The Human Strategy

Alex "Sandy" Pentland [10.30.17]

The idea of a credit assignment function, reinforcing “neurons” that work, is the core of current AI. And if you make those little neurons that get reinforced smarter, the AI gets smarter. So, what would happen if the neurons were people? People have lots of capabilities; they know lots of things about the world; they can perceive things in a human way. What would happen if you had a network of people where you could reinforce the ones that were helping and maybe discourage the ones that weren't?

That begins to sound like a society or a company. We all live in a human social network. We're reinforced for things that seem to help everybody and discouraged from things that are not appreciated. Culture is something that comes from a sort of human AI, the function of reinforcing the good and penalizing the bad, but applied to humans and human problems. Once you realize that you can take this general framework of AI and create a human AI, the question becomes, what's the right way to do that? Is it a safe idea? Is it completely crazy?

ALEX "SANDY" PENTLAND is a professor at MIT, and director of the MIT Connection Science and Human Dynamics labs. He is a founding member of advisory boards for Google, AT&T, Nissan, and the UN Secretary General. He is the author of Social Physics, and Honest Signal. Sandy Pentland's Edge Bio page

We Are in the Presence of a Formidable Creature

Andrian Kreye [10.13.17]

We Are in the Presence of a Formidable Creature

Artificial intelligence changes science and technology. Clear. But what does it do with society? Engineers, artists and scientists come to an inescapable realization.

By Andrian Kreye, October 13, 2017

[Editor’s Note: Edge was in London once again to continue its ongoing collaboration with The Serpentine Gallery and its “supercurator” Hans Ulrich Obrist. Longtime Edge contributor Andrian Kreye flew in from Munich for the event, and, wearing his hat as Feuilleton editor of the influential German national newspaper Süddeutsche Zeitung, wrote the front page lede story in the weekend edition. We are pleased to run the following translated excerpt. —JB]

It is not at all mistaken to look for insight into artificial intelligence by reading the folk tales in 1001 Nights. The writer Adam Thirlwell and the literary scholar Marina Warner, currently the President of the Royal Society of Literature, did just that last week in the great hall of the London City Hall. In the mighty spiral dome overlooking the Thames and Tower Bridge, a few dozen scientists, engineers, artists and writers met to look for coherent images for the artificial intelligence.

Sitting in the architecturally high-quality glistening autumn light, they publicly thought about whether the Oriental fairy-tale genie Djinn, this serviceable wish filler of smokeless fire, was not the perfect symbol for those digital forces, which are currently being unleashed everywhere. Not only could you see the digital flare as a contemporary image for the smoke-free fire, but it also poses the question of the controllability of this rebellious spirit of the bottle. Whoever frees him from his divine imprisonment has no idea of what Djinn's magical powers could do.

Shut Up and Measure

Brian G. Keating [10.20.17]

What is fascinating to me is that we are now hoping, with modern measurements, to probe the early Universe. In doing so, we’re encountering deep questions about the scientific method and questions about what is fundamental to physics. When we look out on the Universe, we’re looking through this dirty window, literally a dusty window. We look out through dust in our galaxy. And what is that dust? I like to call it nanoplanets, tiny grains of iron and carbon and silicon—all these things that are the matter of our solar system. They’re the very matter that Galileo was looking through when he first glimpsed the Pleiades and the stars beyond the solar system for the first time.

When we look out our telescopes, we never see just what we're looking for. We have to contend with everything in the foreground. And thank goodness for that dust in the foreground, for without it, we would not be here.

Professor BRIAN KEATING is an astrophysicist with the University of California San Diego’s Department of Physics. He and his team develop instrumentation to study the early universe at radio, microwave, and infrared wavelengths. He is the author of over 100 scientific publications and holds two U.S. patents.  Brian Keating's Edge Bio page

Edge Master Class 2008: Richard Thaler, Sendhil Mullainathan, Daniel Kahneman - A Short Course in Behavioral Economics

UPDATE: RICHARD THALER WINS 2017 NOBEL PRIZE IN ECONOMICS [10.9.17]

[View the Royal Swedish Academy of Sciences Press Release]


[expand]
Daniel Kahneman & Richard Thaler
Edge Retreat, Spring Mountain Vineyard, Napa, California, August 22, 2013

What we're saying is that there is a technology emerging from behavioral economics. It's not only an abstract thing. You can do things with it. We are just at the beginning. I thought that the input of psychology into behavioral economics was done. But hearing Sendhil was very encouraging because there was a lot of new psychology there. That conversation is continuing and it looks to me as if that conversation is going to go forward. It's pretty intuitive, based on research, good theory, and important. — Daniel Kahneman

Richard Thaler Sendhil Mullainathan Daniel Kahneman

Edge Master Class 2008 
Richard ThalerSendhil Mullainathan, Daniel Kahneman

Sonoma, CA, July 25-27, 2008

A decade ago, Edge convened its first "Master Class" in Napa, California, in which psychologist and Nobel Laureate Daniel Kahneman taught a nine-hour course: "A Short Course On Thinking About Thinking." The attendees were a "who's who" of the new global business culture. 

