertificates in the IAM API Reference
• UpdateServerCertificate in the IAM API Reference
• DeleteServerCertificate in the IAM API Reference
• ACM User Guide

Amazon S3 Examples Using the AWS SDK for Java
This section provides examples of programming Amazon S3 using the AWS SDK for Java.

Note
The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or clone
the repository locally to get all the examples to build and run.

Topics
• Creating, Listing, and Deleting Amazon S3 Buckets (p. 104)
• Performing Operations on Amazon S3 Objects (p. 108)
• Managing Amazon S3 Access Permissions for Buckets and Objects (p. 112)
• Managing Access to Amazon S3 Buckets Using Bucket Policies (p. 114)
• Using TransferManager for Amazon S3 Operations (p. 117)
• Configuring an Amazon S3 Bucket as a Website (p. 124)
• Using Amazon S3 Client-Side Encryption (p. 126)

Creating, Listing, and Deleting Amazon S3 Buckets
Every object (file) in Amazon S3 must reside within a bucket, which represents a collection (container)
of objects. Each bucket is known by a key (name), which must be unique. For detailed information about
buckets and their configuration, see Working with Amazon S3 Buckets in the Amazon S3 Developer Guide.
<admonition>
<title>Best Practice</title>

We recommend that you enable the AbortIncompleteMultipartUpload lifecycle rule on your Amazon S3
buckets.

This rule directs Amazon S3 to abort multipart uploads that don't complete within a specified number of
days after being initiated. When the set time limit is exceeded, Amazon S3 aborts the upload and then
deletes the incomplete upload data.

For more information, see Lifecycle Configuration for a Bucket with Versioning in the Amazon S3 User
Guide.
</admonition>

104

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteServerCertificate.java
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServerCertificate.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListServerCertificates.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateServerCertificate.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServerCertificate.html
http://docs.aws.amazon.com/acm/latest/userguide/
https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/lifecycle-configuration-bucket-with-versioning.html

AWS SDK for Java Developer Guide
Creating, Listing, and Deleting Amazon S3 Buckets

Note
These code examples assume that you understand the material in Using the AWS SDK for
Java (p. 11) and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development (p. 6).

Create a Bucket
Use the AmazonS3 client's createBucket method. The new Bucket is returned. The createBucket
method will raise an exception if the bucket already exists.

Note
To check whether a bucket already exists before attempting to create one with the same
name, call the doesBucketExist method. It will return true if the bucket exists, and false
otherwise.

Imports

import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.Bucket;
import java.util.List;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
Bucket b = null;
if (s3.doesBucketExist(bucket_name)) {
 System.out.format("Bucket %s already exists.\n", bucket_name);
 b = getBucket(bucket_name);
} else {
 try {
 b = s3.createBucket(bucket_name);
 } catch (AmazonS3Exception e) {
 System.err.println(e.getErrorMessage());
 }
}
return b;

See the complete example on GitHub.

List Buckets
Use the AmazonS3 client's listBucket method. If successful, a list of Bucket is returned.

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.Bucket;
import java.util.List;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
List<Bucket> buckets = s3.listBuckets();
System.out.println("Your Amazon S3 buckets are:");
for (Bucket b : buckets) {

105

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/Bucket.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CreateBucket.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/Bucket.html

AWS SDK for Java Developer Guide
Creating, Listing, and Deleting Amazon S3 Buckets

 System.out.println("* " + b.getName());
}

See the complete example on GitHub.

Delete a Bucket
Before you can delete an Amazon S3 bucket, you must ensure that the bucket is empty or an error will
result. If you have a versioned bucket, you must also delete any versioned objects associated with the
bucket.

Note
The complete example includes each of these steps in order, providing a complete solution for
deleting an Amazon S3 bucket and its contents.

Topics
• Remove Objects from an Unversioned Bucket Before Deleting It (p. 106)
• Remove Objects from a Versioned Bucket Before Deleting It (p. 107)
• Delete an Empty Bucket (p. 108)

Remove Objects from an Unversioned Bucket Before Deleting It

Use the AmazonS3 client's listObjects method to retrieve the list of objects and deleteObject to
delete each one.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.S3ObjectSummary;
import java.util.Iterator;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 System.out.println(" - removing objects from bucket");
 ObjectListing object_listing = s3.listObjects(bucket_name);
 while (true) {
 for (Iterator<?> iterator =
 object_listing.getObjectSummaries().iterator();
 iterator.hasNext();) {
 S3ObjectSummary summary = (S3ObjectSummary)iterator.next();
 s3.deleteObject(bucket_name, summary.getKey());
 }

 // more object_listing to retrieve?
 if (object_listing.isTruncated()) {
 object_listing = s3.listNextBatchOfObjects(object_listing);
 } else {
 break;
 }
 };
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

106

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListBuckets.java
http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html

AWS SDK for Java Developer Guide
Creating, Listing, and Deleting Amazon S3 Buckets

}

See the complete example on GitHub.

Remove Objects from a Versioned Bucket Before Deleting It

If you're using a versioned bucket, you also need to remove any stored versions of the objects in the
bucket before the bucket can be deleted.

Using a pattern similar to the one used when removing objects within a bucket, remove versioned
objects by using the AmazonS3 client's listVersions method to list any versioned objects, and then
deleteVersion to delete each one.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListVersionsRequest;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.S3ObjectSummary;
import com.amazonaws.services.s3.model.S3VersionSummary;
import com.amazonaws.services.s3.model.VersionListing;
import java.util.Iterator;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 System.out.println(" - removing objects from bucket");
 ObjectListing object_listing = s3.listObjects(bucket_name);
 while (true) {
 for (Iterator<?> iterator =
 object_listing.getObjectSummaries().iterator();
 iterator.hasNext();) {
 S3ObjectSummary summary = (S3ObjectSummary)iterator.next();
 s3.deleteObject(bucket_name, summary.getKey());
 }

 // more object_listing to retrieve?
 if (object_listing.isTruncated()) {
 object_listing = s3.listNextBatchOfObjects(object_listing);
 } else {
 break;
 }
 };

 System.out.println(" - removing versions from bucket");
 VersionListing version_listing = s3.listVersions(
 new ListVersionsRequest().withBucketName(bucket_name));
 while (true) {
 for (Iterator<?> iterator =
 version_listing.getVersionSummaries().iterator();
 iterator.hasNext();) {
 S3VersionSummary vs = (S3VersionSummary)iterator.next();
 s3.deleteVersion(
 bucket_name, vs.getKey(), vs.getVersionId());
 }

 if (version_listing.isTruncated()) {
 version_listing = s3.listNextBatchOfVersions(
 version_listing);

107

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html

AWS SDK for Java Developer Guide
Performing Operations on Amazon S3 Objects

 } else {
 break;
 }
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Delete an Empty Bucket

Once you remove the objects from a bucket (including any versioned objects), you can delete the bucket
itself by using the AmazonS3 client's deleteBucket method.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 s3.deleteBucket(bucket_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Performing Operations on Amazon S3 Objects
An Amazon S3 object represents a file or collection of data. Every object must reside within a
bucket (p. 104).

Note
These code examples assume that you understand the material in Using the AWS SDK for
Java (p. 11) and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development (p. 6).

Topics
• Upload an Object (p. 108)
• List Objects (p. 109)
• Download an Object (p. 109)
• Copy, Move, or Rename Objects (p. 110)
• Delete an Object (p. 111)
• Delete Multiple Objects at Once (p. 111)

Upload an Object
Use the AmazonS3 client's putObject method, supplying a bucket name, key name, and file to upload.
The bucket must exist, or an error will result.

108

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html

AWS SDK for Java Developer Guide
Performing Operations on Amazon S3 Objects

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.AmazonServiceException;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 s3.putObject(bucket_name, key_name, file_path);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

List Objects
To get a list of objects within a bucket, use the AmazonS3 client's listObjects method, supplying the
name of a bucket.

The listObjects method returns an ObjectListing object that provides information about the objects
in the bucket. To list the object names (keys), use the getObjectSummaries method to get a List of
S3ObjectSummary objects, each of which represents a single object in the bucket. Then call its getKey
method to retrieve the object's name.

Imports

import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.S3ObjectSummary;
import java.util.List;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
ObjectListing ol = s3.listObjects(bucket_name);
List<S3ObjectSummary> objects = ol.getObjectSummaries();
for (S3ObjectSummary os: objects) {
 System.out.println("* " + os.getKey());
}

See the complete example on GitHub.

Download an Object
Use the AmazonS3 client's getObject method, passing it the name of a bucket and object to download.
If successful, the method returns an S3Object. The specified bucket and object key must exist, or an error
will result.

You can get the object's contents by calling getObjectContent on the S3Object. This returns an
S3ObjectInputStream that behaves as a standard Java InputStream object.

109

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/PutObject.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/ObjectListing.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/S3ObjectSummary.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListObjects.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/S3Object.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/S3ObjectInputStream.html

AWS SDK for Java Developer Guide
Performing Operations on Amazon S3 Objects

The following example downloads an object from S3 and saves its contents to a file (using the same
name as the object's key).

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectInputStream;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 S3Object o = s3.getObject(bucket_name, key_name);
 S3ObjectInputStream s3is = o.getObjectContent();
 FileOutputStream fos = new FileOutputStream(new File(key_name));
 byte[] read_buf = new byte[1024];
 int read_len = 0;
 while ((read_len = s3is.read(read_buf)) > 0) {
 fos.write(read_buf, 0, read_len);
 }
 s3is.close();
 fos.close();
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
} catch (FileNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (IOException e) {
 System.err.println(e.getMessage());
 System.exit(1);
}

See the complete example on GitHub.

Copy, Move, or Rename Objects
You can copy an object from one bucket to another by using the AmazonS3 client's copyObject
method. It takes the name of the bucket to copy from, the object to copy, and the destination bucket and
name.

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.AmazonServiceException;

Code

final AmazonS3 s3 = new AmazonS3Client();
try {
 s3.copyObject(from_bucket, object_key, to_bucket, object_key);

110

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetObject.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html

AWS SDK for Java Developer Guide
Performing Operations on Amazon S3 Objects

} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Note
You can use copyObject with deleteObject (p. 111) to move or rename an object, by
first copying the object to a new name (you can use the same bucket as both the source and
destination) and then deleting the object from its old location.

Delete an Object
Use the AmazonS3 client's deleteObject method, passing it the name of a bucket and object to delete.
The specified bucket and object key must exist, or an error will result.

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.AmazonServiceException;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 s3.deleteObject(bucket_name, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Delete Multiple Objects at Once
Using the AmazonS3 client's deleteObjects method, you can delete multiple objects from the same
bucket by passing their names to the DeleteObjectRequest withKeys method.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.DeleteObjectsRequest;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 DeleteObjectsRequest dor = new DeleteObjectsRequest(bucket_name)
 .withKeys(object_keys);
 s3.deleteObjects(dor);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

111

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CopyObject.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObject.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/DeleteObjectsRequest.html

AWS SDK for Java Developer Guide
Managing Amazon S3 Access

Permissions for Buckets and Objects

}

See the complete example on GitHub.

Managing Amazon S3 Access Permissions for Buckets
and Objects
You can use access control lists (ACLs) for Amazon S3 buckets and objects for fine-grained control over
your Amazon S3 resources.

Note
These code examples assume that you understand the material in Using the AWS SDK for
Java (p. 11) and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development (p. 6).

Get the Access Control List for a Bucket
To get the current ACL for a bucket, call the AmazonS3's getBucketAcl method, passing it the bucket
name to query. This method returns an AccessControlList object. To get each access grant in the list, call
its getGrantsAsList method, which will return a standard Java list of Grant objects.

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;
import java.util.List;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Set the Access Control List for a Bucket
To add or modify permissions to an ACL for a bucket, call the AmazonS3's setBucketAcl method. It
takes an AccessControlList object that contains a list of grantees and access levels to set.

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

112

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObjects.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/AccessControlList.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/Grant.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/AccessControlList.html

AWS SDK for Java Developer Guide
Managing Amazon S3 Access

Permissions for Buckets and Objects

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;
import com.amazonaws.services.s3.model.Permission;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 // get the current ACL
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setBucketAcl(bucket_name, acl);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note
You can provide the grantee's unique identifier directly using the Grantee class, or use the
EmailAddressGrantee class to set the grantee by email, as we've done here.

See the complete example on GitHub.

Get the Access Control List for an Object
To get the current ACL for an object, call the AmazonS3's getObjectAcl method, passing it the bucket
name and object name to query. Like getBucketAcl, this method returns an AccessControlList object
that you can use to examine each Grant.

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;
import java.util.List;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

113

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/Grantee.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/AccessControlList.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/Grant.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java

AWS SDK for Java Developer Guide
Managing Access to Amazon S3
Buckets Using Bucket Policies

Set the Access Control List for an Object
To add or modify permissions to an ACL for an object, call the AmazonS3's setObjectAcl method. It
takes an AccessControlList object that contains a list of grantees and access levels to set.

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;
import com.amazonaws.services.s3.model.Permission;

Code

 final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
 try {
 // get the current ACL
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setObjectAcl(bucket_name, object_key, acl);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }
}

Note
You can provide the grantee's unique identifier directly using the Grantee class, or use the
EmailAddressGrantee class to set the grantee by email, as we've done here.

See the complete example on GitHub.

More Information
• GET Bucket acl in the Amazon S3 API Reference
• PUT Bucket acl in the Amazon S3 API Reference
• GET Object acl in the Amazon S3 API Reference
• PUT Object acl in the Amazon S3 API Reference

Managing Access to Amazon S3 Buckets Using Bucket
Policies
You can set, get, or delete a bucket policy to manage access to your Amazon S3 buckets.

Set a Bucket Policy
You can set the bucket policy for a particular S3 bucket by:

• Calling the AmazonS3 client's setBucketPolicy and providing it with a SetBucketPolicyRequest

114

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/AccessControlList.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/Grantee.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/SetBucketPolicyRequest.html

AWS SDK for Java Developer Guide
Managing Access to Amazon S3
Buckets Using Bucket Policies

• Setting the policy directly by using the setBucketPolicy overload that takes a bucket name and
policy text (in JSON format)

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.AmazonServiceException;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 s3.setBucketPolicy(bucket_name, policy_text);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Use the Policy Class to Generate or Validate a Policy

When providing a bucket policy to setBucketPolicy, you can do the following:

• Specify the policy directly as a string of JSON-formatted text
• Build the policy using the Policy class

By using the Policy class, you don't have to be concerned about correctly formatting your text string.
To get the JSON policy text from the Policy class, use its toJson method.

