login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190761 G.f. satisfies: A(x) = x + A(A(x))^2 - A(A(x))^3. 4
1, 1, 3, 14, 84, 592, 4670, 40108, 368670, 3586321, 36632763, 390694000, 4332131804, 49777965585, 591173511887, 7241437905916, 91331043654080, 1184322726542850, 15770586926609276, 215423253906689779, 3015794930248824111, 43233248160139146114 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Compare to a formula for a g.f. of the Catalan numbers (A000108):

C(x) = x + C(x)*C(C(x)) - C(x)*C(C(x))^2 where C(x) = (1-sqrt(1-4*x))/2.

LINKS

Table of n, a(n) for n=1..22.

FORMULA

G.f. satisfies: A( x - A(x)^2 + A(x)^3 ) = x.

EXAMPLE

G.f.: A(x) = x + x^2 + 3*x^3 + 14*x^4 + 84*x^5 + 592*x^6 + 4670*x^7 +...

Related series begin:

A(A(x)) = x + 2*x^2 + 8*x^3 + 44*x^4 + 294*x^5 + 2244*x^6 + 18888*x^7 +...

A(A(x))^2 = x^2 + 4*x^3 + 20*x^4 + 120*x^5 + 828*x^6 + 6368*x^7 +...

A(A(x))^3 = x^3 + 6*x^4 + 36*x^5 + 236*x^6 + 1698*x^7 +...

PROG

(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=serreverse(x-A^2+A^3+x*O(x^n))); polcoeff(A, n)}

CROSSREFS

Sequence in context: A074535 A256337 A256330 * A005700 A220911 A088717

Adjacent sequences:  A190758 A190759 A190760 * A190762 A190763 A190764

KEYWORD

nonn

AUTHOR

Paul D. Hanna, May 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 14:20 EST 2017. Contains 294936 sequences.