The following year, in 2008, we invited Richard Thaler, the father of behavioral economics, to continue the conversation by organizing and leading the class: "A Short Course On Behavioral Economics." 

Thaler arrived at Stanford in the 1970s to work with Kahneman and his late partner, Amos Tversky. Thaler, in turn, asked Harvard economist and former student Sendhil Mullainathan, as well as Kahneman, to teach the class with him.

The entire text to the 2008 Master Class is available online, along with video highlights of the talks and a photo gallery. The text also appears in a book privately published by Edge Foundation, Inc.

Nathan Myhrvold Jeff Bezos Elon Musk

Whereas the focus for Kahneman's 2007 Master Class was on psychology, in 2008 the emphasis shifted to behavioral economics. As Kahneman noted: "There's new technology emerging from behavioral economics, and we are just starting to make use of that. I thought the input of psychology into economics was finished, but clearly it's not!"

The Master Classes are the most recent iteration in Edge's development, which began its activities under the name "The Reality Club" in 1981. Edge is different from The Algonquin, The Apostles, The Bloomsbury Group, or The Club, but it offers the same quality of intellectual adventure. The closest resemblances are to The Invisible College and the Lunar Society of Birmingham.

In contemporary terms, this results in Edge having a Google PageRank of "8," the same as The Atlantic, Corriere della Sera, The Economist, the Financial Times, Le Monde, The New Yorker, the New Statesman, Vanity Fair, the Wall Street Journal, the Washington Post, among others. 

The early seventeenth-century Invisible College was a precursor to the Royal Society. Its members consisted of scientists such as Robert Boyle, John Wallis, and Robert Hooke. The Society's common theme was to acquire knowledge through experimental investigation. Another example is the nineteenth-century Lunar Society of Birmingham, an informal club of the leading cultural figures of the new industrial age—James Watt, Erasmus Darwin, Josiah Wedgwood, Joseph Priestley, and Benjamin Franklin.

In a similar fashion, Edge, through its Master Classes, gathers together intellectuals and technology pioneers. George Dyson, in his summary (below) of the second day of the proceedings, writes:

Retreating to the luxury of Sonoma to discuss economic theory in mid-2008 conveys images of Fiddling while Rome Burns. Do the architects of Microsoft, Amazon, Google, PayPal, and Facebook have anything to teach the behavioral economists—and anything to learn? So what? What's new?? As it turns out, all kinds of things are new. Entirely new economic structures and pathways have come into existence in the past few years.

Indeed, as one distinguished European visitor noted, the weekend, which involved the two-day Master Class in Sonoma followed by a San Francisco dinner, was "a remarkable gathering of outstanding minds. These are the people that are rewriting our global culture."

— John Brockman, Editor

Sean Parker Salar Kamangar  Evan Williams

RICHARD H. THALER is the Ralph and Dorothy Keller Distinguished Service Professor of Behavioral Science and Economics at Chicago's Booth School of Business and director of the University of Chicago’s Center for Decision Research. He is coauthor (with Cass Sunstein) of Nudge: Improving Decisions About Health, Wealth, and Happiness, and author of Misbehaving. Thaler is the recipient of the 2017 Nobel Prize in economics. Richard Thaler's Edge Bio Page

Reality is an Activity of the Most August Imagination

Tim O'Reilly [10.2.17]

Wallace Stevens had an immense insight into the way that we write the world. We don't just read it, we don't just see it, we don't just take it in. In "An Ordinary Evening in New Haven," he talks about the dialogue between what he calls the Naked Alpha and the Hierophant Omega, the beginning, the raw stuff of reality, and what we make of it. He also said “reality is an activity of the most august imagination.”

Our job is to imagine a better future, because if we can imagine it, we can create it. But it starts with that imagination. The future that we can imagine shouldn't be a dystopian vision of robots that are wiping us out, of climate change that is going to destroy our society. It should be a vision of how we will rise to the challenges that we face in the next century, that we will build an enduring civilization, and that we will build a world that is better for our children and grandchildren and great-grandchildren. It should be a vision that we will become one of those long-lasting species rather than a flash in the pan that wipes itself out because of its lack of foresight.

We are at a critical moment in human history. In the small, we are at a critical moment in our economy, where we have to make it work better for everyone, not just for a select few. But in the large, we have to make it better in the way that we deal with long-term challenges and long-term problems.

TIM O'REILLY is the founder and CEO of O'Reilly Media, Inc., and the author of WTF?: What’s the Future and Why It’s Up to Us. Tim O'Reilly's Edge Bio page

News Update on "Philip Pushes the Button"


NASA Langley's shy 'mad scientist' dies 
By Mike Holtzclaw [September 3, 2017]

Philip Brockman was shy by nature and rarely talked in specifics about the work that he did at NASA Langley Research Center during a career that spanned four decades.