Imports

import com.amazonaws.auth.policy.Policy;
import com.amazonaws.auth.policy.Principal;
import com.amazonaws.auth.policy.Resource;
import com.amazonaws.auth.policy.Statement;
import com.amazonaws.auth.policy.actions.S3Actions;
import java.io.IOException;

Code

Policy bucket_policy = new Policy().withStatements(
 new Statement(Statement.Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new Resource(
 "arn:aws:s3:::" + bucket_name + "/*")));
return bucket_policy.toJson();

The Policy class also provides a fromJson method that can attempt to build a policy using a passed-
in JSON string. The method validates it to ensure that the text can be transformed into a valid policy
structure, and will fail with an IllegalArgumentException if the policy text is invalid.

Policy bucket_policy = null;
try {

115

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/auth/policy/Policy.html

AWS SDK for Java Developer Guide
Managing Access to Amazon S3
Buckets Using Bucket Policies

 bucket_policy = Policy.fromJson(file_text.toString());
} catch (IllegalArgumentException e) {
 System.out.format("Invalid policy text in file: \"%s\"",
 policy_file);
 System.out.println(e.getMessage());
}

You can use this technique to prevalidate a policy that you read in from a file or other means.

See the complete example on GitHub.

Get a Bucket Policy
To retrieve the policy for an Amazon S3 bucket, call the AmazonS3 client's getBucketPolicy method,
passing it the name of the bucket to get the policy from.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketPolicy;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 BucketPolicy bucket_policy = s3.getBucketPolicy(bucket_name);
 policy_text = bucket_policy.getPolicyText();
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

If the named bucket doesn't exist, if you don't have access to it, or if it has no bucket policy, an
AmazonServiceException is thrown.

See the complete example on GitHub.

Delete a Bucket Policy
To delete a bucket policy, call the AmazonS3 client's deleteBucketPolicy, providing it with the bucket
name.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 s3.deleteBucketPolicy(bucket_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

116

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetBucketPolicy.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetBucketPolicy.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html

AWS SDK for Java Developer Guide
Using TransferManager for Amazon S3 Operations

}

This method succeeds even if the bucket doesn't already have a policy. If you specify a bucket name that
doesn't exist or if you don't have access to the bucket, an AmazonServiceException is thrown.

See the complete example on GitHub.

More Info
• Access Policy Language Overview in the Amazon S3 Developer Guide
• Bucket Policy Examples in the Amazon S3 Developer Guide

Using TransferManager for Amazon S3 Operations
You can use the AWS SDK for JavaTransferManager class to reliably transfer files from the local
environment to Amazon S3 and to copy objects from one S3 location to another. TransferManager can
get the progress of a transfer and pause or resume uploads and downloads.
<admonition>
<title>Best Practice</title>

We recommend that you enable the AbortIncompleteMultipartUpload lifecycle rule on your Amazon S3
buckets.

This rule directs Amazon S3 to abort multipart uploads that don't complete within a specified number of
days after being initiated. When the set time limit is exceeded, Amazon S3 aborts the upload and then
deletes the incomplete upload data.

For more information, see Lifecycle Configuration for a Bucket with Versioning in the Amazon S3 User
Guide.
</admonition>

Note
These code examples assume that you understand the material in Using the AWS SDK for
Java (p. 11) and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development (p. 6).

Upload Files and Directories
TransferManager can upload files, file lists, and directories to any Amazon S3 buckets that you've
previously created (p. 105).

Topics
• Upload a Single File (p. 117)
• Upload a List of Files (p. 118)
• Upload a Directory (p. 119)

Upload a Single File

Call the TransferManagerupload method, providing an Amazon S3 bucket name, a key (object) name,
and a standard Java File object that represents the file to upload.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.TransferManager;

117

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucketPolicy.java
http://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/lifecycle-configuration-bucket-with-versioning.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java Developer Guide
Using TransferManager for Amazon S3 Operations

import com.amazonaws.services.s3.transfer.Upload;
import java.io.File;

Code

File f = new File(file_path);
TransferManager xfer_mgr = new TransferManager();
try {
 Upload xfer = xfer_mgr.upload(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 // or block with Transfer.waitForCompletion()
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

The upload method returns immediately, providing an Upload object to use to check the transfer state
or to wait for it to complete.

See Wait for a Transfer to Complete (p. 121) for information about using waitForCompletion to
successfully complete a transfer before calling TransferManager's shutdownNow method. While waiting
for the transfer to complete, you can poll or listen for updates about its status and progress. See Get
Transfer Status and Progress (p. 122) for more information.

See the complete example on GitHub.

Upload a List of Files

To upload multiple files in one operation, call the TransferManageruploadFileList method, providing
the following:

• An Amazon S3 bucket name
• A key prefix to prepend to the names of the created objects (the path within the bucket in which to

place the objects)
• A File object that represents the relative directory from which to create file paths
• A List object containing a set of File objects to upload

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import java.io.File;
import java.util.ArrayList;

Code

ArrayList<File> files = new ArrayList<File>();
for (String path : file_paths) {
 files.add(new File(path));
}

TransferManager xfer_mgr = new TransferManager();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadFileList(bucket_name,
 key_prefix, new File("."), files);
 // loop with Transfer.isDone()

118

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/List.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java Developer Guide
Using TransferManager for Amazon S3 Operations

 // or block with Transfer.waitForCompletion()
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See Wait for a Transfer to Complete (p. 121) for information about using waitForCompletion to
successfully complete a transfer before calling TransferManager's shutdownNow method. While waiting
for the transfer to complete, you can poll or listen for updates about its status and progress. See Get
Transfer Status and Progress (p. 122) for more information.

The MultipleFileUpload object returned by uploadFileList can be used to query the transfer state
or progress. See Poll the Current Progress of a Transfer (p. 122) and Get Transfer Progress with a
ProgressListener (p. 123) for more information.

You can also use MultipleFileUpload's getSubTransfers method to get the individual
Upload objects for each file being transferred. For more information, see Get the Progress of
Subtransfers (p. 123).

See the complete example on GitHub.

Upload a Directory

You can use TransferManager's uploadDirectory method to upload an entire directory of files, with
the option to copy files in subdirectories recursively. You provide an Amazon S3 bucket name, an S3 key
prefix, a File object representing the local directory to copy, and a boolean value indicating whether you
want to copy subdirectories recursively (true or false).

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.Upload;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import java.io.File;

Code

TransferManager xfer_mgr = new TransferManager();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadDirectory(bucket_name,
 key_prefix, new File(dir_path), recursive);
 // loop with Transfer.isDone()
 // or block with Transfer.waitForCompletion()
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See Wait for a Transfer to Complete (p. 121) for information about using waitForCompletion to
successfully complete a transfer before calling TransferManager's shutdownNow method. While waiting
for the transfer to complete, you can poll or listen for updates about its status and progress. See Get
Transfer Status and Progress (p. 122) for more information.

The MultipleFileUpload object returned by uploadFileList can be used to query the transfer state
or progress. See Poll the Current Progress of a Transfer (p. 122) and Get Transfer Progress with a
ProgressListener (p. 123) for more information.

119

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/MultipleFileUpload.html

AWS SDK for Java Developer Guide
Using TransferManager for Amazon S3 Operations

You can also use MultipleFileUpload's getSubTransfers method to get the individual
Upload objects for each file being transferred. For more information, see Get the Progress of
Subtransfers (p. 123).

See the complete example on GitHub.

Download Files or Directories
Use the TransferManager class to download either a single file (Amazon S3 object) or a directory (an
Amazon S3 bucket name followed by an object prefix) from Amazon S3.

Topics
• Download a Single File (p. 120)

• Download a Directory (p. 120)

Download a Single File

Use the TransferManager's download method, providing the Amazon S3 bucket name containing the
object you want to download, the key (object) name, and a File object that represents the file to create
on your local system.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.Download;
import java.io.File;

Code

File f = new File(file_path);
TransferManager xfer_mgr = new TransferManager();
try {
 Download xfer = xfer_mgr.download(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 // or block with Transfer.waitForCompletion()
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See Wait for a Transfer to Complete (p. 121) for information about using waitForCompletion to
successfully complete a transfer before calling TransferManager's shutdownNow method. While waiting
for the transfer to complete, you can poll or listen for updates about its status and progress. See Get
Transfer Status and Progress (p. 122) for more information.

See the complete example on GitHub.

Download a Directory

To download a set of files that share a common key prefix (analagous to a directory on a file system)
from Amazon S3, use the TransferManagerdownloadDirectory method. The method takes the
Amazon S3 bucket name containing the objects you want to download, the object prefix shared by all
of the objects, and a File object that represents the directory to download the files into on your local
system. If the named directory doesn't exist yet, it will be created.

120

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java Developer Guide
Using TransferManager for Amazon S3 Operations

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import java.io.File;

Code

TransferManager xfer_mgr = new TransferManager();
try {
 MultipleFileDownload xfer = xfer_mgr.downloadDirectory(
 bucket_name, key_prefix, new File(dir_path));
 // loop with Transfer.isDone()
 // or block with Transfer.waitForCompletion()
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See Wait for a Transfer to Complete (p. 121) for information about using waitForCompletion to
successfully complete a transfer before calling TransferManager's shutdownNow method. While waiting
for the transfer to complete, you can poll or listen for updates about its status and progress. See Get
Transfer Status and Progress (p. 122) for more information.

See the complete example on GitHub.

Copy Objects
To copy an object from one S3 bucket to another, use the TransferManagercopy method.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Copy;
import com.amazonaws.services.s3.transfer.TransferManager;

Code

TransferManager xfer_mgr = new TransferManager();
try {
 Copy xfer = xfer_mgr.copy(from_bucket, from_key, to_bucket, to_key);
 // loop with Transfer.isDone()
 // or block with Transfer.waitForCompletion()
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See the complete example on GitHub.

Wait for a Transfer to Complete
If your application (or thread) can block until the transfer completes, you can use the Transfer interface's
waitForCompletion method to block until the transfer is complete or an exception occurs.

121

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrCopy.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/Transfer.html

AWS SDK for Java Developer Guide
Using TransferManager for Amazon S3 Operations

try {
 xfer.waitForCompletion();
} catch (AmazonServiceException e) {
 System.err.println("Amazon service error: " + e.getMessage());
 System.exit(1);
} catch (AmazonClientException e) {
 System.err.println("Amazon client error: " + e.getMessage());
 System.exit(1);
} catch (InterruptedException e) {
 System.err.println("Transfer interrupted: " + e.getMessage());
 System.exit(1);
}

You get progress of transfers if you poll for events before calling waitForCompletion, implement
a polling mechanism on a separate thread, or receive progress updates asynchronously using a
ProgressListener.

See the complete example on GitHub.

Get Transfer Status and Progress
Each of the classes returned by the TransferManagerupload*, download*, and copy methods returns
an instance of one of the following classes, depending on whether it's a single-file or multiple-file
operation.

Class Returned by

Copy copy

Download download

MultipleFileDownload downloadDirectory

Upload upload

MultipleFileUpload uploadFileList, uploadDirectory

All of these classes implement the Transfer interface. Transfer provides useful methods to get the
progress of a transfer, pause or resume the transfer, and get the transfer's current or final status.

Topics
• Poll the Current Progress of a Transfer (p. 122)
• Get Transfer Progress with a ProgressListener (p. 123)
• Get the Progress of Subtransfers (p. 123)

Poll the Current Progress of a Transfer

This loop prints the progress of a transfer, examines its current progress while running and, when
complete, prints its final state.

Imports

import com.amazonaws.services.s3.transfer.TransferProgress;

Code

122

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/event/ProgressListener.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/TransferManager.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/Copy.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/Download.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/MultipleFileDownload.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/Upload.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/MultipleFileUpload.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/Transfer.html

AWS SDK for Java Developer Guide
Using TransferManager for Amazon S3 Operations

do {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 return;
 }
 TransferProgress progress = xfer.getProgress();
 long so_far = progress.getBytesTransferred();
 long total = progress.getTotalBytesToTransfer();
 double pct = progress.getPercentTransferred();
} while (xfer.isDone() == false);

See the complete example on GitHub.

Get Transfer Progress with a ProgressListener

You can attach a ProgressListener to any transfer by using the Transfer interface's
addProgressListener method.

A ProgressListener requires only one method, progressChanged, which takes a ProgressEvent object.
You can use the object to get the total bytes of the operation by calling its getBytes method, and the
number of bytes transferred so far by calling getBytesTransferred.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.Upload;
import java.io.File;

Code

File f = new File(file_path);
TransferManager xfer_mgr = new TransferManager();
try {
 Upload u = xfer_mgr.upload(bucket_name, key_name, f);
 u.addProgressListener(new ProgressListener() {
 public void progressChanged(ProgressEvent e) {
 double pct = e.getBytesTransferred() * 100.0 / e.getBytes();
 }
 });
 // block with Transfer.waitForCompletion()
 TransferState xfer_state = u.getState();
 System.out.println(": " + xfer_state);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See the complete example on GitHub.

Get the Progress of Subtransfers

The MultipleFileUpload class can return information about its subtransfers by calling its
getSubTransfers method. It returns an unmodifiable Collection of Upload objects that provide the
individual transfer status and progress of each subtransfer.

Imports

123

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/event/ProgressListener.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/Transfer.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/event/ProgressListener.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/event/ProgressEvent.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Collection.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/transfer/Upload.html

AWS SDK for Java Developer Guide
Configuring an Amazon S3 Bucket as a Website

import com.amazonaws.services.s3.transfer.Upload;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import java.util.ArrayList;
import java.util.Collection;

Code

Collection<? extends Upload> sub_xfers = new ArrayList<Upload>();
sub_xfers = multi_upload.getSubTransfers();

See the complete example on GitHub.

More Info
• Object Keys in the Amazon S3 Developer Guide

Configuring an Amazon S3 Bucket as a Website
You can configure an Amazon S3 bucket to behave as a website. To do this, you need to set its website
configuration.

Note
These code examples assume that you understand the material in Using the AWS SDK for
Java (p. 11) and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development (p. 6).

Set a Bucket's Website Configuration
To set an Amazon S3 bucket's website configuration, call the AmazonS3's setWebsiteConfiguration
method with the bucket name to set the configuration for, and a BucketWebsiteConfiguration object
containing the bucket's website configuration.

Setting an index document is required; all other parameters are optional.

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;
import com.amazonaws.AmazonServiceException;

Code

BucketWebsiteConfiguration website_config = null;

if (index_doc == null) {
 website_config = new BucketWebsiteConfiguration();
} else if (error_doc == null) {
 website_config = new BucketWebsiteConfiguration(index_doc);
} else {
 website_config = new BucketWebsiteConfiguration(index_doc, error_doc);
}

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 s3.setBucketWebsiteConfiguration(bucket_name, website_config);
} catch (AmazonServiceException e) {

124

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK for Java Developer Guide
Configuring an Amazon S3 Bucket as a Website

 System.out.format(
 "Failed to set website configuration for bucket '%s'!\n",
 bucket_name);
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note
Setting a website configuration does not modify the access permissions for your bucket. To
make your files visible on the web, you will also need to set a bucket policy that allows public
read access to the files in the bucket. For more information, see Managing Access to Amazon S3
Buckets Using Bucket Policies (p. 114).

