login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256329 Number of partitions of 7n into exactly 4 parts. 3
0, 3, 23, 72, 169, 321, 551, 864, 1285, 1815, 2484, 3289, 4263, 5400, 6736, 8262, 10018, 11990, 14222, 16698, 19464, 22500, 25857, 29511, 33516, 37845, 42555, 47616, 53089, 58939, 65231, 71928, 79097, 86697, 94800, 103361, 112455, 122034, 132176, 142830 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-2,0,0,1,1,-1).

FORMULA

G.f.: x*(x^8+14*x^7+38*x^6+67*x^5+80*x^4+74*x^3+46*x^2+20*x+3) / ((x-1)^4*(x+1)^2*(x^2+1)*(x^2+x+1)).

EXAMPLE

For n=1 the 3 partitions of 7*1 = 7 are [1,1,1,4], [1,1,2,3] and [1,2,2,2].

PROG

(PARI)

concat(0, vector(40, n, k=0; forpart(p=7*n, k++, , [4, 4]); k))

(PARI)

concat(0, Vec(x*(x^8+14*x^7+38*x^6+67*x^5+80*x^4+74*x^3+46*x^2+20*x+3) / ((x-1)^4*(x+1)^2*(x^2+1)*(x^2+x+1)) + O(x^100)))

CROSSREFS

Cf. A256327 (5n), A256328 (6n).

Sequence in context: A163210 A163211 A126335 * A196649 A027701 A201482

Adjacent sequences:  A256326 A256327 A256328 * A256330 A256331 A256332

KEYWORD

nonn,easy

AUTHOR

Colin Barker, Mar 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 9 01:23 EST 2017. Contains 294414 sequences.