Brockman, a research physicist, was involved with the early U.S. space program and later did work that led to tremendous advances in airline safety. But his own brother did not fully grasp the scope of that work until Brockman died on Tuesday at age 79 after a long illness.

This prompted John Brockman to talk with some of his brother’s old colleagues and to read some accounts that he had never seen before.

“He took a lot of pride in his work — he certainly did,” John Brockman said. “But I didn’t know what he was up to. He was reticent. He always wanted to stay behind the scenes. He would often contribute to papers and not want his name on them. That was just his way.”

Philip Brockman spent much of his early career in magnetoplasmadynamics (MPD), a form of propulsion. Macon “Mike” Ellis, head of the MDP branch, would refer to this group as the “mad scientists” of NASA Langley.

Their work was key to the Mercury Program that sent our nation’s first astronauts into space. Brockman also later devoted much of his work to improving safety standards for commercial flight.

“I remember him at JFK (airport in New York) spending 12 hours at the end of a runway in the cold winter wind, measuring things and looking for ducks and geese and air currents,” John Brockman said. “I didn’t realize what that was really about until I saw a graph on Tuesday night showing the sharp decline in deaths per million passengers since 1970. He was a technical lead in the FAA-NASA project to do that, and I didn’t even know it.”

Steven Harrah, who spent a decade as the NASA Windshear Radar Principle Investigator, said that Philip Brockman “helped establish the engineering fundamentals of airborne and space-based lidar that has led to numerous aviation safety enhancements and a greater understanding of our atmosphere and its complex processes.”

Brockman was a native of the Boston area and came to NASA Langley in the late 1950s after graduating from University of Massachusetts. He later would earn a master’s degree in physics from the College of William and Mary in 1963.

Dick Davis, a senior scientist who retired from NASA Langley in 2007, worked with Brockman in the area of remote sensing and the use of radar and other technology to detect turbulence, wind shears and other dangers.

“He was very much a cooperative guy, very easy to work with and good on teams,” Davis said. ”He seemed to think a lot about other people. He was very good about suggesting ways we could work together to do things.”

Engineer Grady Koch remembered Brockman as “a valued mentor” as he began his career at Langley building Doppler lidar for atmospheric studies.

“He was a wealth of knowledge and always happy to lend advice,” Koch said. “I’ll particularly miss Phil for his skill in reducing the esoteric nature of new technologies to practical implementation and for his entertaining wit while doing so.”

Brockman retired in 2003 and relocated to Raleigh, N.C., but he continued to contribute information via regular conference calls with his NASA colleagues. He is survived by his wife, Alexandra Campbell; his brother, John Brockman (wife Katinka); nephew Max Brockman (wife Jennie); and great-niece Juliet and great-nephew Miles.

Philip Pushes The Button

PHILIP BROCKMAN
Rocket Scientist
1937 - 2017


Research physicist Philip Brockman pushes the button to start NASA's 
MPD-arc plasma accelerator in December 1964
 (NASA), Fred Jones

"While the Hydrodynamics Division sank at Langley, a few new research fields bobbed to the surface to become potent forces in the intellectual life of the laboratory. Most notable of these was magnetoplasmadynamics (MPD)-a genuine product of the space age and an esoteric field of scientific research for an engineering-and applications-oriented place like Langley. If any 'mad scientists' were working at Langley in the 1960s, they were the plasma physicists, nuclear fusion enthusiasts, and space-phenomena researchers found in the intense and, for a while, rather glamourous little group investigating MPD. No group of researchers in NASA moved farther away from classical aerodynamics or from the NACA's traditional focus on the problems of airplanes winging their way through the clouds than those involved with MPD." 

— James R. Hansen, from "The Mad Scientists of MPD" in Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo 


PHILIP PUSHES THE BUTTON

In 1958, the Eisenhower administration, shocked by the 1957 launch of Sputnik, established NASA to be responsible for the civilian space program, as well as aeronautics and aerospace research. NASA absorbed the National Advisory Committee for Aeronautics (NACA), the Langley Aeronautical Laboratory in Hampton, Virginia, the Ames Aeronautical Laboratory in Moffett Field in Silicon Valley, and the Jet Propulsion Laboratory, operated by Caltech.

Philip Brockman was fortunate to arrive at the renamed Langley Research Center in 1959 as part of the first group of newly recruited NASA employees hired to lead the effort to meet the challenge of the 1957 launch of Sputnik. His interest was in the magnetoplasmadynamics (MPD) thruster, considered up until that time to be in the realm of science fiction. The MPD played a major role in reshaping the focus of NASA’s space program, and it is currently the most powerful form of electromagnetic propulsion.

He was a member of the small team of scientists characterized as "The Mad Scientists of MPD" by James R. Hansen in Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo. The efforts of these unsung science heroes were critical to the success of Project Mercury, the first human spaceflight program of the United States that put American astronauts in space, beginning with the first suborbital flight by Alan Shepard and the first orbital flight by John Glenn, and to all human space exploration thereafter.

Subscribe to Front page feed