See the complete example on GitHub.

Get a Bucket's Website Configuration
To get an Amazon S3 bucket's website configuration, call the AmazonS3's getWebsiteConfiguration
method with the name of the bucket to retrieve the configuration for.

The configuration will be returned as a BucketWebsiteConfiguration object. If there is no website
configuration for the bucket, then null will be returned.

Imports

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;
import com.amazonaws.AmazonServiceException;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 BucketWebsiteConfiguration config =
 s3.getBucketWebsiteConfiguration(bucket_name);
 if (config == null) {
 System.out.println("No website configuration found!");
 } else {
 System.out.format("Index document: %s\n",
 config.getIndexDocumentSuffix());
 System.out.format("Error document: %s\n",
 config.getErrorDocument());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to get website configuration!");
 System.exit(1);
}

See the complete example on GitHub.

Delete a Bucket's Website Configuration
To delete an Amazon S3 bucket's website configuration, call the AmazonS3's
deleteWebsiteConfiguration method with the name of the bucket to delete the configuration
from.

Imports

125

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetWebsiteConfiguration.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetWebsiteConfiguration.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3Client.html

AWS SDK for Java Developer Guide
Using Amazon S3 Client-Side Encryption

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.AmazonServiceException;

Code

final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
try {
 s3.deleteBucketWebsiteConfiguration(bucket_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to delete website configuration!");
 System.exit(1);
}

See the complete example on GitHub.

More Information
• PUT Bucket website in the Amazon S3 API Reference
• GET Bucket website in the Amazon S3 API Reference
• DELETE Bucket website in the Amazon S3 API Reference

Using Amazon S3 Client-Side Encryption
Encrypting data using the Amazon S3 encryption client is one way you can provide an additional layer of
protection for sensitive information you store in Amazon S3. The examples in this section demonstrate
how to create and configure the Amazon S3 encryption client for your application. If you are new to
cryptography, see the Cryptography Basics in the AWS KMS Developer Guide for a basic overview of
cryptography terms and algorithms.

Note
These code examples assume that you understand the material in Using the AWS SDK for
Java (p. 11) and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development (p. 6).

Topics
• Amazon S3 Client-Side Encryption with Client Master Keys (p. 126)
• Amazon S3 Client-Side Encryption with AWS KMS Managed Keys (p. 129)

For information about cryptography support across all AWS SDKs, see AWS SDK Support for Amazon S3
Client-Side Encryption in the Amazon Web Services General Reference.

Amazon S3 Client-Side Encryption with Client Master Keys
The following examples use the AmazonS3EncryptionClientBuilder class to create an Amazon S3 client
with client-side encryption enabled. Once enabled, any objects you upload to Amazon S3 using this
client will be encrypted. Any objects you get from Amazon S3 using this client will automatically be
decrypted.

Note
The following examples demonstrate using the Amazon S3 client-side encryption with
customer-managed client master keys. To learn how to use encryption with AWS KMS managed
keys, see Amazon S3 Client-Side Encryption with AWS KMS Managed Keys (p. 129).

126

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteWebsiteConfiguration.java
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
http://docs.aws.amazon.com/kms/latest/developerguide/crypto-intro.html
http://docs.aws.amazon.com/general/latest/gr/aws_sdk_cryptography.html
http://docs.aws.amazon.com/general/latest/gr/aws_sdk_cryptography.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3EncryptionClientBuilder.html

AWS SDK for Java Developer Guide
Using Amazon S3 Client-Side Encryption

You can choose from three encryption modes when enabling client-side Amazon S3 encryption:
encryption-only, authenticated, and strict authenticated. The following sections show how to enable
each type. To learn which algorithms each mode uses, see the CryptoMode definition.

Required Imports

Import the following classes for these examples.

Imports

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.AmazonS3Encryption;
import com.amazonaws.services.s3.AmazonS3EncryptionClientBuilder;
import com.amazonaws.services.s3.model.CryptoConfiguration;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.GetObjectRequest;
import com.amazonaws.services.s3.model.StaticEncryptionMaterialsProvider;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;

Encryption-Only Mode

Encryption-only is the default mode, if no CryptoMode is specified. To enable encryption, you must pass
a key to the EncryptionMaterials constructor. The example below uses the KeyGenerator Java class
generate a symmetric private key.

Code

SecretKey secretKey = KeyGenerator.getInstance("AES").generateKey();
AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new CryptoConfiguration(CryptoMode.EncryptionOnly))
 .withEncryptionMaterials(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

To use an asymmetric key or a key pair, simply pass the key pair to the same EncryptionMaterials class.
The example below uses the KeyPairGenerator class to generate a key pair.

Code

KeyPair keyPair = KeyPairGenerator.getInstance("RSA").generateKeyPair();
AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new CryptoConfiguration(CryptoMode.EncryptionOnly))
 .withEncryptionMaterials(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(keyPair)))
 .build();

Call the putObject method on the Amazon S3 encryption client to upload objects.

Code

127

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/CryptoMode.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/EncryptionMaterials.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/EncryptionMaterials.html

AWS SDK for Java Developer Guide
Using Amazon S3 Client-Side Encryption

s3Encryption.putObject(BUCKET_NAME, ENCRYPTED_KEY, "some contents");

You can retrieve the object using the same client. This example calls the getObjectAsString method
to retrieve the string that was stored.

Code

System.out.println(s3Encryption.getObjectAsString(BUCKET_NAME, ENCRYPTED_KEY));

See the complete example on GitHub.

Authenticated Encryption Mode

When you use AuthenticatedEncryption mode, an improved key wrapping algorithm is applied
during encryption. When decrypting in this mode, the algorithm can verify the integrity of the decrypted
object and throw an exception if the check fails. For more details about how authenticated encryption
works, see the Amazon S3 Client-Side Authenticated Encryption blog post.

Note
To use client-side authenticated encryption, you must include the latest Bouncy Castle jar file in
the classpath of your application.

To enable this mode, specify the AuthenticatedEncryption value in the
<problematic>:method:`withCryptoConfiguration`</problematic>
method.

Code

AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfiguration(CryptoMode.AuthenticatedEncryption))
 .withEncryptionMaterials(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

The AuthenticatedEncryption mode can retrieve unencrypted objects and objects encrypted with
EncryptionOnly mode. The following example shows the Amazon S3 encryption client retrieving an
unencrypted object.

Code

SecretKey secretKey = KeyGenerator.getInstance("AES").generateKey();
AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfiguration(CryptoMode.AuthenticatedEncryption))
 .withEncryptionMaterials(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

AmazonS3 s3NonEncrypt = AmazonS3ClientBuilder.defaultClient();

s3Encryption.putObject(BUCKET_NAME, ENCRYPTED_KEY, "some contents");
s3NonEncrypt.putObject(BUCKET_NAME, NON_ENCRYPTED_KEY, "some other contents");
System.out.println(s3Encryption.getObjectAsString(BUCKET_NAME, ENCRYPTED_KEY));

128

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java#L216-L230
http://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/latest_releases.html

AWS SDK for Java Developer Guide
Using Amazon S3 Client-Side Encryption

System.out.println(s3Encryption.getObjectAsString(BUCKET_NAME, NON_ENCRYPTED_KEY));

See the complete example on GitHub.

Strict Authenticated Encryption

To enable this mode, specify the StrictAuthenticatedEncryption value in the
<problematic>:method:`withCryptoConfiguration`</problematic>
method.

Note
To use client-side authenticated encryption, you must include the latest Bouncy Castle jar file in
the classpath of your application.

Code

AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfiguration(CryptoMode.StrictAuthenticatedEncryption))
 .withEncryptionMaterials(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

In StrictAuthenticatedEncryption mode, the Amazon S3 client throws an exception when
retrieving an object that was not encrypted using an authenticated mode.

Code

SecretKey secretKey = KeyGenerator.getInstance("AES").generateKey();
AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfiguration(CryptoMode.StrictAuthenticatedEncryption))
 .withEncryptionMaterials(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

AmazonS3 s3NonEncrypt = AmazonS3ClientBuilder.defaultClient();

s3Encryption.putObject(BUCKET_NAME, ENCRYPTED_KEY, "some contents");
s3NonEncrypt.putObject(BUCKET_NAME, NON_ENCRYPTED_KEY, "some other contents");
System.out.println(s3Encryption.getObjectAsString(BUCKET_NAME, ENCRYPTED_KEY));
try {
 s3Encryption.getObjectAsString(BUCKET_NAME, NON_ENCRYPTED_KEY);
} catch (SecurityException e) {
 // Strict authenticated encryption will throw an exception if an object is not
 encrypted with AES/GCM
 System.err.println(NON_ENCRYPTED_KEY + " was not encrypted with AES/GCM");
}

See the complete example on GitHub.

Amazon S3 Client-Side Encryption with AWS KMS Managed
Keys
The following examples use the AmazonS3EncryptionClientBuilder class to create an Amazon S3 client
with client-side encryption enabled. Once configured, any objects you upload to Amazon S3 using

129

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java#L66-L80
https://www.bouncycastle.org/latest_releases.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java#L131-L150
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3EncryptionClientBuilder.html

AWS SDK for Java Developer Guide
Using Amazon S3 Client-Side Encryption

this client will be encrypted. Any objects you get from Amazon S3 using this client are automatically
decrypted.

Note
The following examples demonstrate how to use the Amazon S3 client-side encryption with
AWS KMS managed keys. To learn how to use encryption with your own keys, see Amazon S3
Client-Side Encryption with Client Master Keys (p. 126).

You can choose from three encryption modes when enabling client-side Amazon S3 encryption:
encryption-only, authenticated, and strict authenticated. The following sections show how to enable
each type. To learn which algorithms each mode uses, see the CryptoMode definition.

Required Imports

Import the following classes for these examples.

Imports

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.AmazonS3Encryption;
import com.amazonaws.services.s3.AmazonS3EncryptionClientBuilder;
import com.amazonaws.services.s3.model.CryptoConfiguration;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.GetObjectRequest;
import com.amazonaws.services.s3.model.KMSEncryptionMaterialsProvider;
import com.amazonaws.services.s3.model.StaticEncryptionMaterialsProvider;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;

Encryption-Only Mode

Encryption-only is the default mode, if no CryptoMode is specified. To use an AWS KMS managed key
for encryption, pass the AWS KMS key ID or alias to the KMSEncryptionMaterialsProvider constructor.

Code

AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new CryptoConfiguration(CryptoMode.EncryptionOnly))
 // Can either be Key ID or alias (prefixed with 'alias/')
 .withEncryptionMaterials(new KMSEncryptionMaterialsProvider("alias/s3-kms-key"))
 .build();

Call the putObject method on the Amazon S3 encryption client to upload objects.

Code

s3Encryption.putObject(BUCKET_NAME, ENCRYPTED_KEY, "some contents");

You can retrieve the object using the same client. This example calls the getObjectAsString method
to retrieve the string that was stored.

Code

130

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/model/CryptoMode.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/KMSEncryptionMaterialsProvider.html

AWS SDK for Java Developer Guide
Using Amazon S3 Client-Side Encryption

System.out.println(s3Encryption.getObjectAsString(BUCKET_NAME, ENCRYPTED_KEY));

See the complete example on GitHub.

Authenticated Encryption Mode

When you use AuthenticatedEncryption mode, an improved key wrapping algorithm is applied
during encryption. When decrypting in this mode, the algorithm can verify the integrity of the decrypted
object and throw an exception if the check fails. For more details about how authenticated encryption
works, see the Amazon S3 Client-Side Authenticated Encryption blog post.

Note
To use client-side authenticated encryption, you must include the latest Bouncy Castle jar file in
the classpath of your application.

To enable this mode, specify the AuthenticatedEncryption value in the
<problematic>:method:`withCryptoConfiguration`</problematic>
method.

Code

AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfiguration(CryptoMode.AuthenticatedEncryption))
 // Can either be Key ID or alias (prefixed with 'alias/')
 .withEncryptionMaterials(new KMSEncryptionMaterialsProvider("alias/s3-kms-key"))
 .build();

The AuthenticatedEncryption mode can retrieve unencrypted objects and objects encrypted with
EncryptionOnly mode. The following example shows the Amazon S3 encryption client retrieving an
unencrypted object.

Code

AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfiguration(CryptoMode.AuthenticatedEncryption))
 // Can either be Key ID or alias (prefixed with 'alias/')
 .withEncryptionMaterials(new KMSEncryptionMaterialsProvider("alias/s3-kms-key"))
 .build();

AmazonS3 s3NonEncrypt = AmazonS3ClientBuilder.defaultClient();

s3Encryption.putObject(BUCKET_NAME, ENCRYPTED_KEY, "some contents");
s3NonEncrypt.putObject(BUCKET_NAME, NON_ENCRYPTED_KEY, "some other contents");
System.out.println(s3Encryption.getObjectAsString(BUCKET_NAME, ENCRYPTED_KEY));
System.out.println(s3Encryption.getObjectAsString(BUCKET_NAME, NON_ENCRYPTED_KEY));

See the complete example on GitHub.

Strict Authenticated Encryption

To enable this mode, specify the StrictAuthenticatedEncryption value in the
<problematic>:method:`withCryptoConfiguration`</problematic>
method.

131

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java#L236-L250
http://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/latest_releases.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java#L256-L271

AWS SDK for Java Developer Guide
Amazon SQS Examples

Note
To use client-side authenticated encryption, you must include the latest Bouncy Castle jar file in
the classpath of your application.

Code

AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfiguration(CryptoMode.AuthenticatedEncryption))
 // Can either be Key ID or alias (prefixed with 'alias/')
 .withEncryptionMaterials(new KMSEncryptionMaterialsProvider("alias/s3-kms-key"))
 .build();

In StrictAuthenticatedEncryption mode, the Amazon S3 client throws an exception when
retrieving an object that was not encrypted using an authenticated mode.

Code

AmazonS3Encryption s3Encryption = AmazonS3EncryptionClientBuilder
 .standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfiguration(CryptoMode.AuthenticatedEncryption))
 // Can either be Key ID or alias (prefixed with 'alias/')
 .withEncryptionMaterials(new KMSEncryptionMaterialsProvider("alias/s3-kms-key"))
 .build();

AmazonS3 s3NonEncrypt = AmazonS3ClientBuilder.defaultClient();

s3Encryption.putObject(BUCKET_NAME, ENCRYPTED_KEY, "some contents");
s3NonEncrypt.putObject(BUCKET_NAME, NON_ENCRYPTED_KEY, "some other contents");
try {
 s3Encryption.getObjectAsString(BUCKET_NAME, NON_ENCRYPTED_KEY);
} catch (SecurityException e) {
 // Strict authenticated encryption will throw an exception if an object is not
 encrypted with AES/GCM
 System.err.println(NON_ENCRYPTED_KEY + " was not encrypted with AES/GCM");
}

See the complete example on GitHub.

Amazon SQS Examples Using the AWS SDK for
Java

This section provides examples of programming Amazon SQS using the AWS SDK for Java.

Note
The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or clone
the repository locally to get all the examples to build and run.

Topics
• Working with Amazon SQS Message Queues (p. 133)
• Sending, Receiving, and Deleting Amazon SQS Messages (p. 135)

132

https://www.bouncycastle.org/latest_releases.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java#L278-L296
https://aws.amazon.com/sqs/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK for Java Developer Guide
Working with Amazon SQS Message Queues

• Enabling Long Polling for Amazon SQS Message Queues (p. 137)
• Setting Visibility Timeout in Amazon SQS (p. 138)
• Using Dead Letter Queues in Amazon SQS (p. 140)

Working with Amazon SQS Message Queues
A message queue is the logical container used for sending messages reliably in Amazon SQS. There
are two types of queues: standard and first-in, first-out (FIFO). To learn more about queues and the
differences between these types, see the Amazon SQS Developer Guide.

This topic describes how to create, list, delete, and get the URL of an Amazon SQS queue by using the
AWS SDK for Java.

Create a Queue
Use the AmazonSQS client's createQueue method, providing a CreateQueueRequest object that
describes the queue parameters.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
CreateQueueRequest create_request = new CreateQueueRequest(QUEUE_NAME)
 .addAttributesEntry("DelaySeconds", "60")
 .addAttributesEntry("MessageRetentionPeriod", "86400");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

You can use the simplified form of createQueue, which needs only a queue name, to create a standard
queue.

sqs.createQueue("MyQueue" + new Date().getTime());

See the complete example on GitHub.

Listing Queues
To list the Amazon SQS queues for your account, call the AmazonSQS client's listQueues method.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

133

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/CreateQueueRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html

AWS SDK for Java Developer Guide
Working with Amazon SQS Message Queues

import com.amazonaws.services.sqs.model.ListQueuesResult;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
ListQueuesResult lq_result = sqs.listQueues();
System.out.println("Your SQS Queue URLs:");
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

Using the listQueues overload without any parameters returns all queues. You can filter the returned
results by passing it a ListQueuesRequest object.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesRequest;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String name_prefix = "Queue";
lq_result = sqs.listQueues(new ListQueuesRequest(name_prefix));
System.out.println("Queue URLs with prefix: " + name_prefix);
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

See the complete example on GitHub.

Get the URL for a Queue
Call the AmazonSQS client's getQueueUrl method.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String queue_url = sqs.getQueueUrl(QUEUE_NAME).getQueueUrl();

See the complete example on GitHub.

Delete a Queue
Provide the queue's URL (p. 134) to the AmazonSQS client's deleteQueue method.

Imports

import com.amazonaws.services.sqs.AmazonSQS;

134

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html

AWS SDK for Java Developer Guide
Sending, Receiving, and Deleting Amazon SQS Messages

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.deleteQueue(queue_url);

See the complete example on GitHub.

More Info
• How Amazon SQS Queues Work in the Amazon SQS Developer Guide

• CreateQueue in the Amazon SQS API Reference

• GetQueueUrl in the Amazon SQS API Reference

• ListQueues in the Amazon SQS API Reference

• DeleteQueues in the Amazon SQS API Reference

Sending, Receiving, and Deleting Amazon SQS
Messages
This topic describes how to send, receive and delete Amazon SQS messages. Messages are always
delivered using an SQS Queue (p. 133).

Send a Message
Add a single message to an Amazon SQS queue by calling the AmazonSQS client's sendMessage
method. Provide a SendMessageRequest object that contains the queue's URL (p. 134), message body,
and optional delay value (in seconds).

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.SendMessageRequest;

Code

SendMessageRequest send_msg_request = new SendMessageRequest()
 .withQueueUrl(queueUrl)
 .withMessageBody("hello world")
 .withDelaySeconds(5);
sqs.sendMessage(send_msg_request);

Send Multiple Messages at Once

You can send more than one message in a single request. To send multiple messages, use the
AmazonSQS client's sendMessageBatch method, which takes a SendMessageBatchRequest containing
the queue URL and a list of messages (each one a SendMessageBatchRequestEntry) to send. You can also
set an optional delay value per message.

Imports

135

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueues.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/SendMessageRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/SendMessageBatchRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/SendMessageBatchRequestEntry.html

AWS SDK for Java Developer Guide
Sending, Receiving, and Deleting Amazon SQS Messages

import com.amazonaws.services.sqs.model.SendMessageBatchRequest;
import com.amazonaws.services.sqs.model.SendMessageBatchRequestEntry;

Code

SendMessageBatchRequest send_batch_request = new SendMessageBatchRequest()
 .withQueueUrl(queueUrl)
 .withEntries(
 new SendMessageBatchRequestEntry(
 "msg_1", "Hello from message 1"),
 new SendMessageBatchRequestEntry(
 "msg_2", "Hello from message 2")
 .withDelaySeconds(10));
sqs.sendMessageBatch(send_batch_request);

See the complete example on GitHub.

Receive Messages
Retrieve any messages that are currently in the queue by calling the AmazonSQS client's
receiveMessage method, passing it the queue's URL. Messages are returned as a list of Message
objects.

Imports

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.SendMessageBatchRequest;

Code

List<Message> messages = sqs.receiveMessage(queueUrl).getMessages();

Delete Messages after Receipt
After receiving a message and processing its contents, delete the message from the queue by sending
the message's receipt handle and queue URL to the AmazonSQS client's deleteMessage method.

Code

for (Message m : messages) {
 sqs.deleteMessage(queueUrl, m.getReceiptHandle());
}

See the complete example on GitHub.

More Info
• How Amazon SQS Queues Work in the Amazon SQS Developer Guide

• SendMessage in the Amazon SQS API Reference

• SendMessageBatch in the Amazon SQS API Reference

• ReceiveMessage in the Amazon SQS API Reference

• DeleteMessage in the Amazon SQS API Reference

136

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/Message.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

AWS SDK for Java Developer Guide
Enabling Long Polling for Amazon SQS Message Queues

Enabling Long Polling for Amazon SQS Message
Queues
Amazon SQS uses short polling by default, querying only a subset of the servers—based on a weighted
random distribution—to determine whether any messages are available for inclusion in the response.

Long polling helps reduce your cost of using Amazon SQS by reducing the number of empty responses
when there are no messages available to return in reply to a ReceiveMessage request sent to an Amazon
SQS queue and eliminating false empty responses.

Note
You can set a long polling frequency from 1–20 seconds.

Enabling Long Polling when Creating a Queue
To enable long polling when creating an Amazon SQS queue, set the
ReceiveMessageWaitTimeSeconds attribute on the CreateQueueRequest object before calling the
AmazonSQS class' createQueue method.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Code

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Enable long polling when creating a queue
CreateQueueRequest create_request = new CreateQueueRequest()
 .withQueueName(queue_name)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

See the complete example on GitHub.

Enabling Long Polling on an Existing Queue
In addition to enabling long polling when creating a queue, you can also enable it on an existing queue
by setting ReceiveMessageWaitTimeSeconds on the SetQueueAttributesRequest before calling the
AmazonSQS class' setQueueAttributes method.

Imports

import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Code

137

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/CreateQueueRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html

AWS SDK for Java Developer Guide
Setting Visibility Timeout in Amazon SQS

SetQueueAttributesRequest set_attrs_request = new SetQueueAttributesRequest()
 .withQueueUrl(queue_url)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");
sqs.setQueueAttributes(set_attrs_request);

See the complete example on GitHub.

Enabling Long Polling on Message Receipt
You can enable long polling when receiving a message by setting the wait time in seconds on the
ReceiveMessageRequest that you supply to the AmazonSQS class' receiveMessage method.

Note
You should make sure that the AWS client's request timeout is larger than the maximum long
poll time (20s) so that your receiveMessage requests don't time out while waiting for the next
poll event!

Imports

import com.amazonaws.services.sqs.model.ReceiveMessageRequest;

Code

ReceiveMessageRequest receive_request = new ReceiveMessageRequest()
 .withQueueUrl(queue_url)
 .withWaitTimeSeconds(20);
sqs.receiveMessage(receive_request);

See the complete example on GitHub.

More Info
• Amazon SQS Long Polling in the Amazon SQS Developer Guide
• CreateQueue in the Amazon SQS API Reference
• ReceiveMessage in the Amazon SQS API Reference
• SetQueueAttributes in the Amazon SQS API Reference

Setting Visibility Timeout in Amazon SQS
When a message is received in Amazon SQS, it remains on the queue until it's deleted in order to ensure
receipt. A message that was received, but not deleted, will be available in subsequent requests after a
given visibility timeout to help prevent the message from being received more than once before it can be
processed and deleted.

Note
When using standard queues, visibility timeout isn't a guarantee against receiving a message
twice. If you are using a standard queue, be sure that your code can handle the case where the
same message has been delivered more than once.

Setting the Message Visibility Timeout for a Single Message
When you have received a message, you can modify its visibility timeout by passing its receipt handle in
a ChangeMessageVisibilityRequest that you pass to the AmazonSQS class' changeMessageVisibility
method.

138

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/ReceiveMessageRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/ChangeMessageVisibilityRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html

AWS SDK for Java Developer Guide
Setting Visibility Timeout in Amazon SQS

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Get the receipt handle for the first message in the queue.
String receipt = sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle();

sqs.changeMessageVisibility(queue_url, receipt, timeout);

See the complete example on GitHub.

Setting the Message Visibility Timeout for Multiple Messages at
Once
To set the message visibility timeout for multiple messages at once, create a list of
ChangeMessageVisibilityBatchRequestEntry objects, each containing a unique ID string and a receipt
handle. Then, pass the list to the Amazon SQS client class' changeMessageVisibilityBatch method.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ChangeMessageVisibilityBatchRequestEntry;
import java.util.ArrayList;
import java.util.List;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

List<ChangeMessageVisibilityBatchRequestEntry> entries =
 new ArrayList<ChangeMessageVisibilityBatchRequestEntry>();

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg1",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout));

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg2",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout + 200));

sqs.changeMessageVisibilityBatch(queue_url, entries);

139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/ChangeMessageVisibilityBatchRequestEntry.html

AWS SDK for Java Developer Guide
Using Dead Letter Queues in Amazon SQS

See the complete example on GitHub.

More Info
• Visibility Timeout in the Amazon SQS Developer Guide
• SetQueueAttributes in the Amazon SQS API Reference
• GetQueueAttributes in the Amazon SQS API Reference
• ReceiveMessage in the Amazon SQS API Reference
• ChangeMessageVisibility in the Amazon SQS API Reference
• ChangeMessageVisibilityBatch in the Amazon SQS API Reference

Using Dead Letter Queues in Amazon SQS
Amazon SQS provides support for dead letter queues. A dead letter queue is a queue that other (source)
queues can target for messages that can't be processed successfully. You can set aside and isolate these
messages in the dead letter queue to determine why their processing did not succeed.

Creating a Dead Letter Queue
A dead letter queue is created the same way as a regular queue, but it has the following restrictions:

• A dead letter queue must be the same type of queue (FIFO or standard) as the source queue.
• A dead letter queue must be created using the same AWS account and region as the source queue.

Here we create two identical Amazon SQS queues, one of which will serve as the dead letter queue:

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;

Code

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Create source queue
try {
 sqs.createQueue(src_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

// Create dead-letter queue
try {
 sqs.createQueue(dl_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

See the complete example on GitHub.

140

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java

AWS SDK for Java Developer Guide
Getting Temporary Credentials with AWS STS

Designating a Dead Letter Queue for a Source Queue
To designate a dead letter queue, you must first create a redrive policy, and then set the policy in the
queue's attributes. A redrive policy is specified in JSON, and specifies the ARN of the dead letter queue
and the maximum number of times the message can be received and not processed before it's sent to
the dead letter queue.

To set the redrive policy for your source queue, call the AmazonSQS class' setQueueAttributes
method with a SetQueueAttributesRequest object for which you've set the RedrivePolicy attribute
with your JSON redrive policy.

Imports

import com.amazonaws.services.sqs.model.GetQueueAttributesRequest;
import com.amazonaws.services.sqs.model.GetQueueAttributesResult;
import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Code

String dl_queue_url = sqs.getQueueUrl(dl_queue_name)
 .getQueueUrl();

GetQueueAttributesResult queue_attrs = sqs.getQueueAttributes(
 new GetQueueAttributesRequest(dl_queue_url)
 .withAttributeNames("QueueArn"));

String dl_queue_arn = queue_attrs.getAttributes().get("QueueArn");

// Set dead letter queue with redrive policy on source queue.
String src_queue_url = sqs.getQueueUrl(src_queue_name)
 .getQueueUrl();

SetQueueAttributesRequest request = new SetQueueAttributesRequest()
 .withQueueUrl(src_queue_url)
 .addAttributesEntry("RedrivePolicy",
 "{\"maxReceiveCount\":\"5\", \"deadLetterTargetArn\":\""
 + dl_queue_arn + "\"}");

sqs.setQueueAttributes(request);

See the complete example on GitHub.

More Info
• Using Amazon SQS Dead Letter Queues in the Amazon SQS Developer Guide
• SetQueueAttributes in the Amazon SQS API Reference

Getting Temporary Credentials with AWS STS
You can use AWS Security Token Service (AWS STS) to get temporary, limited-privilege credentials that
can be used to access AWS services.

There are three steps involved in using AWS STS:

1. Activate a region (optional).
2. Retrieve temporary security credentials from AWS STS.

141

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://aws.amazon.com/iam/

AWS SDK for Java Developer Guide
(Optional) Activate and use an AWS STS region

3. Use the credentials to access AWS resources.

Note
Activating a region is optional; by default, temporary security credentials are obtained from
the global endpoint sts.amazonaws.com. However, to reduce latency and to enable you to build
redundancy into your requests by using additional endpoints if an AWS STS request to the
first endpoint fails, you can activate regions that are geographically closer to your services or
applications that use the credentials.

(Optional) Activate and use an AWS STS region
To activate a region for use with AWS STS, use the AWS Management Console to select and activate the
region.

To activate additional STS regions

1. Sign in as an IAM user with permissions to perform IAM administration tasks "iam:*" for the
account for which you want to activate AWS STS in a new region.

2. Open the IAM console and in the navigation pane click Account Settings.
3. Expand the STS Regions list, find the region that you want to use, and then click Activate.

After this, you can direct calls to the STS endpoint that is associated with that region.

Note
For more information about activating STS regions and for a list of the available AWS STS
endpoints, see Activating and Deactivating AWS STS in an AWS Region in the IAM User Guide.

Retrieve temporary security credentials from AWS
STS
To retrieve temporary security credentials using the AWS SDK for Java

1. Create an AWSSecurityTokenServiceClient object:

AWSSecurityTokenServiceClient sts_client = new AWSSecurityTokenServiceClient();

When creating the client with no arguments, the default credential provider chain is used to retrieve
credentials. You can provide a specific credential provider if you want. For more information, see
Providing AWS Credentials in the AWS SDK for Java.

2. Optional; requires that you have activated the region) Set the endpoint for the STS client:

sts_client.setEndpoint("sts-endpoint.amazonaws.com");

where sts-endpoint represents the STS endpoint for your region.

Important
Do not use the setRegion method to set a regional endpoint—for backwards
compatibility, that method continues to use the single global endpoint of
sts.amazonaws.com.

3. Create a GetSessionTokenRequest object, and optionally set the duration in seconds for which the
temporary credentials are valid:

GetSessionTokenRequest session_token_request = new GetSessionTokenRequest();

142

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/securitytoken/AWSSecurityTokenServiceClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/securitytoken/model/GetSessionTokenRequest.html

AWS SDK for Java Developer Guide
Use the temporary credentials to access AWS resources

session_token_request.setDurationSeconds(7200); // optional.

The duration of temporary credentials can range from 900 seconds (15 minutes) to 129600 seconds
(36 hours) for IAM users. If a duration isn't specified, then 43200 seconds (12 hours) is used by
default.

For a root AWS account, the valid range of temporary credentials is from 900 to 3600 seconds (1
hour), with a default value of 3600 seconds if no duration is specified.

Important
It is strongly recommended, from a security standpoint, that you use IAM users instead of the
root account for AWS access. For more information, see IAM Best Practices in the IAM User
Guide.

4. Call getSessionToken on the STS client to get a session token, using the
GetSessionTokenRequest object:

GetSessionTokenResult session_token_result =
 sts_client.getSessionToken(session_token_request);

5. Get session credentials using the result of the call to getSessionToken:

Credentials session_creds = session_token_result.getCredentials();

The session credentials provide access only for the duration that was specified by the
GetSessionTokenRequest object. Once the credentials expire, you will need to call
getSessionToken again to obtain a new session token for continued access to AWS.

Use the temporary credentials to access AWS
resources
Once you have temporary security credentials, you can use them to initialize an AWS service client to use
its resources, using the technique described in Explicitly Specifying Credentials (p. 17).

For example, to create an S3 client using temporary service credentials:

BasicSessionCredentials sessionCredentials = new BasicSessionCredentials(
 session_creds.getAccessKeyId(),
 session_creds.getSecretAccessKey(),
 session_creds.getSessionToken());

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withCredentials(new
 AWSStaticCredentialsProvider(sessionCredentials)
 .build();

You can now use the AmazonS3 object to make Amazon S3 requests.

For more information
For more information about how to use temporary security credentials to access AWS resources, visit the
following sections in the IAM User Guide:

• Requesting Temporary Security Credentials
• Controlling Permissions for Temporary Security Credentials

143

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/securitytoken/AWSSecurityTokenService.html#getSessionToken-com.amazonaws.services.securitytoken.model.GetSessionTokenRequest-
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access.html

AWS SDK for Java Developer Guide
Amazon SWF Examples

• Using Temporary Security Credentials to Request Access to AWS Resources

• Activating and Deactivating AWS STS in an AWS Region

Amazon SWF Examples Using the AWS SDK for
Java

Amazon SWF is a workflow-management service that helps developers build and scale distributed
workflows that can have parallel or sequential steps consisting of activities, child workflows or even
Lambda tasks.

There are two ways to work with Amazon SWF using the AWS SDK for Java, by using the SWF client
object, or by using the AWS Flow Framework for Java. The AWS Flow Framework for Java is more difficult
to configure initially, since it makes heavy use of annotations and relies on additional libraries such as
AspectJ and the Spring Framework. However, for large or complex projects, you will save coding time by
using the AWS Flow Framework for Java. For more information, see the AWS Flow Framework for Java
Developer Guide.

This section provides examples of programming Amazon SWF by using the AWS SDK for Java client
directly.

Topics

• Amazon SWF Basics (p. 144)

• Building a Simple Amazon SWF Application (p. 145)

• Lambda Tasks (p. 158)

• Shutting Down Activity and Workflow Workers Gracefully (p. 161)

• Registering Domains (p. 163)

• Listing Domains (p. 164)

Amazon SWF Basics
These are general patterns for working with Amazon SWF using the AWS SDK for Java. It is meant
primarily for reference. For a more complete introductory tutorial, see Building a Simple Amazon SWF
Application (p. 145).

Dependencies
Basic Amazon SWF applications will require the following dependencies, which are included with the
AWS SDK for Java:

• aws-java-sdk-1.11.*.jar

• commons-logging-1.1.*.jar

• httpclient-4.3.*.jar

• httpcore-4.3.*.jar

• jackson-annotations-2.5.*.jar

• jackson-core-2.5.*.jar

• jackson-databind-2.5.*.jar

• joda-time-2.8.*.jar

144

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://aws.amazon.com/swf/
https://aws.amazon.com/lambda/
http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

Note
the version numbers of these packages will differ depending on the version of the SDK that you
have, but the versions that are supplied with the SDK have been tested for compatibility, and are
the ones you should use.

AWS Flow Framework for Java applications require additonal setup, and additional dependencies. See
the AWS Flow Framework for Java Developer Guide for more information about using the framework.

Imports
In general, you can use the following imports for code development:

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;

It's a good practice to import only the classes you require, however. You will likely end up specifying
particular classes in the com.amazonaws.services.simpleworkflow.model workspace:

import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

If you are using the AWS Flow Framework for Java, you will import classes from the
com.amazonaws.services.simpleworkflow.flow workspace. For example:

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

Note
The AWS Flow Framework for Java has additional requirements beyond those of the base AWS
SDK for Java. For more information, see the AWS Flow Framework for Java Developer Guide.

Using the SWF client class
Your basic interface to Amazon SWF is through either the AmazonSimpleWorkflowClient or
AmazonSimpleWorkflowAsyncClient classes. The main difference between these is that the
*AsyncClient class return Future objects for concurrent (asynchronous) programming.

AmazonSimpleWorkflowClient swf = AmazonSimpleWorkflowClientBuilder.defaultClient();

Building a Simple Amazon SWF Application
This topic will introduce you to programming Amazon SWF applications with the AWS SDK for Java,
while presenting a few important concepts along the way.

About the example
The example project will create a workflow with a single activity that accepts workflow data passed
through the AWS cloud (In the tradition of HelloWorld, it'll be the name of someone to greet) and then
prints a greeting in response.

While this seems very simple on the surface, Amazon SWF applications consist of a number of parts
working together:

145

http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowAsyncClient.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
https://aws.amazon.com/swf/

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

• A domain, used as a logical container for your workflow execution data.
• One or more workflows which represent code components that define logical order of execution of

your workflow's activities and child workflows.
• A workflow worker, also known as a decider, that polls for decision tasks and schedules activities or

child workflows in response.
• One or more activities, each of which represents a unit of work in the workflow.
• An activity worker that polls for activity tasks and runs activity methods in response.
• One or more task lists, which are queues maintained by Amazon SWF used to issue requests to the

workflow and activity workers. Tasks on a task list meant for workflow workers are called decision
tasks. Those meant for activity workers are called activity tasks.

• A workflow starter that begins your workflow execution.

Behind the scenes, Amazon SWF orchestrates the operation of these components, coordinating their flow
from the AWS cloud, passing data between them, handling timeouts and heartbeat notifications, and
logging workflow execution history.

Prerequisites

Development environment

The development environment used in this tutorial consists of:

• The AWS SDK for Java.
• Apache Maven (3.3.1).
• JDK 1.7 or later. This tutorial was developed and tested using JDK 1.8.0.
• A good Java text editor (your choice).

Note
If you use a different build system than Maven, you can still create a project using the
appropriate steps for your environment and use the the concepts provided here to follow along.
More information about configuring and using the AWS SDK for Java with various build systems
is provided in Getting Started (p. 3).
Likewise, but with more effort, the steps shown here can be implemented using any of the AWS
SDKs with support for Amazon SWF.

All of the necessary external dependencies are included with the AWS SDK for Java, so there's nothing
additional to download.

AWS access

To access Amazon Web Services (AWS), you must have an active AWS account. For information about
signing up for AWS and creating an IAM user (recommended over using root account credentials), see
Sign Up for AWS and Create an IAM User (p. 3).

This tutorial uses the terminal (command-line) to run the example code, and expects that you have
your AWS credentials and configuration accessible to the SDK. The easiest way to do this is to use the
environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. You should also set the
AWS_REGION to the region you want to use.

For example, on Linux, macOS, or Unix, set the variables this way:

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key

146

https://aws.amazon.com/sdk-for-java/
http://maven.apache.org/

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

export AWS_REGION=us-east-1

To set these variables on Windows, use these commands:

set AWS_ACCESS_KEY_ID=your_access_key_id
set AWS_SECRET_ACCESS_KEY=your_secret_access_key
set AWS_REGION=us-east-1

Important
Substitute your own access key, secret access key and region information for the example values
shown here.
For more information about configuring your credentials for the SDK, see Set up AWS
Credentials and Region for Development (p. 6).

Create a SWF project
1. Start a new project with Maven:

mvn archetype:generate -DartifactId=helloswf \
-DgroupId=example.swf.hello -DinteractiveMode=false

This will create a new project with a standard maven project structure:

helloswf
pom.xml
src
 ### main
 # ### java
 # ### example
 # ### swf
 # ### hello
 # ### App.java
 ### test
 ### ...

You can ignore or delete the test directory and all it contains, we won't be using it for this tutorial.
You can also delete App.java, since we'll be replacing it with new classes.

2. Edit the project's pom.xml file and add the aws-java-sdk-simpleworkflow module by adding a
dependency for it within the <dependencies> block.

ependencies>
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-simpleworkflow</artifactId>
 <version>1.11.78</version>
</dependency>
dependencies>

3. Make sure that Maven builds your project with JDK 1.7+ support. Add the following to your project
(either before or after the <dependencies> block) in pom.xml:

<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>

147

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

 </configuration>
 </plugin>
 </plugins>
</build>

Code the project
The example project will consist of four separate applications, which we'll visit one by one:

• HelloTypes.java—contains the project's domain, activity and workflow type data, shared with the
other components. It also handles registering these types with SWF.

• ActivityWorker.java—contains the activity worker, which polls for activity tasks and runs activities in
response.

• WorkflowWorker.java—contains the workflow worker (decider), which polls for decision tasks and
schedules new activities.

• WorkflowStarter.java—contains the workflow starter, which starts a new workflow execution, which
will cause SWF to start generating decision and workflow tasks for your workers to consume.

Common steps for all source files

All of the files that you create to house your Java classes will have a few things in common. In the
interest of time, these steps will be implied every time you add a new file to the project:

1. Create the file in the in the project's src/main/java/example/swf/hello/ directory.
2. Add a package declaration to the beginning of each file to declare its namespace. The example

project uses:

package aws.example.helloswf;

3. Add import declarations for the AmazonSimpleWorkflowClient class and for multiple classes in the
com.amazonaws.services.simpleworkflow.model namespace. To simplify things, we'll use:

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

Register a domain, workflow and activity types

We'll begin by creating a new executeable class, HelloTypes.java. This file will contain shared data
that different parts of your workflow will need to know about, such as the name and version of your
activity and workflow types, the domain name and the task list name.

1. Open your text editor and create the file HelloTypes.java, adding a package declaration and
imports according to the common steps (p. 148).

2. Declare the HelloTypes class and provide it with values to use for your registered activity and
workflow types:

public class HelloTypes {
 public static final String DOMAIN = "HelloDomain";
 public static final String TASKLIST = "HelloTasklist";
 public static final String WORKFLOW = "HelloWorkflow";
 public static final String WORKFLOW_VERSION = "1.0";
 public static final String ACTIVITY = "HelloActivity";
 public static final String ACTIVITY_VERSION = "1.0";

148

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

}

These values will be used throughout the code.

3. After the String declarations, create an instance of the AmazonSimpleWorkflowClient class. This is the
basic interface to the Amazon SWF methods provided by the AWS SDK for Java.

private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder.defaultClient();

4. Add a new function to register a SWF domain. A domain is a logical container for a number of related
SWF activity and workflow types. SWF components can only communicate with each other if they
exist within the same domain.

public static void registerDomain() {
 try {
 System.out.println("** Registering the domain '" + DOMAIN + "'.");
 swf.registerDomain(new RegisterDomainRequest()
 .withName(DOMAIN)
 .withWorkflowExecutionRetentionPeriodInDays("1"));
 } catch (DomainAlreadyExistsException e) {
 System.out.println("** Domain already exists!");
 }
}

When you register a domain, you provide it with a name (any set of 1 – 256 characters excluding
:, /, |, control characters or the literal string 'arn') and a retention period, which is the number
of days that Amazon SWF will keep your workflow's execution history data after a workflow
execution has completed. The maximum workflow execution retention period is 90 days. See
RegisterDomainRequest for more information.

If a domain with that name already exists, a DomainAlreadyExistsException is raised. Because we're
unconcerned if the domain has already been created, we can ignore the exception.

Note
This code demonstrates a common pattern when working with AWS SDK for Java methods,
data for the method is supplied by a class in the simpleworkflow.model namespace, which
you instantiate and populate using the chainable .with* methods.

5. Add a function to register a new activity type. An activity represents a unit of work in your workflow.

public static void registerActivityType() {
 try {
 System.out.println("** Registering the activity type '" + ACTIVITY +
 "-" + ACTIVITY_VERSION + "'.");
 swf.registerActivityType(new RegisterActivityTypeRequest()
 .withDomain(DOMAIN)
 .withName(ACTIVITY)
 .withVersion(ACTIVITY_VERSION)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskScheduleToStartTimeout("30")
 .withDefaultTaskStartToCloseTimeout("600")
 .withDefaultTaskScheduleToCloseTimeout("630")
 .withDefaultTaskHeartbeatTimeout("10"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Activity type already exists!");
 }
}

An activity type is identified by a name and a version, which are used to uniquely identify the activity
from any others in the domain that it's registered in. Activities also contain a number of optional

149

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

parameters, such as the default task-list used to receive tasks and data from SWF and a number of
different timeouts that you can use to place constraints upon how long different parts of the activity
execution can take. See RegisterActivityTypeRequest for more information.

Note
All timeout values are specified in seconds. See Amazon SWF Timeout Types for a full
description of how timeouts affect your workflow executions.

If the activity type that you're trying to register already exists, an TypeAlreadyExistsException is raised.

6. Add a function to register a new workflow type. A workflow, also known as a decider represents the
logic of your workflow's execution.

public static void registerWorkflowType() {
 try {
 System.out.println("** Registering the workflow type '" + WORKFLOW +
 "-" + WORKFLOW_VERSION + "'.");
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Workflow type already exists!");
 }
}

Similar to activity types, workflow types are identified by a name and a version and also have
configurable timeouts. See RegisterWorkflowTypeRequest for more information.

If the workflow type that you're trying to register already exists, an TypeAlreadyExistsException is
raised.

7. Finally, make the class executable by providing it a main method, which will register the domain, the
activity type, and the workflow type in turn:

public static void main(String[] args) {
 registerDomain();
 registerWorkflowType();
 registerActivityType();
}

You can build (p. 156) and run (p. 157) the application now to run the registration script, or continue
with coding the activity and workflow workers. Once the domain, workflow and activity have been
registered, you won't need to run this again—these types persist until you deprecate them yourself.

Implement the activity worker

An activity is the basic unit of work in a workflow. A workflow provides the logic, scheduling activities to
be run (or other actions to be taken) in response to decision tasks. A typical workflow usually consists of
a number of activities that can run synchronously, asynchronously, or a combination of both.

The activity worker is the bit of code that polls for activity tasks that are generated by Amazon SWF in
response to workflow decisions. When it receives an activity task, it runs the corresponding activity and
returns a success/failure response back to the workflow.

We'll implement a simple activity worker that drives a single activity.

150

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/RegisterActivityTypeRequest.html
http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

1. Open your text editor and create the file ActivityWorker.java, adding a package declaration and
imports according to the common steps (p. 148).

2. Add the ActivityWorker class to the file, and give it a data member to hold a SWF client that we'll
use to interact with Amazon SWF:

public class ActivityWorker {
 private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder.defaultClient();
}

3. Add the method that we'll use as an activity:

private static String sayHello(String input) throws Throwable {
 return "Hello, " + input + "!";
}

The activity simply takes a string, combines it into a greeting and returns the result. Although there is
little chance that this activity will raise an exception, it's a good idea to design activities that can raise
an error if something goes wrong.

4. Add a main method that we'll use as the activity task polling method. We'll start it by adding some
code to poll the task list for activity tasks:

public static void main(String[] args) {
 while (true) {
 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(
 new PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(
 new TaskList().withName(HelloTypes.TASKLIST)));

 String task_token = task.getTaskToken();
}

The activity receives tasks from Amazon SWF by calling the SWF client's pollForActivityTask
method, specifying the domain and task list to use in the passed-in PollForActivityTaskRequest.

Once a task is received, we retrieve a unique identifier for it by calling the task's getTaskToken
method.

5. Next, write some code to process the tasks that come in. Add the following to your main method,
right after the code that polls for the task and retrieves its task token.

if (task_token != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '" +
 task.getInput() + "'.");
 result = sayHello(task.getInput());
 } catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"

151

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/PollForActivityTaskRequest.html

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(task_token)
 .withResult(result));
 } else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(task_token)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
}

If the task token is not null, then we can start running the activity method (sayHello), providing it
with the input data that was sent with the task.

If the task succeeded (no error was generated), then the worker responds to SWF by calling the SWF
client's respondActivityTaskCompleted method with a RespondActivityTaskCompletedRequest
object containing the task token and the activity's result data.

On the other hand, if the task failed, then we respond by calling the respondActivityTaskFailed
method with a RespondActivityTaskFailedRequest object, passing it the task token and information
about the error.

Note
This activity will not shut down gracefully if killed. Although it is beyond the scope of this
tutorial, an alternative implementation of this activity worker is provided in the accompanying
topic, Shutting Down Activity and Workflow Workers Gracefully (p. 161).

Implement the workflow worker

Your workflow logic resides in a piece of code known as a workflow worker. The workflow worker polls
for decision tasks that are sent by Amazon SWF in the domain, and on the default tasklist, that the
workflow type was registered with.

When the workflow worker receives a task, it makes some sort of decision (usually whether to schedule a
new activity or not) and takes an appropriate action (such as scheduling the activity).

1. Open your text editor and create the file WorkflowWorker.java, adding a package declaration and
imports according to the common steps (p. 148).

2. Add a few additional imports to the file:

import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

3. Declare the WorkflowWorker class, and create an instance of the AmazonSimpleWorkflowClient class
used to access SWF methods.

public class WorkflowWorker {
 private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder.defaultClient();
}

4. Add the main method. The method loops continuously, polling for decision tasks using the SWF
client's pollForDecisionTask method. The PollForDecisionTaskRequest provides the details.

152

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/RespondActivityTaskCompletedRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/RespondActivityTaskFailedRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/PollForDecisionTaskRequest.html

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

public static void main(String[] args) {
 PollForDecisionTaskRequest task_request =
 new PollForDecisionTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST));

 while (true) {
 System.out.println(
 "Polling for a decision task from the tasklist '" +
 HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 DecisionTask task = swf.pollForDecisionTask(task_request);

 String taskToken = task.getTaskToken();
 if (taskToken != null) {
 try {
 executeDecisionTask(taskToken, task.getEvents());
 } catch (Throwable th) {
 th.printStackTrace();
 }
 }
 }
}

Once a task is received, we call its getTaskToken method, which returns a string that can be
used to identify the task. If the returned token is not null, then we process it further in the
executeDecisionTask method, passing it the task token and the list of HistoryEvent objects sent
with the task.

5. Add the executeDecisionTask method, taking the task token (a String) and the HistoryEvent
list.

private static void executeDecisionTask(String taskToken, List<HistoryEvent> events)
 throws Throwable {
 List<Decision> decisions = new ArrayList<Decision>();
 String workflow_input = null;
 int scheduled_activities = 0;
 int open_activities = 0;
 boolean activity_completed = false;
 String result = null;
}

We also set up some data members to keep track of things such as:

• A list of Decision objects used to report the results of processing the task.

• A String to hold workflow input provided by the "WorkflowExecutionStarted" event

• a count of the scheduled and open (running) activities to avoid scheduling the same activity when it
has already been scheduled or is currently running.

• a boolean to indicate that the activity has completed.

• A String to hold the activity results, for returning it as our workflow result.

6. Next, add some code to executeDecisionTask to process the HistoryEvent objects that were
sent with the task, based on the event type reported by the getEventType method.

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 switch(event.getEventType()) {
 case "WorkflowExecutionStarted":

153

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/Decision.html

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case "ActivityTaskScheduled":
 scheduled_activities++;
 break;
 case "ScheduleActivityTaskFailed":
 scheduled_activities--;
 break;
 case "ActivityTaskStarted":
 scheduled_activities--;
 open_activities++;
 break;
 case "ActivityTaskCompleted":
 open_activities--;
 activity_completed = true;
 result = event.getActivityTaskCompletedEventAttributes()
 .getResult();
 break;
 case "ActivityTaskFailed":
 open_activities--;
 break;
 case "ActivityTaskTimedOut":
 open_activities--;
 break;
 }
}
System.out.println("]");

For the purposes of our workflow, we are most interested in:

• the "WorkflowExecutionStarted" event, which indicates that the workflow execution has started
(typically meaning that you should run the first activity in the workflow), and that provides the
initial input provided to the workflow. In this case, it's the name portion of our greeting, so it's saved
in a String for use when scheduling the activity to run.

• the "ActivityTaskCompleted" event, which is sent once the scheduled activity is complete. The event
data also includes the return value of the completed activity. Since we have only one activity, we'll
use that value as the result of the entire workflow.

The other event types can be used if your workflow requires them. See the HistoryEvent class
description for information about each event type.

Note
Strings in switch statements were introduced in Java 7. If you're using an earlier version
of Java, you can make use of the EventType class to convert the String returned by
history_event.getType() to an enum value and then back to a String if necessary:

EventType et = EventType.fromValue(event.getEventType());

7. After the switch statement, add more code to respond with an appropriate decision based on the
task that was received.

if (activity_completed) {
 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.CompleteWorkflowExecution)
 .withCompleteWorkflowExecutionDecisionAttributes(
 new CompleteWorkflowExecutionDecisionAttributes()
 .withResult(result)));
} else {
 if (open_activities == 0 && scheduled_activities == 0) {

154

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services.simpleworkflow.model.EventType.html

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

 ScheduleActivityTaskDecisionAttributes attrs =
 new ScheduleActivityTaskDecisionAttributes()
 .withActivityType(new ActivityType()
 .withName(HelloTypes.ACTIVITY)
 .withVersion(HelloTypes.ACTIVITY_VERSION))
 .withActivityId(UUID.randomUUID().toString())
 .withInput(workflow_input);

 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.ScheduleActivityTask)
 .withScheduleActivityTaskDecisionAttributes(attrs));
 } else {
 // an instance of HelloActivity is already scheduled or running. Do nothing,
 another
 // task will be scheduled once the activity completes, fails or times out
 }
}

System.out.println("Exiting the decision task with the decisions " + decisions);

• If the activity hasn't been scheduled yet, we respond with a ScheduleActivityTask decision,
which provides information in a ScheduleActivityTaskDecisionAttributes structure about the activity
that Amazon SWF should schedule next, also including any data that Amazon SWF should send to
the activity.

• If the activity was completed, then we consider the entire workflow completed
and respond with a CompletedWorkflowExecution decision, filling in a
CompleteWorkflowExecutionDecisionAttributes structure to provide details about the completed
workflow. In this case, we return the result of the activity.

In either case, the decision information is added to the Decision list that was declared at the top of
the method.

8. Complete the decision task by returning the list of Decision objects collected while processing the
task. Add this code at the end of the executeDecisionTask method that we've been writing:

swf.respondDecisionTaskCompleted(
 new RespondDecisionTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withDecisions(decisions));

The SWF client's respondDecisionTaskCompleted method takes the task token that identifies the
task as well as the list of Decision objects.

Implement the workflow starter

Finally, we'll write some code to start the workflow execution.

1. Open your text editor and create the file WorkflowStarter.java, adding a package declaration and
imports according to the common steps (p. 148).

2. Add the WorkflowStarter class:

public class WorkflowStarter {
 private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder.defaultClient();
 public static final String WORKFLOW_EXECUTION = "HelloWorldWorkflowExecution";

 public static void main(String[] args) {

155

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/ScheduleActivityTaskDecisionAttributes.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/CompleteWorkflowExecutionDecisionAttributes.html

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

 String workflow_input = "Amazon SWF";
 if (args.length > 0) {
 workflow_input = args[0];
 }

 System.out.println("Starting the workflow execution '" + WORKFLOW_EXECUTION +
 "' with input '" + workflow_input + "'.");

 WorkflowType wf_type = new WorkflowType()
 .withName(HelloTypes.WORKFLOW)
 .withVersion(HelloTypes.WORKFLOW_VERSION);

 Run run = swf.startWorkflowExecution(new StartWorkflowExecutionRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withWorkflowType(wf_type)
 .withWorkflowId(WORKFLOW_EXECUTION)
 .withInput(workflow_input)
 .withExecutionStartToCloseTimeout("90"));

 System.out.println("Workflow execution started with the run id '" +
 run.getRunId() + "'.");
 }
}

The WorkflowStarter class consists of a single method, main, which takes an optional argument
passed on the command-line as input data for the workflow.

The SWF client method, startWorkflowExecution, takes a StartWorkflowExecutionRequest object
as input. Here, in addition to specifying the domain and workflow type to run, we provide it with:

• a human-readable workflow execution name

• workflow input data (provided on the command-line in our example)

• a timeout value that represents how long, in seconds, that the entire workflow should take to run.

The Run object that startWorkflowExecution returns provides a run ID, a value that can be used
to identify this particular workflow execution in Amazon SWF's history of your workflow executions.

Note
The run ID is generated by Amazon SWF, and is not the same as the workflow execution name
that you pass in when starting the workflow execution.

Build the example

To build the example project with Maven, go to the helloswf directory and type:

mvn package

The resulting helloswf-1.0.jar will be generated in the target directory.

Run the example

The example consists of four separate executable classes, which are run independently of each other.

Note
If you are using a Linux, macOS, or Unix system, you can run all of them, one after another, in a
single terminal window. If you are running Windows, you should open two additional command-
line instances and navigate to the helloswf directory in each.

156

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/StartWorkflowExecutionRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/Run.html

AWS SDK for Java Developer Guide
Building a Simple Amazon SWF Application

Setting the Java classpath

Although Maven has handled the dependencies for you, to run the example, you'll need to provide
the AWS SDK library and its dependencies on your Java classpath. You can either set the CLASSPATH
environment variable to the location of your AWS SDK libraries and the third-party/lib directory in
the SDK, which includes necessary dependencies:

export CLASSPATH='target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/lib/
*'
java example.swf.hello.HelloTypes

or use the java command's -cp option to set the classpath while running each applications.

java -cp target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/lib/* \
 example.swf.hello.HelloTypes

The style that you use is up to you. If you had no trouble building the code, buth then try to run the
examples and get a series of "NoClassDefFound" errors, it is likely because the classpath is set incorrectly.

Register the domain, workflow and activity types

Before running your workers and the workflow starter, you'll need to register the domain and your
workflow and activity types. The code to do this was implemented in Register a domain, workflow and
activity types (p. 148).

After building, and if you've set the CLASSPATH (p. 157), you can run the registration code by executing
the command:

java aws.example.helloswf.HelloTypes

Start the activity and workflow workers

Now that the types have been registered, you can start the activity and workflow workers. These will
continue to run and poll for tasks until they are killed, so you should either run them in separate terminal
windows, or, if you're running on Linux, macOS, or Unix you can use the & operator to cause each of them
to spawn a separate process when run.

java aws.example.helloswf.ActivityWorker &
java aws.example.helloswf.WorkflowWorker &

If you're running these commands in separate windows, omit the final & operator from each line.

Start the workflow execution

Now that your activity and workflow workers are polling, you can start the workflow execution. This
process will run until the workflow returns a completed status. You should run it in a new terminal
window (unless you ran your workers as new spawned processes by using the & operator).

java aws.example.helloswf.WorkflowStarter

Note
If you want to provide your own input data, which will be passed first to the workflow and then
to the activity, add it to the command-line. For example:

157

AWS SDK for Java Developer Guide
Lambda Tasks

java aws.example.helloswf.WorkflowStarter "Thelonious"

Once you begin the workflow execution, you should start seeing output delivered by both workers and
by the workflow execution itself. When the workflow finally completes, its output will be printed to the
screen.

Complete source for this example
You can browse the complete source for this example on Github in the aws-java-developer-guide
repository.

For more information
• The workers presented here can result in lost tasks if they are shutdown while a workflow poll is still

going on. To find out how to shut down workers gracefully, see Shutting Down Activity and Workflow
Workers Gracefully (p. 161).

• To learn more about Amazon SWF, visit the Amazon SWF home page or view the Amazon SWF
Developer Guide.

• You can use the AWS Flow Framework for Java to write more complex workflows in an elegant Java
style using annotations. To learn more, see the AWS Flow Framework for Java Developer Guide.

Lambda Tasks
As an alternative to, or in conjunction with, Amazon SWF activities, you can use Lambda functions to
represent units of work in your workflows, and schedule them similarly to activities.

This topic focuses on how to implement Amazon SWF Lambda tasks using the AWS SDK for Java. For
more information about Lambda tasks in general, see AWS Lambda Tasks in the Amazon SWF Developer
Guide.

Set up a cross-service IAM role to run your Lambda function
Before Amazon SWF can run your Lambda function, you need to set up an IAM role to give Amazon SWF
permission to run Lambda functions on your behalf. For complete information about how to do this, see
AWS Lambda Tasks.

You will need the Amazon Resource Name (ARN) of this IAM role when you register a workflow that will
use Lambda tasks.

Create a Lambda function
You can write Lambda functions in a number of different languages, including Java. For complete
information about how to author, deploy and use Lambda functions, see the AWS Lambda Developer
Guide.

Note
It doesn't matter what language you use to write your Lambda function, it can be scheduled and
run by anyAmazon SWF workflow, regardless of the language that your workflow code is written
in. Amazon SWF handles the details of running the function and passing data to and from it.

Here's a simple Lambda function that could be used in place of the activity in Building a Simple Amazon
SWF Application (p. 145).

• This version is written in JavaScript, which can be entered directly using the AWS Management
Console:

158

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java/example_code/swf
https://aws.amazon.com/swf/
http://docs.aws.amazon.com/amazonswf/latest/developerguide/
http://docs.aws.amazon.com/amazonswf/latest/developerguide/
http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://aws.amazon.com/lambda/
http://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html
http://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html
http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home

AWS SDK for Java Developer Guide
Lambda Tasks

exports.handler = function(event, context) {
 context.succeed("Hello, " + event.who + "!");
};

• Here is the same function written in Java, which you could also deploy and run on Lambda:

package example.swf.hellolambda;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.util.json.JSONException;
import com.amazonaws.util.json.JSONObject;

public class SwfHelloLambdaFunction implements RequestHandler<Object, Object> {
 @Override
 public Object handleRequest(Object input, Context context) {
 String who = "Amazon SWF";
 if (input != null) {
 JSONObject jso = null;
 try {
 jso = new JSONObject(input.toString());
 who = jso.getString("who");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }
 return ("Hello, " + who + "!");
 }
}

Note
To learn more about deploying Java functions to Lambda, see Creating a Deployment Package
(Java) in the AWS Lambda Developer Guide. You will also want to look at the section titled
Programming Model for Authoring Lambda Functions in Java.

Lambda functions take an event or input object as the first parameter, and a context object as the second,
which provides information about the request to run the Lambda function. This particular function
expects input to be in JSON, with a who field set to the name used to create the greeting.

Register a workflow for use with Lambda
For a workflow to schedule a Lambda function, you must provide the name of the IAM role that
provides Amazon SWF with permission to invoke Lambda functions. You can set this during workflow
registration by using the withDefaultLambdaRole or setDefaultLambdaRole methods of
RegisterWorkflowTypeRequest.

System.out.println("** Registering the workflow type '" + WORKFLOW + "-" + WORKFLOW_VERSION
 + "'.");
try {
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withDefaultLambdaRole(lambda_role_arn)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
}
catch (TypeAlreadyExistsException e) {

159

http://docs.aws.amazon.com/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html
http://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html

AWS SDK for Java Developer Guide
Lambda Tasks

Schedule a Lambda task
Schedule a Lambda task is similar to scheduling an activity. You provide a Decision with a
ScheduleLambdaFunction DecisionType and with ScheduleLambdaFunctionDecisionAttributes.

running_functions == 0 && scheduled_functions == 0) {
AWSLambda lam = AWSLambdaClientBuilder.defaultClient();
GetFunctionConfigurationResult function_config =
 lam.getFunctionConfiguration(
 new GetFunctionConfigurationRequest()
 .withFunctionName("HelloFunction"));
String function_arn = function_config.getFunctionArn();

ScheduleLambdaFunctionDecisionAttributes attrs =
 new ScheduleLambdaFunctionDecisionAttributes()
 .withId("HelloFunction (Lambda task example)")
 .withName(function_arn)
 .withInput(workflow_input);

decisions.add(

In the ScheduleLambdaFuntionDecisionAttributes, you must supply a name, which is the ARN
of the Lambda function to call, and an id, which is the name that Amazon SWF will use to identify the
Lambda function in history logs.

You can also provide optional input for the Lambda function and set its start to close timeout value,
which is the number of seconds that the Lambda function is allowed to run before generating a
LambdaFunctionTimedOut event.

Note
This code uses the AWSLambdaClient to retrieve the ARN of the Lambda function, given the
function name. You can use this technique to avoid hard-coding the full ARN (which includes
your AWS account ID) in your code.

Handle Lambda function events in your decider
Lambda tasks will generate a number of events that you can take action on when polling for
decision tasks in your workflow worker, corresponding to the lifecycle of your Lambda task,
with EventType values such as LambdaFunctionScheduled, LambdaFunctionStarted, and
LambdaFunctionCompleted. If the Lambda function fails, or takes longer to run than its set timeout
value, you will receive either a LambdaFunctionFailed or LambdaFunctionTimedOut event type,
respectively.

boolean function_completed = false;
String result = null;

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 EventType event_type = EventType.fromValue(event.getEventType());
 switch(event_type) {
 case WorkflowExecutionStarted:
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case LambdaFunctionScheduled:
 scheduled_functions++;
 break;

160

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/Decision.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/DecisionType.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/ScheduleLambdaFunctionDecisionAttributes.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/lambda/AWSLambdaClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK for Java Developer Guide
Shutting Down Activity and Workflow Workers Gracefully

 case ScheduleLambdaFunctionFailed:
 scheduled_functions--;
 break;
 case LambdaFunctionStarted:
 scheduled_functions--;
 running_functions++;
 break;
 case LambdaFunctionCompleted:
 running_functions--;
 function_completed = true;
 result = event.getLambdaFunctionCompletedEventAttributes()
 .getResult();
 break;
 case LambdaFunctionFailed:
 running_functions--;
 break;
 case LambdaFunctionTimedOut:
 running_functions--;
 break;

Receive output from your Lambda function
When you receive a LambdaFunctionCompleted EventType, you can retrieve your Lambda function's
return value by first calling getLambdaFunctionCompletedEventAttributes on the HistoryEvent
to get a LambdaFunctionCompletedEventAttributes object, and then calling its getResult method to
retrieve the output of the Lambda function:

 LambdaFunctionCompleted:
running_functions--;

Complete source for this example
You can browse the complete source :github:`<awsdocs/aws-java-developer-guide/tree/master/
doc_source/snippets/helloswf_lambda/> for this example on Github in the aws-java-developer-guide
repository.

Shutting Down Activity and Workflow Workers
Gracefully
The Building a Simple Amazon SWF Application (p. 145) topic provided a complete implementation of
a simple workflow application consisting of a registration application, an activity and workflow worker,
and a workflow starter.

Worker classes are designed to run continuously, polling for tasks sent by Amazon SWF in order to
run activities or return decisions. Once a poll request is made, Amazon SWF records the poller and will
attempt to assign a task to it.

If the workflow worker is terminated during a long poll, Amazon SWF may still try to send a task to the
terminated worker, resulting in a lost task (until the task times out).

One way to handle this situation is to wait for all long poll requests to return before the worker
terminates.

In this topic, we'll rewrite the activity worker from helloswf, using Java's shutdown hooks to attempt a
graceful shutdown of the activity worker.

Here is the complete code:

package aws.example.helloswf;

161

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/EventType.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/LambdaFunctionCompletedEventAttributes.html

AWS SDK for Java Developer Guide
Shutting Down Activity and Workflow Workers Gracefully

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.ActivityTask;
import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

public class ActivityWorkerWithGracefulShutdown {

 private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder.defaultClient();
 private static CountDownLatch waitForTermination = new CountDownLatch(1);
 private static volatile boolean terminate = false;

 private static String executeActivityTask(String input) throws Throwable {
 return "Hello, " + input + "!";
 }

 public static void main(String[] args) {
 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 try {
 terminate = true;
 System.out.println("Waiting for the current poll request" +
 " to return before shutting down.");
 waitForTermination.await(60, TimeUnit.SECONDS);
 }
 catch (InterruptedException e) {
 // ignore
 }
 }
 });
 try {
 pollAndExecute();
 }
 finally {
 waitForTermination.countDown();
 }
 }

 public static void pollAndExecute() {
 while (!terminate) {
 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(new PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST)));

 String taskToken = task.getTaskToken();

 if (taskToken != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '"
 + task.getInput() + "'.");
 result = executeActivityTask(task.getInput());

162

AWS SDK for Java Developer Guide
Registering Domains

 }
 catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withResult(result));
 }
 else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(taskToken)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }
 }
 }
}

In this version, the polling code that was in the main function in the original version has been moved
into its own method, pollAndExecute.

The main function now uses a CountDownLatch in conjunction with a shutdown hook to cause the
thread to wait for up to 60 seconds after its termination is requested before letting the thread shut
down.

Registering Domains
Every workflow and activity in Amazon SWF needs a domain to run in.

To register an Amazon SWF domain

1. Create a new RegisterDomainRequest object, providing it with at least the domain name and
workflow execution retention period (these parameters are both required).

2. Call the AmazonSimpleWorkflowClient.registerDomain method with the RegisterDomainRequest
object.

3. Catch the DomainAlreadyExistsException if the domain you're requesting already exists (in which
case, no action is usually required).

The following code demonstrates this procedure:

public void register_swf_domain(AmazonSimpleWorkflowClient swf, String name)
{
 RegisterDomainRequest request = new RegisterDomainRequest().withName(name);
 request.setWorkflowExecutionRetentionPeriodInDays("10");
 try
 {
 swf.registerDomain(request);
 }
 catch (DomainAlreadyExistsException e)
 {
 System.out.println("Domain already exists!");

163

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/Runtime.html
https://aws.amazon.com/swf/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#registerDomain-com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html

AWS SDK for Java Developer Guide
Listing Domains

 }
}

Listing Domains
You can list the Amazon SWF domains associated with your account and AWS region by registration type.

To list Amazon SWF domains

1. Create a ListDomainsRequest object, and specify the registration status of the domains that you're
interested in—this is required.

2. Call AmazonSimpleWorkflowClient.listDomains with the ListDomainRequest object. Results are
provided in a DomainInfos object.

3. Call getDomainInfos on the returned object to get a list of DomainInfo objects.
4. Call getName on each DomainInfo object to get its name.

The following code demonstrates this procedure:

public void list_swf_domains(AmazonSimpleWorkflowClient swf)
{
 ListDomainsRequest request = new ListDomainsRequest();
 request.setRegistrationStatus("REGISTERED");
 DomainInfos domains = swf.listDomains(request);
 System.out.println("Current Domains:");
 for (DomainInfo di : domains.getDomainInfos())
 {
 System.out.println(" * " + di.getName());
 }
}

164

https://aws.amazon.com/swf/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/ListDomainsRequest.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#listDomains-com.amazonaws.services.simpleworkflow.model.ListDomainsRequest-
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/DomainInfos.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/model/DomainInfos.html#getDomainInfos--
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/simpleworkflow/model/DomainInfo.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws//services/simpleworkflow/model/DomainInfo.html#getName--

AWS SDK for Java Developer Guide

Document History
This topic describes important changes to the AWS SDK for Java Developer Guide over the course of its
history.

This documentation was built on: Dec 08, 2017

Nov 2, 2017

Added cryptography examples for Amazon S3 encryption client, including new topics: Using Amazon
S3 Client-Side Encryption (p. 126) and Amazon S3 Client-Side Encryption with AWS KMS Managed
Keys (p. 129) and Amazon S3 Client-Side Encryption with Client Master Keys (p. 126).

Apr 14, 2017

Made a number of updates to the Amazon S3 Examples Using the AWS SDK for Java (p. 104) section,
including new topics: Managing Amazon S3 Access Permissions for Buckets and Objects (p. 112) and
Configuring an Amazon S3 Bucket as a Website (p. 124).

Apr 04, 2017

A new topic, Enabling Metrics for the AWS SDK for Java (p. 29) describes how to generate
application and SDK performance metrics for the AWS SDK for Java.

Apr 03, 2017

Added new CloudWatch examples to the CloudWatch Examples Using the AWS SDK for Java (p. 35)
section: Getting Metrics from CloudWatch (p. 35), Publishing Custom Metric Data (p. 36), Working
with CloudWatch Alarms (p. 37), Using Alarm Actions in CloudWatch (p. 39), and Sending Events to
CloudWatch (p. 40)

Mar 27, 2017

Added more Amazon EC2 examples to the Amazon EC2 Examples Using the AWS SDK for Java (p. 52)
section: Managing Amazon EC2 Instances (p. 80), Using Elastic IP Addresses in Amazon EC2 (p. 83),
Using Regions and Availability Zones (p. 85), Working with Amazon EC2 Key Pairs (p. 87), and
Working with Security Groups in Amazon EC2 (p. 88).

Mar 21, 2017

Added a new set of IAM examples to the IAM Examples Using the AWS SDK for Java (p. 91) section:
Managing IAM Access Keys (p. 91), Managing IAM Users (p. 94), Using IAM Account Aliases (p. 96),
Working with IAM Policies (p. 98), and Working with IAM Server Certificates (p. 101)

Mar 13, 2017

Added three new topics to the Amazon SQS section: Enabling Long Polling for Amazon SQS Message
Queues (p. 137), Setting Visibility Timeout in Amazon SQS (p. 138), and Using Dead Letter Queues in
Amazon SQS (p. 140).

Jan 26, 2017

Added a new Amazon S3 topic, Using TransferManager for Amazon S3 Operations (p. 117), and a
new Best Practices for AWS Development with the AWS SDK for Java (p. 11) topic in the Using the
AWS SDK for Java (p. 11) section.

Jan 16, 2017

Added a new Amazon S3 topic, Managing Access to Amazon S3 Buckets Using Bucket
Policies (p. 114), and two new Amazon SQS topics, Working with Amazon SQS Message
Queues (p. 133) and Sending, Receiving, and Deleting Amazon SQS Messages (p. 135).

165

AWS SDK for Java Developer Guide

Dec 16, 2016

Added new example topics for DynamoDB: Working with Tables in DynamoDB (p. 43) and Working
with Items in DynamoDB (p. 47).

Sep 26, 2016

The topics in the Advanced section have been moved into Using the AWS SDK for Java (p. 11), since
they really are central to using the SDK.

Aug 25, 2016

A new topic, Creating Service Clients (p. 12), has been added to Using the AWS SDK for Java (p. 11),
which demonstrates how to use client builders to simplify the creation of AWS service clients.

The AWS SDK for Java Code Examples (p. 33) section has been updated with new examples for
S3 (p. 104) which are backed by a repository on GitHub that contains the complete example code.

May 02, 2016

A new topic, Asynchronous Programming (p. 20), has been added to the Using the AWS SDK for
Java (p. 11) section, describing how to work with asynchronous client methods that return Future
objects or that take an AsyncHandler.

Apr 26, 2016

The SSL Certificate Requirements topic has been removed, since it is no longer relevant. Support for
SHA-1 signed certificates was deprecated in 2015 and the site that housed the test scripts has been
removed.

Mar 14, 2016

Added a new topic to the Amazon SWF section: Lambda Tasks (p. 158), which describes how to
implement a Amazon SWF workflow that calls Lambda functions as tasks as an alternative to using
traditional Amazon SWF activities.

Mar 04, 2016

The Amazon SWF Examples Using the AWS SDK for Java (p. 144) section has been updated with new
content:

• Amazon SWF Basics (p. 144)– Provides basic information about how to include SWF in your
projects.

• Building a Simple Amazon SWF Application (p. 145)– A new tutorial that provides step-by-step
guidance for Java developers new to Amazon SWF.

• Shutting Down Activity and Workflow Workers Gracefully (p. 161)– Describes how you can
gracefully shut down Amazon SWF worker classes using Java's concurrency classes.

Feb 23, 2016

The source for the AWS SDK for Java Developer Guide has been moved to aws-java-developer-guide.

Dec 28, 2015

Setting the JVM TTL for DNS Name Lookups (p. 29) has been moved from Advanced into Using the
AWS SDK for Java (p. 11), and has been rewritten for clarity.

Using the SDK with Apache Maven (p. 7) has been updated with information about how to include
the SDK's bill of materials (BOM) in your project.

Aug 04, 2015

SSL Certificate Requirements is a new topic in the Getting Started (p. 3) section that describes AWS'
move to SHA256-signed certificates for SSL connections, and how to fix early 1.6 and previous Java
environments to use these certificates, which are required for AWS access after September 30, 2015.

166

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-java-developer-guide

AWS SDK for Java Developer Guide

Note
Java 1.7+ is already capable of working with SHA256-signed certificates.

May 14, 2014

The introduction (p. 1) and getting started (p. 3) material has been heavily revised to support the
new guide structure and now includes guidance about how to Set up AWS Credentials and Region
for Development (p. 6).

The discussion of code samples (p. 33) has been moved into its own topic in the Additional
Documentation and Resources (p. 1) section.

Information about how to view the SDK revision history (p. 2) has been moved into the introduction.
May 9, 2014

The overall structure of the AWS SDK for Java documentation has been simplified, and the Getting
Started (p. 3) and Additional Documentation and Resources (p. 1) topics have been updated.

New topics have been added:
• Working with AWS Credentials (p. 14)– discusses the various ways that you can specify credentials

for use with the AWS SDK for Java.
• Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 (p. 56)– provides information

about how to securely specify credentials for applications running on EC2 instances.
Sep 9, 2013

This topic, Document History, tracks changes to the AWS SDK for Java Developer Guide. It is intended
as a companion to the release notes history.

167

	AWS SDK for Java
	Table of Contents
	AWS SDK for Java Developer Guide
	AWS SDK for Java 2.0 Developer Preview
	Additional Documentation and Resources
	Eclipse IDE Support
	Developing AWS Applications for Android
	Viewing the SDK's Revision History
	Building Java Reference Documentation for Earlier SDK versions

	Getting Started
	Sign Up for AWS and Create an IAM User
	Set up the AWS SDK for Java
	Prerequisites
	Including the SDK in your project
	Downloading and extracting the SDK
	Installing previous versions of the SDK
	Installing a Java Development Environment
	Choosing a JVM

	Set up AWS Credentials and Region for Development
	Setting AWS Credentials
	Setting the AWS Region

	Using the SDK with Apache Maven
	Create a new Maven package
	Configure the SDK as a Maven dependency
	Specifying individual SDK modules
	Importing all SDK modules

	Build your project
	Build the SDK with Maven

	Using the SDK with Gradle

	Using the AWS SDK for Java
	Best Practices for AWS Development with the AWS SDK for Java
	Amazon S3
	Avoid ResetExceptions

	Creating Service Clients
	Obtaining a Client Builder
	Creating Async Clients
	To create an async DynamoDB client with the default ExecutorService
	To create an async client with a custom executor

	Using DefaultClient
	To create a default service client

	Client Lifecycle
	To shut down a client

	Working with AWS Credentials
	Using the Default Credential Provider Chain
	Setting Credentials
	Setting an Alternate Credentials Profile
	Setting an Alternate Credentials File Location
	To override the default credentials file location

	AWS Credentials File Format
	Loading Credentials

	Specifying a Credential Provider or Provider Chain
	Explicitly Specifying Credentials
	More Info

	AWS Region Selection
	Checking for Service Availability in an AWS Region
	Choosing a Region
	Choosing a Specific Endpoint
	Automatically Determine the AWS Region from the Environment
	Default Region Provider Chain

	Exception Handling
	Why Unchecked Exceptions?
	AmazonServiceException (and Subclasses)
	AmazonClientException

	Asynchronous Programming
	Java Futures
	Asynchronous Callbacks
	Best Practices
	Callback Execution
	Thread Pool Configuration
	Amazon S3 Asynchronous Access

	Logging AWS SDK for Java Calls
	Download the Log4J JAR
	Setting the Classpath
	Service-Specific Errors and Warnings
	Request/Response Summary Logging
	Verbose Wire Logging

	Client Networking Configuration
	Proxy Configuration
	HTTP Transport Configuration
	Local Address
	Maximum Connections
	Proxy Options
	Timeouts and Error Handling

	TCP Socket Buffer Size Hints

	Access Control Policies
	Amazon S3 Example
	Amazon SQS Example
	Amazon SNS Example

	Setting the JVM TTL for DNS Name Lookups
	How to Set the JVM TTL

	Enabling Metrics for the AWS SDK for Java
	How to Enable SDK Metric Generation
	Available Metric Types
	More Information

	AWS SDK for Java Code Examples
	AWS SDK for Java Code Samples
	How to Get the Samples
	Building and Running the Samples Using the Command Line
	Prerequisites
	Running the Samples

	Building and Running the Samples Using the Eclipse IDE
	Prerequisites
	Running the Samples

	CloudWatch Examples Using the AWS SDK for Java
	Getting Metrics from CloudWatch
	Listing Metrics
	More Information

	Publishing Custom Metric Data
	Publish Custom Metric Data
	More Information

	Working with CloudWatch Alarms
	Create an Alarm
	List Alarms
	Delete Alarms
	More Information

	Using Alarm Actions in CloudWatch
	Enable Alarm Actions
	Disable Alarm Actions
	More Information

	Sending Events to CloudWatch
	Add Events
	Add Rules
	Add Targets
	More Information

	DynamoDB Examples Using the AWS SDK for Java
	Working with Tables in DynamoDB
	Create a Table
	Create a Table with a Simple Primary Key
	Create a Table with a Composite Primary Key

	List Tables
	Describe (Get Information about) a Table
	Modify (Update) a Table
	Delete a Table
	More Info

	Working with Items in DynamoDB
	Retrieve (Get) an Item from a Table
	Add a New Item to a Table
	Update an Existing Item in a Table
	More Info

	Managing Tomcat Session State with DynamoDB
	Download the Session Manager
	Configure the Session-State Provider
	Configure a Tomcat Server to Use DynamoDB as the Session-State Server
	Configure Your AWS Security Credentials
	Configure with Elastic Beanstalk

	Manage Tomcat Session State with DynamoDB
	Options Specified in context.xml
	Troubleshooting
	Limitations

	Amazon EC2 Examples Using the AWS SDK for Java
	Tutorial: Starting an EC2 Instance
	Prerequisites
	Create an Amazon EC2 Security Group
	Create a Key Pair
	Run an Amazon EC2 Instance

	Using IAM Roles to Grant Access to AWS Resources on Amazon EC2
	The default provider chain and EC2 instance profiles
	Walkthrough: Using IAM roles for EC2 instances
	Create an IAM Role
	Launch an EC2 Instance and Specify Your IAM Role
	Create your Application
	Transfer the Compiled Program to Your EC2 Instance
	Run the Sample Program on the EC2 Instance

	Tutorial: Amazon EC2 Spot Instances
	Overview
	Prerequisites
	Step 1: Setting Up Your Credentials
	Step 2: Setting Up a Security Group
	Step 3: Submitting Your Spot Request
	Step 4: Determining the State of Your Spot Request
	Step 5: Cleaning Up Your Spot Requests and Instances
	Bringing It All Together
	Next Steps

	Tutorial: Advanced Amazon EC2 Spot Request Management
	Prerequisites
	Setting up your credentials
	Setting up a security group
	Detailed spot instance request creation options
	Persistent vs. one-time requests
	Limiting the duration of a request
	Grouping your Amazon EC2 spot instance requests
	How to persist a root partition after interruption or termination
	How to tag your spot requests and instances
	Tagging requests
	Tagging instances

	Canceling spot requests and terminating instances
	Canceling a spot request
	Terminating spot instances

	Bringing it all together

	Managing Amazon EC2 Instances
	Creating an Instance
	Starting an Instance
	Stopping an Instance
	Rebooting an Instance
	Describing Instances
	Monitoring an Instance
	Stopping Instance Monitoring
	More Information

	Using Elastic IP Addresses in Amazon EC2
	Allocating an Elastic IP Address
	Describing Elastic IP Addresses
	Releasing an Elastic IP Address
	More Information

	Using Regions and Availability Zones
	Describing Regions
	Describing Availability Zones
	More Information

	Working with Amazon EC2 Key Pairs
	Creating a Key Pair
	Describing Key Pairs
	Deleting a Key Pair
	More Information

	Working with Security Groups in Amazon EC2
	Creating a Security Group
	Configuring a Security Group
	Describing Security Groups
	Deleting a Security Group
	More Information

	IAM Examples Using the AWS SDK for Java
	Managing IAM Access Keys
	Creating an Access Key
	Listing Access Keys
	Retrieving an Access Key's Last Used Time
	Activating or Deactivating Access Keys
	Deleting an Access Key
	More Information

	Managing IAM Users
	Creating a User
	Listing Users
	Updating a User
	Deleting a User
	More Information

	Using IAM Account Aliases
	Creating an Account Alias
	Listing Account Aliases
	Deleting an account alias
	More Information

	Working with IAM Policies
	Creating a Policy
	Getting a Policy
	Attaching a Role Policy
	Listing Attached Role Policies
	Detaching a Role Policy
	More Information

	Working with IAM Server Certificates
	Getting a Server Certificate
	Listing Server Certificates
	Updating a Server Certificate
	Deleting a Server Certificate
	More Information

	Amazon S3 Examples Using the AWS SDK for Java
	Creating, Listing, and Deleting Amazon S3 Buckets
	Create a Bucket
	List Buckets
	Delete a Bucket
	Remove Objects from an Unversioned Bucket Before Deleting It
	Remove Objects from a Versioned Bucket Before Deleting It
	Delete an Empty Bucket

	Performing Operations on Amazon S3 Objects
	Upload an Object
	List Objects
	Download an Object
	Copy, Move, or Rename Objects
	Delete an Object
	Delete Multiple Objects at Once

	Managing Amazon S3 Access Permissions for Buckets and Objects
	Get the Access Control List for a Bucket
	Set the Access Control List for a Bucket
	Get the Access Control List for an Object
	Set the Access Control List for an Object
	More Information

	Managing Access to Amazon S3 Buckets Using Bucket Policies
	Set a Bucket Policy
	Use the Policy Class to Generate or Validate a Policy

	Get a Bucket Policy
	Delete a Bucket Policy
	More Info

	Using TransferManager for Amazon S3 Operations
	Upload Files and Directories
	Upload a Single File
	Upload a List of Files
	Upload a Directory

	Download Files or Directories
	Download a Single File
	Download a Directory

	Copy Objects
	Wait for a Transfer to Complete
	Get Transfer Status and Progress
	Poll the Current Progress of a Transfer
	Get Transfer Progress with a ProgressListener
	Get the Progress of Subtransfers

	More Info

	Configuring an Amazon S3 Bucket as a Website
	Set a Bucket's Website Configuration
	Get a Bucket's Website Configuration
	Delete a Bucket's Website Configuration
	More Information

	Using Amazon S3 Client-Side Encryption
	Amazon S3 Client-Side Encryption with Client Master Keys
	Required Imports
	Encryption-Only Mode
	Authenticated Encryption Mode
	Strict Authenticated Encryption

	Amazon S3 Client-Side Encryption with AWS KMS Managed Keys
	Required Imports
	Encryption-Only Mode
	Authenticated Encryption Mode
	Strict Authenticated Encryption

	Amazon SQS Examples Using the AWS SDK for Java
	Working with Amazon SQS Message Queues
	Create a Queue
	Listing Queues
	Get the URL for a Queue
	Delete a Queue
	More Info

	Sending, Receiving, and Deleting Amazon SQS Messages
	Send a Message
	Send Multiple Messages at Once

	Receive Messages
	Delete Messages after Receipt
	More Info

	Enabling Long Polling for Amazon SQS Message Queues
	Enabling Long Polling when Creating a Queue
	Enabling Long Polling on an Existing Queue
	Enabling Long Polling on Message Receipt
	More Info

	Setting Visibility Timeout in Amazon SQS
	Setting the Message Visibility Timeout for a Single Message
	Setting the Message Visibility Timeout for Multiple Messages at Once
	More Info

	Using Dead Letter Queues in Amazon SQS
	Creating a Dead Letter Queue
	Designating a Dead Letter Queue for a Source Queue
	More Info

	Getting Temporary Credentials with AWS STS
	(Optional) Activate and use an AWS STS region
	Retrieve temporary security credentials from AWS STS
	Use the temporary credentials to access AWS resources
	For more information

	Amazon SWF Examples Using the AWS SDK for Java
	Amazon SWF Basics
	Dependencies
	Imports
	Using the SWF client class

	Building a Simple Amazon SWF Application
	About the example
	Prerequisites
	Development environment
	AWS access

	Create a SWF project
	Code the project
	Common steps for all source files
	Register a domain, workflow and activity types
	Implement the activity worker
	Implement the workflow worker
	Implement the workflow starter

	Build the example
	Run the example
	Setting the Java classpath
	Register the domain, workflow and activity types
	Start the activity and workflow workers
	Start the workflow execution

	Complete source for this example
	For more information

	Lambda Tasks
	Set up a cross-service IAM role to run your Lambda function
	Create a Lambda function
	Register a workflow for use with Lambda
	Schedule a Lambda task
	Handle Lambda function events in your decider
	Receive output from your Lambda function
	Complete source for this example

	Shutting Down Activity and Workflow Workers Gracefully
	Registering Domains
	Listing Domains

	Document History

